
EN-50128 certification-oriented design of a
safety-critical hard real-time kernel

Ciro Donnarumma
Rete Ferroviaria Italiana S.P.A.

Firenze, Italy

Scuola Superiore Sant’Anna
Pisa, Italy

c.donnarumma@rfi.it

Pietro Fara
Scuola Superiore Sant’Anna

Pisa, Italy

pietro.fara@sssup.it

Gabriele Serra
Scuola Superiore Sant’Anna

Pisa, Italy

gabriele.serra@sssup.it

Sandro Di Leonardi
Scuola Superiore Sant’Anna

Pisa, Italy

sandro.dileonardi@sssup.it

Mauro Marinoni
Scuola Superiore Sant’Anna

Pisa, Italy

m.marinoni@sssup.it

Abstract—The growing complexity and the need for high
safety standards in railways infrastructures are pushing the
infrastructure operators toward the adoption of newer solutions
able to exploit modern platforms and state-of-the-art software
solutions while guaranteeing safety and timing constraints, and
maintaining the compliance with the standards. This paper
presents the design guidelines of a novel real-time kernel whose
development is based on the Italian use case, highlighting its
focus on adherence to the standards.

Index Terms—real-time, kernel, safety-critical, EN-50128

I. INTRODUCTION

In recent years, the need to modernize the railway infras-

tructure, both in terms of technology and safety, is pushing

many infrastructure operators towards the design of ad-hoc

real-time systems for railway management. In such systems,

high predictability, safety, and security have to be guaranteed

in all operating conditions since all monitoring, control, and

actuation functions are implemented in software and must be

executed under stringent timing constraints. Rete Ferroviaria

Italiana S.p.A. (RFI), the Italian railway infrastructure opera-

tor, aims to develop the next generation railway management

products, built on top of a custom-made safety-critical real-

time kernel. The development is underway within a project

involving the R&D department of RFI and the ReTiS Lab

of Scuola Superiore Sant’Anna to design and implement a

reliable, secure, and real-time kernel with the ability to run on

different hardware platforms, especially multi-core ones. The

design of the kernel requires a substantial effort to evaluate and

determine the architecture best suiting the needs of railway

applications and then proceed with the implementation, that

must be in line with the stringent regulations required to

proceed to software certification such as the European standard

EN-50128 - Railway applications [1]. The aforementioned

standard specifies procedures and technical requirements for

the design and development of software and programmable

electronic systems used in railway control and protection

applications. Note that, the standard has a particular focus

on the methods which need to be used to provide software

meeting the demands for safety integrity. In order to cope with

standard regulation and to simplify the certification process,

the kernel development focused on the design of an ad-hoc

architecture able to provide to critical applications a fine timing
management mechanism and the fault isolation property.

1) Timing management: Timing constraints are part of the

mandatory properties that have to be supported by the system,

according to the standard (clause 4.1) [2]. As a consequence,

the kernel must provide specific mechanisms for handling

tasks with explicit timing constraints.

2) Fault-isolation: Faults, especially in safety-critical soft-

ware, represent sources of interference. According to the

standard, it must be demonstrated that software and hardware

interact correctly to perform their functions (clause 7.6.1.1)

and, obviously, this means stem faults and avoid data corrup-

tion [2]. Hence, a correct and robust solution able to provide

the desired level of isolation among components is crucial to

satisfy the requirements. If the system is well-partitioned, a

failure in a given component does not propagate to another

one that, maybe, is handling a higher critical job [3].

A great number of the real-time systems used to support

control applications are based on modified versions of time-

sharing operating systems. As a consequence, isolation and

timing features offered at the upper layer are not suited to

support safety-critical activities [4]. In conclusion, these im-

portant properties, together with other desired features such as

code maintainability, require a carefully designed architecture.

The kernel is under development, and a prototype version al-

ready runs on Xilinx Zynq Ultrascale+ platform equipped with

a quad-core ARM Cortex-A53. However, this paper will not

discuss implementation issues or performance measurements;

conversely, it presents some choices and guidelines relative to

the kernel design with a particular focus on how they address

the requirements coming from the EN-50128.

