Energy Management for Tiny Real-Time Kernels

Mario Bambagini, Francesco Prosperi, Mauro Marinoni, GimButtazzo
{m.bambagini, f.prosperi, m.marinoni, g.butta}@sssup.it
Scuola Superiore Sant’Anna Pisa, Italy

Abstract—In battery operated embedded systems, an efficient ground during gates switching, aifid, is the leakage current.
energy management is a key feature for increasing the system |n particular, the three terms describe the dynamic, thetsho

Iif(_atime, as well as for controlling the application performar_lce. In circuit, and the static power component dissipated in a,gate
this paper, we present a power management module designed fo respectively

tiny embedded operating systems and implemented in the Erik o])]
Enterprise, an OSEK-compliant kernel. The obtained resuls Aiming at reducing the dynamic component, Dynamic

show both the effectiveness of the presented component andet Voltage and Frequency Scaling (DVFS) techniques consist of
impact of operating mode changes on global performance. varying the voltagd’ and the frequency in Equation (1), in
order to slow down the processor while keeping the task set
feasible, according to the actual system workload. An abver
effect of such an approach is represented by the fact that
Nowadays, thanks to the progress of information and eleg- alters the circuit delay, thus limiting the maximum usable
tronic technologies it is possible to produce very smallicey frequency. This phenomenon is reported in Equation (2) yevhe
characterized by considerable performance and a low c®%t is the Threshold Voltagethat is, the minimum voltage
per unit. Hi-tech products are widespread and, in the fututgetween gain and source able to create a channel from drain
this trend will increase. In this scenario, the issue of gperto source in a MOSFET transistor.
saving becomes central, especially for portable devices an
autonomous mobile robots, for which the minimization of o 174
energy consumption not only prolongs their lifetime, but circuit delay = WV — V)2 @)
allows money saving and has also a long term impact for
recljr?gggeerg}/gﬁ?g)igtigﬁgsggg.systems power managemgriw\fen such a limitation, not all the pair¥’(f) are usable.
is implemented through the Advanced Configuration andAnother well-known approach is the Dynamic Power Man-
Power Interface (ACPI) [1], whose specification defines @eément (DPM). Such technique is used to switch the proces-
standard for devices configuration and monitoring. In partiSOr off during long idle intervals, thus postponing taske-ex
ular, ACPI offers the operating system an easy and flexigf&tion as long as possible, still preserving the schediiiabi
interface to discover and configure the compliant devices. FOf the task set.
instance, unused devices, including the entire systempean It is worth observing that both voltage/frequency changes
switched to a low-power state, according to the currenestaterformed by DVFS methods and operating mode switches
and user preferences. The ACPI approach is suitable to @lg., run to sleep) actuated in DPM approaches introduce an
classes of computers, including personal computers, gaptooverhead in terms of both switching time and energy loss. In
workstations, and servers, but is considerably expensivereal implementations on real-time kernels, such contioipist
terms of computation and memory requirements to work @annot be ignored.

tiny systems. Contribution of the paper: This paper presents a module
In the embedded systems domain, Brock and Rajamani fgf managing power consumption in tiny kernels for realeim
proposed a valid solution in which the system includes aketembedded systems with limited resources, such as memory,
policies and tasks are divided into groups according tor th&PU and power. The proposed module achieves considerable
energy request or importance. The current policy is chosenergy savings, satisfying the application’s timing coaists.
by the policy manager, a component provided by the systerhis paper improves the original work proposed by Marinoni
designer. The system behavior is encoded as a grid, wheteal. [4] by generalizing the device manager with a modular
each cell represents the configuration to adopt when a taskapproach that allows the user to select a policy customiaed f
a specific group runs and a policy is set as active. a specific device providing a uniform interface. The proplose
In CMOS technology, which is leading today’s hardwaregolution has been implemented in the Erika Enterprise kerne
circuits, the power consumption of a gate can be expresseqsjsto manage CPUs, timers, and servomotors.
a function of the supply voltage’ and the clock frequency Organization of the paper: Section |l presents the architec-
through Equation (1) [3]: ture of the kernel module, its working flow and its interantio
_ 2 with the operating system. Section Il describes the pedici
Paate = OLVpof + Vishors + Vicar @ implemented in the module. Section IV reports the experimen
where Cy, is the total capacitance driven by the gate,is tal results performed on the hardware, while Section V ends
the gate activity factor (i.e., the probability of gate sshihg), the paper with the concluding remarks, pointing out ideas fo
Lo is the current flowing between the supply voltage anfditure improvements.

