
BACCARAT: a Dynamic Real-Time Bandwidth
Allocation Policy for IEEE 802.15.4

C. Nastasi, M. Marinoni, L. Santinelli, P. Pagano, G. Lipari, G. Franchino
initial.surname@sssup.it

Scuola Superiore Sant’Anna
Pisa, Italy

Abstract—Recently, researchers and engineers began consider-
ing the use of WSN in time-sensitive applications. For effective
real-time communications, it is important to solve the problem of
contention to the communication medium providing an efficient
bandwidth allocation mechanism.

In this paper we tackle with the problem of performing timely
detection of events by a WSN. We propose a real-time bandwidth
allocation mechanism for IEEE 802.15.4 that maximizes event
detection efficiency and reduces statistical uncertainty under net-
work overload conditions. On-line strategies complement off-line
guarantees to enhance the confidence level of the measurements.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are emerging as en-
abling infrastructures for various types of large-scale dis-
tributed embedded applications. For a number of these ap-
plications timeliness is of great importance, e.g. industrial au-
tomation, process control [1], [2], [3] and low-cost distributed
image processing [4]. Each node is expected to perform
real-time computations and to send high quality data with
guaranteed Quality-of-Service (QoS). These end applications
rely on real-time distributed embedded systems, for which
computations and communications must be both logically
correct and produced on time.

In wireless networks, uncontrolled concurrent transmissions
result in collisions, packet losses, and unbounded delays.
Therefore, many MAC protocols for WSN provide disciplined
access to the medium. The IEEE 802.15.4 standard [5] for
WSN provides the Guaranteed Time Slots (GTS) mechanism
where a Coordinator node can manage a TDMA-based access
to the medium. The bandwidth allocation policy might be
coded at upper layers.

The bandwidth allocation problem has been widely studied
for high-end protocols (for example see [6]); concerning WSN,
Chitnis et al. in [7] present a survey where various strategies
for TDMA/CSMA-based MAC algorithms in a star network
are detailed. The general idea is to run a schedulability
test (off-line) or an admission test (on-line) to check if
new incoming data flows can be accepted into the network.
Whenever possible, a certain number of slots are allocated to
the incoming flow.

As application-driven networks, WSNs may require high
data reliability to maintain detection and response capabilities.
Sensor nodes are typically affected by high failure rates so
that a certain level of redundancy is required to the network

Coordinator

ψ1

ψ2

ψ3

ψ4

Fig. 1. Architecture of a WSN monitoring four observables.

to enforce reliability in the measurements. Moreover cloned
observations (nodes) might improve the statistical confidence
in the measurement as detailed by Pagano et al. in [4]. While
sensor nodes redundancy exploits reliability [8], as a drawback
it might increases the probability of network congestion: in an
overloaded network important services cannot be guaranteed
anymore unless proper scheduling strategies are applied to
differentiate upon the flows on the basis of their content.

In this paper we consider the classical WSN application
scenario depicted in Figure 1. A WSN is used for monitoring
a set of observable variables {x1, . . . , xK}, which can reside
in a range that goes from simple scalar data, like temperature,
to images in a video scene. To cope with the unreliability of
typical low-cost sensor nodes, each variable can be monitored
by more than one node. In the figure, four identical nodes
monitor variable x1, three identical nodes monitor variable
x2, and so on.

A. Related work

The IEEE 802.15.4 protocol is the most popular standard for
WSNs and specifies the Medium Access Control (MAC) sub-
layer and the Physical Layer of Low-Rate Wireless Personal
Area Networks (LR-WPANs).

In Figure 2 the beacon-enabled operation of the WSN is
represented. As it can be seen, IEEE 802.15.4 permits to dif-
ferentiate best effort traffic (scheduled through the CSMA/CA
mechanism) and elapsing a portion of the Superframe called
Contention Access Period (CAP), from real-time traffic (al-
located through the so called GTS) and organized in the
Contention Free Period (CFP). Eventually the Superframe can
include an IDLE period where no operation is allowed in the

(CAP)

Beacon
GTS2GTS1

Inactive
Period

Active Period

Beacon Interval (BI)

Contention
Access

Contention
Free
PeriodPeriod
(CFP)

Fig. 2. Superframe Structure in the IEEE 802.15.4 standard.

networking to enhance the lifetime of end-devices.
Bandwidth allocation protocols are proposed to cope with

various traffic classes such as hard and soft real-time traffic.
Relevant examples are iGAME [9], optimal GTS scheduling
algorithm (GSA) [10] and Adaptive GTS Allocation (AGA)
[11].

• In iGAME the coordinator assigns the requested GTS
slots depending on the availability of the bandwidth and
following a First Come First Served (FCFS) scheduling
policy [12]. Flows are indistinguishable for what concerns
data content, and the bandwidth allocation is based on
data rate and packet length only. iGAME shares the same
GTS among multiple data flows in order to improve
the bandwidth utilization. Moreover, flows are eligible
to remain unserved if activated after the saturation of the
guaranteed bandwidth.

• The authors of GSA propose an Earliest Deadline First
(EDF)-based [13] scheduling algorithm to minimize the
total number of unallocated GTSs. GSA tries to smooth
out the traffic by distributing the GTSs of a transaction
over as many beacon intervals as possible while satisfying
its timing constraint. On the other hand, the flows are
indistinguishable, so it is not possible to select a subset
of packets to be dropped in case of overload.

