
An implementation of a multiprocessor bandwidth reservation

mechanism for groups of tasks∗

Andrea Parri

Scuola Superiore Sant’Anna
Via Moruzzi 1, Pisa
andrea.parri@sssup.it

Mauro Marinoni

Scuola Superiore Sant’Anna
Via Moruzzi 1, Pisa

mauro.marinoni@sssup.it

Juri Lelli

Scuola Superiore Sant’Anna
Via Moruzzi 1, Pisa
juri.lelli@sssup.it

Giuseppe Lipari

Scuola Superiore Sant’Anna
Via Moruzzi 1, Pisa

giuseppe.lipari@sssup.it

Abstract

Hierarchical scheduling is a promising methodology for designing and deploying real-time applications,
since it enables component-based design and analysis. Such techniques are also helpful for providing tem-
poral isolation and timing guarantees in open systems, and for enabling application-specific schedulers. The
Bounded-Delay Multipartition (BDM) interface was proposed by Lipari and Bini in "A framework for hierar-
chical scheduling on multiprocessors: from application requirements to run-time allocation" (2010) to allow
the designer to balance between flexibility in resource allocation and the cost of resource over-provisiong
necessary for meeting the timing constraints.

In this paper, we present an implementation within the Linux kernel of a multiprocessor bandwidth
reservation mechanism for control groups based on the BDM interface, and we report on a first experimental
evaluation. Our work is based on SCHED_DEADLINE, a scheduling class in the Linux kernel that provides task-
level resource reservation using the Constant Bandwidth Server algorithm, and it extends Linux’s current
structures and interface by replacing the control groups throttling mechanism with an EDF-based reservation
algorithm. Results show agreement with theoretical analysis, and overheads comparable with the current
implementation of cgroups throttling in Linux.

∗This work has been partially supported by the 7th Framework Programme JUNIPER (FP7-ICT-2011.4.4) project, founded by the
European Community under grant agreement n. 318763.

1

1 Introduction

Thanks to the recent advances in the field of com-
puter architectures, it is now common practise to
concurrently execute different real-time applications
in the same system. The motivations are costs re-
duction and reuse of legacy applications on new and
faster multicore platforms.

When executing many real-time applications in
the same system, a problem to be solved is how
to schedule them efficiently while guaranteeing that
their timing requirements are not violated. A pos-
sible solution is the use of an unique scheduling
paradigm for the whole system and the design of all
applications accordingly to it. However, such an ap-
proach increases the complexity of the schedulability
analysis and it is also unable to isolate an application
from the misbehaviour of the others.

A wiser and more robust way of composing ap-
plications with specific timing constraints is to use
a two-level scheduling paradigm. At the root level,
a scheduler selects the application that will be exe-
cuted and its assigned processor time. Each appli-
cation uses a local scheduler that selects which task
of the application will be scheduled next. The local
scheduler has visibility of the corresponding applica-
tion’s tasks only, and it is invoked when the root-level
scheduler allocates the resource to the application.

The computational requirements of a real-time
application are abstracted by means of a temporal
interface. At design time, the application designer
must characterize the temporal requirements of the
application, and derive the appropriate parameters
values that summarizes these requirements.

At root level a feasibility analysis to check if the
application can be safely admitted without compro-
mising the guarantees of the existing applications is
performed. The root-level scheduler “protects” each
application from all others, by ensuring that no ap-
plication can execute more than declared in the in-
terface. As a consequence, the feasibility of each ap-
plication can be analysed independently.

