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Abstract

Currently, Software Defined Networking (SDN) and Network Function Virtualization (NFV) are gain-
ing growing interest due to the increased flexibility they could bring in the design of modern telecom-
munication systems. The nature of SDN-NFV allows a wide range of applications to run concurrently
on the same hardware resources that can be managed by virtualization technologies. However, these
applications present heterogeneous computation requirements in terms of resource demand and timing
constraints. Thus it is necessary to recognize different classes of virtualized applications and to provide
specific execution time guarantees for each of them.

In this paper we define a reference model characterizing the computation requirement of SDN-NFV vir-
tualized applications. We then exploit resource reservation capabilities provided by SCHED _DEADLINE,
combined with Direct Interrupt Delivery and Completion, in order to provide specific service guarantees
for each of these models. Finally, we conclude with an experimental evaluation which shows the effective-
ness of our approach.

Results show that SCHED_DEADLINE is able to guarantee the required level of temporal isolation
and higher Quality of Service. Moreover, the overheads introduced by the virtualization infrastructure are
drastically reduced by the adoption of Direct Interrupt Delivery and Completion. The results obtained in
this work have a big impact in the design of telecommunication systems: they demonstrate the availability
of virtualized Linux-based solutions, which are able to fulfill the tight requirements of these applications.

*This work has been partially supported by the 7th Framework Programme JUNIPER (FP7-ICT-2011.4.4) project, founded
by the European Community under grant agreement n. 318763.



1 Introduction

Over the last years, the telecom world has been
strongly changed under the pressure of new technolo-
gies like smartphones. Services such as voice and
short messages, that were extremely profitable for
telecom operators in the last years, fail nowadays
to ensure enough profits due to the increased com-
petitiveness among operators and the shift toward
data traffic. Moreover, the high-profit traffic vol-
ume is continuously decreasing, while the data traffic
amount is significantly on the rise, due to the effect
of new technologies (e.g., aLTE) and the new connec-
tivity demands (e.g., M2M). Recent studies [1] have
presented the hypothesis that the current business
models followed by telecom operators will become
unprofitable within three years. Moreover, opera-
tors are reluctant to make the investments needed to
meet the growing demand of data traffic. Summa-
rizing, solutions able to ensure both a response to
the growth of data traffic and the possibility of new
business models for operators are needed.

The approach that is showing more potentiality
and is leading to a new approach in systems design
is called Mobile Cloud Computer [3] and is shown
in Figure 1. It is based on two concepts: Soft-
ware Defined Networking (SDN) and Network Func-
tions Virtualization (NFV). SDN [4] is a new network
paradigm where network control is decoupled from
forwarding and is directly programmable. This shift
of controls, previously pinned to single devices, en-
ables the underlying infrastructure to be abstracted
for applications services and managed as a virtual
entity. NFV [5] is an approach to virtualize network
functions beforehand performed by proprietary ded-
icated appliances. The target is a cost reduction for
network devices such as routers, firewalls and secu-
rity appliances running them all in a common plat-
form that would host the needed environments.
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The efficiency of this new system approach in
terms of services elasticity, infrastructures costs and

bandwidth capacity will depend on how close to the
user it will be implemented [2]. In the scenario shown
in Figure 1, the approach is applied up to the nodes
handling the radio access which are called the edge
of the network.

In the description of a use case on Virtualization
of Mobile base stations [6] it is said that ”Virtualiza-
tion of mobile base station leveraged IT virtualiza-
tion technology to realize at least a part of RAN (Ra-
dio Access Network) nodes onto standard IT servers,
storages and switches”. SDN-NFV is heavily depen-
dent on virtualization technologies allowing any ap-
plication or service to be actually implemented as
Virtual Machine (VM) under the supervision of a
centralized common controller. While the deploy-
ment of SDN-NF'V solutions for data centers and core
networks is a straightforward application of estab-
lished virtualization technologies, the usage of such
technique at the edge of the network is more challeng-
ing. In fact, providing telecom functions as service
in edge nodes brings an important issue: the func-
tions of edge telecom networks are characterized by
stringent real-time constraints, intolerant with virtu-
alization overheads regarding response times.