• AGA has been designed to solve the starvation prob-
lem providing fairness and low latency to flows. The
coordinator computes the GTS schedule for the new
beacon interval depending on the bandwidth requests
and traffic priority sent by end devices in the previous
beacon interval. AGA is not focused on real-time acting
on ordinary network metrics like fairness and average
latency.

B. Contributions of this paper

In this work we face the relevant redundancy problem in
WSNs taking into consideration different facets. We propose
the Bandwidth Allocation for Content based and Context
Aware Real-time ApplicaTion (BACCARAT) protocol to be
implemented on top of the IEEE 802.15.4 wireless com-
munication stack. BACCARAT reserves a certain amount of
bandwidth for off-line guarantees and allocates the remain-
ing part to enhance the confidence level of the performed
measurements. Our approach is suited to follow different
strategies customized to specific event signatures and arrival

rates. Moreover, our approach is explicitly designed to address
the overload problem that might derive form the size scaling
of the WSNs.

The remainder of the paper is structured as follows. In
Section 2 we discuss our theoretical model. In Section 3
we present the system paradigms. In Section 4 we describe
the details of BACCARAT, addressing the adopted scheduling
policy and addressing the implementation issues on the IEEE
802.15.4 standard. In Section 5, we illustrate a specific case
study to assess validity of the analytical model. In Section 6,
we state our conclusions and propose future extensions of this
work.

II. NETWORK AND TRAFFIC MODEL

In this paper, we consider star topologies, where N End
Devices (EDs) are directly connected to the Coordinator via
single hop routes. An ED can send data messages to the
Coordinator upon event detection. A message consists of
one or more MAC data frames, and is associated with a
time constraint (deadline). We denote by flow a sequence of
messages of the same type.

The network bandwidth is the resource shared among the
nodes competing to send data, much like the CPU is shared
among tasks. If we logically associate flows to tasks and
messages to jobs, our bandwidth allocation strategy can be an-
alytically studied making use of the real-time theory developed
for scheduling systems. We adopt the real-time jargon and
make use of the symbols defined in Table I. Some information

τi the i-th data flow
Γ = {τi} the set of all the flows in the system

Ci message size, in bytes.
Ji,j The j-th instance (message or job)

of the i-th flow.
T i period or minimum inter-arrival

time between two messages of the
i-th flow.

Di the flow relative deadline.
ai,j message activation time.

di,j = ai,j + Di message absolute deadline.
J(t) = {Ji,j} The set of all the active messages

in the network at the time t.

TABLE I
LIST OF SYMBOLS

must be collected by the Coordinator at each Superframe
instance in order to accommodate a feasible schedule of the
flows. A flow τi, periodic or sporadic, is described by the
worst-case size (in bytes) C i of its messages; the relative
deadline Di, which represents the maximum transmission
delay for a message; and the period (or the minimum inter-
arrival time) T i between two consecutive messages.

Using the real-time formalism, we call job, denoted by J i,j ,
the j-th instance of a message of the i-th flow.

A. Flow semantics and classification

To reconstruct an event it is necessary to aggregate the
readings of the nodes looking at the same event from comple-

mentary perspectives (we call these perspectives observables).
We classify the information needed to reconstruct an event

in the independent set Υ = {x1, x2, . . . , xK}, with K (K ≤
N) being the number of observables. An observable measure
is encoded in a message and transmitted by one or more
flows. Therefore, we partition the flow set according to Υ,
as Ψ = {ψ1, ψ2, . . . , ψK}, where ψk = {τk

i } is the set of
the flows that carry data for the observable k. We call “k”
the type of the flow. Note that, from the partition formal
properties, Ψ = Γ where Γ = {τi} is the set of all the
flows in the system. Let wk be the cardinality of subset ψk,
i.e. the number of flows that carry information on xk , with
N =

∑K
1 wj . All flows τi ∈ ψk are equivalent, in the sense

that they carry semantically equivalent information (although
the actual values of the measurements can be different). Thus,
we assume that all flows belonging to the same subset ψk have
the same parameters (T

k
, D

k
, C

k
).

Note that failure rate (generally high in WSN technology) is
not the only reason to generate wk independent readings of the
same variable. The estimator of an experimental observable
xk is a random variable affected by statistical uncertainty
σk. Providing a set of wk independent measurements for
xk permits to estimate it through the arithmetic mean xk

with an error of σk/
√
wk. Of course, increasing the level

of redundancy imposes to filter the transmission requests
introducing an admission control based on the packet content
as it is discussed in the next sections.

B. Network redundancy

The main problem in WSN, is that the total available
bandwidth may not be enough to support transmission of all
messages within a given period. However, we could dynam-
ically reduce the redundancy level for some observables in
a controlled manner. It is mandatory to guarantee that the
Coordinator receives enough information to assess a certain
confidence level on the measurement.

For every flow partition ψk, we define wG
k as the mini-

mum number of flows of type k (k-flows) required by the
Coordinator in order to guarantee the confidence level of the
measurement. Clearly wG

k ≤ wk, where wk , is the maximum
number of k-flows that can arrive at the Coordinator in a
certain interval. Let ψG

k ⊆ ψk be any subset of wG
k elements of

ψk. Since all flows belonging to ψk have the same parameters,
all possible subsets of ψk with the same cardinality are
equivalent, we can choose any one of them during the off-
line schedulability analysis.