314

2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-7281-5138-0/19/$31.00 ©2019 IEEE
DOI 10.1109/ISSREW.2019.00090

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 05,2025 at 17:02:23 UTC from IEEE Xplore. Restrictions apply.

II. MOTIVATIONS

There is a broad and growing range of safety-critical appli-

cation fields requiring real-time computing, such as nuclear

power plants, automotive and avionics systems, air traffic

control, robotics, and military systems. In such environments,

where a software crash may cause damage or even loss of

life, preventing failures is crucial. Safety norms and regula-

tory requirements demand the production of a safety case,

identifying potential functional and non-functional hazards and

demonstrating that the software does not violate the related

safety goals [2].

Relevant safety norms in the transport field include DO-

178B, DO-178C, IEC-61508, ISO-26262, and EN-50128. The

IEC-61508 ”Functional safety of electrical / electronic / pro-

grammable electronic safety systems” represents the central

standard on the functional safety of control systems. Both

ISO-26262 and EN-50128 are adaptions of IEC-61508 for the

application of electrical/electronic systems in specific fields.

The ISO-26262 addresses the automotive domain, and its

adoption is not part of the current EU automotive regulatory

framework [5]. Instead, the EN-50128 specifies procedures and

technical requirements for the development of software and

programmable electronic systems used in railway control and

protection applications, and the EU required its transposition

into national legislation since 2011 [1]. Currently, few RTOS

solutions conform to CENELEC EN-50128 safety norm, and

many vendors offer commercial products adapting their exist-

ing RTOS. For instance, SYSGO recently received the EN-

50128 certification for its PikeOS, the commercial RTOS

designed for avionic solutions [6]. Another commercial RTOS

compliant with the EN-50128 is INTEGRITY [7], developed

by Green Hills. PikeOS and INTEGRITY share several com-

mon characteristics. For instance, both use a micro-kernel

approach and provide device drivers at the user-level.

Instead, the solution proposed in this paper consists of

designing from the beginning a safety-critical kernel to be used

explicitly for the railway environment that reflects require-

ments and preferences advised by the infrastructure operator.

A proprietary kernel helps to avoid developing and certifying

code for unnecessary or legacy features and allows reducing

the code-base considerably, bringing evident advantages dur-

ing testing, certification, and maintenance. The kernel design

focused on supporting state-of-the-art real-time solutions and

thus dropping support for legacy solutions, to make it easier

to verify applications built on top of it. Eventually, having to

be explicitly certified only for a single set of standards, any

update and adjustment of the entire system at each update of

the norm is more accessible than that of other off-the-shelf

solutions.

III. ARCHITECTURE DESIGN

This section presents an overview of the main elements

composing the design of the developed kernel, showing how

they fit the requirements of the EN-50128 standard, with the

aim of certification.

Fig. 1. Kernel’s architecture.

Language and coding guidelines. As stated in clause

D.54, the chosen programming language should lead to easily

verifiable code to facilitate verification and maintenance [1].

The selected one has been the C programming language,

due to the high grade of portability across a wide range of

hardware and architecture and the intrinsic language flexibility.

Furthermore, the norm highly recommends the use of coding

guidelines (clause D.15). The Motor Industry Software Re-

liability Association (MISRA) consortium first published its

Development Guidelines for Vehicle Based Software in 1994,

which describes the set of rules and measures that should

be adopted in software development. The kernel coding style

follows the last MISRA set of rules, published in 2012 [8]

and recognized as the de-facto standard for writing C code

for safety-critical systems. Both MISRA (dir 4.12) and EN-

50128 (clause D.54) remarkably discourage features which

make verification more complex such as the use of heaps or

any type of dynamic variables or objects. Thus, in order to

satisfy the standard requirements, the kernel does not make

use of dynamic memory. Applications, tasks, channels, and all

the other entities of the system are set up in the configuration
phase through a configuration tool.