To improve the predictability of activities exe-
cuting in such an heterogeneous environment it is
necessary to reserve resource bandwidth and isolate
the execution of different applications. In particu-
lar, for robustness, security and safety issues, it is
necessary to isolate and protect the temporal be-
haviour of different tasks. Resource Reservations [7]
resulted being a suited technique to achieve temporal
isolation and time-constrained execution in heteroge-
neous systems. Resource reservation techniques had
originally been proposed for the execution of inde-
pendent tasks on single processor systems. Recently,
they were extended to deal with hierarchical schedul-
ing systems [8, 9] and multi-core platforms [10, 11].

This paper presents an approach based on the
integration of Resource Reservations and interrupts
management techniques to improve the deterministic
behaviour of virtualization environments in order to
support SDN-NVF applications deployment. The fo-
cus is on the presentation of the general framework,
while the determination of the optimal allocations is
beyond the scope of this work.

The rest of the paper is organized as follows: Sec-
tion 2 describes the different techniques, in particu-
lar: Section 2.1 presents how to reduce interrupts la-
tency and Section 2.2 shows the use of resource reser-
vation to provide temporal isolation together with
higher utilization of computational resources. Sec-
tion 3 presents some experimental results on resource



reservation and finally Section 4 concludes the work,
providing ideas about future steps of the research.

2 Proposed Approach

In this section are described the techniques and
mechanisms used to provide the level of services
needed by SDN-NFV applications. We start cate-
gorizing the virtual machines by their requirement
in terms of computational resources utilization. To
provide a simple classification of such platforms, we
divide them by means of computing demand C over a
periodic interval P, with the constraint of terminat-
ing the execution of each request before a deadline
D expires. The model is shown in Figure 2.
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FIGURE 2: Time parameters of a task

To simplify the approach, from now on we con-
sider deadline and period to be the same (D = P),
thus performing the characterization using only com-
putation time and period. This leads to obtain three
classes of virtual machines.

The first class describes virtual machines for ap-
plications that require deterministic behaviour. De-
terministic means that the reaction time to external
stimuli should only depend on the status of the guest
virtual machine. So, such class of virtual machines
cannot share its resources with other VMs. More-
over, those virtual machines usually need the short-
est possible period P to guarantee an interrupt la-
tency time that is small enough. An example of this
class is given by radio applications, such as UMTS
and LTE. In this case, the application expects to re-
ceive a significantly high number of packets and it
needs to react to each incoming packet within mi-
croseconds. For that reason, a C/P ratio equal to
one is the only viable allocation, since such a value
allocates a dedicated and isolated computing node to
those virtual machines.

The second class is composed by the real-time
applications. The definition of real-time application
in the SDN-NVF domain could be misleading, since
it doesn’t map to a traditional hard or soft real-time

behaviour. There is the demand to respect deadlines,
but with a higher tolerance in terms of latency re-
spect to the first class (i.e., the deterministic one).
An example of this class is given by video or au-
dio applications, where the constraint is to guarantee
enough computation time for each frame.

The third class includes those virtual machines
with no specific constraints in terms of interrupt la-
tency time and deadlines that only require enough
computation bandwidth to handle the assigned work-
load. An example of this class could be the control
subsystem of a service chain.

The virtualization infrastructures managing the
servers at the edge of the network should be able
to handle all the three classes of virtual machines.
Depending on the characterizations of the assigned
VMs the requirements that must be guaranteed are:

e Low interrupt latency time and deterministic
behaviour. Such a requirement is applicable to
virtual machines in the first class, i.e. for those
virtual machine where the service delay due to
the virtualization must be negligible. The only
way to obtain this goal is to assign the comput-
ing resource in an exclusive way to the VM;

o Improved computing utilization. Improving the
management of appliances is one of the core
motivations behind the SDN-NFV paradigm.
A wise allocation of VMs allows to reduce
power consumption and improves the overall
system performances while reducing the draw-
backs of vitualization. However, this metric
is important for VMs in the second and third
class, but cannot be applicable to the first class
of VMs that are subdued to more stringent
temporal constraints.

e Strong temporal isolation. Temporal isolation
is fundamental for the success of the SDN-NVF
model, because it guarantees that the available
computational resources fulfill the agreement
with the platform. For the first class of applica-
tions this requirement is an automatic byprod-
uct of the exclusive allocation of a computation
node. For the other two classes, combining this
and the previous requirement needs enhanced
virtualization infrastructures.

A possible allocation policy providing the needed
resources to a set of applications is composed by the
following sequence of phases:

e Assign each VMs to a class depending from its
requirements;



e Statically allocate VMs with deterministic con-
straints (i.e., first class) to dedicated nodes to
guarantee their strong temporal constraints;

e Deploy the others VMs to maximize the nodes
utilizations.

e Select which enhancements to activate in each
node to fulfill the constraints of the assigned
VMs.

In the following paragraphs are described the dif-
ferent techniques that need to be included in the vir-
tualization platforms in order to successfully execute
all the assigned applications.

2.1 Lowering interrupt latency time

One of the main drawback of virtualization tech-
nologies is the increase of latency times in partic-
ular when dealing with interrupts. This is partic-
ularly important when serving applications charac-
terized by stringent temporal constraints. In some
cases, like those within the first class, it is not pos-
sible to share the core among different applications
thus it is statically assigned. This reduces the flex-
ibility provided by the virtualization, but allows to
run strongly constrained applications together with
less critical ones. However, other techniques are re-
quired to reduce the latency in order to guarantee
the timing constraints imposed by the first class of
applications. Some mechanisms can be used depend-
ing on the hardware platform and the application
requirements:

e Use Hardware-Assisted Virtualization func-
tionalities to reduce overheads. Processors
manufacturers have been introducing hardware
mechanisms to reduce the cost of some activi-
ties offloading the specific hardware [12, 13, 14];

e Prevent latencies induced by delays in the man-
agement of specific interrupts related to work-
load from less critical VMs and due to long
interrupt-off or preemption-off region. A solu-
tion for symmetric multi-processor (SMP) sys-
tems is the CPU shielding [15] and CPU affin-
ity [16], as they assign tasks and interrupt ex-
ecutions to predefined cores;

e Another issue that degrades performances of
virtualized environments is the Cache Pollu-
tion that represents eviction of needed data by
lower-priority activities. Reducing this effect
is possible with the hardware management of
Huge Pages [17] and nested page tables using
Second Level Address Translation (SLAT) [18];

e Prevent unneeded preemptions of the VM re-
moving the system tick in the CPU that are
shielded [19];

e Drastically reduce the overhead of interrupt
management using the support of Direct In-
terrupt Delivery and Completion.

The last technology is particularly important for
virtual machines with notably restrictive timing con-
straints like those characterizing the first class of ap-
plications, thus we present it in details.

The Direct Interrupt Delivery and Comple-
tion has been investigated since 2012 by differ-
ent hardware manufacturers. Two approaches have
been proposed independently by Hitachi™ [20] and
IBM™ [21]. The Direct Interrupt Delivery and
Completion mechanism is also called ExitLess Inter-
rupt (ELI) and IBM called its implementation ELVIS
(Efficient and Scalable Virtio), that is currently used
by IBM server solutions. Siemens™designed a new
isolation manager, called Jailhouse, where direct
interrupt delivery and completion functionality is
available, but with the limitation that Jailhouse is
not applicable for VM, at the moment.

When focusing on interrupt management in vir-
tualized environments, the main source of overhead
is directly connected to the high number of VM-exits,
which mark the points at which transitions are made
between the currently executing virtual machine and
the hypervisor that has to perform system control
activities. The sequence of phases is depicted in Fig-
ure 3. It shows that this procedure introduces ex-
tra execution time, thus consuming computational
resources, reducing the performance, and increasing
the interrupt latency time.
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FIGURE 3: Transitions during the execu-
tion of a VM-exit.
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The basic concept about the ELI hardware func-
tionality is to use the latest Hardware-Assisted Vir-
tualization features that provide two interrupt con-
trollers in modern microprocessors: a global con-
troller managing the whole chipset and a local for
each core. The hardware allows to set which inter-
rupts should be propagated into local controller. Us-
ing the support for virtual data paths, it is possible to
have different interrupts per different virtual paths,
thus allowing to connect one virtual path to a virtual
machine with its dedicated interrupts. When the
virtual machine is running, it already knows how to



handle those interrupts and doesn’t need to involve
the hypervisor for the end of interrupt (EOI). The
benefit of using Direct Interrupt Delivery and Com-
pletion is evident when a virtual machine is running
alone in a dedicated core, since the VM will run 100%
of time, without the need of hypervisor actions at
all (under the proper isolation conditions), then pre-
senting the same performances and overhead of the
non-virtualized execution. Note that, this compari-
son doesn’t consider some coding shortcuts that can
be used while directly accessing low level hardware
and are not possible in a virtualized environment.
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FIGURE 4: Achieving Bare-metal perfor-
mance for the VM through Direct Interrupt
Delivery and Completion and full isolation.

Moreover, Direct Interrupt Delivery and Com-
pletion brings benefits even for a core that is shared
between multiple VMs, because the VM-exit won’t
happen at any packet, but only for packets from a
virtual path that belongs to a no-running virtual ma-
chine. This reduces the number of VM-exit execu-
tions and increases performances, but not up to a
level able to manage VMs belonging to the first class.
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FIGURE 5: Direct Interrupt Delivery and
completion when multiple VMs share the same
core.

The Direct Interrupt Delivery and Completion
is an approach that requires support from the hard-
ware platform, in particular are required hierarchical

interrupt handling and the capability to distribute
different interrupt per different virtual data path.
In Intel processors they are available using x2APIC,
Virtual Machine Device Queues (VMDq) and Single
Root I/O Virtualization (SR-IOV) technologies [14].
Hierarchical interrupt handling is also available in
modern AMD and ARM processors, while SR-IOV
is present in most of the recent architectures based
on the PCl-express bus.

2.2 Temporal isolation and increased
utilization

This section presents the techniques used to provide
temporal isolation among virtual machines. The iso-
lation for the first class is implicit, since this class
is based on the encapsulation and per-core pinning
of the virtual machine. For the second and the
third classes of VMs is needed a scheduling algorithm
which is able to provide a level of isolation compati-
ble with the applications requirements.

The chosen solution is a resource reservation
mechanism based on the Constant Bandwidth Server
(CBS) [25] that implements a budget aware exten-
sion of Earliest Deadline First (EDF) scheduler [23]
to provide a bandwidth reservation strategy. The
concept of the CBS is to ensure temporal isolation
of tasks in terms of meeting deadlines as if each task
is running on an independent processor. Using this
scheduling policy, the quantity of computing resource
assigned and used by a virtual machine is not going
to change due to other VMs actions even in case of
malicious behaviour.

Using the mechanisms provided by EDF, the
CBS approach assigns to each task a server that is
characterized by a period P and a budget @) of com-
putation time on the core. The bandwidth utiliza-
tion U is computed as /P and represents the frac-
tion of CPU time that is reserved by the scheduler
for each period. The advantages of using a dynamic
scheduling algorithm like EDF is the possibility to
provide temporal guarantees for task set having an
higher total utilization with the same QoS for all
tasks [22, 24], that can simplify the tasks allocation
to cores. Also, the knowledge of task parameters al-
lows to perform offline schedulability analysis and de-
velop acceptance test, while providing online mecha-
nisms against tasks trying to execute more than the
declared computation time.

Recently, a new scheduling class has been
made available for the Linux kernel, called
SCHED_DEADLINE [26]. It implements parti-

tioned, clustered and global EDF scheduling with



hard and soft reservations using a variant of the CBS
algorithm to obtain temporal isolation among tasks.
It does not need any particular hypothesis on tasks
characteristics, allowing it to serve periodic, sporadic
and aperiodic tasks.

Summarizing, the described solution fulfills all
the requirements for the scheduling policy, that are:

e maximize the utilization of the cores without
jeopardizing the temporal constraints;

e provide strong temporal isolation against task
overrun and malfunctioning code;

e present a bounded service delay for each appli-
cation.

3 Benchmark results

In this section are presented some results showing the
behaviour of two technologies previously described
and the compatibility between their performances
and the applications constraints. The impacts of the
SCHED_DEADLINE scheduling policy and the ef-
fects of Direct Interrupt Delivery and Completion
on the interrupt latency time.

All the experiments have been executed on a In-
tel Core i5-4300M processor with 4 cores running at
a frequency up to 2.60GHz, equipped with 4Gb of
RAM. The selected distribution has been a Ubuntu
12.04 LTS with a standard configuration except for
the kernel, whose configurations will be described in
the specific tests.

3.1 Evaluation of SCHED DEADLINE

In this section are presented some tests aimed to
show the improvement in terms of temporal isola-
tion provided by the SCHED _DEADLINE schedul-
ing class. All the experiments are performed using

the Linux kernel version 3.14.4 that already includes
SCHED_DEADLINE.

The first two experiments show the perfor-
mances of the Netperf! tool under different schedul-
ing classes. Netperf is a benchmark that can be used
to measure the performance of many different types
of networking. It provides tests for both unidirec-
tional throughput, and end-to-end latency. In partic-
ular, Figure 6 shows that SCHED_DEADLINE pro-
vides a throughput that is almost stable. Instead,
the other scheduling policies (i.e., SCHED_FIFO and

Thttp:/ /www.netperf.org/netperf/

SCHED_OTHER) are characterized by a through-
put with lower average value and greater variability.
Thus, SCHED_DEADLINE provides better Quality
of Service (QoS).
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FIGURE 6: The effect of different schedul-
ing policing on Netperf results

In the next experiment is shown the through-
put of Netperf as a Function of the budget assigned
by the SCHED_DEADLINE scheduling class to the
application. In Figure 7 are plotted two different as-
signments: the first with budget @ = 9.5ms and
period P = 10ms, while the second has budget
Q) = 2ms and the same period. It is trivial to see
that the QoS is almost constant, independent from
the application bandwidth request and proportional
to the resource allocation fixed by the scheduler.
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FIGURE 7: The effect of budget definition
on Netperf results

An experiment has been performed to show the
effectiveness of SCHED _DEADLINE in terms of tem-
poral isolation among application. Note that KVM
creates one thread per VCPU and one thread per VM
doing I/0, thus the idea is to encapsulate VCPU
threads inside reservations to provide QoS guaran-
tees. In this last experiment two virtual machines
are used. The former one (VM1) runs an instance of



the Iperf? server, that is a tool to measure network
performance, while the latter virtual machine (VM2)
executes the Sysbench?, that is a benchmark tool for
evaluating OS parameters.

vm2 reservation

Network throughput (Mbit/s)

10%0 1‘5 2‘0 25 jO 3‘5 40 45
Cpu budget (ms every 100ms) .
pubid g vm1 reservation

FIGURE 8: Performances of VM1 as a
function of the assigned bandwidth

The results are shown in Figure 8 and clearly
point out how the performance of VM1 is almost lin-
ear with the budget allocated to its reservation and
remains the same for each value of the budget for the
second virtual machine.

3.2 Latency reduction with Direct In-
terrupt Delivery and Completion.

This test has the goal of showing the reduc-
tion in terms of latency that the use of the Di-
rect Interrupt Delivery and Completion technol-
ogy could provide. The experimental results are
collected using the cyclictest tool [27] that ac-
quires timer jitter by measuring accuracy of sleep
and wake operations of highly prioritized real-time
threads. Note that the kernel version used for
the test with Direct Interrupt Delivery and Com-
pletion is the 3.5.0-rc6, that is the last one for
which the Hitachi Lab provided the patch (i.e., ver-
sion RFC-v2-XX-21-KVM-x86-CPU-isolation-and-
direct-interrupt-delivery-to-guest.patch)

Figure 9 presents the distribution of latency
times running cyclictest in a virtual machine without
the Direct Interrupt Delivery and Completion mech-
anism. The obtained results show that latencies of
the mainline kernel are too long to serve the appli-
cations we are investigating.

2https://iperf.fr/
3https://launchpad.net /sysbench
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Instead, Direct Interrupt Delivery and Comple-
tion is removing most of the virtualization cost,
as expected. In this configuration, the latencies
of cyclictest running inside the virtual machine are
comparable to the results when the test tool is run-
ning directly on the host, as they are around 2us.
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FIGURE 10: Cyclictest execution with Di-
rect Interrupt Delivery and Completion com-
pared against bare-metal results

4 Conclusions

In this paper we presented an approach that uses a
Linux-based virtualization infrastructure exploiting
hardware features provided by modern architectures
and kernel extensions to develop a virtualization in-
frastructure for SDN-NFV applications.

After describing the constraints of the different
classes of such applications, the main technology im-
provements are described. In particular, Direct In-
terrupt Delivery and Completion allows to shift in-
terrupts handling directly inside the virtual machine,



removing the virtualization cost due to the kernel in-
terrupt handling (i.e, VM_EXITSs). The reduction of
latencies caused by cache pollution from other VMs
can be obtained using Huge Page technique.

Bounded latencies and utilization of VMs shar-
ing cores can be obtained using resource reservation
techniques like the SCHED_DEADLINE scheduling
class that implements the CBS server. Instead, the
isolation of a VM holding a dedicated core can be im-
proved with the dynamic tick (dyntick) technique.
Using sched_deadline, temporal isolation is always
guaranteed. Some experiments are shown to demon-
strate that Direct Interrupt Delivery and Completion
and SCHED _DEADLINE can provide performances
compatible with applications constraints.

Next step will be the integration of all the tech-
nologies to provide a prototype of the full environ-
ment and its testing with some applications working
as a benchmark for the addressed scenario.
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