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Abstract. Most battery operated robots have to work under timing con-
straints to exhibit a desired performance and must adopt suitable control
strategies to minimize energy consumption to prolong their lifetime. Un-
fortunately, energy saving strategies tend to reduce resource availability
and, hence, degrade robot performance. As a consequence, an integrated
approach is needed for balancing energy consumption with real-time re-
quirements. In this paper, we present an integrated approach to energy
management in real-time robot systems to prolong battery lifetime and
still guarantee timing constraints. The method is applied to a six-legged
robot controlled by a PC104 microprocessor and equipped with a set of
sensors for the interaction with the environment. Specific experiments
are reported to evaluate the effectiveness of the proposed approach.

1 Introduction

With the progress of technology, cost and size of robot systems are reducing
more than ever, not only for wheeled vehicles, but also for walking machines,
which can be used to work in open environments on more irregular terrains. This
enables the development of distributed systems consisting of teams of robots,
which can cooperate to collect information from the environment and perform a
common goal. Typical applications of this type are aimed at monitoring, surveil-
lance, searching, or rescuing. In this type of activities, the use of a coordinated
team of small robots has many advantages with respect to a single bigger robot,
increasing the probability of success of the mission.

On the other hand, the use of small robot systems introduce a lot of new
problems that need to be solved for fully exploiting the potential benefits coming
from a collaborative work. Most of the problems are due to the limited resources
that can be carried onboard by a small mobile robot. In fact, cost, space, weight,
and energy constraints, impose the adoption of small microprocessors with lim-
ited memory and computational power. In particular, the computer architecture
should be small enough to fit on the robot structure, but powerful enough to
execute all the robot computational activities needed for achieving the desired
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level of autonomy. Moreover, since such systems are operated by batteries, they
have to limit energy consumption as much as possible to prolong their lifetime.

The tight interaction with the world causes the robot activities to be char-
acterized by timing constraints, that must be met to achieve the expected robot
behavior. In order to achieve stability and guarantee a desired performance, tim-
ing constraints need to be enforced by the operating system that supports the
application. In particular, the operating system should guarantee that all peri-
odic tasks are activated according to their specified periods and executed within
their deadlines.

Some of the issues discussed above have been deeply addressed in the lit-
erature. For example, the feasibility of a set of periodic tasks with real-time
constraints can be easily analyzed if tasks are scheduled with the Rate Mono-
tonic (RM) algorithm (according to which priorities are inversely proportional
to task periods), or with the Earliest Deadline First (EDF) algorithm (accord-
ing to which priorities are inversely proportional to absolute deadlines). Liu and
Layland [11] proved that, in the absence of blocking factors, a set of n periodic
tasks is schedulable if the total processor utilization is less than or equal to a
given bound Uy, which depends on the adopted algorithm. This result has later
been extended also in the presence of blocking factors due to the interaction with
mutually exclusive resources [13].

In the context of real-time systems, different energy-aware algorithms have
been proposed to minimize energy consumption. They basically exploit volt-
age variable processors to minimize the speed while guaranteeing real-time con-
straints [14,2,3,12]. What is missing, however, is an integrated framework for
energy-aware control, where different strategies can be applied at different levels
of the architecture, from the hardware devices to the operating system, up to
the application level.

In this paper, we present a system wide approach to energy management
applied to all the architecture levels and integrated with the scheduling algorithm
to guarantee real-time constraints. The method is applied to an autonomous
walking robot controlled by a PC104 microprocessor and equipped with a set of
sensors for the interaction with the environment.

2 System architecture

The robot described in this work is a walking machine with six independent legs,
each having three degrees of freedom. The mechanical structure of the robot is
illustrated in Figure 1 and a view of the robot with sensors and processing units
is shown Figure 2. The robot is actuated by 18 Hitec HS-645MG servomotors
including an internal position control loop that allows the user to specify angular
set points through a PWM input signal. The internal feedback loop imposes a
maximum angular velocity of 250 degrees per second and each motor is able to
generate a maximum torque of 9.6 kg-cm.

The robot is equipped with a color CMOS camera mounted on a micro servo-
motor that allows rotations around its vertical axis. Other sensors include a pair



Fig. 1. Mechanical structure of the robot. Fig. 2. A view of the robot.

of ultrasound transducers for proximity sensing, two current sensors on each leg
for measuring the torque during walking (so detecting possible obstacles in front
of the legs) and a battery sensor for estimating the residual level of charge.

A block diagram of the hardware architecture is shown in Figure 3.
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Fig. 3. Block diagram of the hardware architecture.