|I. INTRODUCTION

A. Related work Il. ARCHITECTURE

One of the first paper about power management was pro-The energy saving module proposed in this work (also
posed by Yao et al. [6] in 1995. The authors studied thréeferred to as théower Managey is part of the kernel and
algorithms that, given a task set, compute the minimum gnerigteracts with the scheduler, the hardware devices, and the
schedule. The proposed analysis compared the algorith@plication, as illustrated in Figure 1. While the schedule
efficiency with respect to different power models but withous€lects the next task to execute, the Power Manager chooses

taking into account switching overheads. an appropriate running configuration (i.e., speed and gejta
Swaminathan et al. [7], [8] presented two algorithms, LEDF

and E-LEDF, which set the lowest CPU speed that allows the | Applications |

earliest deadline task to finish within its deadline. The dif

ference between the two algorithms is that E-LEDF considers RTOS

the switching overheads, while LEDF does not. Such methods,
however, do not provide hard guarantee for all the taskszdnen Power
they can only be used for soft real-time systems. Manager
In 2004 and 2007, Seong et al. proposed two algorithms.
The first algorithm (OLDVS) [9] accumulates the time gener- t
ated by early terminations and exploits it to decrease thd CP | Hardware |
speed so that the current task is completed at the same time at
which it would have completed in the worst case. The secof. 1. Interaction of the Power Manager with the other systemponents.
algorithm (OLDVS) [10] divides each task in two parts: the
first one is executed at a slower speed, while the second oné block diagram of the Power Manager is reported in Fig-
is executed at a higher speed. This approach is based onufg?2. It consists of three hierarchically organized mosiuiee
assumption that the probability of ending the task instance Application Programming Interface (API), the CPU Manager
the first part is significantly higher than finishing on thew®st and the Devices Manager. Such a modular implementation
part. allows the programmer to easily remove sub-components when
Aydin et al. [11] proposed three algorithms with growingiot needed by the application, so helping to reduce the
complexity. The first one computes the lowest CPU speéeptprint.
such that the task set is kept schedulable under the assumpti

that all tasks execute for their Worst-Case Execution Time l
(WCET). The second algorithm (DRA) keeps track of the
times at which a task is going to be dispatched (computed‘ API ‘

off-line and stored in a dispatch queue). At runtime, if &tas

is dispatched earlier, the CPU is slowed down to prolong the - -]
execution until its original finishing time. The third algim | Device policy <—1 CPU policy |
(AGR) estimates the tasks completion times based on past
instances and computes the lowest CPU speed to keep the
task set feasible assuming that tasks execute for sucheggim

Device Manager¢ CPU Managet

154

Device interface | CPU driver

However, since the estimations can be optimistic, the &lyor -PF’WG’ power
may speed the CPU up to recover from a task overrun. ‘Ll‘:j;: ----- d;Zf,LS
Zhu et al. [12] proposed an algorithm similar to AGR by

using a feedback controller to estimate the task exectuitioa t
The problem of obtaining an optimal frequency from &ig. 2. Block diagram of the Power Manager.

discrete frequency range was discussed by Bini et al. [18. T

authors provided a method for computing the optimal speedThe API module implements the interface defined for the

off-line (that could be unavailable in the specific architee) interaction with the kernel and the applications. The CPU

and introduced a speed modulation technique to achieve Meanager is responsible for the power management of the

required speed using two discrete values. The analysistsel&CPU. Using a set of special callback functions caltembks

the pair of frequencies that minimizes energy consumptidiie kernel informs the module about four scheduling events:

also considering switching overheads into account. Despit task activation, task termination, task preemption, arsk ta

its innovative contribution, such an off-line approach sloet dispatch.

take advantage of tasks early terminations to further reduc The CPU policy submodule implements the energy sav-

consumption. ing policies, which typically select the best speed to meet
The raising impact of the leakage power in modern archthe applications constraints, while satisfying a given ekt

tectures is driving the research on power management towaetformance requirements. TH&PU driver is in charge of

DPM techniques. Huang et al. [14], [15] proposed an offetting the CPU parameters, such as frequency and energy

line analysis that combines DPM and Real-Time Calculus saving state. It is located at the lowest abstraction legetsa

estimate tasks arrivals and compute the CPU idle intervatade is hardware-dependent.