Spatial-isolation and fault-containment. As depicted in

Fig. 1, enforcement of spatial-isolation and fault-containment

have been obtained applying the micro-kernel architecture,

memory virtualization techniques, and a programming model

based on tasks and applications. A task is the basic schedulable

unit of execution, and an application is a group of tasks which

share the same virtual addressing space. Tasks are executed

concurrently and scheduled using fixed-priorities. In this way,

the tasks belonging to the same application can cooperate

through shared-memory communication paradigm, while the

tasks belonging to different applications can communicate only

using the message-passing mechanism offered by the kernel.

With such a kind of architectural organization, tasks can be

partitioned into applications, so that a fault of a task can

propagate only to the other tasks of the same application.

According to the micro-kernel model principles, the drivers

are full-fledged applications that execute in user-space, and

they have their own virtual memory. The memory virtual-

315

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 05,2025 at 17:02:23 UTC from IEEE Xplore. Restrictions apply.

ization mechanism is provided by the Memory Management

Unit (MMU) that is responsible for the virtual to physical

address translation of all the memory transactions issued by the

CPU. Since the drivers can use DMAs and because memory

transactions issued by the DMAs are not subject to MMU’s

permissions check, the isolation of the addressing spaces of the

different applications could be broken. As described in [9], the

IOMMU support provided by modern hardware architectures

is exploited to controls all DMA’s memory accesses and

achieve a complete spatial-isolation. Therefore the DMA con-

trolled by a device driver inherits read and write permissions

of the associated driver, and the IOMMU checks the DMA’s

memory accesses according to the page-table of its driver.

Therefore it read and write accesses are limited only to the

address space of the associated driver.

Temporal-isolation. Although all the tasks should be fully

characterized in their temporal features, some error could be

done in the evaluation of their WCET and other time-related

parameters. This kind of error can induce a task to execute

more than expected, particularly in case of a system overload.

In such a case, the wrong characterized task could delay the

execution of the lower priority tasks which could miss their

deadline. Temporal isolation techniques can resolve this issue

in a way that only the wrong task will be penalized. We use

the Sporadic-Server algorithm [10] to achieve the temporal-

isolation of the tasks. By statically assigning a period and

a budget (i.e., a maximum execution time) to each task, the

kernel can enforce the temporal isolation at run-time. In such

a way, it ensures that each task runs in each period at most

for its budget and blocks any task that exceeds the assigned

budget, without effecting other tasks.

Priority-inversion-free resources and deadlock avoid-
ance. A primitive mechanism for tasks synchronization is

one of the fundamental facilities that a kernel must pro-

vide. General-purpose operating systems provide generic

semaphores, but they do not suite the constraints of hard real-

time tasks because they suffer from the well-known problem

called priority inversion. The mentioned issue introduces un-

bounded blocking on the execution of the tasks, making the

schedulability analysis infeasible [4]. In order to meet the tem-

poral constraints required by the safety norms, the proposed

kernel provides Resources (i.e., mutual-exclusion mechanism)

according to the Stack Resource Policy (SRP) [11]. SRP

impacts the scheduling algorithm in a way that a task is

not scheduled until all needed resources become free. Conse-

quently, a task cannot be blocked on the access to a resource,

and once it has acquired a resource, the higher priority tasks

that could use the same resource cannot preempt it. Obviously,

it can only be preempted by the higher priority tasks not

using the same resource. This behavior permits to analyze

the whole system because the waiting time experienced by

a task depends only by the known temporal properties of

the lower priority tasks. Note that SRP is a protocol that

regulates the accesses to local resources (i.e., resources shared

by tasks running on the same core). The kernel also supports

Multiprocessor SRP (MSRP), described and developed by

Gai et al. [12], to provide global resources (i.e., resources

shared among tasks on different cores of a multi-core system).

According to this protocol, if a task tries to acquire an already

locked global resource, it starts spinning in a non-preemptive

fashion using a FIFO non-preemptive spinlock. The chosen

spinlock implementation is the Abortable CLH Lock [13],

whose algorithm is designed with a logical FIFO queue that

allows the task waiting for the resource to be unblocked in

the arrival order. This property allows the multi-core system

to be analyzable because the maximum spinning time is equal

to the number of cores (i.e., number of the slots in the FIFO)

multiplied for the longest resource locking time of all tasks.