Some authors have addressed the problem of how
to specify the temporal interface for an application
to be executed on multiprocessor systems. Leontyev
and Anderson ([7]) proposed to consider the appli-
cation overall bandwidth requirement as the inter-
face for soft real-time applications, providing only
an upper bound of the tardiness of tasks scheduled
on such interface. Shin et al. ([8]) proposed the
multiprocessor periodic resource model (MPR), con-
sisting in a set of periodic reservations, all with the
same period. Even though this interface model is

rather intuitive, it requires a complex synchroniza-
tion between reservations running on different pro-
cessors. Chang et al. ([9]) proposed to partition the
resource available from a multiprocessor by a static
periodic scheme. The amount of resource is then
provided to the application through a contract spec-
ification. Lipari and Bini ([3]) proposed an interface
model, called bounded-delay multipartition (BDM)
interface, that allows to balance the consumed band-
width vs. the flexibility of the interface. Burmyakov
et al. ([10]) proposed the generalized multiprocessor
periodic resource model (GMPR) which extends the
MPR model by specifying the minimal budgets for
each level of parallelism.

The current Linux kernel supports hierarchical
scheduling of tasks through the control groups throt-
tling mechanism; however, this mechanism does not
provide isolation among different task groups. Re-
cently the new SCHED_DEADLINE scheduling class, pro-
viding temporal isolation among tasks, has been in-
cluded in Linux; however, it only supports reserva-
tion for individual tasks.

This paper presents an implementation of the
bounded-delay multipartition model ([7]) within the
Linux kernel. Our implementation enables resource
reservation for groups of tasks.

The rest of the paper is organized as follows. In
Section 2, we describe the system model and recall
some known results from the theory of hierarchical
real-time scheduling. In Section 3, we describe the
details of our implementation of a virtual platform
model in the Linux kernel, including basic data struc-
tures and the user interface. In Section 4, we describe
some experimental results aimed at validating the
proposed implementation and at evaluating its ove-
head. Finally, in Section 5 we state the concluding
remarks and we overview future works.

2 Foundations

This section introduces the terminology used
throughout the paper, and recalls some known re-
sults from the theory of real-time scheduling.

2.1 Virtual Platforms

The overall system is composed by a set of (real-time)
applications that run concurrently onto a multipro-
cessor machine M with m identical processors.

Definition 1. An application A is a set of n indepen-
dent sporadic tasks {τ1, . . . , τn}, τi := (Ci, Di, Ti)
(i = 1, . . . , n), with constrained deadline.

2

Every time a task is activated, a job must be ex-
ecuted. The minimum inter-arrival time Ti is the
minimum separation between two consecutive jobs
of τi; each job of τi has a computation time Ci

and must be completed within a (relative) deadline
Di ≤ Ti from its activation.

To improve composability and isolation, each ap-
plication is executed onto a dedicated virtual plat-
form.

Definition 2 ([1]). A virtual platform Y on the mul-
tiprocessors M is modeled by a sequence of m func-
tions (Yk)

m
k=1, Yk : R≥0 → R≥0 (k = 1, . . . ,m). For

each t ∈ R≥0, Yk(t) represents the “minimum amount
of CPU time with parallelism at most k” provided
to the application by the virtual platform Y in any
(time) interval of lenght t.

The form of the functions Yk (k = 1, . . . ,m) de-
pends on the particular algorithm that the operat-
ing system or the reservation manager is adopting to
implement the virtual platform Y . We call this algo-
rithm the global or the root scheduling algorithm, in
order to distinguish it from the local scheduling al-
gorithm used within an application to decide which
of its jobs (among those eligible for execution) are to
be executed at each time-instant.

2.2 Schedulability Test

The notion of virtual platform enables an approach
to the schedulability analysis at the “application
level”. We focus on the case of a (local) global
fixed-priority (G-FP) scheduling algorithm but the
analysis can be extended to other policies. Bini et. al.
demonstrated the following theorem on the schedu-
lability of such systems:

Theorem 1. Consider an application A and a ded-
icated virtual platform Y as in Definition 1 and in
Definition 2, respectively. Assume G-FP as the local
scheduling policy and define the interfering workload
on task τi by:

Wi =
∑

j∈hp(i)

Wji, (1)

where hp(i) denotes the set of the indices of tasks
with higher priority than τi and

Wji = NjiCj +min {Cj , Di +Dj − Cj −NjiTj} ,

Nji =

⌊

Di +Dj − Cj

Tj

⌋

.

Then A is (G-FP) schedulable (i.e., each job of A
meets its timing constraints) if the following is true:

n
∧

i=1

m
∨

k=1

kCi +Wi ≤ Yk(Di). (2)

Notice that Equation 2 (and Theorem 1) says
nothing on the actual implementation of the virtual
platform for a given application or about the schedu-
lability at the “root level”, especially if multiple ap-
plications are present in the system. In the next
section, we will expand on this issue by describing
our implementation of the a virtual platform model
within the Linux kernel.

3 Implementation

Our implementation is built upon Linux 3.14,
patched with RT-Preempt 3.14.0-rt1. We assume
CONFIG_RT_GROUP_SCHED=y throughout the rest of the pa-
per. The source code of our implementation is avail-
able as a patch at retis.sssup.it/juniper-project/BDM/.

3.1 General Approach

In our implementation we consider virtual plat-
forms which are “consistent with a specific interface”
([1, 2, 3]). Specifically, given arbitrary α ∈ Q∩ [0, 1)
and ∆ ∈ Q>0, our implementation provides the ca-
pability to create a virtual platform Y := (Yk)

m

k=1

such that

Yk(t) ≥ k α ·max {0, t−∆} , (3)

for all k = 1, . . . ,m and t ≥ 0. Informally, we say
in this case that Y “dominates” the bounded-delay
multipartition (BDM) defined in [3] as:

(

Y ∆
k α

)m

k=1
. (4)

In order to achieve this result, m new schedul-
ing entities π1, . . . , πm (one for each “physical” pro-
cessor), named “virtual processors”, are associated
with each virtual platform. A virtual processor rep-
resents a Hard Constant Bandwidth Server (H-CBS)
(e.g., see [4]) which is statically allocated to a pro-
cessor where this is scheduled in Earliest Deadline
First (EDF) order. The (Q,P)-parameters of the
virtual processors associated with the platform Y in
Equation 3 are all equal to each other and can be
computed according to the transformation:

Q =
∆

2 (1− α)
· α,

P =
∆

2 (1− α)
.

(5)

3

It is known from the analysis of the H-CBS algo-
rithm proposed by Abeni and Buttazzo [5], that
these servers are schedulable iff

NA
∑

a=1

Qa

Pa

=

NA
∑

a=1

αa ≤ 1, (6)

NA being the number of applications in the system.

We stress that, while virtual processors are stat-
ically partitioned upon the physical ones, the jobs of
the application executing within those virtual proces-
sors can be “migrated” to different processors in con-
formity with the local scheduling algorithm. Our im-
plementation considers the case of a local FP schedul-
ing algorithm at the application level, which is not
necessarily “global” (see Section 3.3).

3.2 Root Scheduler

It is now described the implementation of the root
scheduling algorithm and its main data structures
are displayed in Listing 1.

A virtual platform is represented as a task_group

object; this includes an array of pointers to vir-
tual processors entities (sched_dl_entity) and an ar-
ray of pointers to “real-time” run-queues (rt_rq): as
already described, there is one virtual processor en-
tity for each physical processor/CPU; moreover, con-
forming to Linux’s current implementation of the
FP scheduling policy (rt_sched_class), each platform
mantains a per-CPU (local) run-queue used to im-
plement a “distributed” global scheduling algorithm
that will be described in in Section 3.3. The “reser-
vation parameters” of a virtual platform are encoded
in a dl_bandwidth object (and “cached” in the corre-
sponding sched_dl_entity’s): Q = dl_runtime (ns) and
P = dl_period (ns), using the notation presented in
Section 3.1.

We remark that the structure sched_dl_entity is
already included in mainline Linux to store schedul-
ing entities of SCHED_DEADLINE jobs (i.e., H-CBSs):
our implementation preserves the semantics of its
members and augments them with a pointer of
type dl_rq (the run-queue on which the virtual
processor/SCHED_DEADLINE job is to be queued) and
with a pointer of type rt_rq (the local run-queue
“owned” by this virtual processor; NULL for a
SCHED_DEADLINE job). In particular, the members
runtime and deadline represents the “current budget”
and the “absolute deadline” of the H-CBS server, re-
spectively; also, a timer (dl_timer) is “started” when
the server “exhausts its budget” (we say that the
server is being throttled) and set “to fire” at the next

“replenishment instant” of the server. The adop-
tion of the same C structure (sched_dl_entity) to
represent both virtual processors and SCHED_DEADLINE

jobs allowed us to reuse code already available in
Linux’s current implementation of the SCHED_DEADLINE

scheduling policy (dl_sched_class); for example, the
functions dl_runtime_exceeded, start_dl_timer, dl_timer,
enqueue_dl_entity, dequeue_dl_entity apply to virtual
processor entities with minor modifications.

1 struct dl_bandwidth {

2 raw_spin_lock_t dl_runtime_lock;

3 u64 dl_runtime ;

4 u64 dl_period ;

5 };

6

7 /* struct for virtual platforms */

8 struct task_group {

9 struct sched_dl_entity **dl_se;

10 struct rt_rq **rt_rq;

11

12 struct dl_bandwidth dl_bandwidth ;

13

14 ...

15 };

16

17 /* struct for virtual processors */

18 struct sched_dl_entity {

19 struct rb_node rb_node;

20

21 u64 dl_runtime ;

22 u64 dl_period;

23

24 s64 runtime;

25 u64 deadline;

26

27 int dl_throttled , dl_new;

28 struct hrtimer dl_timer;

29

30 struct dl_rq *dl_rq;

31 struct rt_rq *my_q;

32

33 ...

34 };

35

36 #define dl_entity_is_task(dl_se) \

37 (!(dl_se)->my_q)

Listing 1: Main data structures.

The sched_dl_entity’s of both virtual proces-
sors and SCHED_DEADLINE jobs that are Active (i.e.,
non-throttled) are enqueued in the same per-CPU
red-black trees (from which the name rb_node) in or-
der of non-decreasing absolute deadline; the macro
dl_entity_is_task (line 39) has been introduced to dis-
tinguish entities representing SCHED_DEADLINE jobs from
entities representing virtual processors. The function
pick_next_task_dl of the class dl_sched_class has been
modified as displayed in Listing 2: given a (per-CPU)
run-queue rq, we first identify the corresponding red-
black tree (line 7); if there is no SCHED_DEADLINE or
virtual processor entity in the tree, we return NULL

(lines 14-15); if the tree is not empty, we select the

4

leftmost entry of type sched_dl_entity, dl_se, in this
tree (line 17); if this entry represents a virtual pro-
cessors, we return the highest priority real-time job
in the corresponding local run-queue (lines 18-27);
otherwise, the entry must represent a SCHED_DEADLINE

job and we return this job (lines 29-31). Notice that
the function pick_next_task_dl can now (misleadingly)
return a job with SCHED_FIFO or SCHED_RR policy. More-
over, as a direct consequence of the implementation
of this function, Equation 6 needs to be modified
to account for the “total bandwidth” allocated to
SCHED_DEADLINE jobs, as will be detailed in Section 3.4.

1 /*

2 * From:

3 *

4 * struct task_struct *

5 * pick_next_task_dl(struct rq *rq);

6 */

7 struct dl_rq *dl_rq = &rq ->dl;

8 struct sched_dl_entity *dl_se;

9 struct task_struct *p;

10

11 /*

12 * dl_nr_total = # of SCHED_DEADLINE jobs

13 * + # of virtual processors

14 */

15 if (unlikely (!dl_rq ->dl_nr_total))

16 return NULL;

17

18 dl_se = pick_next_dl_entity(rq , dl_rq);

19 if (!dl_entity_is_task(dl_se)) {

20 struct rt_rq *rt_rq = dl_se ->my_q;

21 struct sched_rt_entity *rt_se;

22

23 rt_se = pick_next_rt_entity(rq , rt_rq);

24 /* rt_se != NULL */

25 p = rt_task_of (rt_se);

26 ...

27 return p;

28 }

29

30 p = dl_task_of (dl_se);

31 ...

32 return p;

Listing 2: “Selecting” a virtual processor.

Finally, since virtual processors do not migrate
between different processors as said in Section 3.1,
the Linux’s pull/push functions, as presented in [6]
and available in dl_sched_class for SCHED_DEADLINE jobs,
do not apply to sched_dl_entity’s representing virtual
processors.

3.3 Local Scheduler

Our implementation of the local FP scheduling al-
gorithm is based on Linux’s rt_sched_class: the ba-
sic C structures, sched_rt_entity and rt_rq, are man-
tained to implement a SCHED_FIFO or SCHED_RR schedul-
ing policy. A major effort consisted in the modifica-

tion of the Linux’s pull/push mechanism; we remark
that this mechanism is used to implement a global or,
more generally, an arbitrary processor affinity (APA)
scheduling algorithm. We limit the following discus-
sion to the case of global scheduling, but similar con-
siderations hold for APA scheduling ([6]).

For global scheduling, the main invariant is given
by the following definition:

Definition 3 (G-FP Invariant). For a virtual plat-
form Y , let SY (t) be the set of real-time jobs of Y
which are executing on any of the m CPUs at time t,
and let mY (t) be the set of virtual processors of Y
which have been selected by the root scheduler on
any of the m CPUs at time t. Let p(j) denote the
priority of the job j. If jr is a runnable job of Y at
time t and if jr /∈ SY (t), then

|SY (t)| = |mY (t)| and ∀j ∈ SY (t) p(j) ≥ p(jr).

Notice that the G-FP Invariant (GFPI) property
does not specify how the root scheduler select the
virtual processors (compare with [6], where mY (t) is
constant and equals the number of CPUs, m).

In order to preserve this invariant, our imple-
mentation introduces the functions group_pull_rt_task

and group_push_rt_tasks. The first is called in
pick_next_dl_entity (line 18 in Listing 2), after a vir-
tual processor entity has been selected by the root
scheduler; this function tries to pull a job on the
corresponding local run-queue by scanning all the
run-queues in its platform. The second is called on
each CPU when a scheduling decision is completed
(see post_schedule); if the “previous” or the “current”
job is a SCHED_FIFO/SCHED_RR job, this functions tries
to push jobs from the corresponding run-queue by
searching for a “better” run-queue in the platform.
As in mainline Linux, a successful push triggers a
rescheduling on the “remote” CPU.

In order to preserve the GFPI property, all the
events which could lead to its violation must be con-
sidered:

• A new platform is created, destroyed or its
reservation parameters are modified : when
these events occur, the platform can not have
any assigned real-time jobs;

• A job τ is assigned/removed to/from a plat-
form Y : our solution calls resched_task in or-
der to trigger a rescheduling on the local CPU,
which, in turn, will trigger the pull/pull mech-
anism described above;

• The scheduling class or the priority of a job as-
signed to a platform is modified : our solution

5

calls check_preempt_curr that tests if a reschedul-
ing is required;

• A job woken up or migrated within a platform:
as in the previous case, when these events occur
our solution calls check_preempt_curr;

• A virtual processor is “preempted” or it ex-
hausts its budget : when these events occur our
solution calls resched_task.

3.4 User Interface

Similarly to Linux’s current real-time throttling in-
frastructure, our implementation of the virtual plat-
form model provides an interface based on the cgroup

virtual file system.1

A virtual platform can be created by making a
sub-directory under the “cpu sub-system” directory in
this file system; within each such directory, the files
cpu.rt_runtime_us and cpu.rt_period_us can be used to
read/write the values (in µs) of the reservation pa-
rameters Q and P , respectively, for the correspond-
ing virtual platform (see equations 3, 5). Reservation
parameters are also available for the cpu sub-system
directory: if we let (Q,P) denotes the parameters
corresponding to this (system) reservation and if we
let (Qa, Pa), 1 ≤ a ≤ NA, denote the reservation pa-
rameters corresponding to the virtual platforms in
the system, then our implementation checks that

NA
∑

a=1

Qa

Pa

≤
Q

P
, (7)

whenever a virtual platform is created or modified.
We remark that the virtual platform model considers
a hierarchical scheduling framework with two levels
(the so called “root level” and the “application level”):
for this reason, our implementation prevents users
from making sub-directories with depth greater than
one (we consider a depth of zero for the cpu sub-
system directory).

If “real-time bandwidth control” is enabled
(/proc/sys/kernel/sched_rt_runtime_us >= 0), our appli-
cation checks that

m ·

NA
∑

a=1

Qa

Pa

+ DL ≤ m ·
Q

P
, (8)

whenever an instance of the structure sched_dl_entity

(a virtual processor or a SCHED_DEADLINE job) is created
or modified, where we denoted by DL the total band-
width allocated to SCHED_DEADLINE jobs. Notice that
Equation 8 expresses a necessary but, in general, not
sufficient condition for schedulability.

4 Evaluation

In this section, we describe some experiments aiming
at validating the proposed solution. First, a runtime
test is used to check the correct behaviour of our
approach with respect to the mainline Linux kernel.
Then, the overhead of scheduling functions is mea-
sured to confirm the real applicability of our solution.

We executed the experiments on an
Intel R©Core2TMQ6600 quad-core machine with 4GB
of RAM, running at 2.4GHz.

4.1 Runtime Validation

We considered a system composed by the virtual
platforms Y1 and Y2 defined in Table 1, and by the
real-time applications defined in Table 2. Finally,
we considered the (disturbing) background workload
defined in Table 3.

Virtual # of virt. α ∆
platform processors (ms)

Y1 2 0.72 20
Y2 2 0.22 20

TABLE 1: Platforms for validation.

Virtual i pi Ci Di Ti

platform (ms) (ms) (ms)

Y1 1 13 10 60 60
2 12 140 270 270
3 11 90 520 520

Y2 4 15 40 270 270
5 14 40 520 520

TABLE 2: Applications for validation.

i pi Ci Di Ti

(ms) (ms) (ms)

6 18 25 100 100
7 17 50 200 200
8 16 100 400 400

TABLE 3: Background workload.

1For more information on Linux’s cgroup, see the relative documentation in the kernel source tree.

6

We used rt-app2 to generate this workload and
to count the number of deadline misses for the cor-
responding jobs over a time-window of 120 seconds.
We ran this experiment 20 times against both our im-
plementation and mainline Linux. In agreement with
the theoretical results from Section 2.2, no misses is
detected when using virtual platforms (the applica-
tions are both schedulable, as can be verified by ap-
plying Theorem 1). Table 4 reports the results when
using Linux’s throttling mechanism.

i Throttling Throttling
(no background) (with background)

1 6± 1 210± 9
2 0± 0 222± 6
3 0± 0 5± 1

4 0± 0 0± 0
5 0± 0 0± 0

TABLE 4: Average number of deadline
misses for the applications of Table 2 over 20
runs, when using Linux’s throttling.

As it emerges from Table 4, the Linux’s throt-
tling mechanism is not able to guarantee the real-
time constraints of the applications. Notice that this
is true even when no background workload is present.

4.2 Overhead Measurement

Turing the experiment described in Section 4.1
we collected the overhead measurements of Linux’s
scheduling functions, obtained using ftrace3 Table 5
and Table 6 show a report of the measurements when
using virtual platforms and throttling, respectively,
and the measured kernel functions are:

(a) pick_next_task_dl,

(b) post_schedule,

(c) enqueue_task_rt,

(d) pick_next_task_rt,

(e) task_tick_rt.

Function Hits Duration
(×103) (µs)

(a) 155 1.1± 148.4
(b) 155 0.8± 65.3
(c) 147 0.25± 9.1
(d) 18 1.6± 83.7
(e) 29 0.4± 3.5

TABLE 5: Overhead measurements of ker-
nel functions for the applications of Table 2,
when using virtual platforms.

Function Hits Average
(×103) (µs)

(a) 2251 0.1± 17.2
(b) 2251 0.7± 51.4
(c) 8 0.7± 1.8
(d) 2251 0.2± 22.1
(e) 29 0.4± 2.2

TABLE 6: Overhead measurements of ker-
nel functions for the applications of Table 2,
when using Linux’s throttling.

As it emerges from Table 5 and Table 6, the over-
head of virtual platforms is comparable with that
of Linux’s throttling mechanism. Notice that vir-
tual platforms result in a lower number of scheduling
events w.r.t. the Linux’s throttling mechanism.

5 Conclusions

In this paper, we presented an implementation
within the Linux kernel of a multiprocessor band-
width reservation mechanism for control groups
implementing the BDM interface and based on
SCHED_DEADLINE. First results showed agreement with
theoretical analysis and overheads comparable with
the cgroups throttling mechanism available in main-
line Linux.

As a future work, we want to better character-
ize the computational costs and the introduced over-
heads. From the theoretical side, the next step that
needs to be addressed is the analysis of shared re-
sources access; a promising approach concerning this
problem is the extension of the multiprocessor band-
width inheritance (M-BWI) protocol proposed in [11]
and implemented in [12], in order to support reser-
vations for groups of tasks.

2https://github.com/scheduler-tools/rt-app
3See Documentation/trace/ftrace.txt in the kernel source tree.

7

References

[1] Virtual multiprocessor platforms: specification
and use, Enrico Bini, Marko Bertogna and San-
joy Baruah, RTSS 2009.

[2] The multi supply function abstraction for mul-
tiprocessors, Enrico Bini, Giorgio Buttazzo and
Marko Bertogna, RTCSA 2009.

[3] A framework for hierarchical scheduling on multi-
processors: from application requirements to run-
time allocation, Giuseppe Lipari and Enrico Bini,
RTSS 2010.

[4] Hard constant bandwidth server: comprehensive
formulation and critical scenarios, Alessandro
Biondi, Alessandra Melani and Marko Bertogna,
SIES 2014.

[5] Resource reservation in dynamic real-time sys-
tems, Luca Abeni and Giorgio Buttazzo, RTSJ
2004.

[6] Schedulability analysis of the Linux push and
pull scheduler with arbitrary processor affini-
ties, Arpan Gujarati, Felipe Cerqueira and Björn
Brandenburg, ECRTS 2013.

[7] A hierarchical multiprocessor bandwidth reserva-
tion scheme with timing guarantees, Hennadiy
Leontyev and James H. Anderson, ECRTS 2008.

[8] Hierarchical scheduling framework for virtual
clustering multiprocessors, Insik Shin, Arvind
Easwaran and Insup Lee, ECRTS 2008.

[9] Schedulability analysis for a real-time multipro-
cessor system based on service contracts and re-
source partitioning, Yang Chang, Robert Davis
and Andy Wellings, University of York, Tech.
Rep. 2008.

[10] Compositional Multiprocessor Scheduling: the
GMPR interface, Artem Burmyakov, Enrico Bini
and Eduardo Tovar, Real-Time Systems, No.
50(3), May 2014.

[11] Analysis and implementation of the multipro-
cessor bandwidth inheritance protocol, Dario Fag-
gioli, Giuseppe Lipari and Tommaso Cucinotta,
Real-Time Systems, No. 48, 2012.

[12] An implementation of the Multiprocessor Band-
width Inheritance Protocol on Linux, Andrea
Parri, Juri Lelli, Mauro Marinoni and Giuseppe
Lipari, RTLWS 2013.

8

	Introduction
	Foundations
	Virtual Platforms
	Schedulability Test

	Implementation
	General Approach
	Root Scheduler
	Local Scheduler
	User Interface

	Evaluation
	Runtime Validation
	Overhead Measurement

	Conclusions