Jejurikar et al. [16] proposed an approach based on taskrhe Devices Manager handles internal and external periph-

procrastination to maximize the time spent in sleep mode. erals. Inside it, theDevice policysubmodule contains all the

device policies, developed according to tbevice Interface l “""“\\(1)

which offers a single access point to the devices. For each .
of them, two stacked componen®ower driver and Device ‘ API ‘
driver, abstract the device behavior using a discrete set of _ ¢ t
. . . X Device Manager 3) CPU Managey ‘.

states, as shown in Figure 3. Each state is characterized by 3 - - TR +~
specific power consumption and quality of service level. ‘ Device policy | » CPU policy ‘

Power Driver ,‘,(4) -'\(2)

S ice i *|CPU driver
\ Device interface \

2 e, power ,'5\ power
: driver 1 \'() “®Ldriver N
\ ‘

Device Driver 1 device |47 (o ‘a| device
Y driver 1 (6) driver N

[Hardware Abstraction Layer |

Fig. 4. First example of modules interaction.

\ Platform De;pendent Code |

Y
\ Hardware \ l @)

, _ | APl . |

Fig. 3. Device stack. 7
Device Manager¢
. . . .]

The link between the CPU and the Device module is \ Device policy \
necessary to adjust the configurations of devices, whenever @)/
a speed scaling or mode switching event occurs. For instance L]

when a new speed is set, the system timers need to be | Device interface |

automatically reconfigured to offer the same tick period. 1‘(3)
When an internal error occurs, a user-defined callback func-)

tion is invoked, demanding the user to manage the exception. driver

A typical scenario could occur on speed scaling: if a device _ ,

detects that the modified configuration is not able to guagant'? > Second example of modules interaction.

the same performance of the previous state, the callback is

invoked to solve the situation. For instance, if an UAR) . . .

transceiver with a modified system speed is not able to sust OWer d”"?r (3), which translates the commu_n_lcated state |

aQ appropriate set of commands for the specific servo driver,

modifying the actuator performance (4).

fix this issue.

A. Sample scenarios I1l. | MPLEMENTED POLICIES

th This selcthntdeS(:tr|b$rs] twohext{:;]mpl_?rs] t(;. b?tter eXp.l";"nthWThis section presents the policies implemented inside the
€ moadules interact with €ach other. 1he Mirst scenaroveno cp Manager and the Device Manager. Such policies are

n F|_gure 4, supposes that a new task instance b_econa%ﬁfigured off-line and are automatically invoked at rurgim
running. The kernel, after having managed the event, indor

. . . ithout int tion.
the CPU Manager by invoking the corresponding hook (1?{' out any user interaction

Once the event is notified, the active policy selects the best
frequency to execute the actual workload within the spetifie,. cpU policies

timing constraints. The new speed is communicated to the L .
CPU driver, which makes it effective (2). The policies implemented in the CPU Manager work for

Once the new frequency is fully operational, the CP@ single CPU and adopt a discrete frequency set. _In the
manager notifies the new configuration to the Device Manad@f/oWing, the termspeedrefers to a frequency *normahzed
(3), which in turn informs the devices under its control @).(With respect to the highest one € f/ fy..) ands™ denotes
Finally, each device sets its hardware registers to obten £1€ lowest speed ensuring the task set feasibility.
same performance with the new configuration (6). If this is '€ following three policies are implemented:
not possible, the module invokes the error callback to solvees OnLine Dynamic Voltage Scalin@LDVS) is a policy
the situation. proposed by Lee and Shin [9] that selects the minimum

Figure 5 presents another situation in which a running task available speed to prolong a task execution time up to its
has to control a servomotor to properly hold a given load with WCET;
the minimum energy, using a torque sensor. The controllere Bonus Sharing DVFE8BSDVFS) is a variant of OLDVS
reads the torque sensor, computes the load value and notifies proposed in this work to take switching overheads into
it, through the API, to the Device Manager (1). account;

The active policy chooses the appropriate state able to hold BSDVFS' is a variant of OLDVS, originally introduced
the actual load with the minimum energy consumption and no- by Gong et al. [10], extended in this work to take
tifies it, through the Device interface (2), to the corregting switching overheads into account.