Another essential mechanism implemented to prevent the

stall of the entire system is a deadlock avoidance mechanism

based on a total ordering of all resources. In the configuration

stage of the system, the system-integrator must specify a

total nesting ordering of the resources. With such kind of

information, the kernel can detect a violation of this ordering

at run-time, and it can throw an exception. This behavior

complies to the clause D.14 (Defensive Programming) of [1].

Fault handling. As the clause D.26 of [1] states, the

system has to be able to detect faults, which might lead to

failure, and provide the basis for countermeasures in order

to minimize the consequences of such failures. Examples of

possible faults that the kernel can detect include the attempt

to violate the isolation, illegal accesses to memory, etc. To

provide a primitive mean of fault handling, we rely on the

mechanism of notification for the exceptions. In the design

of this mechanism, the concept of signals was taken as a

model. A signal represents a generic mechanism used to

deliver a notification to a task. Each application must register

an exception handler callback that is in charge to manage the

faults. Furthermore, the entire system must include a unique

supervisor application that is executed if, for some reasons, an

exception handler is not able to handle the exception. If the

application’s exception handler or the supervisor application

succeed in managing the exception, the system can continue

its normal execution; otherwise the supervisor application is

in charge to put the system in a fail-safe state.

Non-blocking Inter Task Communication mechanism.
The communication mechanism in the proposed kernel relies

on the general concept of channels based on the message-

passing paradigm. The channel is intended as a logical link

used by two different tasks to communicate. The type of

channels provided by our solution is mono-directional; namely

it provides support to information flow in only one direction.

The semantics of communication is asymmetric, and this

means that one task can send information onto the channel

while N tasks can receive the information. Channels work in

a pure asynchronous way. In fact, establish a communication

using the synchronous semantics means waiting until two

tasks encounter at a point in time called rendezvous point.

However, in a real-time system, this behaviour leads to system

unpredictability due to the difficulty of estimating tasks worst-

case execution times. In general, the asynchronous paradigm

is more suitable for real-time systems, and indeed, if no

316

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 05,2025 at 17:02:23 UTC from IEEE Xplore. Restrictions apply.

unpredictable delays are introduced during the communication,

timing constraints can be guaranteed without increasing the

complexity of the system. Furthermore, each channel must be

associated with a working mode among two available: sam-
pling and queuing. These modes are similar to those described

by ARINC-653 avionic standard [14]. The sampling mode is

Tab. I. Comparison between sampling and queuing working modes.

Sampling Queuing

Number of messages One Fixed at config. time
Reliability policy Best-effort Always delivered
Consumption policy Never consumed When all tasks receive
Timing policy Expiration field No timing policy
Arrangement policy Last win First In - First Out

intended to transport messages with the same payload structure

but updated data. A message remains in the channel until a

new occurrence of the message overwrites it. In this mode, the

channel must be associated with a validity period that indicates

the maximum acceptable age of a valid message. When the

message is read, if the validity period expires, a warning is

issued although the message can still be retrieved. Channels

working in sampling mode implements a non-reliable policy,

suitable for real-time applications in which tasks are interested

in receiving fresh data rather than the complete message

history. On the contrary, the queuing mode is intended to

transport messages with uniquely different data, and therefore,

a message is not allowed to overwrite previous messages trans-

mitted on the same channel. Therefore, channels associated

with queuing mode have to buffer multiple messages in the

message queue. A maximum number of buffered messages

must be specified for each channel. Sending a message into

a full-queue or reading a message from an empty queue

generates an error. However, in no case, a task is blocked

reading or sending a message. Channels working modes are

compared in Tab. I. Briefly, the sampling mode represents a

predictable and best-effort way of communicating, while the

queuing mode is thought to enforce delivery correctness.

Low overhead with tickless activation. Commonly, avail-

able commercial RTOS are tick-based; namely, the kernel

runs periodically with each timer tick. Timer ticks can be

programmed to trigger an interrupt to the normal flow of exe-

cution. This type of behavior allows the kernel to monitor the

state of the system and make decisions constantly. However,

the resulting overhead is quite significant, since the execution

flow is interrupted many times per second without a real need.

The kernel described in this article is tickless: it does not

run periodically but only when an event occurs in the system

(i.e., in case of task activation, deadline miss, budget refill) or

it is explicitly called using a system call. As also described

in [15], the tickless paradigm allows less overhead than the

tick-based one since the number of interrupts of the timer,

and the cumulative kernel overhead, decreases dramatically.

IV. CONCLUSIONS

The demand for real-time safety-critical systems is contin-

uously increasing. This paper presents the design of a kernel

compliant to the EN-50128 standard that incorporates the pref-

erences of railways engineers. The kernel design focused on

supporting state-of-the-art real-time solutions such as per-task

budget control to provide reliable time isolation. Moreover,

the development provided memory virtualization techniques

and a programming model based on tasks and applications

for spatial isolation. An exception handling mechanism has

been designed to handle faults to achieve the safety-critical

requirements. The communication mechanism allows tasks to

easily send messages to each other with the use of two types

of channels that works asynchronously. As future works, other

kinds of hardware architectures will be supported, like the

Intel x86 64. A further step will be the development of a Hy-

pervisor both as additional fault-isolation and spatial-isolation

improvement and support for mixed-criticality applications.

REFERENCES

[1] C. E. 50128, “Railway applications - communication, signalling and pro-
cessing systems - software for railway control and protection systems,”
2011.

[2] D. Kästner and C. Ferdinand, “Applying abstract interpretation to
verify en-50128 software safety requirements,” in Reliability, Safety,
and Security of Railway Systems. Modelling, Analysis, Verification, and
Certification, T. Lecomte, R. Pinger, and A. Romanovsky, Eds. Cham:
Springer International Publishing, 2016, pp. 191–202.

[3] Y. Zhao, Z. Yang, and D. Ma, “A survey on formal specification
and verification of separation kernels,” Frontiers of Computer Science,
vol. 11, no. 4, pp. 585–607, Aug 2017.

[4] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, ser. Real-Time Systems Series.
Springer US, 2011.

[5] R. Palin, D. Ward, I. Habli, and R. Rivett, “Iso 26262 safety cases:
Compliance and assurance,” in 6th IET International Conference on
System Safety 2011, Sep. 2011, pp. 1–6.

[6] SysGo, “Pikeos: En 50128 sil4 certification on multi-core.”
[Online]. Available: https://www.sysgo.com/solutions/safety-security-
certification/en-50128

[7] G. Software, “Integrity rtos receives cen-
elec en 50128.” [Online]. Available:
https://www.ghs.com/news/20100302 CENELEC EN certification.html

[8] M. I. S. R. Association and M. I. S. R. A. Staff, MISRA C:2012:
Guidelines for the Use of the C Language in Critical Systems. Motor
Industry Research Association, 2013.

[9] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Fault isolation for device drivers,” in 2009 IEEE/IFIP International
Conference on Dependable Systems & Networks. IEEE, 2009.

[10] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[11] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” in [1990] Proceedings 11th Real-Time Systems Symposium,
Dec 1990, pp. 191–200.

[12] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-
chip,” in Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS
2001)(Cat. No. 01PR1420). IEEE, 2001, pp. 73–83.

[13] M. Herlihy and N. Shavit, The art of multiprocessor programming.
Morgan Kaufmann, 2011.

[14] J. Garrido, J. Zamorano, and J. A. de la Puente, “Arinc-653 inter-
partition communications and the ravenscar profile,” ACM SIGAda Ada
Letters, vol. 35, pp. 38–45, 12 2015.

[15] S. Siddha, V. Pallipadi, and A. Ven, “Getting maximum mileage out
of tickless,” in Proceedings of the Linux Symposium, vol. 2. Citeseer,
2007, pp. 201–207.

317

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 05,2025 at 17:02:23 UTC from IEEE Xplore. Restrictions apply.