We denote as ΓG, the guaranteed subset, the union of all
ψG

k . The off-line analysis, which will be described later on,
checks that all flows in ΓG can be safely admitted into the
system. We denote as residual subset ΓR = Γ \ ΓG.

III. SYSTEM PARADIGMS

In event-driven communications, the EDs can trigger a
transaction asynchronously following the readings of their
sensors. Since the bandwidth allocation is centrally managed
by the network Coordinator it is reasonable to collapse the

distributed system into a “virtual” centralized system where
the available bandwidth is represented by a virtual processor.
This permits to study bandwidth allocation as a uniprocessor
scheduling problem.

A. Networking activities: association and message transmis-
sion

The communication protocol is composed by service data
frames, called requests. We identify two types of requests:
the flow request, used to declare the presence of a new flow
in the network; and the job request, used to announce that a
new job (a message) is ready on the ED to be transmitted.
Both flow and job requests are used to transfer information
from EDs to the Coordinator. In our model, we assume that
the dimension of the requests are negligible compared with
the CAP dimension, so that we may suppose that all of them
reach the Coordinator with a null or small delay.

WSNs are systems that largely change structure during their
lifetime. Then a node is allowed to associate to the network
any time and to create new traffic, sending a flow request
to the Coordinator. Thus the Coordinator checks upon the
feasibility of scheduling new flows. As already stated, flows
are the abstract description of a kind of data frame that an ED
can transmit. Messages, instead, are instances of flows; they
are the actual data frames transmitted by the EDs.

In the start-up (association stage) the Coordinator is in
charge of parsing flow requests and updating the ΓG or ΓR

sets. At every association request the Coordinator carries out
an admission test called Guaranteed Flow Admission (GFA)
to check the schedulability of ΓG.

At the end of the association stage, the Coordinator listens
for job requests and manages the functional communication by
scheduling messages (transmission stage). The acceptance test,
called Message Acceptance and Scheduling (MAS), is applied
to schedule messages based on the requests reqi,j received
at run-time. During this step, if a new flow type requires
guarantees (i.e., a new node is asking to join the network),
a further admission test must be run in background as the
new flow request arises.

The association and transmission stages are respectively
based on flow requests and job requests. They can be described
in terms of sequence of steps as detailed by Algorithms 1 and
2.

Algorithm 1 Association Handshaking Algorithm
1: A new node declares its flow τi to the Coordinator;
2: if τi is new (a new type) and ΓG ∪{τi} can be guaranteed then
3: Update ΓG = ΓG ∪ {τi};
4: else
5: Update ΓR = ΓR ∪ {τi};
6: end if

B. Scheduling policy

We model the Coordinator as a hierarchical scheduler [14],
[15] with two servers managing the bandwidth [16]. The high
priority server, SG, manages the guaranteed bandwidth UG

Algorithm 2 Transmission Handshaking Algorithm
1: A job Ji,j is ready to be transmitted by an ED sending reqi,j ;
2: The Coordinator schedules the message Ji,j according to its

policy;
3: The node transmits the Ji,j when scheduled by the Coordinator.

a

321 4 5 6 7 8 9 16151413121110321 4 5 6 7 8 9 16151413121110321 4 5 6 7 8 9 16151413121110321 4 5 6 7 8 9 16151413121110321 4 5 6 7 8 9 16151413121110 321 4 5 6 7 8 9 16151413121110

B

IDLE

321 4 5 6 7 8 9 1413121110

i,j
d

i
D

i,j
d~

i,j
a

~
i

D

i,j
a

IDLE

B

i,j

CFPCFPCFPCFP IDLEIDLE

BBBB

IDLEIDLE CFPCAPCFPCAP

Fig. 3. Virtual-time representation of the IEEE 802.15.4 Superframe

associated to the ΓG flow set. The low priority server SR,
uses the residual bandwidth, UR = 1 − UG. SG dispatches
the message requests reqi,j contained in an ordered queue JG

to schedule the Ji,j from EDs. SR, instead, dispatches from a
different ordered queue JR the residual message requests. Both
queues JG and JR are ordered following the flow classification
and the message request arrival as described in Section IV.

Furthermore, the two servers SG and SR need to interact
one another in order to cope with the dynamic condition of the
system. Indeed, it can happen that SG has unused bandwidth
that SR could use to schedule its messages without jeopar-
dizing the guaranteed schedulability of ΓG and its entries in
JG.

IV. BANDWIDTH MANAGEMENT FOR IEEE 802.15.4
NETWORKS

The standard provides a slotted mode that enables a TDMA
based scheme to access the channel within the so called
Contention Free Period (CFP). Every CFP is divided into
maximum 7 GTSs, each one spawning one or more slots. The
standard limits in time the maximum CFP width, setting a
minimum duration for the CAP: given an interval of time,
only a certain portion is available for transmission using the
GTS mechanism.

In this real-time analysis we discuss GTS allocation: to ease
the mathematical formalism we apply an axis transformation
mapping the time slots into a compact “virtual time” as
represented in Figure 3. The virtual time is discretized in
number of slots.

To define this mapping, we need to convert the parameters of
a flow from one representation, (T i, Di, Ci), to the other, (Ti,
Di, Ci). In the following, we denote by <TS> the duration
of one time slot; by B the transmission bandwidth (measured
in bits per second); by ifs(C i) the interframe spacing (IFS);
by <BI> the beacon interval, as defined in the standard [5].

The worst-case message size of a flow (C i) can be mapped
into the virtual time representation as:

Ci =

⌈
Ci×8

B + ifs(Ci)
<TS>

⌉
<TS>, (1)

where Ci is expressed in number of slots.
The notification of a new instance of the flow is carried

by the service message reqi,j , as described in Algorithm 2.
The request is received in the CAP by the Coordinator. If the
job is immediately selected for transmission the Coordinator
includes the appropriate GTS descriptor in the next beacon
frame. Therefore, if a job is activated at time a i,j , the
Coordinator can schedule it in the next CFP, let it be ãi,j , as
shown in Figure 3. However, the job absolute deadline must be
set considering this activation offset. The worst-case relative
deadline can be computed as follows:

D̃i = Di − (2<BI>)

Di =

⌊
D̃i − empty(D̃i)

<TS>

⌋
,

(2)

where Di is expressed in number of slots; note that 2<BI>
is the largest value for (ãi,j − ai,j); the function empty(x)
calculates the interval from time ãi,j to time x that cannot be
used due to the interferences of CAPs and IDLEs:

empty(x) =
⌈ x

<BI>

⌉
(<CAPmin>+ <I>) + <I>

where <CAPmin> is the minimum duration of CAP and
<I> ≡ <IDLE> is the idle time. Notice that, the time needed
to transmit a beacon is part of <CAPmin>.

Finally, the flow period can be transformed with the simple
formula below:

Ti =
⌊
T i − empty(T i)

<TS>

⌋
(3)

a) The flow-cap effect: In the IEEE 802.15.4 standard a
big problem is posed by the maximum number of the GTS
descriptors in the beacon, equal to 7. We can allocate up to
7 different flows in a CFP so that an application cannot get
more than 7 different flows in a Superframe, although some
residual bandwidth is available. We denote this effect as the
flow-cap effect.

Theorem IV.1 Let C = {C1, C2, ..., CN} be the set of sorted
flows computation times, where Ci ≤ Ci+1∀i ∈ [1, N − 1].
Let <CFP> be the number of TS in the CFP interval in each
Superframe. Let S be a non-preemptive scheduling algorithm
for the flows requests. A sufficient condition for avoiding the
flow-cap effect is that:

1 +
6∑

i=1

Ci ≥ <CFP>.

Proof: A Superframe can accommodate at most 7 dif-
ferent flows. {C1, ..., C7} is the subset of the 7 flows with
the lowest computation time among all the possible subsets

of 7 flows of C = {C1, C2, ..., CN}. The worst case for a
Superframe allocation (the minimum numbers of slots allo-
cated) is obtained considering {C1, ..., C7}, where C7 has not
been completed in the previous Superframe and requires 1
more slot from the actual Superframe. This way one GTS is
used for 1 slot only. In the worst case the total computation
time is 1+

∑6
i=1 Ci. If it is bigger than the available TSs in a

Superframe <CFP>, the flow-cap effect cannot happen. If the
flow-cap effect does not appear with the application worst case
then the application is totally unaffected, which demonstrates
the theorem.

A. Guaranteed Flows Admission test

In this section we present a schedulability test to guarantee
that the set of ΓG flows can always receive enough bandwidth
to meet the real-time requirements.

The schedulability test (GFA) acts as an admission control:
every time a new flow τi wants to join the system, a new
instance of the test is executed. We apply the EDF scheduling
policy to assign the bandwidth to the messages, considering
the Utilization Criterion (UC) and the Processor Demand
Criterion (PDC) [16]. However our test can be easily extended
to different scheduling algorithms.

Every flow is denoted by a set of parameters τ i(Ci, Di, T i)
and the partition ψk it belongs to. First of all, the flow
parameters are translated into the virtual-time representation,
obtaining Ci, Di, Ti, defined in Equations (1)-(3). If there
are already wG

k flows in the system for ψk, then the new
flow does not need to be guaranteed and will be added to
ΓR. If the minimum number of guaranteed flows wG

k has
not been reached yet, Algorithm 3 (GFA), detailing step 2
in Algorithm 1, is executed and eventually τ i is added to ΓG.

Algorithm 3 GFA: admission test for new incoming flows.

1: if (UC algorithm) -
PN

i=1
Ci
T

> 1 then
2: Reject request
3: Exit test
4: end if
5: if (UC algorithm) -

PN
i=1

Ci
Di

≤ 1 then
6: Accept request
7: fUG =

lPN
i=1

Ci
T

m
TS

8: else
9: if (PDC with total utilization) - PDC(1) fails then

10: Reject request
11: Exit test
12: else
13: Accept request
14: fUG = 1
15: end if
16: end if
17: while PDC(fUG) succeed do
18: fUG = fUG − ΔU
19: end while
20: Set UG to the last successful fUG.

Given a new flow τi the GFA verifies if ΓG = τi ∪ Γold
G is

schedulable. The test starts with the necessary condition (UC):

UG =
N∑

i=1

Ci

Ti
≤ 1

If it fails, τi is rejected (not enough bandwidth), the test returns
and the system continues to work with the previous flow set
ΓG = Γold

G ; otherwise it tries the sufficient UC to the most
general case with Di ≤ Ti :

N∑
i=1

Ci

Di
≤ 1.

If this test succeeds, the flow is accepted, otherwise the PDC
is applied. Whereas the latter succeeds, ΓG is schedulable.

We denote by resource supply function (sbf) sbf(t) = UG·t,
by demand bound function (dbf)

dbf(t) =
∑

∀i:τi∈ΓG

⌊(
t−Di

Ti
+ 1

)⌋
· Ci,

where

D = {dk|dkis a deadline ∧ dk ≤ min{H,L∗}},
where H,L∗ are calculated as:

H = lcm(T1, ..., Tn)

L∗ =
∑n

i=1(Ti −Di)Ui

UG − U
,

using the n flows in ΓG, and UG is the resource required to
have a schedulable flow set ΓG. Yet U is the ΓG bandwidth
occupation, U =

∑n
i=1

Ci

Ti
. Thus, in [17], the PDC states that

synchronous flows are schedulable if and only if

∀t ∈ D dbf(t) ≤ sbf(t).

The goal of GFA is to prove the schedulability of ΓG and to
find the “best” sbf that leaves ΓG schedulable. By best bound
function sbf ∗(t) we intend:

sbf∗(t) = min{sbf(t)|dbf(t) ≤ sbf(t)}, (4)

where t is the considered time interval and sbf ∗(t) ≤ t. This
is obtained using the PDC with decreasing utilization until the
first failure. The iteration step is the equivalent utilization of
a <TS>, computed as ΔU = 1

<CFP> where <CFP> is the
CFP length in <TS>. Equation (4) converges to the form of

sbf∗ = UG · t.
Since the first server, SG, receives a capacity equivalent to
UG, the next one, SR, gets the residual resource left by the
first server:

sbfR(t) = t− sbf∗
G(t) ≡ UR · t = (1 − UG) · t,

to schedule the messages in ΓR.
The complexity of the acceptance test is pseudo-polynomial.

Such complexity is affordable since the algorithm is worked
out off-line.

Flows

t

...

τa

τb

τc

aa,1

ab,1

ac,1

aa,2

ab,2

ac,2

aa,3

ab,3

ac,3

JG = {..., Ja,1}, JR = {..., Jb,1, Jc,1}

JG = {..., Jc,2}, JR = {..., Jb,2, Ja,2}

JG = {..., Jb,3}, JR = {..., Jc,3, Ja,3}
Fig. 4. Message assignment to SG or SR and their queues JG, JR. Three flows, τa, τb and τc, of the same ψk and their messages Ji,j have been
considered.

B. Message Acceptance and Scheduling with bandwidth re-
claiming

So far we have defined off-line the capacity for the two
servers. On-line the server status can change.

The MAS algorithm, executed on-line by the Coordinator,
controls the input message requests and classifies them into
guaranteed or residual. Figure 4 shows how the service request
messages are classified according to their arrival time. Within
a set of equivalent flows ψk, the message requests arriving
first are selected to be the guaranteed ones, while the rest
become the residual. The MAS algorithm can be divided into
2 sub algorithms; MASguaranteed that schedules guaranteed
messages, and MASresidual that schedules the residual mes-
sages and reclaims unused resource from the high priority
guaranteed server SG. MASguaranteed, once classified the
messages, extracts the messages request from the ordered
queue JG. The queue is ordered according to the relative
deadline Di carried by the message request. Once the queue
is emptied or the bandwidth UG is exhausted, MASguaranteed
ends and triggers the execution of MASresidual.

Within MASresidual we define the guaranteed and residual
capacities as TSG = �UG<CFP>� and TSR = <CFP> −
TSG. If the server SG empties the waiting queue before
exhausting the reserved TSs, then the remaining TSs in
the k-th Superframe (denoted by ΔTS k

G) are given to SR

(TSk
R = TSR + ΔTSk

G). If in the current Superframe all
the guaranteed jobs have been served, the whole SG server
bandwidth is reclaimed. The pending requests for SR are
sorted using a priority based algorithm that takes into account
the group relevance and the number of redundant messages
already transmitted, Nxj .

As discussed in Section II-A we want to reduce the un-
certainty of xj taking the mean from a set of independent
observations. In this case the priority assigned to the j-th
job to be scheduled is given by pj = pxj/(Nxj + 1), while
jobs with the same priority are ordered by deadline. If all the
observables have the same “intrinsic” priority (pxj = p0), a
job that belong to the group ψx with the minimum number of
transmitted copies Nxj is chosen from the pending set.

These requests are served by SR using the Superframe
budget (TSk

R) following the logic described in Algorithm 4.

Algorithm 4 MASresidual: acceptance test for SR dispatcher.
1: if SR queue is empty then
2: Exit
3: end if
4: set the index i to the first queued request
5: while (TSk

R > 0) & (SR queue not empty) do
6: Compute the request finishing time fi

7: if fi > di then
8: Skip the request
9: else

10: Accept the request
11: Decrease the SR server budget (TSk

R) by Ci

12: end if
13: if SR queue is NOT empty then
14: increase the index i
15: end if
16: end while

Since the accepted requests will be executed in the next Su-
perframe, no preemption can be made by successive requests,
hence they are sequentially executed. Then the finishing time
fi of job i is computed starting from the finishing time of the
last accepted job fi−1. This should take into account the com-
putation time Ci and the interference induced by the server SG.
Denoting by f0 the finishing time of the last guaranteed job,
the following relation holds: fi = fi−1+Ci+

⌈
Ci−TSk

r

TSG

⌉
TSG.

The complexity of MAS is O(n), where n is the total
number of messages to the Coordinator. Due to its low
complexity, such algorithm can be applied on-line.

V. PERFORMANCE EVALUATION

Hereby we discuss a set of tests to prove the effectiveness
of our approach in event reconstruction.

We model a Wireless Sensor Network composed by nodes
observing the same events. The topology is the star one and the
communication paradigm is conform with the beacon-enabled
mode of the IEEE 802.15.4 standard.

In the proposed case study event reconstruction depends on
the reading of four independent variables x1, x2, x3, x4; the
output of this measurement process will be formally denoted
by the linear function:

f(x1, x2, x3, x4) ,

f being undefined if a minimal set of readings is not available
at the Coordinator. Adopting our formalism we need at least
wG

k reports (k = 1, 2, 3, 4) for each observable.
We assume that sensor readings are affected by random

errors; a fortiori also f is affected by statistical uncertainty.
Therefore we define the variance of f as:

σ2 =
(

∂f
∂x1

)2

σ2
1 +

(
∂f
∂x2

)2

σ2
2 +

(
∂f
∂x3

)2

σ2
3 +

(
∂f
∂x4

)2

σ2
4 ,

where σ2
i is the variance in measuring xi. A good estimator

of σ2 is s2 calculated through the mean value of the random
variables xi in the statistical sample:

s2 = λ2
1

s2
1

n1
+ λ2

2
s2
2

n2
+ λ2

3
s2
3

n3
+ λ2

4
s2
4

n4

where ni is the number of received copies for observable x i, si

the estimator of σ2
i , λi some c-numbers, assuming the linearity

in f . The maximum accepted value for s2 is that of events
reconstructed by the minimal set of readings. An index of the
measurement accuracy can be defined by:

s2M
s2

∈ [1; +∞[

where s2
M=λ2

1
s2
1

wG
1

+λ2
2

s2
2

wG
2

+λ2
3

s2
3

wG
3

+λ2
4

s2
4

wG
4

.
We now define event reconstruction efficiency ε as the ratio

between the number of completely reconstructed events and
the total number of events in the simulation.

To keep track of efficiency and accuracy at the same time,
we combine the previous metrics into one single quality index
defined as:

Q = ε s2M
< s2 >

∈ [0; +∞[

where < s2 > is the average of s2 for the reconstructed events.
We perform simulation studies comparing BACCARAT

performances in terms of reconstruction efficiency and mea-
surement quality with three popular scheduling algorithms:
FCFS as the simplest and most used bandwidth allocation
policy; Round Robin (RR) that enforces fairness among flows;
EDF which is optimal for time constrained scheduling.

The simulation engine is a discrete event generator, written
in C code so that the core of the BACCARAT scheduler can
be easily ported to other simulators, e.g. NS-2 [18] and RTNS
[19], or to existing network stacks for hardware platforms.

A. Simulation scenario

We model event arrivals (detected by the EDs equipped by
appropriate sensors) with a Gaussian distribution centered at
a mean value (μ) of 1 second and having a standard deviation
(s) of 4 milliseconds. All the flow instances at the node level
might be activated at the arrival of the event; it follows that
the minimum inter-arrival time (T i) is the same for all the
flows and is approximated with μ− 3s.

In a realistic scenario the local overhead of preparing the
reports depends on several factors, e.g. the sensor hardware
details, the sampling period, the total software CPU time in
the microcontroller and so on: hereby we model them with
a random (uniformly distributed) delay in the flow instance

activation time with respect to the true time of the event itself.
Note that a generic delay distribution may generate an overlap
among uncorrelated flows so that some jobs related to the event
j can be mixed up with some others related to the event j+1
in a given detection period. We assume that all the jobs related
to the event j are scheduled (so that the GTSs are allocated)
before the arrival of the event j+1: in other words we constrain
max{di,j} < min{ai,j+1} ∀i, j.

Event detection misses due to local inefficiency or wireless
transmission failures are not considered in this simulation
since we focus on overload conditions taking place when all
the nodes detect the event and consequently want to send their
reports.

To model the elaboration time needed by the Coordinator
to take a certain action upon the detected event, we set the
relative deadline Di for each flow to 90% of the period T i.

We assume for simplicity that the report size C
k

for each
observable is the same and equal to 300 bytes, corresponding
to 3 MAC data frames. The Superframe is configured to have
a fixed CFP length of 7 time slots.

B. Performance study

In the following test cases we discuss the behavior of ε
and Q as functions of the system load. In the cases showed
in Figure 5 and Figure 7, we study ε(UG) and Q(UG) for
all the algorithms considered, varying the UTOT parameter
in a set of independent simulation runs (each counting for
10000 events). In the other test cases, showed in Figure 6
and Figure 8, we consider the complementary situation, i.e.
ε(UTOT) and Q(UTOT) varying the UG parameter.

The variation of UG and UTOT is obtained by uniformly in-
creasing, respectively, either the minimum number of required
reports per observable (wG

k) or the total number of flows (wk).
Such uniform distribution of flows depicts the optimal scenario
for EDF, FCFS and RR because of the balanced composition
in the flow nature. We selected this as our simulation setup
in order to compare BACCARAT with the other algorithms,
where the latter are expected to perform at best. Furthermore,
for the sake of simplicity, we suppose that all the observables
have the same “weight” in the definition of s2. Formally we
can state:

λ2
1=λ2

2=λ2
3=λ2

4=1 , s2
1=s2

2=s2
3=s2

4=1 .

In the test case shown by the Figure 5-a, the load setting for
UG is wG

k = 1, ..., 8 and for UTOT is wk = 8, 11, where k =
1, 2, 3, 4. In the Figure 5-b the setting is wG

k = 1, ..., 12 and
wk = 14, 19 for k = 1, 2, 3, 4 resulting in overload conditions.

As expected, BACCARAT works as an ideal algorithm (ε =
1) if the off-line schedulability condition for the guaranteed
subset is valid. Note that since Di < T i the schedulability of
the guaranteed set holds until wG

k = 9 (UG = 0.94). Moreover
the performances of BACCARAT are almost independent from
the UTOT parameter as shown in the Figures 5-a and 5-b.

Concerning the EDF algorithm it can be seen that if the
system is overloaded (UTOT > 0.94) it can still schedule the

GU
0 0.2 0.4 0.6 0.8 1

ε

0

0.2

0.4

0.6

0.8

1

 = 0.84
Tot

Efficiency EDF U

 = 0.84
Tot

Efficiency BACCARAT U

 = 0.84
Tot

Efficiency RR U

 = 0.84
Tot

Efficiency FCFS U

 = 1.05
Tot

Efficiency EDF U

 = 1.05
Tot

Efficiency BACCARAT U

 = 1.05
Tot

Efficiency RR U

 = 1.05
Tot

Efficiency FCFS U

(a) UT OT ≤ 1.05

GU
0 0.2 0.4 0.6 0.8 1 1.2

ε

0

0.2

0.4

0.6

0.8

1

 = 1.47
Tot

Efficiency EDF U

 = 1.47
Tot

Efficiency BACCARAT U

 = 1.47
Tot

Efficiency FCFS U

 = 2.00
Tot

Efficiency EDF U

 = 2.00
Tot

Efficiency BACCARAT U

 = 2.00
Tot

Efficiency FCFS U

(b) UT OT ≥ 1.47

Fig. 5. Event detection efficiency as function of UG.

required flows provided UG is small (flat part of EDF data
sets with ε = 1 in the Figures 5-a and 5-b). Since EDF has
no knowledge about the guaranteed subset and schedules the
jobs on the basis of their deadlines, by increasing UG the
probability of transmitting by chance all the required flows
decreases and ε drops.

The FCFS algorithm shows reduced performances than EDF
and BACCARAT, because it does not apply any deadline-based
scheduling policy. The RR algorithm performs even worse than
FCFS. It equally distributes the available bandwidth among
all the pending messages. This way, the more the system load
increases the more the messages tend to be transmitted after
their deadlines, thus degrading ε. This is the main cause of
the low detection efficiency for RR. In Figure 5-b, where the
system is overloaded, the RR results are omitted, being the
efficiency always zero.

TotU
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ε

0

0.2

0.4

0.6

0.8

1

 = 0.63
G

Efficiency EDF U

 = 0.63
G

Efficiency FCFS U

 = 0.95
G

Efficiency BACCARAT U

 = 0.95
G

Efficiency EDF U

 = 0.95
G

Efficiency FCFS U

 = 0.42
G

Efficiency BACCARAT U

 = 0.42
G

Efficiency EDF U

 = 0.42
G

Efficiency FCFS U

 = 0.63
G

Efficiency BACCARAT U

Fig. 6. Event detection efficiency as function of UTOT

GU
0 0.2 0.4 0.6 0.8 1 1.2

Q

0

2

4

6

8

10

 = 1.47
Tot

Quality EDF U

 = 1.47
Tot

Quality BACCARAT U

 = 1.47
Tot

Quality FCFS U

 = 2.00
Tot

Quality EDF U

 = 2.00
Tot

Quality BACCARAT U

 = 2.00
Tot

Quality FCFS U

Fig. 7. Measurement quality as function of UG

In the test case of Figure 6 we show ε(UTOT) for different
values of UG. Only BACCARAT, EDF and FCFS results are
shown. We set wG

k = 6, ..., 10 with wk = wG
k , ..., 40 for k =

1, 2, 3, 4. It can be seen that BACCARAT shows full efficiency
provided the off-line guaranteed condition is valid (wG

k < 9,
i.e. UG < 0.94). Whenever that condition is no longer valid
the efficiency drops: starting from UTOT = 2, the Coordinator
reconstructs less events; over that threshold of UG, irrespective
of UTOT , the efficiency is zero.

As for the previous case, under values of UTOT smaller than
1, EDF is performing efficiently. At larger bandwidth demand
EDF performs worse and worse. FCFS is always worse than
EDF.

In the test case depicted in Figure 7 we deal with Q(UG).
The experimental setting is the same of Figure 5-b, i.e.
wG

k = 1, ..., 12 and wk = 14, 19 for k = 1, 2, 3, 4. As
expected, for all algorithms Q decreases as UG increases.
If the guaranteed requirement is high, little room remains
for transmission of the redundant copies of observables so
that s2 is close to s2M . Anyhow, the results show that the

TotU
0 0.5 1 1.5 2 2.5 3 3.5 4

Q

0

0.5

1

1.5

2

2.5

3

3.5

Quality EDF U_g = 0.32

Quality BACCARAT U_g = 0.32

Quality FCFS U_g = 0.32

Quality EDF U_g = 0.52

Quality BACCARAT U_g = 0.52

Quality FCFS U_g = 0.52

Fig. 8. Measurement quality as function of UTOT

quality obtained by BACCARAT is always higher than the
other algorithms.

A more interesting case is the one of Figure 8, where the
experimental setup is wG

k = 3, 5 with wk = wG
k , ..., 40 for

k = 1, 2, 3, 4. For all the data sets the required bandwidth for
the guaranteed flows is low enough that BACCARAT, EDF
and FCFS reconstruct the event with ε = 1 provided UTOT

is low (portion of the plot with UTOT < 1).
The quality index Q starts from 1, being UTOT = UG

thus s2 = s2M , and increases with UTOT until the system is
overloaded. When UTOT is close to 1, the maximum value
of Q is obtained, i.e. all the bandwidth is allocated. The
quality obtained by BACCARAT remains to the maximum
level, while with EDF and FCFS it starts decreasing as UTOT

increases (EDF always overcomes FCFS). This is important
because BACCARAT permits to increase the redundancy level
in the network, i.e. the number of flows and thus UTOT ,
without reducing the event reconstruction efficiency and the
measurement quality.

BACCARAT is proved to perform better than popular
algorithms operated at their optimal conditions.

VI. CONCLUSIONS

Through this paper we addressed the issue of improving
the bandwidth management in WSNs; in particular we pro-
posed a working solution for the IEEE 802.15.4 standard.
We showed the effectiveness of our solution in specific real-
time distributed applications devoted to event detection and
reconstruction.

Although simplified our approach fits the usual specifi-
cations of a real-world distributed system where the sensor
nodes are required to interact with a given environment and
to extract from it actual physical measurements with a defined
confidence.

For the future, the flows formal model has to be improved
removing some of the holding assumptions, e.g. allowing more
flows per node. Furthermore, the reclaiming algorithm must be
revisited to approach different scenarios, like multi-hop and
complex network topologies.

Still some work must be done to test the bandwidth manage-
ment protocols within a simulation environment realistically
modeling networked communications like that offered by the
NS-2 package and similia.

REFERENCES

[1] A. Bonivento, C. Fischione, A. Sangiovanni-Vincentelli, F. Graziosi,
and F. Santucci, “Seran: a semi random protocol solution for clustered
wireless sensor networks,” in IEEE International Conference on Mobile
Adhoc and Sensor Systems Conference, November 2005.

[2] N. Aakvaag, M. Mathiesen, and G. Thonet, “Timing and power issues
in wireless sensor networks, an industrial test case,” in Proceedings of
the 2005 International Conference on Parallel Processing Workshops
(ICPPW), IEEE, 2005.

[3] N. Ota and P. Wright, “Trends in wireless sensor networks for manufac-
turing,” International Journal of Manufacturing Research, vol. 1, no. 1,
pp. 3–17, 2006.

[4] P. Pagano, F. Piga, and Y. Liang, “Real-time multi-view vision systems
using wsns,” in SAC, pp. 2191–2196, 2009.

[5] LAN-MAN Standards Committee of the IEEE Computer Society, Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
IEEE Press, 2003.

[6] S. H. Shah, K. Chen, and K. Nahrstedt, “Dynamic bandwidth manage-
ment in single-hop ad hoc wireless networks,” MONET, vol. 10, no. 1-2,
pp. 199–217, 2005.

[7] M. Chitnis, P. Pagano, G. Lipari, and Y. Liang, “A survey on Bandwidth
resource Allocation and Scheduling in wireless sensor networks,” in
Proceedings of NBIS 2009, Oct. 2009.

[8] H. Wen, C. Lin, F. Ren, Y. Yue, and X. Huang, “Retransmission or
redundancy: Transmission reliability in wireless sensor networks,” in
Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal
Conference on, pp. 1–7, Oct. 2007.

[9] A. Koubâa, M. Alves, E. Tovar, and A. Cunha, “An implicit gts allocation
mechanism in ieee 802.15.4 for time-sensitive wireless sensor networks:
theory and practice,” Real-Time Syst., vol. 39, no. 1-3, pp. 169–204,
2008.

[10] C. Na, Y. Yang, and A. Mishra, “An optimal gts scheduling algorithm for
time-sensitive transactions in ieee 802.15.4 networks,” Comput. Netw.,
vol. 52, no. 13, pp. 2543–2557, 2008.

[11] Y.-K. Huang, A.-C. Pang, and H.-N. Hung, “An adaptive gts allocation
scheme for ieee 802.15.4,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 19, no. 5, pp. 641–651, 2008.

[12] J. Blieberger and U. Schmid, “Fcfs-scheduling in a hard real-time
environment under rush-hour conditions,” BIT, vol. 32, no. 3, pp. 370–
383, 1992.

[13] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the Association for Computing
Machinery, vol. 20, no. 1, 1973.

[14] J. L. Lorente, G. Lipari, and E. Bini, “A hierarchical scheduling model
for component-based real-time systems,” in Proc. of IPDPS’06, 2006.

[15] A. K. Mok and A. K. Feng, “A model of hierarchical real-time virtual
resources,” in RTSS’02, IEEE Computer Society, pp. 26–35, 2002.

[16] G. Buttazzo, HARD REAL-TIME COMPUTING SYSTEMS: Predictable
Scheduling Algorithms and Applications. Kluwer Academics Publishers,
1997.

[17] S. K. Baruah, “Dynamic and static-priority scheduling of recurring real-
time tasks,” in Real-Time System, pp. 93–128, 2003.

[18] “Information Sciences Institute (University of Southern California, Los
Angeles CA, USA), The Network Simulator NS-2..” http://www.isi.edu/
nsnam/ns/.

[19] “The RTNS simulation suite..” http://rtns.sssup.it.