..) S
All the analyzed policies compute the most suitable freqyen A A

to exploit tasks early terminations. Note that the tasksddea.75 | | |
lines are not considered to slow the CPU down: all policied-5 T1i | |
exploit the unused computation time, if any, from the presio 3 o 1
jobs, prolonging the execution of the current job (at a lower 1 az: €1 €2 ¢

speed) until its worst-case finishing tinag (that is, the time

at which the task would finish in the worst case at sp€gd
To better illustrate the implemented approaches, the three . : : :

policies are instantiated on a CPU with a Sedf three speeds njlr;lrrlgu;nor?pseet'(:n :}gdcea:nwgﬁhmzé?s:évg;(;ﬁfyslc\c/)vn?E-[e d

S = {0.5,0.75,1} and are applied to a task set consistingzS us i ! ! et pu

of two tasks with WCETs equal t¢; = 40 and Cy = 30 follows:

Fig. 7. Schedule produced by OLDVS.

(note that all WCETS values refer to the tasks executinget th Sasoves = MiN { 5 > Ci } (5)
highest speed = 1). For the sake of simplicity, we assume sy€5 |V 7 (¢ + B)/s* — DNusoved Sz, Sy)
that task set parameters are such #fat 1. where

Figure 6 shows a schedule in which each task executes for Avsoved Sz 5) 2 (52, 8,) + 0(sy, 5%).

its WCET on the CPU running at speat. Having no early

terminations, the speed is not changed and no energy can'h€ termd(s,,s*) accounts for the overhead needed for
saved in this case. restoring the speed at* in the case the next running task

If 7, andm, arrive ata; = 0 anday = 5, their worst-case IS Not able to slow the CPU down further. In the considered
finishing times will be at; = 40 ande, = 70, respectively. €xample, the switching overheads are considered symmetric
(0(sz, sy) = d(sy, s)) and proportional to the speed gap. In

s Cy/s” 3 Ca/s* particular:6(0.5,0.75) = 2, 0(0.5,1) = 5, andé(0.75,1) = 2.

1 4 4 ‘ For the given task set, the feasibility test is satisfied only
007g ! " 72 for s = 0.75 ands = 1, since fors = 0.5 » completes at

' ! t = 78 (i.e., beyond timees = 70). Therefore, the running

a s e es I speed is set to 0.75, causing to finish in the worst case at
t = 50.
Fig. 6. Tasks executing for their WCETSs.
P

To apply any of the policies listed above, the system has a5 !]
keep track of the actual execution time used by a tasBuch 05 i T

i A +51,0.75) 5(0.75, 5%)
g |

o T

a monitoring can be efficiently implemented by starting astim i i
each time a task becomes running and stopping it when the ar az: el
task is preempted or completed.clfdenotes such an interval
executed at a speed the remaining WCET of the task can
be computed as

Fig. 8. Schedule produced by BSDVFS.

The idea behind BSDVFSconsists of splitting a task;

¢ =Ci—es) in two parts,7- andr, with WCETs¢! andc}, executed at
Moreover, zbonus timedenoted as, is introduced to account different speedss, and s,,, set as the lower and the higher
for the unused time accumulated by previous tasks’ exeusttioddjacent speed ohsoes The switching instant, and therefore
when; finishes, the saved time is added toB, which can the two valuesd,c;') are computed to prolong’s execution
be exploited as an extra time available for the next scheduléntil its worst-case finishing time;. Hence, they are computed

task. as follows:

Figure 7 shows the schedule produced by OLDVS when ekt el =¢;
finishes at timeg = 8. At the beginningy; runs at the highest ck ¢+ B (6)
speed since no computation time is saved at tirae0 (thus o + P + Aesoves (85 81, 84) < o

B =0). Attime t = 8, 7, completes, saving; = 32 units of

time. Thus,B is incremented by;; andr, can exploitB to where
execute at a slower speed such thays = (C2 + B)/s*. In Agsoves (52,50, 8u) 2 0(52,5.) + (50, 84) + 6(54,5%).
general, having a bonus tinte, a taskr; with residual WCET
¢; can still meet its deadline by running at the speed s 5(1,0.5) 5(0.5,1)
14 4 A ‘ S
G i ; i i
SoLovs = glé% {Sj > ot BS*} . (4) 0072 T1§ | : : i !
i Ty i
In the example shown in Figure 7, sinfe= 32 andC> = 30, a a; ‘ 6*1 T
the lowest feasible speed ig,,s = 0.5. With such a speed,
7o would finish in the worst-case at= 68. Fig. 9. Schedule produced by BSDVES
Figure 8 illustrates the schedule produced by BSDVFS,

when taking switching overheads into account. Bét,, s,) It is worth observing that BSDVFSis the only method

be the switching overhead from speegd to s,. Then, the able to fully exploit the time bonus to make the current task

to complete at its worst-case finishing timg Note that if a
task instance finishes earlier, most of the execution istsgten ®
the lower speed,, so achieving higher energy reduction.
Figure 9 shows the schedule produced by BSDVRing
s. = 0.5 andsy = 1, which are the adjacent speedssgf,es =
0.75. In this examplef(s,, s*) = 0 sinces, = s* = 1.
According to Equation (6), the execution timesdgf and
TQH result to bec§ =22 and CS =38, reSpeCtively. Note tha?tg maximum consumptions (CPU datasheet-
finishes exaCtly at timeQ = 70. & e & typical consumptions (CPU datasheeg- |

ctual board consumptions (from measuremeng)
| . ! .

Consumption (mA)
*

0 5 10 15 20 25 30 35 40

B. Device policies Milion of Instructions Per Second (MIPS)

The policies implemented in the Device Manager suppatly 10. cpU power consumptions.
timers and servomotors.

Servomotors are devices driven by Pulse-Width Modulatigrom 86.12 mA to 59.12 mA. Such a result indicates that
(PWM) signals, whose absorption peak is concentrated at thgFS approaches are not effective on this architectureravhe
beginning of the signal period with a constant intensity andhigher saving would be achieved by algorithms that run the
duration proportional to the detected angle error. application at higher speeds.

The Power driver offersn states, each one identified by In the next experiment the three policies have been tested
a specific PWM period. The policy inside the Device Manen ten periodic tasks with a total worst-case utilizatiép. =
ager associates a specific power state to the required torqu. The lowest frequency which guarantees the task set
according to a pre-specified internal look-up table. feasibility in the worst case is 40 MIPS (corresponding to

To be implemented, the servo driver (or a PWM peripherad) speeds* = 1).
uses a timer to generate the control signals and the DevicgFigure 11 shows the energy consumption (normalized with
Manager interacts with such peripherals to vary the PWhéspect to the case of no online policy) as a function of
period. the ratio of the actual utilizationlf...;) and the worst-case

Despite of the negligible energy consumption, timers atsme (/,,.). As observed above, in the considered architecture,
managed by the module to maintain the consistency of tpelicies using higher speed achieve a lower energy consump-
system time independently of the running speed. The Devitien. Therefore, although BSDVESs able to exploit slower
Manager does not provide any policy for them and the Powgequencies than BSDVFS, its average consumption is gimila
driver offers only two statesp) N and OFF, corresponding to BSDVFS, because it is compensated by longer execution
to the timer active and timer inactive modes, respectively. times. Note that at high utilization ratio&/{..; /Uy, > 0.5)