All software activities carried out by the robot are partitioned in two hier-
archical processing units. The high level unit consists of a PC104 Pentium-like
computer with a Geode GX1 CPU at 266 MHz mounted on a Eurotech CPU-
1432 motherboard. It includes a 128 MBytes RAM and a solid state hard disk of
640 KBytes. A CM7326 PC/104-Plus frame grabber is connected to the mother-
board via PCI bus for image acquisition from the camera. The high level unit is
responsible for walking control, image acquisition, sensory processing, and power
management.

The low level unit consists of a pair of Microchip 16F877 Programmable
Interrupt Controllers (PICs), which are dedicated to motor driving, sensory ac-
quisition, and preprocessing. Input set points for the servomotors are received
from the walking layer via a standard RS232 serial line, which allows a transfer
rate up to 115 Kbaud.



The current consumed by each leg is converted to a voltage signal and is
sampled by the PIC through its analog input lines upon a specific command
coming from the serial line. The PWM signal generator is interrupt driven and
can drive up to 16 motors, hence two PICs are used to drive all the servomotors.

Through the remaining I/O lines of the PIC, it is possible to control external
sensors, like infrared or ultrasonic proximity sensors. If a sensor is not used, the
PIC interface disables its power line by sending a signal to the Power Manager.

To enforce real-time constraints on critical control activities, the software on
the PC104 runs under the SHARK operating system, which is briefly described
in the following section.

2.1 The SHARK kernel

SHARK is a real time operating system [9] developed for supporting predictable
control applications consisting of tasks with different constraints and timing
requirements (e.g., hard, soft, non real-time, periodic, aperiodic, etc.). The most
peculiar features of this kernel include:

— Modularity. All kernel mechanisms are developed independently of other
internal components and several options are available for each mechanism.

— Dynamic scheduling. The kernel provides direct support for deadline-
based scheduling, which guarantees predictable responsiveness and full pro-
cessor utilization.

— Resource reservation. A temporal protection mechanism based on the
Constant Bandwidth Server [1] allows the user to reserve a fraction of the
processor bandwidth to activities with highly variable computation time.
This prevents execution overruns to create unpredictable interference and
allows tasks to execute in isolation as they were executing alone on a slower
dedicated processor.

— Bounded blocking. Priority inversion caused by resource sharing can be
avoided through specific concurrency control protocols, including Priority
Inheritance, Priority Ceiling [13], or Stack Resource Policy [4]. In addition,
a fully asynchronous (non blocking) mechanism is available for exchanging
data among periodic tasks running at different rates.

— Predictable interrupt handling. A device driver does not fully interfere
with application tasks, since can be split into a fast handler (executing in the
context of the running task) and a safe handler (guaranteed by the system).

3 Power-Aware Management

Hardware and software components cooperate to reach the following main goals:
low power consumption, onboard sensory processing, and real-time computation
capabilities. In order to contain costs, the robot is built with generic mechanical
and electrical components, making the low-power objective more difficult to be
satisfied. Nevertheless, the adoption of power-aware strategies inside the robot



hardware and software modules significantly increased the system lifetime. To
achieve significant energy saving, power management is adopted at different
architecture levels, from the hardware components to the operating system, up
to and the application.

3.1 Hardware level

The simultaneous activity of 18 servomotors creates sporadic high peak loads
of current that must be handled by the power supply circuit. For this reason
Lead-Acid batteries are chosen as a preliminary test-set, due also to low cost
and fast recharge. A Lithium battery could also be a good alternative.

Without proper precautions, the current instability induced by servomotors
can cause unpredictable resets and anomalies inside the microprocessor boards
used in the system. To avoid such problems, these systems are typically designed
with two different battery packs, one for the servomotors and non-critical elec-
tronics, and the other for the microprocessor board. Such a solution, however,
is not efficient since does not exploit the full available energy.

The solution we adopted to optimize battery duration uses a single battery
pack, with a specific control circuit (the Power Manager) for eliminating peak
disturbances caused by servomotors that could reset the processor. The Power
Manager is one of the most critical parts of the robotic system. The high current
flow and the presence of inductances inside the batteries make the power voltage
extremely unstable. If connecting the batteries directly to the servomotors, a
simple robot movement would cause a temporary voltage breakdown that would
disable all the other boards. In our solution, the voltage breakdown is avoided by
a feedback circuit and a set of backup capacitors. When a high peak of current
is requested by the actuation system and the power line inductance causes a
voltage breakdown, a feedback circuit decreases the current flow and a set of
backup capacitor, isolated by a fast Schotty diode, keeps the PC104 and other
critical parts alive. The Power Manager can also disable specific subsystems of
the robot, like sensors or servomotors, when the power-aware algorithm (running
in the PC104) sends a specific control command.

3.2 Operating system level

In a computer system, the power consumption is related to the voltage at which
the circuits operate according to an increasing convex function, whose precise
form depends on the specific technology [8]. Hence, the amount of energy con-
sumed by the processor can be controlled through the speed and voltage at which
the processor operates.

When processor speed is increased to improve performance, we would expect
the application tasks to finish earlier. Unfortunately this is not always the case,
because several anomalies [10] may occur in the schedule when tasks have time
and resource constraints, making the performance discontinuous with the speed.



Conversely, when voltage is decreased to save energy consumption, all compu-
tation times increase, so the processor might experience an overload condition
that could make the application behavior quite unpredictable.

In [7] it has been shown that, to prevent scheduling anomalies and achieve
scalability of performance as a function of the speed, tasks should be fully pre-
emptive and should use non blocking mechanisms to access shared resources.
Under SHARK, non blocking communication is provided through the Cyclic
Asynchronous Buffers (CABs) [9]. Moreover, to avoid the negative effects of
overload caused by a speed reduction, periodic tasks should specify their period
with some degree of flexibility, so that they can be resized to handle the over-
load. In our system, when an overload is detected, rate adaptation is performed
using the elastic model [5,6], according to which task utilizations are treated like
springs that can adapt to a desired workload through period variations. Vicev-
ersa, if the load is less than one, the processor speed can be reduced to get a
full processor utilization, thus meeting timing constraints while minimizing en-
ergy. The elastic task model is fully supported by the SHARK kernel as a new
scheduling module.

One problem with the adopted architecture is that the PC104 is not a new
generation power-aware CPU with voltage and frequency scaling. Nevertheless,
it is possible to force the CPU in a sleep mode for a specific amount of time,
during which the processor enters in standby. Switching the CPU on and off,
as a PWM signal, the average processor speed can be continuously varied from
the two extreme values. If @) 4 is the interval of time the CPU is active at its
maximum frequency fyr and Qg is the interval in which it is in sleep mode, the
average frequency is given by f = fuQa/(Qa+ Qs). f o = Qa/(Qa + Qs)
denotes the active fraction of the duty cycle in the PWM mode of the CPU, the
average frequency of the processor becomes f = fyso. Since f < far, all tasks
run with an increased computation time given by

_ I, _Qa+t@s
7 Qa
Finally, if Py is the power consumption in the active mode and Pg the one in
the sleep mode, then the average power consumption is linearly dependent from

o and is given by
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P= = Pyo + Ps(1 —0) = Ps + (P4 — Ps)o.

3.3 Application level

To achieve a significant reduction in the power consumption, it is essential that
appropriate strategies are adopted also at the application level. For some devices,
like the camera and the frame grabber, the only strategy that can be adopted is to
turn them off while they are not used. For other devices, like the ultrasonic sensor
and the servomotors, more careful strategies can be adopted. The ultrasonic
sensor, when turned on, can be in three different states: standby, working, and



beam mode. The acquisition period is also important; in fact a short period
causes too much energy consumption due to frequent beam generations, whereas
a long period can lead to missing some obstacles. Table 1 shows the power
consumption of the devices used on the robot.

Device Power (W)
Frame grabber 1
CCD camera 0.4
Servomotor 0.4 - 20
Ultrasonic sensor|0.15 - 0.75 - 2.5

Table 1. Power consumption of the robot devices.

To minimize energy consumption in the servomotors, it is important not
only to move the hexapod with a given speed in a desired direction, but also to
select a leg posture and a walking mode that drains less current. This is crucial
when comparing walking robots with wheeled vehicles, which have a negligible
consumption when they do not move.

The algorithms we propose to coordinate the legs modulate a reference walk-
ing step through a number of parameters. An important parameter is the max-
imum angle that each leg covers in the horizontal plane during its motion. A
difference in such angles for the left and right legs causes the robot to turn.
Another parameter that can be tuned is the raise that each leg performs in the
vertical plane. This value depends on the type of surface on which the robot
walks: small values are sufficient for walking on smooth surfaces, whereas higher
values are needed in the presence of obstacles or protruding regions.

To guarantee the equilibrium of the robot during walking, the algorithm
always keeps at least three legs in touch with the ground, so that the center of
mass of the robot always falls in the polygon defined by the touching points. Two
different walking modes are considered in this paper, depending on the number
of legs that are moved at the same time: one or three. They will be referred to
as 1-leg and 3-leg algorithms.

When adopting the 1-leg algorithm, it is necessary to evaluate the exact order
in which legs are moved forward. Two very simple rules would be to maintain
the support polygon made with the touching legs as large as possible, or to have
a little phase difference between adjacent legs.

In the 3-leg algorithm, the specific position set points for the motors involved
in the horizontal motion are generated by sampling two cosine functions with
opposite phases. Similarly, a pair of sine functions with opposite phases was
initially used for the vertical leg motion. However, this solution has been modi-
fied since it was causing the robot to have a significant roll while walking. The
specific shape of the waveform depends on many actors, including equilibrium
requirements, speed, and maximum allowed roll.



4 Experimental results

This section presents some experimental results performed on the robot to eval-
uate the power consumption related to different postures and walking modes.

In a first experiment, we evaluated how the power consumption is affected by
the robot posture. To do that, we measured the current drained by the motors
as the angles, a and S, of the joints corresponding to the two horizontal axes of
the legs were varied in a given range. The angles of the joints rotating around
the vertical axes were set to keep the legs parallel to each other. The results are
reported in Figure 4. A dash in the table means that the leg was not touching
the floor, so consuming a negligible power. As intuitive, the minimum power
consumption was reached when the legs were vertical (that is, « = 0 and 8 =
-90), however such a posture resulted to be quite critical for the stability of the
robot. As shown in the table, the minimum current consumption in a stable
configuration was obtained with o = 45 and § = -45.

a\3|-45(-30|-15| 0 | 15 | 30
0 [0.62(0.86] - | - | - | -
15 |0.43|0.720.73| - | - | -
30 10.13|0.55(0.78| -
45 10.09|0.26{0.55|0.77| - | -
60 |0.18/0.14|0.30{0.58| - | -
75 10.19]0.13|0.15(0.35|0.25| -
90 10.28/0.20{0.20{0.19(0.55{0.20

Fig. 4. Current values for different postures.

A second experiment has been carried out to test the power consumption for
different walking modes, namely the 1-leg and 3-leg modes. The 3-leg mode was
tested for three different speeds, obtained by changing the period T of a basic
leg step. To compare the two modes, we monitored a set of parameters while
the robot was walking along a straight line path 1 meter long. In particular,
we measured the time T; to complete the path, the energy E consumed by the
system in Ty, and the average current I,,, drained by all the motors. The results
of this experiment are reported in Table 2.

Note that, when legs are moving at the same speed (Ts = 0.9), the 3-leg mode
is faster than the 1-leg mode and consumes less current. This counterintuitive
result can be explained by considering the non-linearity in the current/torque
function, which makes the robot to consume more current when its weight is
distributed on five legs rather than on three legs. Hence, the 3-leg mode resulted
to be more efficient both in terms of energy and performance. We also observed
that the energy consumed by the system to accomplish the task decreases as the
leg speed gets higher. This happens because, in a fast walking, the reduction
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Fig. 5. Current drained in function of o and f3.

| [1-leg]3-leg|3-leg|3-leg]
() || 0.9] L8] 0.9]0.23
(s) | 34.3[ 21.8] 9.87] 3.42
() [ 512[ 273 140] 73.6
Tovy (A)| 1.86] 1.56] L.77] 2.69

| |3

Table 2. Comparing different walking modes.

of time Ty for completing the task is more significant than the increase of the
average current drained by the motors, making fast walking more effective.

5 Conclusions

In this paper we presented an integrated approach for designing robot systems
with real-time and energy-aware requirements. We showed that to achieve a pre-
dictable timing behavior and a significant saving in the energy consumption, a
combined effort is required at different architecture levels. At the hardware level,
the processor must provide different operational modes to balance speed versus
power consumption. At the operating system level, a specific power management,
layer should set the appropriate operational mode to minimize energy consump-
tion while guaranteeing the timing constraints. Finally, at the application level,
the control strategies should be tunable to trade performance with energy con-



sumption, so that the robot can switch to a different behavior to prolong its
lifetime when the batteries are low, still performing useful tasks.

We showed how the techniques discussed above can be implemented in a small

walking robot using commercial low-cost hardware components. As a future
work, we plan to perform a more extensive experimentation on the robot, in
order to derive a complete set of strategies to allow the power management
unit to select the most appropriate operational mode based on the task to be
performed and on the residual energy available in the batteries.
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