OLDVS is characterized by higher energy consumptions be-
IV. EXPERIMENTAL RESULTS cause, by neglecting switching overheads, it is able tockele

ds. On the other hand, at low utilization ratios
The Power Manager has been developed as module of {#€" SP€€ ’ .
Erika Enterprise kernel [5] and tested on the Evidence FL)’{Tml/UWC < 0.5), both BSDVFS and BSDVFSachieve

boards [17] equipped with a Microchip dsPIC33FJ256MC71 gher consumptions*because, at the end of ‘?a_c_h job, they
microcontroller [18]. restore the speed te* to ensure task set feasibility. Such

an effect is enhanced for very low utilization ratios due to
the higher overhead (1 ms) introduced when switching to the
A. CPU minimum frequency.
A set of experiments has been carried out to evaluate the§
impact of the three policies on the energy consumption. Thed °** —
experimental measurements refer to the whole board. The CPUS ”
driver supports eight different frequencies: 40, 35, 30,18)
10, 8 and 2 MIPS (Million of Instructions Per Second).
The switching overhead depends on the specific frequency

0.85

ergy cons

levels, because the lowest frequency is obtained direatiy f S ol -

the external clock signal, while the other frequencies are g ..

derived by a PLL. Switching the PLL on takes about 1ms, & ol = OLDVS - |
while turning it off or adjusting it to any other frequenckés E 08 f > 3%%%’;3'"; 1
between 4s and 4Qs. S e e 6w

Figure 10 shows the current consumption of the CPU as Ureat /Une
a function of the frequency. The upper curve in the figure
refers to actual measurements on the entire board, whergigsll. Normalized energy consumptions of the policies.
the others two are derived from the datasheet and refer to the
CPU only. Note that, for the considered architecture, ngjvi)
the frequency doubles the execution time, but does not redgnDevices
a current consumption of 50%. For instance, reducing theAnother set of experiments has been performed on a ser-
frequency from 40 to 20 MIPS, the current consumption gogemotor to derive a policy for driving the device with the

minimum average energy consumption. The servomotor used V. CONCLUSIONS

in this test is a Hitec HS-645MG, characterized by a minimum This paper presented a power management module for real-
absorption of 12.56 mA, and a peak current of 1 A. The peglne embedded systems. The proposed component, designed to
occurs at the beginning of the PWM period and has a duratigg highly modular, implements a set of policies for the CPU
proportional to the detected angular error. and devices using a uniform interface. The power layer has
The experimental tests compare the measured mean POWg&, implemented on an OSEK compliant kernel and tested
consumption as a function of the applied torque, using thrgg an embedded platform based on a dsPic microcontroller.
different PWM periods: 10, 20 and 40 ms. As shown igyperimental results show the effectiveness of the approac
Figure 12, the effectiveness of each period depends on $g,wing how the module can be used to select the most appro-
energy needed to correct the accumulated error between W¥fate policy for a specific application on a given architeet

consecutive updates. An example of device policy has been also shown for driving

Note that for very small torques<(0.5 kg x cm) the

a servomotor with minimum energy consumption.

consumption is not affected by the PWM period, because theag 5 future work, the module will be ported on different
angular error on the axis is below the threshold used by tQ?stems, for instance on ARM platforms, and expanded to

internal position controller. Low torques (0.5,1)

kg > €M) gypport other policies for the CPU (such as DMP algorithms)

typically generate similar errors for any PWM period, leali 44 for other devices (such as communication transceivers)

to similar energy costs per update; therefore, longer gerio
produce less updates per time unit and consume less energy.
For torques higher than 1.0 kgm, a period of 40 ms copes
with higher errors, accumulated between two consecutivid]
updates, resulting in a higher consumption. Moreover, thi
period cannot guarantee an angular error less @ifawith
torques greater than 1.5 kgm; hence, the measures for suchl3]
a period are not considered for higher torques. For medium
torques € [1,1.6) kg x cm), the errors produced by 10ms andpg
20 ms PWM periods are similar, hence the longer period (20
ms) leads to a better performance. The shorter period (10mf§}
is more suited for heavier loads, because it frequentlyectsr [©
smaller errors, so leading to lower consumptions.

0.3

(7]

@ 8
g o f,_—‘o» (8]
a 0.2 St A('x /
g
g 0.15) * [9]
[8)
o o = &
o)
g 008 Eon stant period of 10ms— | [10]
S Constant period of 20ms¢-
< Constant period of 40msk-
° 0.3 0.45 0.6 0.75 0.9 1.05 12 135 15 1.65 18 1.95 21 225 24
Torque (kg<cm
que (kg<cm) ”
Fig. 12. Servo consumptions with different updating pesiod

As a result, the implemented policy binds torque ranges
.) o . 12]
with the period that minimizes the energy consumption, atc-
cording to the results reported in Figure 12. To optimize the

implementation, the results are stored in a look-up tabédé tH13]
associates the period leading to the minimum consumption to
the corresponding torque range, which also defines a power
state. Table | shows the specific state values derived frgi]

Figure 12.

Torque rangeKg « cm) | Power state| Period (ms) [15]
[0.0,1.0) STATE: 40
[1.0,1.6) STATE: 20
[1.6,2.5] STATE, 10 [16]
TABLE |
L OOK-UP TABLE USED BY THE SERVOMOTOR POLICY [17]
(18]

] Dynamic

REFERENCES

“Acpi web site,” http://www.acpi.info/.
power management
[SOC design] November 2003.
http://dx.doi.org/10.1109/SOC.2003.1241556

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Lomepemos
digital design,”IEEE Journal of Solid State Circuitvol. 27, pp. 473—
484, 1995.

M. Marinoni, G. Buttazzo, T. Facchinetti, and G. Framahi “Kernel
support for energy management in wireless mobile ad-howatks .
“Erika enterprise rtos,” http://erika.tuxfamily.aofg

F. Yao, A. Demers, and S. Shenker, “A scheduling modetéaluced cpu
energy,” inProc. of the 36th Annual Symp. on Foundations of Computer
Science ser. FOCS '95. Washington, DC, USA: IEEE Computer
Society, 1995, pp. 374—.

V. Swaminathan, “Real-time task scheduling for eneagyare embedded
systems,” 2000.

V. Swaminathan and K. Chakrabarty, “Investigating tffea of voltage-
switching on low-energy task scheduling in hard real-tigstems,” in
Proc. of the 2001 Asia and South Pacific Design Automationf.Cser.
ASP-DAC '01. New York, NY, USA: ACM, 2001, pp. 251-.

C.-H. Lee and K. G. Shin, “On-line dynamic voltage scglifor hard
real-time systems using the edf algorithm,” fmoc. of the 25th IEEE
International Real-Time Systems Sym{ashington, DC, USA: IEEE
Computer Society, 2004, pp. 319-327.

M.-S. Gong, Y. R. Seong, and C.-H. Lee, “On-line dynamitage
scaling on processor with discrete frequency and voltageldg in
Proc. of the 2007 International Conference on Convergemnéerination
Technology ser. ICCIT '07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 1824-1831.

H. Aydi, P. Mejia-Alvarez, D. Mossé, and R. Melhem, yilamic and
aggressive scheduling techniques for power-aware mea-8ystems,”
in Proc. of the 22nd IEEE Real-Time Systems Symsgr. RTSS '01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 95-.

Y. Zhu and F. Mueller, “Feedback edf scheduling of rémle tasks
exploiting dynamic voltage scalingReal-Time Systvol. 31, pp. 33—
63, December 2005.

E. Bini, G. Buttazzo, and G. Lipari, “Speed modulatienenergy-aware
real-time systems,” ifProc. of the 17th Euromicro Conference on Real-
Time Systems Washington, DC, USA: IEEE Computer Society, 2005,
pp. 3-10.

K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. Buttazzo,
“Periodic power management schemes for real-time eveearss.” in
the 48th IEEE Conf. on Decision and Control (CDC¥hanghai, China:
IEEE, 2009, pp. 6224-6231.

——, “Adaptive dynamic power management for hard réalet sys-
tems,” inthe 30th IEEE Real-Time Systems Symp. (RTS3®shington
D.C. U.S.: IEEE, 2009, pp. 23-32.

R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage awdynamic
voltage scaling for real time embedded systems,TrinProc. of the
Design Automation Conferenc2004, pp. 275-280.

“Evidence srl,” http://www.evidence.eu.com/.

“Microchip web site,” http://www.microchip.com/.

embedded
[Online].

for systems

Available:

