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Abstract

The concept of Service Oriented Architectures (SOAs) has gained momentum
in Information and Communication Technology (ICT) application area in recent
years, introducing an innovative approach to the analysis, design and development.
Many applications provided as services are time-critical and demand soft real-time
requirements that must be taken into account for providing a certain Quality of
Service (QoS) to service consumers. Moreover, in the context of SOAs there is
an increasing interest in enriching Service Level Agreements (SLAs) established
between providers and consumers with attributes as quantifiable QoS parameters,
that the provider must respect for avoiding to incur in penalties.

For providing strong guarantees, SOAs must be enhanced with an advanced
execution management that takes into consideration the underlying resources used
for service provisioning. Management in the SOA context is not only about man-
aging the services, but also about managing the network, the computing units and
various other resources, that could be also virtualized in the case of cost-effectively
large-scale systems.

In this dissertation, this problem will be generically indicated with the term
QoS management and will be addressed with a particular focus on service-oriented
real-time applications. By using proper resource management techniques borrowed
from the real-time system theory, it will be shown that the service provider can
guarantee the QoS negotiated by consumers, in the context of QoS-enabled SOAs.
In particular, a generic service-oriented QoS architecture has been designed and
developed for negotiating and providing services with soft real-time guarantees.
Also, many realistic experiments have been conducted in Linux testbeds for show-
ing the effectiveness of the proposed approach in different ICT environments, like
industrial automation platforms, virtualized infrastructures and Wireless Sensors
Networks.
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Chapter 1

Introduction

The concept of Service Oriented Architectures (SOAs) has certainly gained mo-
mentum in Information and Communication Technology (ICT) application area in
recent years [79, 33, 15]. The market for SOA can certainly be representative of
such great interest, as markets at $450 million in 2005 are expected to reach $18.4
billion by 2012 [84].

SOA is a design methodology that relies on services, that constitute the small-
est bricks of software necessary to build distributed applications: services are pub-
lished, discovered and invoked over a net whilst applications are simply built by
putting services together. This architectural model can be simplified by the well-
known publish/find/bind pattern, that involves three main parts playing different
roles: a service provider, publishing and providing services; a registry, containing
list of services; a service consumer, seeking for services and requesting them. Ser-
vices must obey to certain well-known interrelated principles [48, 32] that drive
their design. In particular, a service must be highly-abstracted and loosely-coupled
to favor interoperability, it must be flexible and reusable for adapting to varying
requirements and scenarios, and finally it must be autonomous and composable,
for realizing distributed computation and permitting to easily create added value
from existing parts. As many of the techniques used for SOA components (e.g.
databases, transactions, software design) are already well-established in isolation,
it should be stressed that the main innovation of SOA relies on the architecture, that
is capable of putting into cooperation autonomous and heterogeneous components
for building systems that can easily scale.

Fitting in with this context, the motivation inspiring this work will be analyzed.
Then, the given contribution, with respect to the current state of art, will be detailed.
Finally, the organization of this dissertation will be described.

1.1 Motivation

The SOA revolution consists in the introduction of an innovative approach to the
analysis, design and development in all types of ICT environments, from the in-
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14 CHAPTER 1. INTRODUCTION

dustrial automation [49] to the interactive World Wide Web [89], from pervasive
environments [43] to the large-scale “Clouds” [103]. A lot of research effort has
been put for applying the service-oriented paradigm in these fields, in order to gain
all the benefits provided by the SOA adoption. Focusing on the European Union,
many research projects have arisen with such intent in the last years: among them
we can cite SIRENA 1 (Services Infrastructure for Realtime Embedded Networked
Applications), intended to create a service-oriented framework for specifying and
developing distributed applications in industrial automation and automotive elec-
tronics; SOA4All 2, providing a framework and infrastructure that combines SOA
with Web 2.0 technologies, including the semantic web and context management
technologies; IRMOS 3 (Interactive Realtime Multimedia Applications on Service
Oriented Infrastructures), aimed at design, develop and validate Cloud Solutions
which will allow the adoption of interactive real-time applications, and especially
multimedia applications.

Most of these projects explicitly address the real-time requirements that many
time-critical application demand, like banking and finance or industrial automation
applications. Systems characterized by time requirements (being them explicitly or
inherently defined) are real-time systems and, according to a widely-accepted con-
sensus [17], can be distinguished in hard real-time systems (e.g. mission-critical
systems), in which violating a deadline will cause a catastrophic event and soft
real-time systems (e.g. multimedia systems), in which violating a deadline will
only cause a performance degradation. The applications considered in this disser-
tation belong to the soft real-time realm, where the timing requirements are often
tied with the concept of Quality of Service (QoS). The QoS term assumes different
meanings in different contexts but it is always related to the satisfaction of users
consuming a service. If a (soft) real-time service misses its deadline very often this
will cause significant performance degradations and thus user in-satisfaction and a
low QoS. This is very undesirable, especially in the context of SOAs, where there
is an increasing interest in enriching Service Level Agreements (SLAs) established
between providers and consumers with attributes as quantifiable QoS parameters
or penalties for the provider if such parameters are not respected.

For providing strong guarantees, SOAs must be enhanced with an advanced ex-
ecution management that takes into consideration the underlying resources used for
service provisioning. Management in the SOA context is not only about managing
the services, but also about managing the network, the computing units and various
other resources, that could be also virtualized in the case of cost-effectively large-
scale systems. In this dissertation, this problem will be generically indicated with
the term QoS management and will be addressed with a particular focus on service-
oriented real-time applications. By using proper resource management techniques
borrowed from the real-time system theory [16], it will be shown that the service

1More information is available at the URL http://www.sirena-itea.org/
2More information is available at the URL http://www.soa4all.eu
3More information is available at the URL http://www.irmosproject.eu/

http://www.sirena-itea.org/
http://www.soa4all.eu
http://www.irmosproject.eu/
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provider can guarantee the QoS negotiated by consumers, in the context of a QoS-
enabled SOA.

1.2 Related Work

The motivation of this work started from the fact that the SOA design paradigm is
being applied to many application contexts. Thus, this work investigated the QoS
management problem for SOAs in three main contexts: the industrial automation
environments, the Clouds and the pervasive environments. As these contexts have
many differences, the organization of this dissertation reflects such division and
each chapter has its own related work section, where differences related to each
contexts are carefully addressed. Instead, this section aims to identify the common
issues faced in this work, situating it in a broader picture.

The idea of managing and controlling QoS through the proper use of soft real-
time techniques is not new and many architectures have arisen for addressing such
issues. As an example, Hola-QoS [41] is an architecture of a QoS resource man-
ager tied to the needs of Consumer Electronics Embedded Multimedia Systems
(CEEMSs). Through a set of homogenous architecture layers, Hola-QoS gives sup-
port to QoS management at different abstraction levels, building an integral QoS
management for CEEMSs with hierarchical control across layers. Higher-level
management is performed less frequently than lower level; however, higher-level
management operations and decisions have more influence on system operation
than lower level ones. At the lower level, the QoS management is performed by
assigning a budget to application tasks for executing on a system resource, where
the budget is an amount of resource that is granted for use. Also, the architecture
embeds a component [7] for collecting statistical information on applications re-
source usage and system resource availability, to let the resource manager improve
system behavior.

Despite the different application context of Hola-QoS with respect to SOAs,
the approach of assigning resource budget to application tasks and performing sta-
tistical monitoring resembles the one taken in this work. However one important
difference exist in the fact that Hola-QoS relies on the assumption application ex-
perts know well the structure of media processing functions, and can model their
resource needs in the average case. As such assumption is not true in the context of
SOAs, where services can be of different nature, this work present a new QoS data
management framework that is capable of predicting the initial resource budget
assignment. Moreover, Hola-QoS relies on external Real-Time Operating Systems
(RTOSs) for resource accounting and enforcement facilities, whilst this work relies
on General Purpose Operating Systems (GPOSs) - enhanced with real-time facili-
ties - that have more issues concerning resource management, due to the presence
of many hardware and software features that limit predictability (cache, interrupts,
etc.).
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In the last years, one of the most important innovation for achieving predictabil-
ity in GPOSs has been the introduction of the Resource Reservation (RR) [72]
framework. Such an approach provides the fundamental property of temporal pro-
tection (a.k.a., temporal isolation) in allocating a shared resource to a set of tasks
that need to concurrently use it: this means that each task is reserved a fraction of
the resource utilization, so that its ability to meet timing constraints is not influ-
enced by the presence of other tasks in the system. Specifically considering CPU
reservations, different algorithmic solutions [83] [69] [60] [1] have been imple-
mented on a variety of systems. However, the traditional way for using Resource
Based (RB) scheduling (reserving a fixed fraction of the CPU bandwidth to each
task), is not very suitable for QoS management, as a static allocation of resources
can only be based on the average requirements, leading to imprecision in respect-
ing the timing constraints and inefficiency in terms of CPU utilization. This prob-
lem can be addressed by dynamically adapting the amount of resources reserved
to each task throughout its execution, by using a feedback inside the scheduling
mechanism.

For example, such approach is followed by Abeni, Cucinotta et al. [2] [22],
that tackle requirements of multimedia tasks and present a modular architecture in-
cluding three control algorithms for providing the so-called adaptive reservations.
The point they advocate is that, in presence of large fluctuations on the computa-
tion requirements of the tasks, a feedback control must be applied for dynamically
adapt the fraction of the CPU allocated to a task based on QoS measurements. The
architecture they present has been later revised, extended and implemented into the
AQuoSA (Adaptive Quality of Service Architecture) framework [77], a layered ar-
chitecture that runs on top of the Linux kernel, providing also user-space APIs for
accessing the RR scheduling facilities implemented in kernel-space. The feedback
algorithms embedded in the AQuoSA architecture focus on resource-level adap-
tation, in which the resource shares granted to the applications are adapted to the
dynamic workload requirements, and do not deal with application-level adaptation,
where applications may switch among various modes of operations. In a work by
the same authors [21], an integrated approach for QoS control is presented, using
application-level, resource-level and power-level adaptation techniques in conjunc-
tion.

With respect to such approach, this work do not apply the traditional feedback-
based scheduling that dynamically adapts the scheduling parameters for an appli-
cation continuously running. In the SOA context, in fact, consumer requests are
served by service instantiation that can occur at different distances in time and the
QoS is managed by instantiating the service each time along with the creation of the
associated resource reservation. Thus, this work takes into consideration changing
requirements of the service by closing the “feedback control loop” in an off-line
fashion, recurring to the persistent storage.

However, this work leverages the AQuoSA architecture at the lower level, for
managing resource allocation in the Linux kernel through the RR APIs. Also the
work of Sojka et al. [93] exploits AQuoSA at the low-level scheduler for building
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a middleware architecture that allows soft real-time applications to reserve het-
erogeneous resources with real-time scheduling capabilities in a distributed envi-
ronment. In their architecture, applications negotiate a service contract specifying
the amount of resources that are needed for achieving the desired real-time per-
formance. Contracts are negotiated with the framework, which is in charge of
performing admission control in the distributed platform and, if the contract is ac-
cepted, of resource allocation. Even if such approach resembles the one of this
work, some differences exist. First, in this work the QoS can be negotiated at
different levels of abstraction, i.e. consumers can directly negotiate the share of
resources to reserve or can negotiate high-level requirements like the desired re-
sponse time. Second, this work does not use custom APIs for QoS negotiation but
leverages open standards particularly suited to the SOA environment, where QoS
parameters are represented in an XML-fashion, allowing providers and consumers
to modifying parameters’ semantic in a flexible way. Finally, the underlying mech-
anisms for resource reservation currently support only CPU and wired network,
whilst the work of Sojka et al. integrates all the real-time scheduling techniques
developed in the context of the FRESCOR (Framework for Real-time Embedded
Systems based on COntracts) project (CPU, disk, wired and wireless network).
However, we are confident that current state-of-art techniques could be integrated
in this work for supporting a broader range of resources.

Also, the work conducted in the context of FRESCOR is based on CORBA
(Common Object Request Broker Architecture), even if it is extended with the
concept of contract-based scheduling. Other works follows the CORBA-based ap-
proach, and in particular the RT-CORBA specification [106] that brings real-time
features to CORBA by specifying a priority-based scheme for handling object re-
quests. For example, TAO [88] constitutes a C++ implementation of the Real-Time
CORBA specification. Also, TAO has been integrated with QuO [54], a framework
that exploits the capabilities of CORBA to reduce the impact of QoS management
on the application code. The result [87] is a middleware for adaptive QoS control
using real-time scheduling facilities at the computation and network levels.

However, the work presented in this dissertation is based on the SOA paradigm
(not on CORBA), which is leveraged in order to achieve important properties such
as automatic reconfiguration, location-independence and fault-tolerance. More-
over, the RT-CORBA approaches used to rely on the traditional priority-based
scheduling, neglecting issues related to temporal enforcement, while the present
work relies on the more efficient EDF-based scheduling and temporal encapsu-
lation provided by techniques existing in the domain of the real-time a-periodic
servers [17]. Note that the Dynamic Scheduling extensions to real-time CORBA,
also integrated within TAO [55], addressed the first issue (adding deadline-based
scheduling and adaptive changes of the scheduling parameters), but apparently not
the second one (enforcement of temporal constraints).

This work can also be situated within the real-time service oriented architec-
ture (RT-SOA) research area, that is new and challenging in seeking the confluence
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of real-time and SOA, for benefiting from SOA advantages and still addressing
the timing requirements that many applications demand while consumed as ser-
vices. A typical SOA application is composed by many single services, that are
bound together for accomplishing to an elaborate goal. Services are put together in
workflows, that provide semantic information, usually in an abstract way, for com-
posing services. For achieving predictability to an application, the problem should
be considered at two different levels: the service level and the workflow level.

• Service-level predictability: It requires ensuring that a single service has
sufficient resources to complete its execution by a given deadline and only
involves local resource management.

• Workflow-level predictability: It requires ensuring that all services compos-
ing an application complete their execution by the end-to-end deadline and
mainly involves orchestration among hosts, and thus a global management.

In the last years some work has emerged following such holistic approach.
It is worth to mention the RT-Llama [78] architecture, conceived for supporting
predictability in business processes. The RT-Llama architecture, upon receiving
a user-requested process and deadline, can reserve resources in advance for each
service in the process to ensure it meets its end-to-end deadline. Such architecture
contains global resource management and business process composition compo-
nents. They also create a real-time enterprise middleware that manages utilization
of local resources by using efficient data structures and handles service requests
via reserved CPU bandwidth. Only recently they have considered the opportunity
to apply their framework to industrial systems [59], and in particular to Cyber-
Physical Systems (CPS).

Instead, the architecture proposed in this work has been early conceived for
industrial systems like factory automation and pervasive environments, and thus
specifically addresses some peculiarities. First of all, it only focuses on service-
level predictability, given that in a factory plant could be perfectly reasonable to
consume only a single service at a time, e.g. for discovering new services or
examining device logs. Moreover, a lot of work exists for addressing the prob-
lem of time-bounded service composition [35, 39, 38, 75, 98]. Such algorithms
could be plugged in the proposed architecture for achieving time predictability on
a workflow-level and can constitute the next step for future extensions of this work.
Secondly, this work does not rely on advance reservations and thus no assumption
is done on the service request arrival time, i.e. requests can arrive in any time and
not only in the reserved time-frame. This implies on-line admission control sys-
tems for accepting request based on the actual resource allocations, efficient and
multitasking request management systems, a fine-grained resource management
for avoiding to over-allocate resources to services and, eventually, management of
overloads. In particular, the resource management techniques constitute one of the
main difference with respect to the Rt-Llama project. As an example, the Rt-Llama
project allocates fixed “shares“ of CPU for service executions, whilst in this work
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each services has allocated the minimum share necessary to complete its deadline
and such share is dynamically computed request-by-request.

The IRMOS Project (which supported part of the research results shown in
this dissertation) has also investigated on providing end-to-end QoS guarantees
for interactive distributed real-time applications. The IRMOS architecture fulfills
the general cloud computing stack that comprises three main layer of service pro-
visioning: (a) The Infrastructure-as-a-Service (IaaS), which refers to the provision
of ‘raw’ machines on which the service consumers deploy their own software (usu-
ally as virtual machine images); (b) the Platform as a Service (PaaS), which refers
to the provision of a development platform and environment; (c) the Software as
a Service (SaaS), which refers to the provision of an application as a service over
the Internet or distributed environment. The IRMOS project has developed the
necessary infrastructure to allow hosted services and applications to run with pre-
dictable levels of QoS while allowing providers to share physical resources among
the multitude of applications that will be instantiated at run-time. While trends
in resource management in distributed environments tend to focus on best-effort
performance or service levels within the very limited scope of a single service or
resource (e,g. compile farms or virtual machines), IRMOS advances the state-
of-the-art in resource management by allowing users and providers to establish
well-defined SLAs including performance terms which are guaranteed on an end-
to-end basis. For this sake, computational nodes, network links and storage units
are combined. They are all capable of providing temporal guarantees to individ-
ual activities, while the underlying physical resources are shared across multiple
applications and users.

Some of the results presented in this work, regarding in particular the use of
real-time scheduling techniques for respecting temporal constraints in virtualized
service components, have been used in the context of IRMOS.

1.3 Contribution

This thesis is the result of three years of research and most of the results have
been already published on the IEEE Transaction on Industrial Informatics [20]
and on several conference proceedings [53, 24, 25, 8, 9]. In this section, the given
contribution is summarized as follows.

• design and development of a real-time SOA with QoS negotiation and man-
agement capabilities. In particular, an effective way to guarantee QoS in
service provisioning has been proposed by achieving temporal isolation be-
tween high-level software infrastructures and low-level control logic, ex-
ploiting a modified Linux kernel supporting real-time scheduling strategies.
Moreover, to allow for the configuration of the system at run-time, SLAs
have been extended in order to support QoS attributes related to individ-
ual activities. Also, the effectiveness of the proposed architecture has been
shown by means of extensive experimental evaluations, both quantitative and
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qualitative, highlighting that it provides significant and effective advantages
over existing solutions.

• design and development of QoS registry for supporting the QoS management
of adaptive service-oriented real-time applications. It permits to gather per-
sistently QoS data related to different functional behaviors of the application
(application modes) and to predict the future performance based on data al-
ready collected in the past. A modular architecture allows for defining vari-
ous models for the prediction of the resource requirements under a set of con-
ditions which has not been observed yet. The registry has been implemented
on Linux and overhead measurements are provided for showing viability of
the proposed approach. Also, the benefits of using such a framework in a
real SOA scenario with QoS provisioning capabilities are described, show-
ing that it allows for a nearly correct resource allocation (self-configuration)
while providing QoS guarantees.

• a methodology to support QoS management for virtualized services deployed
in Service Oriented Infrastructures (SOIs). In particular, admission control
policies are proposed for providing both deterministic and probabilistic guar-
antees for service activations within a predefined time frame. Moreover, a
methodology for scheduling virtualized software components is presented
for respecting temporal constraints of individual activities. Experimental
results are performed for showing that our methodology, based on the Re-
source Reservation (RR) scheduling framework, can be effectively applied
to the problem.

• design and development of a service-oriented, flexible and adaptable middle-
ware for QoS configuration and management of Wireless Sensor Networks
(WSNs). Such architecture supports QoS specification and management by
using a contract negotiation scheme based on SLAs; it allows applications to
reconfigure and maintain the network during its lifetime and it is independent
of the underlying WSN technology. Moreover, it is characterized by an ac-
curate design that permits to both abstract WSNs for a seamless integration
into enterprise information systems and address specific low-level features
that must be taken into consideration for guaranteeing certain QoS levels. A
case study has been also built and presented to show the effectiveness of the
proposed solution.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents an
architecture for the QoS Negotiation and Management that has been developed
for the sake of satisfying timing requirements needed by soft real-time activities.
An implementation of such architecture has also been built for the next genera-
tion industrial automation platforms and experimental results have been provided
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for showing its effectiveness in providing QoS guarantees. Chapter 3 presents a
QoS registry that has been also integrated in the proposed architecture for support-
ing the QoS management of adaptive real-time services. Some experiments have
been performed for showing that, by leveraging the proposed registry, the system
can self-configure for a better exploitation of internal resources while guaranteeing
the QoS required by users. Chapter 4 deals with the problem of providing QoS
guarantees (especially regarding the CPU) for virtualized services available in the
Clouds. An approach is presented for scheduling virtualized services and it is val-
idated through experimental results. Moreover, novel admission control tests are
introduced for service workflows, considering the particular issues in this domain.
In Chapter 5 the proposed framework for QoS Configuration and Management has
been tied to pervasive environments for designing and building a service-oriented
middleware for WSNs. A case-study has been also built for showing the effec-
tiveness of such middleware in enriching WSNs with self-configuration and self-
management capabilities. Conclusions and directions for future work are presented
in Chapter 6.





Chapter 2

QoS Negotiation and
Management Architecture

This chapter focuses on the QoS Negotiation and Management Architecture, devel-
oped for the sake of satisfying timing requirements needed by real-time services.
In Section 2.2 the design of the proposed architecture is presented and its com-
ponents are described in details. In Section 2.3 the QoS guarantees supported by
the architecture are specified and an insight is given on the mechanisms used for
enforcing such guarantees in Linux. Section 2.4 presents the experimental results
gathered with an implementation of the proposed architecture in realistic scenarios
tied to the industrial automation environment. Such results shows the effectiveness
of the proposed architecture in providing services with soft real-time guarantees.
The chapter is summarized in Section 2.5.

2.1 Related Work

The QoS architecture presented in this chapter has been firstly conceived for the
industrial automation platforms, in the context of the RI-MACS (Radically Inno-
vative Mechatronics and Advanced Control Systems) European research project.
Thus, this section overviews related work in the general domains of the adoption
of SOAs approaches, and the support for soft real-time and QoS guarantees through
general-purpose infrastructures, in automation engineering.

The idea of adopting SOAs for manufacturing systems is not new. For example,
in the context of the SIRENA European Project, a service-oriented communication
framework is proposed in which an industrial plant is composed of intelligent de-
vices. Such devices expose their own functionality as a set of services, hiding their
complexity and allowing for transparent communication with other devices. This
way, devices may be composed and aggregated into higher-level services, achiev-
ing a high grade of scalability. This approach is certainly fascinating, however it
is not practical nor convenient today, because of the costs needed for the integra-
tion of the additional functionality inside the devices, and the problem of legacy
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sub-system integration. Moreover, real-time sensitive tasks cannot be handled sat-
isfactorily using Service-Oriented Architectures, as none of the technologies used
for the implementation of these architectures explicitly target real-time constraints.
This is true even for the “Device Profile for Web Services” (DPWS [94]) standard,
that is being adopted in the context of existing industrial plants, as documented in
the work by Jammes et al. [50].

In a work by Komoda [52], the need has been underlined for using SOAs not
only in the well-established “high-level” domain of work-flow and information
management, but also in the “low-level” one of plant monitoring, configuration
and control. However, the same work pointed out that usually implementations of
such infrastructures lack real-time capabilities, which are of fundamental impor-
tance due to the in-place timeliness constraints. It is well-known from the real-time
literature [17] that increasing the computation power on which software is running
is not enough, in general, for meeting precise real-time requirements. Appropriate
scheduling strategies and analysis techniques need to be put in action, and this is
exactly what is done in the approach proposed in this work.

Note that this work mainly focuses on the intermixing of real-time techniques
with SOAs, whilst other aspects typical of SOA-based approaches to software de-
sign, like semantics and ontology, are not considered. However, some works do
exist that consider such aspects also in the application domain of industrial au-
tomation, for example the one by Lastra and Delamer [56].

Also, investigations on the adoption of real-time techniques in heterogeneous
networks typical of automated factories have been carried on in the context of the
Virtual Automation Network (VAN) project [76]. However, VAN focuses strongly
on real-time and QoS support at the heterogeneous networking layer, whereas the
architecture proposed in the present paper tackles the problem of real-time support
both at the networking and at the computing/OS level. Similar comments apply to
the work that can be found by Delamer and Lastra [28], where the authors propose
to extend the CAMX SOAP/XML-based communications framework with QoS
support, where new XML messages are described for regulating the interactions
among middleware components, whereas the actual QoS guarantees derive from
the application of well-known Differentiated Services for IP networks to a set of
aggregated data flows.

Considering the actual interest for adopting standard networks in industrial au-
tomation plants, this work considers the provisioning of network guarantees in
Switched Ethernet (SE). In the latter years, a lot of work has been done for pro-
viding predictability in the communication over SE. Some approaches focus on
the behavior of available commercial switches, that, while offering helpful fea-
tures in term of timeliness improvement (like traffic priority management), still
have many limitations. As an example, the work of Pedreiras et al. [80] highlights
how traffic scheduling on a priority-based fashion cannot guarantee predictabil-
ity when switches are overloaded, as lower-priority traffic may lock the switch
memory, causing high-priority traffic to be dropped. To overcome the limitations
of commercial switches, many works propose to enhance switches with real-time
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scheduling capabilities. Among them, we can cite the EtheReal switch [100], the
work by Hoang et al. [46] and the work by Wang et al. [105]. Also Lo Bello
et el. [62] suggest that the fuzzy traffic smoothing technique they developed for
classic Ethernet could be effectively adopted inside switches for guaranteeing soft
real-time constraints.

Some other approaches focus on developing network protocols for achieving
timeliness on SE. One of the most promising protocol for real-time communication
is the FTT-SE protocol (Flexible Time-Triggered communication over Switched
Ethernet) [67], that leverages a master-slave approach for controlling the traffic
load submitted to the network and offers support for arbitrary scheduling policies.
This feature can be exploited to realize real-time scheduling supported by adequate
utilization-based schedulability tests that can be performed on-line [68].

Another class of techniques for controlling the load submitted to the network
consists of using traffic shapers in each node. The work of Loeser and Haertig [63]
falls in this category, showing that traffic shaping can be used to achieve reliable
packet transmission with bounded transmission delay. Our work follows the latter
approach, as we believe it perfectly fits to our QoS architecture, comprised of many
consumers and a single provider, that generates all the traffic. In fact, by using
traffic shaping, we can control the amount of traffic going out to each consumer,
enforcing guarantees that can be individually negotiated.

Our work leverages the traffic control mechanisms of Linux TC (Traffic Con-
trol) [47] for determining the way in which a node can send its network traffic.
An evaluation of SE and Linux TC for real-time transmission has been also per-
formed in a work by Vila-Carbó et al. [101], that highlights how traffic control
mechanisms applied in network interfaces and in switches can provide good levels
of predictability. An analogous Linux TC configuration is used by the same au-
thors [102] for extending FRESCOR with the concept of Classes of Service (CoS).
These two works are related to the joint transmission of highly variable bit rate
streams and high-priority real-time periodic traffic.

Instead, our work does not focus on the transmission of network traffic of dif-
ferent priorities but on providing guarantees about the network bandwidth used in
the communication between a service provider and service consumers. Each com-
munication flow between provider and consumers has the same priority but each
consumer can negotiate a different network bandwidth. Thus, the provider must
enforce such guarantee avoiding that concurrent service requests can “steal” the
reserved bandwidth for that client.

2.2 Design

In this work, a QoS negotiation and management architecture is proposed, which
allows clients to negotiate QoS parameters that will be honored during service
provisioning. Regarding this founding functionality, the proposed architecture can
be divided in the following layers, as highlighted in Figure 2.1:
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Figure 2.1: QoS Negotiation and Management Architecture

1. the QoS Negotiation Layer, in which the QoS parameters of provided ser-
vices are negotiated,

2. the QoS Provisioning Layer, which takes care of providing services while
respecting negotiated guarantees.

Such decoupling permits to achieve many advantages:

• the negotiation can comprise high-level parameters that can be related to
business aspects and not only to resource availability;

• negotiation and provisioning could be performed by different machines, en-
abling the possibility of using a cluster for providing services;

• each layer can be implemented with different technologies, providing com-
patibility only at the connection points between each layer.

2.2.1 QoS Negotiation Layer

The QoS negotiation phase follows an agreement-based model, in which the two
parties involved in the negotiation process establish a contract which specifies the
QoS guarantees to be provided. The QoS architecture leverages the WS-Agreement
framework [10], which uses open technologies (like Web Services and XML) to de-
fine: (a) a language for specifying QoS contracts; (b) a protocol to create contracts;
(c) a protocol to verify the run-time compliance of contracts. WS-Agreement was
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Figure 2.2: Agreement structure in WS-Agreement

chosen in this context not only for its flexibility in comparison with other QoS-
enabled technologies (like WSLA [64]), but also for its standard nature (it is sup-
ported by the Open Grid Forum), which may ensure penetration of the platform
within many sectors.

In the WS-Agreement specification view, a contract (or Agreement), is repre-
sented by an XML document mainly containing meta-information about involved
parties and QoS parameters to be negotiated. The key parts of an Agreement can
be summarized as follows:

• Name - Field exploited to name an agreement in human-readable way.

• Context - Section exploited to store various meta-information related to
the agreement

• Terms/ServiceDescriptionTerms - Section exploited to describe
services related to the agreement. Each Service Description Term (SDT) can
describe (fully or partially) one of the provided services.

• Terms/GuaranteeTerms - Section mainly used to specify guarantees to
assure in providing services described in the corresponding SDTs.

This work support the specification of QoS parameters at different levels of
abstraction. This chapter deals with low-level parameters regarding resource uti-
lization, as specified in Section 2.3, whilst Chapter 3 deals with an example of
high-level parameters, i.e. the service response time.

Secondly, the QoS architecture uses the WS-Agreement framework for defin-
ing the interactions between involved parties, usually a service client and a service
provider. An Agreement Template is used to generate an agreement offer, filled
with the requested scheduling parameters. This is then inspected by the service
provider, which decides, according to its internal resource management policy,
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whether to accept or reject it. In this case, acceptance test is based on the admission
control policy embedded within the underlying resource-reservation scheduler. If
the agreement offer is accepted, then an Agreement is created and sent back to the
requester, so that it knows it may access the service with the requested QoS level.
On the other hand, if the agreement offer is rejected, the client is notified so that it
may adopt some error management policy, such as trying again after decreasing the
requested QoS level, or trying at a later time. Such situation may occur in case of
temporary overload of the server that has already accepted a number of agreements
saturating available resources.

This kind of interaction is realized by the agreement layer components, which
are described as follows:

• WebAgreementFactory This component, which is an implementation of
the common AgreementFactory component defined in the WS-Agreement
framework, mainly interacts with the client in the agreement creation pro-
cess. So it provides agreement templates, receives agreement offers and
communicates to client decisions about them.

• WebAgreement This component, which is an implementation of the com-
mon Agreement component defined in the WS-Agreement framework, rep-
resents a created Agreement, so it is instantiated after each offer acceptance.

• BookingAgent This component performs admission control in order to ver-
ify if the QoS level requested by the client can be guaranteed, and, in such
case, it reserves the necessary resources to correctly execute the requested
service. When the reserved resources are no more necessary, the BookingA-
gent deletes them. The resources are reserved and deleted through the com-
munication with the lower level of the architecture.

This partition of the agreement layer assures that an Agreement will be created
only if QoS guarantees can be maintained during service provisioning. The rela-
tionships between components during the creation of an Agreement can be seen
in the sequence diagram of Figure 2.3, related to a successful agreement creation.
It can be seen that the client interacts with the WebAgreementFactory to retrieve
a template and make an offer. Then, the WebAgreementFactory receives the offer
and invokes the BookingAgent for the admission test. The BookingAgent evalu-
ates if the requested QoS can be guaranteed and reserves resources for the client.
After the positive response of the BookingAgent, the WebAgreementFactory in-
vokes the WebAgreement component to create the Agreement. Finally, as a sign
of acceptance, a reference of the created Agreement is returned to the client. Note
that all interactions will follow the WS-Agreement interaction model.

After the creation of an Agreement, service requests of the client must be
served assuring the negotiated QoS. In case of the WS-Agreement interaction
model, this is translated to the need for serving client requests, within a web server,
with the pre-specified scheduling parameters.
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Figure 2.3: Successful Agreement creation
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Figure 2.4: The mod reserve

2.2.2 QoS Provisioning Layer

The QoS Provisioning Layer provides services with the QoS guarantees defined in
the negotiation phase. A web server is responsible of receiving service requests
and handling them through the common cycle of receiving-processing-responding.
It executes in a GPOS enhanced with the RR framework, providing the real-time
features that permit to enforce QoS guarantees. Actually, the architecture supports
the allocation of CPU ”shares” and network bandwidth “shares”.

This has been implemented, in the architecture, by the mod reserve component
and the NetReserve component.

In particular, the mod reserve 1 is a resource reservation module for the Apache
2 web server. It uses the web server functionalities for receiving and processing
service requests, then it reserves the actual resources by using the available API for
accessing the RB facilities available in the underlying scheduler (see Figure 2.4).
Apache 2 is a very popular web server and it is easily extensible thanks to its
internal modular structure: this allowed for the realization of mod reserve as a

1The mod reserve is available for downloading at the URL http://freecode.com/
projects/mod_reserve

http://freecode.com/projects/mod_reserve
http://freecode.com/projects/mod_reserve


30 CHAPTER 2. QOS ARCHITECTURE

Linux Traffic Control

service

GPOS Enhanced with Real−Time

Web Server

NetReserve

Figure 2.5: Network bandwidth reservation components

web server module, making it more durable to server changes and easier to install.
In order to guarantee requested QoS in provisioning of services, the mod reserve

uses the user-space library made available through the AQuoSA framework, that
enhances the Linux kernel with a real-time scheduling policy based on Earliest
Deadline First (EDF). This way, the mod reserve exploits real-time scheduling of
the underlying modified OS kernel so as to provide temporal isolation to tasks that
execute services on behalf of remote clients, resulting in guaranteed and predictable
performance and response times of served requests. This approach perfectly suites
the needs of soft real-time tasks in a Linux environment.

The mod reserve has the following internal structure:

• The WebServer Interface uses the web server functionality mainly to receive
and process service requests.

• The ReservationManager uses the functionality of the underlying QoS sup-
port level to allow execution of services guaranteeing compliance with the
negotiated QoS levels.

When a service request arrives to the web server, it is intercepted in order to
determine if it has to be served with QoS guarantees. This is done by comparing
the client identification with all the entries related to valid contracts. If a request
must be served guaranteeing QoS, then the ReservationManager is invoked to cre-
ate a reservation to manage client requests, if it has not been created yet. However,
in case of multiple requests coming concurrently from the same client, only a sin-
gle reservation is created, to which all service tasks are attached. This way, all
service requests coming from the same client are encapsulated in the same CPU
reservation, guaranteeing temporal isolation across reserved services even in case
of malfunctioning or misbehavior of one or more clients (or services).

The NetReserve component, depicted in Figure 2.5, has been instead designed
for allocating network bandwidth reservations to each consumers. Such allocations
have been managed through a consolidated Linux kernel module, generically called
as Linux TC.
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2.3 QoS Guarantees

In this section, the QoS guarantees provided for services by the proposed architec-
ture are defined through the specification of proper parameters. On this basis, some
admission control tests are also introduced. Finally, the mechanisms leveraged for
enforcing QoS guarantees are briefly described.

2.3.1 Specification

The QoS negotiation framework allows applications to negotiate QoS parameters
related to the resource allocation of CPU and network during service provision-
ing. Such parameters are defined through the XML Schema [104] language and
are stored in the ServiceDescriptionTerm section (see Section 2.2.1) of an
agreement proposal.

The QoS parameters related to the CPU allows applications to access to the
underlying RB scheduling framework. Such framework provides the fundamental
property of temporal protection (or temporal isolation) in allocating a shared re-
source to a set of tasks that need to concurrently use it: this means that each task
is reserved a fraction of the resource utilization, so that its ability to meet timing
constraints is not influenced by the presence of other tasks in the system. In RB
scheduling, a resource allocation is specified in terms of a budget Q and a period
P, with the meaning that the resource is granted for a minimum of Q time units ev-
ery time-frame of duration P. The ratioQ/P represents the “share” of the resource
that has been reserved, whereas the period constitutes the basic time granularity
with which the share is granted (and is representative of the maximum activation
delay). The actual budget that is granted to each reserved activity in a time win-
dow of duration P may usually vary between a minimum budget Qmin, that is
always guaranteed independently of other concurrently running activities, and a
maximum budget Qmax that is never exceeded. The additional budget with respect
to the basic guaranteed value Qmin may be distributed among competing reserva-
tions according to various policies (interested readers may refer to Section 2.3.3
for further details on the low-level CPU enforcement mechanisms).

The set of parameters transmitted in an Agreement are specified as follows.

• CpuMinBudget. This parameter represents the minimum time units Qmin
of CPU usage requested by a client. Such value is considered for every
period defined by the CpuPeriod parameter. If a contract is accepted, the
provider always guarantees this value, independently of other concurrently
running activities.

• CpuMaxBudget. This parameter represents the maximum time unitsQmax
of CPU usage requested by a client every time-frame defined by CpuPeriod.
Such value represents the maximum budget that is never exceeded.

• CpuPeriod. This parameter represents the duration of the period P for
which the budget is specified.
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<wsag:ServiceDescriptionTerm
wsag:Name="server_parameters"
wsag:ServiceName="use_of_web_server">

<ret:ServerParams xmlns:ret="schemas.retis">
<ret:CpuMinBudget unit="ms">9</ret:CpuMinBudget>
<ret:CpuMaxBudget unit="ms">9</ret:CpuMaxBudget>
<ret:CpuPeriod unit="ms">100</ret:CpuPeriod>

</ret:ServerParams>
</wsag:ServiceDescriptionTerm>

Figure 2.6: XML fragment of an Agreement for negotiating CPU allocations

<wsag:ServiceDescriptionTerm
wsag:Name="server_parameters"
wsag:ServiceName="use_of_web_server">

<ret:ServerParams xmlns:ret="schemas.retis">
<ret:NetMinBandwidth
unit="Mbps"> 19 </ret:NetMinBandwidth>

<ret:NetMaxBandwidth
unit="Mbps"> 19 </ret:NetMaxBandwidth>

</ret:ServerParams>
</wsag:ServiceDescriptionTerm>

Figure 2.7: XML fragment of an Agreement for negotiating network bandwidth
allocations

A representative XML fragment, in which the CPU allocation to negotiate is
9ms every 100ms, is shown in Figure 2.6.

Instead, the QoS parameters related to the network bandwidth allocated to con-
sumers during service provisioning are described as follows:

• NetMinBandwidth. This parameter represents the minimum network
bandwidth requested by a client. If a contract is accepted, the provider guar-
antees to allocate at least such bandwidth value in the communication with
the consumer.

• NetMaxBandwidth. This parameter represents the maximum network
bandwidth that can be allocated to a client. If the provider has some spare
bandwidth capacity, it could be allocated to a client up to reach this limit in
the total amount of the reservation.

A consumer can specify the required network QoS level by storing the relative
parameters in a Service Description Term of an agreement proposal. An
example can be found in the XML fragment of Figure 2.7, in which the client
requests a guaranteed network bandwidth of 19Mbps.
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2.3.2 Admission Control

The service provider performs admission control for deciding if the requested net-
work bandwidth could be allocated or not. Such admission control test can be
formalized by introducing the following notation.

Let Beth be the bandwidth of the provider network interface(s). The provider
will be configured for dedicating a fraction of Beth to the traffic going out to
service consumers that use the QoS framework. We will use the term reserved
network bandwidth utilization (denoted by U res, with U res ≤ 1) to represent
such fractional value. Instead, the unreserved bandwidth utilization is denoted
by Uoth = (1 − U res). Denoting C = {c1, c2, . . . cn} as the set of service
consumers that have successful negotiated a network bandwidth reservation, the
provider keeps in memory the pairs {Uminc , Umaxc } with 1 ≤ c ≤ n. Instead,
the network bandwidth utilization currently allocated to the consumer c is denoted
with Uc. Such value is computed according to the policy of the provider. As an
example, a possible assignment that fairly distributes the spare bandwidth capacity
could be the following:

Uc = min

{(
Uminc +

U res −
∑n

i=1 U
min
i

n

)
, Umaxc

}
(2.1)

The minimum network bandwidth requested by a consumer through the param-
eter NetMinBandwidth is denoted by Br and thus Ur = Br/B

eth denotes the
minimum network bandwidth utilization requested by a consumer. The maximum
network bandwidth requested through the NetMaxBandwidth parameter is in-
stead denoted by Bmax

r and Umaxr = Bmax
r /Beth denotes the maximum network

bandwidth utilization requested.
A consumer request can be accepted iff the admission test of Eq. 2.2 holds.

n∑
i=1

Umini + Ur ≤ U res (2.2)

Moreover, the preliminary constraints Ur ≤ Umaxr ≤ U res must hold too.
In our QoS architecture, the admission control is performed by the BookingA-
gent component, as described in Section 2.2.1. In particular, a sub-component
named BookingNet has been developed and integrated for the purpose of per-
forming the test of Eq. 2.2. If such test is positive, the BookingNet commu-
nicates through an internal socket with its counterparts in the QoS Provisioning
Layer (see Figure 2.5), which is responsible for allocating the negotiated amount
of network bandwidth to the corresponding service consumer.

2.3.3 Enforcement in Linux

The proposed architecture focuses on QoS negotiation and management and does
not introduce new mechanisms for the enforcement of QoS guarantees. Instead,
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current state-of-art mechanisms are leveraged for providing CPU and network
guarantees in a GPOS (i.e. Linux). They are described in the following.

AQuoSA

In this work, AQuoSA [77] has been leveraged for its capability of enhancing Linux
with real-time features, especially concerning the CPU scheduling. AQuoSA is a
complex layered architecture for the QoS control of time-sensitive applications and
its main component can be described as follows.

• the Generic Scheduler Patch (GPS), that permits to extend the Linux sched-
uler by intercepting scheduling events and executing external code in a kernel
module;

• the kernel abstraction layer (KAL), a set of C macros that abstract the addi-
tional functionality we require from the kernel, e.g. the ability to measure
time and set timers, ability to associate data with the tasks, etc.;

• the QoS Reservation component, composed of a kernel module and an ap-
plication library communicating through a Linux virtual device:

– the RR module implements an EDF scheduler, the RR mechanism
(running on top of the EDF scheduler) and the RR supervisor; a set
of compile-time configuration options allows one to use different RR
primitives and to customize their exact semantics

– the RR library provides an application programming interface (API)
allowing an application to use RR functions;

• the QoS manager component, composed of a kernel module, an application
library and a set of predictor and feedback sub-components.

The proposed approach leverages the API provided by the QoS Reservation
component for achieving temporal isolation. Thanks to this property, tasks can be
thought of as running on a “virtual” CPU whose speed is a fraction Q/P of the
CPU speed (notation has been introduced in Section 2.3).

In particular, such API is used in the mod reserve component for creating “vir-
tual” CPUs and assigning them to the web server tasks. The way this assignment
is performed can vary depending on the provider’s policy. As an example, the
provider can differentiate the QoS on a per-client basis and thus a CPU virtual re-
source is assigned to each client and “survives” trough multiple connections (see
also Section 2.2.2). Instead, the provider may want to offer a certain QoS only to
some requests and thus the QoS management would be done on a per-request basis,
by assigning a virtual resource for the management of each request.
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Linux Traffic Control

The allocation of network bandwidth to each service consumer has been managed
through a consolidated Linux kernel module, generically called as Linux TC. Such
module provides some mechanisms for rearranging traffic flows and scheduling
packet transmissions, by using the abstractions of queuing disciplines, classes and
filters.

• A queuing discipline (qdisc) is a scheduler that rearranges packet queues.
Qdiscs can be classful, in the sense that they can contain classes and provide
a handle to which to attach filters. Otherwise they are classless and cannot
contain classes, nor is it possible to attach filter to them. As an example,
the default Linux qdisc (a prioritized FIFO scheduler called pfifo fast) is a
classless one.

• A class is an object that can only exists inside a classful qdisc. It can contain
children classes and can have an arbitrary number of filters attached to it. If
a class is a terminal one (also called a leaf class), it must contain a qdisc,
responsible to send data from that class.

• A filter is an object that permits to classify packets in output queues. A filter
must specify a classifier, which can be used to classify a packet basing on
some information contained in the IP header.

For the purpose of our work, we will focus on the Hierarchical Token Bucket [30]
(HTB) qdisc, that can be basically configured by using the following parameters:

• rate. Maximum rate this class and all its children are guaranteed.

• ceil. Maximum rate at which a class can send, if its parent has bandwidth to
spare. The default value is equal to rate.

In the proposed approach, HTB is used both in the root qdisc and in the internal
classes. In particular, a parent class is created with parameters rate = ceil = Beth,
allowing children classes to borrow spare bandwidth capacity from it. Then, a
leaf class is created and associated to each service consumer that has successful
negotiated a bandwidth reservation. Such class is configured with the negotiated
parameters, by specifying rate = Br and ceil = Bmax

r . The remaining traffic
is managed by an additional leaf class configured with rate = Uoth ∗ Beth and
ceil = rate. In this way, unreserved traffic has a guaranteed bandwidth chosen
by the system administrator and can be managed without compromising existing
guarantees.

The NetReserve has been developed in the QoS Provisioning Layer for dynam-
ically creating (or deleting) the HTB classes when network bandwidth reservations
are created (or deleted). It leverages the functionalities of tcng [6] (Traffic Control
- Next Generation), which permits to write configuration scripts in a flexible and
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# i n c l u d e "fields.tc"
# i n c l u d e "ports.tc"
# d e f i n e INTERFACE e t h 0

dev INTERFACE {
e g r e s s {

c l a s s (<$rewww1>) i f t c p s p o r t ==8080;
c l a s s (<$rewww2>) i f t c p s p o r t ==8081;
c l a s s (<$rewww3>) i f t c p s p o r t ==8082;
c l a s s (<$rewww4>) i f t c p s p o r t ==8083;
c l a s s (<$rewww5>) i f t c p s p o r t ==8084;
c l a s s (<$ o t h e r >) i f 1 ;

h t b ( ) {
c l a s s ( r a t e 100Mbps , c e i l 100Mbps ){
$rewww1= c l a s s ( r a t e 19Mbps ) { s f q ; } ;
$rewww2= c l a s s ( r a t e 19Mbps ) { s f q ; } ;
$rewww3= c l a s s ( r a t e 19Mbps ) { s f q ; } ;
$rewww4= c l a s s ( r a t e 19Mbps ) { s f q ; } ;
$rewww5= c l a s s ( r a t e 19Mbps ) { s f q ; } ;
$ o t h e r = c l a s s ( r a t e 5Mbps , c e i l 5Mbps ){ s f q ;}

}}
}}

Figure 2.8: tcng configuration for enforcing network bandwidth allocations

user-friendly way compared to the tc tool (contained in the iproute2 suite of util-
ities), that instead provides a command line syntax that is very complex and thus
error-prone. Mainly, tcng adds another layer of abstraction above tc, being a com-
piler which takes configuration scripts written in the tcng language, translates them
into an internal representation, and then generates commands in the tc language.

The typical tcng script dynamically generated by NetReserve is illustrated in
Figure 2.8. It depicts a situation in which five network reservations are in place and
all have been negotiated with the NetMinBandwidth and the NetMaxBandwidth
equal to 19Mbps. Each network reservation is characterized by a unique identifier,
that also constitutes the HTB class name. At the packet level, the traffic directed
to a specific service consumer is classified by means of filters. As an example, in
the configuration of Figure 2.8 such filter is based on the provider port used by
the client for requesting services. It could be worth to note, that in the depicted
situation, the system is configured with Beth = 100Mbps, U res = 0.95.

2.4 Experimental Results

The experimental evaluations described in this section focus on the verification of
the behavior of the proposed architecture, especially in guaranteeing a certain QoS
level during service provisioning. In particular, it is shown that it is not possible
to ensure predictable QoS levels, especially in heavy load conditions, without us-
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ing appropriate real-time scheduling techniques. The experiments have been con-
ducted by submitting service requests to a server machine equipped with a GPOS
enhanced with real-time capabilities. In particular, a GNU/Linux OS has been
used, featured by a 2.6.28 kernel configured with high resolution timers (1000Hz)
and patched with the GSP provided by AQuoSA (see Section 2.3.3). The server
machine hosts a multiprocessing version of the Apache 2.2 web server, enhanced
with the mod reserve module.

The service requests were generated by different clients using the Apache
Benchmark tool2.

2.4.1 CPU Guarantees

In the following experiments, scenarios that are well-suited to the industrial au-
tomation field have been set-up. The described scenarios are built so as to “mimic”
typical image-processing services that may be needed in complex vision-based
control logic.

First scenario: centroid detection

The first scenario regards the object tracking problem and, in particular, centroid
detection. A network camera was used as a device, capable of continuously acquir-
ing images in jpg format with resolution of 640x480 pixels. A gateway PC was
directly connected to the camera, exposing to clients a WS-service providing cen-
troid position detection within the acquired image. The service, provided through a
CGI interface, consisted of: image acquisition from the camera; image decompres-
sion; binarization and centroid computation. These details were obviously hidden
to clients, which only received the centroid coordinates in the acquired image.
Then, two clients have been deployed that simultaneously requested the service,
50 times each.

Note that the service needs to be provided respecting timing guarantees even
if the PC gateway, which provides services through an Apache 2 web server, is
in heavy-load conditions: to simulate this aspect, all the experiments were made
when the server executed in background a time-consuming task.

As the PC gateway is stressed by the web server executing requests, its behavior
has been verified both using an unmodified Apache 2 web server and an Apache 2
enhanced with the mod reserve. In particular, a reservation of 45ms every 100ms
has been assigned to each incoming request, in order to exploit almost all the CPU
computation power for service provisioning (remember that clients generated two
concurrent requests each time). For each test case, 20 runs of the experiment have
been repeated.

Among all the results collected by the benchmarking tool, the service response
times have been collected, and in particular the minimum, average and maximum

2 More information is available at the URL: http://httpd.apache.org/docs/2.2/
programs/ab.html.

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
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Processing Original mod reserve
times web server server

min 119 115
avg 198 173
max 1175 273

std.dev 117 23

Table 2.1: Service response times (ms) for the centroid detection scenario

values, the standard deviation and 90% confidence intervals.
Results obtained for the unmodified web server are reported in the first column

of Table 2.1 (90% confidence interval is 7.5%), whereas results obtained for the
web server containing the mod reserve are reported in the second column of the
same table (90% confidence interval is 1.1%).

In order to allow the client application to track the centroid position with a
sufficient precision, this service needed a soft real-time constraint of a response-
time below 300ms.

The maximum values reported in the first column of Table 2.1 show that the
original unmodified web server is not capable of satisfying this timeliness con-
straint. On the other hand, the maximum response times exhibited by the web
server enhanced with mod reserve successfully managed to always respect the de-
sign constraint: this behavior is due to the CPU scheduling mechanism leveraged
within the modified Apache server architecture, that allows for guaranteeing tem-
poral isolation among client requests that need CPU-intensive services.

Second scenario: image rotation

The second scenario regards the problem of object flaw auto-detection, which can
involve geometric transformations on images, like reported in the work by Su [97].
In particular, a simple image rotation algorithm has been chosen for the experiment.

Also in this case the server behavior has been verified both using an unmodified
Apache 2 web server and an Apache 2 enhanced with the mod reserve. For each
test case, 20 repetitions of the experiment have been done, with a heavy-loaded
server. In this case, requests were made by 10 clients simultaneously: each client
made 10 requests, for a total of 100 requests per simulation. The web server was
configured to serve 10 requests concurrently with 10 different tasks and each task
was assigned by the mod reserve a CPU reservation with a share of 9%, and a
period of P = 100ms.

The service response times have been measured for a large image of 2000x2000
pixels, in order to highlight how the best-effort model cannot provide sufficient
performance guarantees even when the computation times required for service ex-
ecution are large. This fact can be appreciated by a graphical comparison between
the different behaviors of the two configurations, as depicted in Figure 2.9.
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Figure 2.9: Response times obtained with and without mod reserve

The graphs report the request number on the x-axis, and the corresponding pro-
cessing time (in seconds) on the y-axis. Their comparison shows that the response
times obtained with real-time scheduling are far more predictable than the ones
obtained without mod reserve, which exhibit an unpredictable behavior. This can
be explained by the fact that the resource reservation techniques implemented in
the mod reserve provide a dedicated slower virtual processor for each service in-
stance. Therefore, with mod reserve, each service instance has an almost constant
response time (the continuous line in Figure 2.9), because it has been reserved a
fraction of the real processor. On the contrary, without mod reserve, due to the lack
of temporal isolation, the service response time can exhibit significant fluctuations
(the dashed line in Figure 2.9), if the processor is subject to concurrent requests.

2.4.2 Network Guarantees

Some experiments have been also performed for evaluating the effectiveness of the
proposed approach in providing network QoS guarantees for concurrent service
requests.

Two machines, a client and a server, connected by a switch through 100Mbps
Ethernet links. The switch is a typical Commercial Off-The-Shelf (COTS) one (the
AT-8024 by Allied Telesis), with a buffer memory of 6MB and store-and-forward
mode. The server machine acts as service provider and it is featured by a 64bit
Intel CPU running at 1.2GHz.

The image rotation service described in the previous section has been modified
for sending the rotated image through the network (given a certain resolution r and
a rotation angle α). In these experiments, the image to rotate is a gray-scale one
(8bit per pixel), provided by means of Ram-disks with different resolutions. The
client machine creates 5 tasks acting as service consumers and each one connects to
the provider by using a different port. In these experiments, the consumers request
the service with parameters r = 512x512 and α = 20. The rotated image, sent as
response for each request, has a size of 419KiB.
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Figure 2.10: Transmission time of service response

We are interested in measuring the satisfaction perceived by consumers and
thus all the results are collected by the client. In particular, we measured the trans-
mission time of the service response by leveraging the report functionality of the
ab tool. For each request, ab reports the so-called wait and dtime values, being
respectively the time interval the consumer waits on the socket and the time interval
that occurs between the request sending and the last byte received. The transmis-
sion time of the service response has been measured as the difference dtime−wait.

In Experiment 1, the five consumers concurrently request the service every 4
seconds for 20 times and the collected service transmission times have been plot-
ted in Figure 2.10. It could be seen that there is an high variability in such values,
mainly due to resource contentions in the network queue of the service provider.
Thus, very different transmission times of the image are experienced by each con-
sumer. Such variability can be also observed in the processing times of each request
and, as highlighted in the previous section, it is due to the contention in accessing
the CPU.

The behavior pointed out in Experiment 1 is emphasized in presence of inter-
ference in the network, as reported by the following Experiment 2. In this case a
bandwidth eager task was created for sending UDP packet of size 12.5KB every
1ms, trying to saturate the available bandwidth of 100Mbps. The bandwidth eager
task, illustrative of possible misbehaviors inside the provider, was running while
the consumers requested the service as of the previous experiment. The collected
transmission times are greater than those reported in Experiment 1, as can be seen
by comparing the first two columns of Table 2.2, that reports minimum, average,
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

min 38 124 186 222
avg 117.95 195.3 191.3 230.6
max 158 226 193 237

std.dev 36.63 26.28 1.51 3.03

Table 2.2: Service transmission times (ms) for Experiments 1-4

maximum and deviation standard values (the 95% confidence values are always
below the 2.2%).

The third experiment consists in repeating the previous one when the service
provider is configured by using the traffic control script of Figure 2.8, that depicts
a situation in which a bandwidth allocation of 19Mbps has been assigned to each
of the 5 consumers. It is worth to note that each consumer can negotiate a different
bandwidth share with respect to others and we have only chosen such configuration
for the sake of simplicity. The results show a substantial flattening of the transmis-
sion times in comparison with Experiment 2. It can be appreciated in Figure 2.11,
that shows results collected without any tc configuration with label no-tc and the
others with label using-tc.

The flattening of the service transmission time enhances the system with a
certain degree of determinism and allows each consumer to experience the same
QoS level across various requests over time. By repeating Experiment 3 without
the interference in the network, we obtained a mean value of 182ms and a standard
deviation of 0.66ms, discovering that the transmission times are not influenced
by concurrent requests of other consumers but they are minimally affected by the
bandwidth eager task. This points out some limitations of the Linux TC packet
scheduler in handling overloads and suggests the adoption of some precautions,
e.g. redefining Uoth in a manner that U res + Uoth ≤ 1 (see Section 2.3.2). Some
experiments, not reported due to space constraints, endorse the adoption of such
trick, showing an improvement of up to 8ms in the mean transmission time by
progressive lowering Uoth in a manner that U res + Uoth ranges from 1 to 0.95.

Another experiment (named Experiment 4) has been performed for pointing
out a particular behavior of Linux TC. It consists of using the script of Figure 2.8
without specifying the other class, assigned to unreserved traffic. In this way,
Linux TC does not find any matching rule for the UDP traffic, that is left out of
control. The results, reported in the fourth column of Table 2.2, show that trans-
mission times of reserved traffic are always flat in comparison of those of Experi-
ment 2, but the mean value is greater than the value of Experiment 3, because the
unreserved traffic is not shaped.

Another experiment has been performed for verifying the precision of the HTB
algorithm in allocating network bandwidth for each class. Basically, the same con-
figuration of Figure 2.8 has been applied, by varying the rate parameter assigned
each time to all the five reserved classes corresponding to the consumers. In this
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Figure 2.12: Variation of service transmission times for different bandwidth as-
signments

case, results have been collected by establishing a point-to-point connection be-
tween client and server, with the purpose of not adding the switch overhead to mea-
surements. In particular, the mean values of the response transmission time have
been plotted in Figure 2.12, together with the ideal curve f(bw) = S/bw represent-
ing the transmission time as a function of the bandwidth bw (with S = 419KiB
be a constant equal to the rotated image size sent through the network). It could be
seen that the experimental curve is very close to the ideal one and the bandwidth
assignment, tested at different grain levels (1Mbps, 0.1Mbps, 0.01Mbps), has an
acceptable level of precision.
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2.5 Summary

This chapter addressed the design and development of a SOA for supporting real-
time and QoS aspects, with particular reference to the next generation industrial
automation platforms. The architecture of the proposed framework has been de-
scribed, and its effectiveness in guaranteeing QoS in service provisioning has been
shown by means of extensive experimental evaluations, both quantitative and qual-
itative, highlighting that the framework provides significant and effective advan-
tages over existing solutions.

In particular, an effective way to guarantee QoS in service provisioning has
been proposed by achieving temporal isolation between high-level software infras-
tructures and low-level control logic, exploiting a modified Linux kernel supporting
real-time scheduling strategies. Moreover, to allow for the configuration of the sys-
tem at run-time, the WS-Agreement protocol has been extended in order to support
QoS attributes related to individual activities.





Chapter 3

QoS Registry

Service-oriented real-time applications are commonly executed in open systems,
where they can be activated and terminated in any moment, generating a time-
varying workload. For these reasons, classical real-time systems design method-
ologies are rarely used in this context. Instead, the use of adaptive techniques is
more suitable for managing the Quality of Service (QoS) of service-oriented real-
time applications, given that such techniques have the advantage of not requiring
an offline analysis of the application workload and provide the flexibility needed
in these cases.

The most common adaptive techniques can be classified as follows: application-
level adaptation, in which the application operating modes are adapted to the avail-
ability of resources; resource-level adaptation, in which the resource shares granted
to the applications are adapted to the dynamic workload requirements; and power-
level adaptation, in which the resource speed, and thus the corresponding power
consumption, is adapted to the requirements of the system. Though adaptation
techniques belonging to each group can be reasonably used by themselves, a better
approach for QoS control counts to use these techniques in conjunction [21] and as
part of an integrated QoS framework that contains the set of required mechanisms
for QoS management [40]. Moreover, a particular care must be done when pro-
viding QoS guarantees for services, as concurrent activations can easily disrupt the
response time of a service, as shown in Section 2.4.

Adaptive techniques for QoS management achieve self-configuration capabili-
ties by relying on previously collected information about the application configu-
ration, its achieved performance and the corresponding resource requirements. For
example, data from previous executions may be used in a control loop for adjusting
the resource allocation for future executions. However, in SOA environments, the
application might be instantiated on a request-by-request basis by a web server,
and with potentially different parameters or operating modes, making it difficult to
build such an on-line control loop. Also, in presence of a multitude of operation
modes and environmental conditions, it may be cumbersome to build a historical
data set which is comprehensive of all the possible cases for future instantiations

45
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of the application. For these reasons, we believe that the use of a well-structured
framework for handling QoS data is of paramount importance in such a context.

In this chapter we present QoSDB, a QoS registry for supporting QoS man-
agement in SOAs. It can be exploited for gathering persistently QoS data re-
lated to different functional behaviors of the application (application modes) and
for predicting the future performance based on data already collected in the past.
Furthermore, a modular architecture allows for defining various models for the
prediction of the resource requirements under a set of conditions which has not
been observed yet. This allows for achieving a nearly correct resource allocation
(self-configuration) for the application with a great reduction of the needed ob-
servation/benchmarking points, especially in those contexts in which the space of
possible configuration parameters is big (e.g., multimedia applications supporting
arbitrary resolutions).

In order to show viability of the proposed approach, we provide overhead mea-
surements gathered on an implementation of the QoSDB on Linux. Moreover,
through some experiments we highlight the benefits of using such registry in a real
SOA scenario with QoS provisioning capabilities. By leveraging the QoSDB, the
system under study is capable of auto-tuning for a better exploitation of internal
resources while guaranteeing the QoS required by users.

In the remainder of this chapter, related work is analyzed in Section 3.1, whilst
Section 3.2 describes the architecture of the proposed QoS registry. Section 3.3
focuses on the interface exposed to the application, and the typical usage pattern.
Section 3.4 shows experimental results gathered with an implementation of the
proposed registry. Finally, Section 3.5 draws conclusions.

3.1 Related Work

In SOA applications the importance of historical data and statistics for supporting
the QoS is commonly recognized and leveraged [90, 111, 107]. However existing
approaches rarely deal with real-time services in dynamic environments, where
respecting time requirements imposes a particular care. For example, the use of
historical data for SOAs has been also exploited by Yu and Lin [108], that pro-
pose a QoS-capable Web service architecture (QCWS) by deploying a QoS broker
between Web service clients and providers. This broker uses QoS information
collected from each server for choosing the best provider that can satisfy client
requests. However, this information is mainly static and it is not used to make
application-level or resource-level adaptation. Instead, our experimental work fo-
cuses on adapting the resource shares for the enforcement of certain QoS guaran-
tees.

In the QoS management of adaptive SOAs, the use of QoS prediction mech-
anisms is of paramount importance for understanding the trend of QoS data and
reacting to changes in the application and/or in the execution environment. In our
work such aspects has been considered in the design phase and analyzed in the
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experimental section, however proposing novel prediction techniques is not in the
scope of this paper. For the sake of simplicity, a linear regression model has been
used in our experiments but, in principle, any QoS prediction technique can be em-
bedded in the proposed work, like the WS-QoSP [58] approach based on forecast
combination.

As a note, the QoS registry proposed in this work has been conceived for sup-
porting service providers in the QoS management and thus its information is not
produced with the intent to be published for discovery and/or integration processes.
Some work in this direction has been done by Lee [57] for representing QoS infor-
mation of services in UDDI [19] (Universal Description, Discovery and Integra-
tion) registries.

In the realm of real-time systems other well-structured framework for manage-
ment of historical data exist. Among them, it is worth to mention the BACC [7]
(Budget ACCountant) module inside the HOLA-QoS framework [41]. That mod-
ule provides the basic means for enforcing and accounting for resource usage, by
notifying task overruns and by keeping statistical information on the used task bud-
gets. It stands at the Operating System (OS) level and the information provided by
it is directed to monitoring tasks for checking how a task is behaving. Instead,
our framework stands at a higher level than the OS, supposing the existence of a
real-time enhanced OS for the QoS enforcement. In this way, it can be used for
adapting the application performance by exploiting high-level information affect-
ing the QoS, rather than for simply checking a possible misbehavior.

For the QoS management of soft real-time applications, the use of adaptive
techniques is not new and some approaches have been recognized as effective, es-
pecially for adaptive scheduling. For example, the work by Abeni et al. [3] applies
feedback control to a RR scheduler for dynamically adapting the CPU bandwidth
each task should receive. Also, in a work by Eile et al. [45], feedback scheduling
is used for the design and implementation of a CPU Broker, that adjusts alloca-
tions over time to ensure that high application-level QoS is maintained. Further,
in the context of feedback-based real-time scheduling, Cucinotta et al. [2] intro-
duced a clear separation between the prediction algorithm, responsible for estimat-
ing the workload of the subsequent task activation(s), and the control algorithm
itself, leveraging the output of the predictor and the knowledge about the current
task delay, for deciding the next allocation. Instead, our work does not propose
any new feedback strategy but focuses on the collection and management of histor-
ical data for adaptive systems. Moreover, our proposal can be used for supporting
feedback scheduling by clearly separating the feedback algorithm from the data
management.

Finally, it is worth to note that, differing from some other work like that of So-
jka and Hanzalek [92], in our experimental evaluations we do not take into consid-
eration admission control and contract negotiation. Instead, the focus is on showing
the effectiveness of the proposed framework in supporting adaptation techniques
for the QoS Provisioning Layer introduced in Section 2.2.
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3.2 Design

This section describes the design of the proposed QoS registry, named QoSDB. In
the most simple case, QoSDB operates at the application level, shared between all
the tasks of an application. In more complex architectures, a middleware acting
as QoS manager could be interposed between the applications and the OS. In that
case the QoSDB would stand in the middle layer and its functionalities would be
better exploited by the QoS manager.

The main features of QoSDB can be summarized as follows:

• it supports adaptation techniques by counting that each application can be
characterized by different modes and can run at different resource speeds;

• it allows applications to predict QoS parameters for application modes that
have not yet been experienced by the application.

• it permits to store in memory, save in a database and recover statistics related
to QoS parameters;

The QoSDB framework has been designed pursuing the following goals.

Modularity. QoSDB is characterized by different plugins, for permitting a rapid
change in the functionalities of the framework. Moreover, even the core has been
designed by keeping in mind modularity for a clean competence separation. This
will eventually allow programmers to modify the internal data structures and algo-
rithms with a minimum effort.

Flexibility. QoSDB has been designed for exploiting the three different levels of
adaptation in conjunction. However, it is flexible enough for being used in many
contexts, even if only a subset of the provided functionalities is required.

Efficiency. The overhead introduced by our framework should be negligible.
For pursuing this goal, the framework has been developed in the C language.

This also widens the possibilities of usage in the context of embedded applications
for industrial automation, without precluding the possibility to build gateways to-
wards different programming languages, if needed.

3.2.1 Model

In this chapter we focus on a generic application, software component or service α,
which is capable of switching among a set of operating modes M . The behavior of
α is affected by a set of parameters {inj : j = 1, 2, . . .} (for example, for an image
processing application, these can be the image resolution and color depth in bits,
for an interactive application they can be represented by the current workload in
terms of connected users, etc.). However, for the sake of simplicity, we assume that
the set of parameters may be mapped to a scalar quantity v = f({inj}), so that the
actual impact on the application behavior (in terms of resource requirements and
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Figure 3.1: The QoSDB Architecture

performance) depends only on v. For example, for an application that operates on
images, v could be computed as the image size (width ∗ height ∗ depth). Thus,
each operating mode m ∈M is characterized by a scalar quantity vm.

Also, the historical behavior of α in each mode m is characterized in terms
of a vector of observed samples spm with maximum dimension NS , which con-
stitutes a moving window over the past history of the system. Also, a vector of
statistics stm = (stm,1, . . . , stm,NT

) is associated with these observations, where
each element of stm is basically computed by performing certain operations on
the elements of spm (e.g., moving average). The number of samples NS and the
number of statistic NT are equal for each m and can be defined directly by α.

The resources used by α can be in a different power consumption mode pm.
Thus, each resource has associated a set of power modesPM = {pm1, pm2, . . . , pmL}.
For example, considering the CPU, L could be equal to the different CPU speed
levels of the system. For the sake of simplicity, we consider a relationship of or-
thogonality between m and pm, i.e. data collected for a particular m can be reused
∀ pm ∈ PM . Thus, each element of spm is stored after an operation of normaliza-
tion with respect to the current power mode pmset and is reused after an operation
of unnormalization with respect to the future power mode pmget.

3.2.2 Architecture

The QoSDB architecture has been designed with a particular emphasis on modu-
larity. Its main components, depicted in Figure 3.1, are detailed below.

QoSDB Core

The core of QoSDB provides the main functionalities of the registry. The API con-
stitutes the glue between internal modules and plugins, by coordinating operations
and information flows. Moreover, this module allows applications to interact with
the QoSDB as detailed in Section 3.3.1.
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The Memorization module provides the functionalities for storing/recalling
data to/from the QoSDB data structure, that contains sampling and statistic data
for each application mode. The number of application modes could be potentially
high, as applications characterized by various input parameters must collapse them
in a unique value. For this reason, the used data structure is a Binary Search Tree
(BST), with each node label corresponding to an application mode. From a theoret-
ical point of view, the BST would guarantee a good performance in searching and
inserting nodes in the tree, that are the operations mostly performed in the QoSDB.

The Saving module has the task of saving the statistics contained in the QoSDB
data structure. These statistics are permanently saved in a database as a conse-
quence of the corresponding API call. This module is also responsible of restoring
such statistics in the QoSDB data structure when a new instance of the framework
is started. The saved data are intended to be managed by the QoSDB methods only
and thus the use of a relational database has been avoided: it would add overhead
and dependencies without adding much benefits. Instead, an ad-hoc database file
format has been used.

QoSDB Statistics Plugin

The QoSDB Statistics Plugin allows applications to specify the statistics they are
interested into. Applications define the maximum number of statistics NT to be
stored and saved for eachm ∈M , and they define the proper computation function
for each statistic. The index k used for the insertion in the vector stm represents
the statistic type.

Denoting m̂ as the current operating mode, each computation function gets as
input the vector of samples spm̂ and returns the computed statistic stm̂,k. Actually
the QoSDB comes with the average and maximum computation functions already
built-in.

QoSDB Clairvoyance Plugin

The QoSDB Clairvoyance Plugin permits to predict a QoS statistic related to a
given operating mode m̃ for which no statistic has been observed so far. The
plugin allows applications to define the chosen algorithm according to the pre-
ferred model. Actually, the QoSDB comes with a linear regression prediction al-
gorithm based on the Ordinary Least Square (OLS) method. A new algorithm can
be inserted by simply redefining the qosdb_clair_stat_prediction()
function, that can predict the value of a particular statistic whose type is iden-
tified by the index k. Such function computes the value stm̃,k by receiving as
input the mode m̃ for which we predict the statistic, the remaining set of modes
in the QoSDB X = M \ {m̃}, and the statistics of interest for the given modes
Y = {stm,k ∀m ∈ X, k = statistic of interest}.
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q o s d b r v q o s d b i n i t ( q o s d b c o n t e x t ∗∗c , D a t a b a s e name ) ;
q o s d b r v qosdb cleanup ( q o s d b c o n t e x t ∗c ) ;
q o s d b r v qosdb save ( q o s d b c o n t e x t ∗c ) ;
q o s d b r v qosdb merge ( q o s d b c o n t e x t ∗c ,

c o n s t q o s d b a p p m o d e i d app mode id ) ;
q o s d b r v qosdb lookup app mode ( q o s d b c o n t e x t ∗c ,

c o n s t qosdb app mode app mode ,
q o s d b a p p m o d e i d ∗ app mode id ) ;

q o s d b r v q o s d b s e t s a m p l e ( q o s d b c o n t e x t ∗c ,
c o n s t q o s d b a p p m o d e i d app mode id ,
c o n s t qosdb mode sample y ,
c o n s t q o s d b r s p e e d s ) ;

q o s d b r v qosdb get ( c o n s t q o s d b c o n t e x t ∗c ,
c o n s t q o s d b a p p m o d e i d app mode id ,
q o s d b m o d e s t a t ∗∗y ,
c o n s t q o s d b r s p e e d s ) ;

Listing 3.1: QoSDB API

QoSDB Power Plugin

This plugin allows for setting the preferred model for correlating statistics and sam-
ples to different resource speeds. It provides the qosdb_power_normalize
method, used for store samples whose values are independent of the resource speed
at which they have been taken (denoted by the pmset value). It also provides the
qosdb_power_unnormalize method, used for returning values related to the
actual power mode pmget, potentially different from pmset. These two methods
are internally called in the QoSDB API (see Section 3.3.1), respectively in the
qosdb_set_sample and qosdb_get methods.

3.3 Interface

In this section a description of the available Application Program Interface (API)
is given, in order to highlight the framework capabilities. Moreover, the typical
structure of an application task using the QoSDB library is provided.

3.3.1 API

The QoSDB library allows applications to exploit its feature through a well-defined
API, as described in Listing 3.1. The definition of these methods follows the
common C programming practice of returning an exit status, represented by a
qosdb_rv type.

The functionality of each method is detailed below.

• qosdb_init This method initializes the QoSDB library. It is responsible
of creating the internal data structure and it will try to load historical statistics
from the database, if present; otherwise it creates a new database.



52 CHAPTER 3. QOS REGISTRY

• qosdb_cleanup This method cleans-up the internal data structure and
resources (e.g. file streams, log handler) associated to the library.

• qosdb_lookup_app_mode This method looks-up an application mode
identifier. Such identifier will be used for subsequent calling exploiting the
QoSDB features.

• qosdb_set_sample This method sets a sample for a particular mode m.
It operates on the QoSDB data structure and do not save data in the database.
For each observed mode m, samples are saved in a circular buffer whose
dimension NS can be set by the application.

• qosdb_save This method saves statistical data contained in the QoSDB
data structure to the application database file. In particular, it permanently
stores stm for each m ∈M .

• qosdb_get This method gets the vector of statistics stm for a particular
mode m. It operates on the the QoSDB data structure and does not get data
from the database. If a merge has been performed, the result will keep in
count fresh values, otherwise it will return the historical statistics.

• qosdb_merge This method merges new statistics with historical ones, for
a particular mode m. It operates on the QoSDB data structure and it does not
get data from the database. The new statistics are computed on-the-fly from
fresh samples and are merged with the historical ones (the importance of the
fresh information with respect to the historical one can be weighted). The
results are automatically set in the QoSDB data structure.

3.3.2 Task structure

The structure of a task using the QoSDB framework can vary according to the appli-
cation purposes. As an example, the typical structure of a periodic task interested
in collecting data for future statistical analysis is shown in Listing 3.2. It is shown
a periodic task that performs a particular job, takes measurements and stores those
samples in memory. At the end, the qosdb_merge method is called for com-
puting statistics based on the fresh samples and store them. The qosdb_save is
used for saving such statistics in the database, whilst the qosdb_cleanup will
clean all the memory associated with the QoSDB library. For the sake of simplicity,
the QoSDB error value is not checked.

It is worth to note that, as data are only collected, the proposed example does
not make use of the qosdb_get method. A more complex usage of the QoSDB
can be found in Algorithm 1 described in Section 3.4.2, where the proposed registry
is leveraged for performing QoS management in SOAs.
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void s a m p l e t a s k ( ) {
q o s d b c o n t e x t ∗ s ;
qosdb mode sample sample ;
q o s d b r s p e e d speed ;
qosdb app mode mode1 = f ( in1 , . . . , i n J ) ;
q o s d b a p p m o d e i d mid1 ;

q o s d b i n i t (&s , "myapp.db" ) ;
qosdb lookup app mode ( s , mode1 , &mid1 ) ;
whi le ( c o n d i t i o n ) {

speed = g e t c u r r e n t s p e e d ( ) ;
d o j o b ( ) ;
sample = o b t a i n s a m p l e ( ) ;
q o s d b s e t s a m p l e ( s , md1 , sample , speed ) ;
w a i t f o r n e x t j o b ( ) ;

}
qosdb merge ( s , mid1 ) ;
qosdb save ( s ) ;
qosdb cleanup ( s ) ;

}

Listing 3.2: Structure of a task using the QoSDB API

3.4 Experimental Results

This section describes some experiments that have been performed with an imple-
mentation of the proposed registry on Linux. First, we show the overheads associ-
ated with the use of the QoSDB, highlighting their sustainability in a large class of
target applications. Subsequently, the functionalities of the QoSDB are shown by
reporting its performances in service provisioning and the effectiveness in adaptive
predictions of resource requirements.

3.4.1 Overhead Measurements

The QoSDB library has been developed pursuing efficiency, as the overhead intro-
duced should be negligible for a proper integration in QoS architectures.

For this reason, the execution times of the QoSDB API methods has been mea-
sured by using a test program that reflects the typical usage. The test has been
performed on a 64bit GNU/Linux system featured by an Intel CPU running at 1.2
Ghz. The average execution times, as perceived by the application, are reported
in Table 3.1 as a function of the application mode number (the t10 row is related
to a QoSDB featured by 10 application modes, whilst the t100 is related to 100 ap-
plication modes). Each test case has been repeated 50 times and reported results
in the first row have the 90% confidence interval always below 6.3%, whilst 90%
confidence interval in the second row is always below 5.9%.

It can be seen that the overhead is almost always negligible and in the order of
microseconds. Only the qosdb_savemethod has a significant value, as data have
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init lookup set sample get merge save

t10 (ms) 0.259 0.001 0.001 0.001 0.003 2.289
t100 (ms) 0.264 0.001 0.001 0.001 0.003 2.336

Table 3.1: Execution overhead of QoSDB API

Code Data
avg max

m10 (KiB) 20 159.4 172
m100 (KiB) 20 340.6 448

Table 3.2: Memory overhead of QoSDB

to be saved on the hard disk. Other experiments show the same behavior when the
qosdb_init method loads data from the database (in the reported experiments
the database is deleted before each repetition).

As a further overhead measurement, the memory usage of a program using the
QoSDB library has been measured. We did not use the information that can be
gathered by the common ps tool, as it reports only a coarse grain information (the
total amount of memory allocated for that process). Instead, we made use of the
smaps interface present in the procfs of Linux since the 2.6.14 version. This
interface permits to gather information about the actual memory reserved to the
process, being also able to distinguish between the private memory and the shared
memory, as due to dynamically linked libraries.

Our experiment consists in monitoring for 20 seconds (with a grain of 1 sec-
ond) the output of the smaps interface while our program was running. The only
shared libraries used by our program were libc-2.7.so and ld-2.7.so. The
memory reserved for such libraries was always between 572 and 600 KiB.

Table 3.2 reports instead the amount of private memory used by the program
as a function of the application modes number (the m10 row is related to a QoSDB
featured by 10 application modes, whilst the m100 is related to 100 application
modes). In the first column of such table is reported the memory usage for the
code section, equal to 20 KiB in the two cases. The second and the third columns
correspondingly report the average and the maximum usage related to the data
section. This value is variable because it also counts the heap usage, that could
vary during the program execution as a consequence, for example, of malloc
calls. The 90% confidence intervals are 1.4% in the case of 10 application modes
and 5.8% in the other case.

In our opinion, such values are acceptable and can suggest the suitability of the
proposed registry for a wide range of applications working on Linux systems.
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3.4.2 Service Provisioning Scenario

Some experiments have been performed in order to show the effectiveness of QoSDB
in tuning the resource allocation for providing QoS guarantees in SOAs. The
QoSDB has been plugged into the real-time QoS architecture described in Chap-
ter 2 and, in particular, it has been tied to the mod_reserve, that is capable of
providing QoS guarantees for CPU-intensive services (see Section 2.2.2 and 2.4.1)
by allocating CPU “shares” to serving tasks. By following the notation introduced
in Section 2.3, a resource allocation is specified in terms of a budgetQ and a period
P , whilst the ratio B = Q/P represents the share of the resource that has been re-
served. Focusing on the CPU resource, each task can be thought of as running on
a virtual CPU, whose speed is a fraction B of the real CPU speed.

The experiments have been performed on a system with a 1.2 Ghz Intel CPU,
3GiB RAM, running a 64bit GNU/Linux OS with a 2.6.28 kernel patched with
AQuoSA. The Apache 2 web server was configured to provide an image rotation
service, like the one described in Section 2.4.1. The client requesting the service is
allowed to specify the image width w, the image height h and the desired response
time D. For satisfying such QoS requirement, the mod_reserve challenge con-
sists in “guessing” the proper pair B and P for scheduling the serving task. In this
case, a good choice for the time granularity of the reserve is P = 100ms 1. The
CPU bandwidth B is instead computed by leveraging the capabilities provided by
the QoSDB library. In this way, it is possible to allocate only the resource share
needed for guaranteeing the required QoS, permitting to use resources for com-
pleting other tasks or eventually use strategies for energy saving (e.g. switching off
a core processor or lowering the resource speed).

The operations performed by mod_reserve in providing the real-time adap-
tive service considered in this scenario can be described by Algorithm 1, which
follows the notation introduced in Section 3.2.1 and reports the QoSDB functions
without any C artifact. In particular, such operations can be detailed as follows:

1. Retrieving the application mode id vm with the qosdb_lookup (lines 1-
2). In the service considered in this scenario, each application mode m is
represented by the product w ∗ h of the image to rotate.

2. Getting the average statistic for the corresponding mode with the qosdb_get
(lines 3-5).

3. Computing the value B as the ratio between the average statistic and the ser-
vice deadline d (lines 6-10). In case the statistic is null, an arbitrary initial
bandwidth value B0 is assigned. The deadline d could be set equal to the
desired response time D, however a safer practice consists in setting d equal
to a bit lower target value D̂, for considering the various source of indeter-

1As the period is also representative of the maximum activation delay, lower values could be more
appropriate in a different context (for example, see Chapter 4).
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Algorithm 1 QOS PROVISIONING(w, h, d)

1: m← w ∗ h
2: vm ← qosdb lookup app mode(m)
3: pmget ← get current CPU speed()
4: stm ← qosdb get(vm, pmget)
5: avg ← stm[AV G]
6: if avg = NULL then
7: B ← B0

8: else
9: B ← avg/d

10: end if
11: allocate CPU share(B, getpid())
12: execute service(w, h)
13: t← get service execution time()
14: pmset ← pmget ∗B
15: qosdb set sample(vm, t, pmset);
16: qosdb merge(vm);
17: return

minism e.g., cache and software interrupts, that can still affect the real-time
behavior of AQuoSA in implementing the RR mechanism on top of Linux.

4. Serving the request by assigning a fraction B of CPU to the serving task
(lines 11-13). The metafunction allocate CPU share wraps the AQuoSA
calls necessary for performing the resource allocation2, whilst the execute service
wraps operations performed by the web server. We also assume the availabil-
ity of a system call for getting the service execution time.

5. Storing in memory the service execution time with the qosdb_set_sample
and updating the statistics with the qosdb_merge (lines 14-16).

Please note that such algorithm could be easily applied for the provisioning of a
different service (with respect to the one considered in this scenario) by modifying
only line 1, that refer to the mapping between service parameters and application
modes.

A first experiment, called Experiment I, has been conducted for showing the
auto-tuning capability the system acquires by leveraging the proposed QoS reg-
istry. Service consumers perform 50 subsequent requests with parameters w =
1000pixel, h = 1000pixel,D = 660ms. The desired response time D is not con-
sidered as the target deadline of the system, instead we consider, as discussed, a
lower internal target D̂ = 640ms. Denoting r̄full as the average service response
time when requests are processed by using the CPU at full speed, an off-line anal-
ysis on such service reveals that r̄full is equal to 50.18ms (the 90% confidence

2More information can be found at the URL: http://aquosa.sourceforge.net/

http://aquosa.sourceforge.net/
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Figure 3.2: Adaptive resource allocation in service provisioning

interval is about 0.1% of the average value). Thus, an optimal assignment B∗ in
the sense of minimizing the resource allocation for sustaining the desired deadline
would be B∗ = r̄full/D̂ ' 0.0784. This measure is used for benchmarking the
performance of the system. Instead, for highlighting the auto-tuning capabilities of
our architecture, an arbitrary value B0 = 0.09 has been chosen for the initial CPU
bandwidth assignment.

At the beginning, requests are performed by 1 service consumer. For each
request the assigned bandwidth B and the response time r have been measured
and results are plotted in Figure 3.2. In Figure 3.2(a), it can be seen that the first
computations of B are clearly overestimated but the system rapidly evolves thanks
to the use of QoSDB, assigning for most of the requests a bandwidth equal to B∗.
Figure 3.2(b) reports the actual response times and shows how the serving task
scheduled with the computed bandwidth reservation is capable of guaranteeing the
required QoS (values are always the dotted line denoting the desired response time
D).

Then, the experiment has been repeated when requests are performed by a
different number of concurrent service consumers c and the same behavior of Fig-
ure 3.2 has been observed. For doing a comparison of the collected results we in-
troduce two different metrics. By denoting rc,i and Bc,i respectively the response
time and the bandwidth allocated for the i-th requests performed by client c, such
metrics can be defined as follows:

• the Deadline Miss Ratio (DMR) defined as

DMR =
dmn

N

where the number of deadline misses dmn is the cardinality of the
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MAPE (%) DMR (%)

1 client 0.71 0
5 clients 1.76 2.0

10 clients 1.85 5.8

Table 3.3: Performances of resource allocations based on the average QoS statistic

set {rc,i|rc,i > D} and N is the total number of requests received by the
provider;

• the Mean Absolute Percentage Error (MAPE) defined as

MAPE =
1

N

∑
i,c

|B∗ −Bc,i|
B∗

Table 3.3 reports the value obtained for the introduced metrics when requests
are performed by 1, 5 and 10 concurrent clients. The results reported for the MAPE
metric are very low and show that the system performs very well in allocating the
right resource share. Instead, values for the DMR metric grows proportionally with
the number of concurrent clients, reaching a quite significant value in the case of
10 clients. However, the average service response times, calculated throughout
the whole experiment, are quite similar in all the three cases (respectively equal
to 639.02ms, 639.22ms and 641.79ms with the 90% confidence intervals lower
than 0.2%) and do not present the same proportional difference with respect to
the DMR values. This can suggest that when strong guarantees must be provided
in terms of respecting deadlines for real-time service-oriented applications, QoS
management techniques based on the analysis of the maximum values could be
more appropriate, rather than referring to the average QoS statistics, as done in this
experiment.

Following this reasoning, the Experiment II has been performed with the same
setup of Experiment I, except for considering the max statistic instead of the aver-
age in line 5 of Algorithm 1. In the results, reported in Table 3.4, it could be seen
that DMR values has been drastically reduced with respect to values of Table 3.3,
meaning that a minor number of deadline misses occur (both in the case of 5 and
10 concurrent clients, only 2 deadline are missed). Of course, this is achieved at
the cost of overestimating the resource allocation for service execution, as reflected
by MAPE values that are increased with respect to those of Table 3.3.

Finally, an experiment is performed in which the server receives 50 subsequent
requests by 1 client but the image resolution changes every 10 requests, forcing
a change of the application mode. This experiment has been conceived for high-
lighting the advantage of using the Prediction Plugin for guessing the behavior of
the application when changing from one mode to another. Thus, for each applica-
tion mode the error in computing the bandwidth B has been measured and plotted
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MAPE (%) DMR (%)

1 client 1.17 0
5 clients 2.89 0.8
10 clients 8.22 0.4

Table 3.4: Performances of resource allocations based on the max QoS statistic
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Figure 3.3: QoS Prediction on Application Mode Changes

in Figure 3.3. It can be seen that the allocation error for the mode 2000x2000 is
significant, as the database is not populated yet and a B0 = 0.15 allocation value
is given. Subsequently, the system evolves towards a plateau, similarly to the first
experiment reported in Figure 3.2(a). At request number 11, when the applica-
tion mode changes to 1500x1500, the database is not populated for that application
mode but the QoSDB exploits the statistics already collected for performing a guess
that is very close to the plateau value. The same behavior can be observed for the
other mode changes, that happen at requests number 21, 31 and 41. The prediction
algorithm used in this experiment is based on the OLS method and is already built
in the QoSDB, as described in Section 3.2.2.

In traditional feedback-based scheduling, an application continuously running
adapts dynamically the scheduler parameters based on recently observed resource
requirements. Instead, in the presented experiment, the individual requests are
served by independent activations of the cgi-bin service, which can occur con-
currently and/or at great or small distances in time. The service is thus instantiated
each time along with the creation of the associated resource reservation into the
scheduler (as handled by mod_reserve). Thus, in the proposed work, the “feed-
back control loop” is closed in an off-line fashion, by recurring to the registry.
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3.5 Summary

In this chapter a QoS registry for SOAs (QoSDB) has been presented. It has been
conceived for supporting QoS management in open environments by permitting to
predict, store and save QoS statistics related to different functional behaviors of an
application. It is characterized by a modular architecture that permits the insertion
of new algorithms for an easy customization. The proposed registry has also been
developed and we provide overhead measurements gathered on Linux, in order to
show viability of the proposed approach.

Moreover, the QoSDB has been integrated into the service-oriented real-time
QoS architecture described in Chapter 2 and some experiments have been per-
formed for showing the effectiveness of the proposed solution in supporting adap-
tive techniques for providing services with QoS guarantees. In fact, by leveraging
the proposed registry, the system can be able to self-configuring for a better ex-
ploitation of internal resources while guaranteeing the QoS required by users.



Chapter 4

QoS Guarantees for Virtualized
Services

Service Oriented Infrastructures (SOIs) are taking advantage of the recent redis-
cover of resource virtualization [31], whose early works date back to 1967. Virtu-
alization [11] basically refers to the technology that allows a system to host one or
more emulated systems, called Virtual Machines (VMs), which may also be seam-
lessly migrated across physical hosts. In the last few years virtualization tech-
nology has been undergoing a steep evolution: the growing industrial interest in
enhancing the performance and security of virtualized systems led hardware man-
ufacturers and OS developers to provide more and more support for virtualization,
allowing a virtualized machine to exhibit nearly the same performance as the phys-
ical one hosting it. Thanks to these advancements in performance, an increasingly
appealing opportunity, from a resource provider perspective, is represented by the
possibility to provide on-line access to dedicated resources, such as storage, com-
putation and communication resources, in the form of entire VMs, so that there is
complete freedom on what OS or additional software to install in order to manage
them. Software may run seamlessly inside a VM, completely unaware of the actual
hardware on which the VM is running, as well as of what other VMs are being mul-
tiplexed by the provider on the same physical resource(s), or even of the fact that
is being migrated to a different location. Deployment of VMs instead of physical
ones leads to a set of advantages: lower equipment costs, lower deployment and
maintenance costs, increased security and fault-tolerance levels.

However, whenever the final distributed virtualized applications are charac-
terized by some kind of timeliness requirements (or exhibit an interactive behavior
which requires a high responsiveness), it is of fundamental importance to have con-
trol over the temporal behavior of each VM, and to limit the interferences among
independent VMs. Even though these applications are likely to possess real-time
requirements that are soft in nature (e.g., multimedia streaming or distributed edit-
ing of multimedia contents), their violation and the consequent degradation in the
QoS experienced by the users may lead to undesirable effects like money losses,

61
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because of the violation of SLAs that may be in place by the interacting parties.
Therefore, it is of paramount importance to provide some kind of QoS (or soft real-
time) guarantees to applications running in a VM, not only from the perspective of
interactive and soft real-time applications, but also from the one of computation-
intensive batch activities provided with predetermined SLAs.

Considering such issues, this dissertation gives in this field the following con-
tributions:

• a novel admission control policy for virtualized services is introduced, con-
sidering the particular issues (e.g. cost-effectiveness) in resource manage-
ment of infrastructures with hundreds of services spread across various do-
mains;

• a methodology is presented for assigning system resources to the various
VMs according to a proper scheduling algorithm, so that it is possible to
evaluate the impact of virtualization on the temporal behavior (thus pre-
dictability) of the hosted applications and services;

• experimental results are provided for validating the soundness of the pro-
posed methodology in real-world scenarios.

The remainder of this chapter is organized as follows. Section 4.1 deals with
the related work in scheduling VMs and virtualized services hosted within. Sec-
tion 4.2 describes a novel admission control policy for providing guarantees to vir-
tualized services on a probabilistic basis. Section 4.3 introduces our approach for
a soft real-time scheduling of VMs in a GPOS, whilst Section 4.4 presents experi-
mental results for validating such approach. Section 4.5 summarizes the chapter.

4.1 Related Work

The need for real-time support within SOAs is witnessed by the RT-SOA paradigm
recently appeared [98, 71], and by the increasing interest in real-time service pro-
visioning within the Grid community [27], just to mention a few. Unfortunately,
most of the works in these directions do not consider time-shared nor virtualized
nodes. Dinda et al. [31] proposed the use of time-shared systems, but their work did
not address the issues concerned with low-level real-time scheduling algorithms.
Steps in this direction have been moved by Estévez-Ayres et al. [34], who applied
real-time scheduling theory to the problem of providing temporal guarantees to
distributed applications built as a network of composable services. However their
work addressed the distribution issue, while this work focuses on node-level mech-
anisms that guarantee correct scheduling of concurrent RT services within the same
physical host.

The latter problem has been attacked in some previous work, but the level of
determinism needed to run real-time applications inside a VM has not been reached
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yet. For example, Xen [11] uses an EDF-based reservation mechanism (called S-
EDF) to enforce temporal isolation between the different VMs. However, the S-
EDF scheduler lacks a solid theoretical foundation, and is not guaranteed to work
correctly in presence of dynamic activations and deactivations. As a result, it seems
to have problems in controlling the amount of CPU allocated to the various do-
mains: in a work by Freeman et al. [37], it is shown that the Xen scheduler is
not able to properly control CPU allocations for I/O intensive operations. In this
work, the Constant Bandwidth Server (CBS) [1] is used as low-level scheduler for
VMs. The CBS is an EDF-based scheduler which provides a strong theoretical
foundation that has been proved to be able to cope with aperiodic arrivals. The
CBS permits to implement the RR framework, in which the resource allocation for
each application is specified not only in terms of a share, but also of the desired
time granularity. Other approaches can be identified in the Proportional Share [95]
and Pfair [12] techniques, aiming to approximate the Generalised Processor Shar-
ing theoretical concept of a fluid allocation, in which each application using the
resource marks a progress proportional to a given weight.

Other problems related to VM scheduling have been investigated in Planet-
Lab [81], a distributed testbed using VMs to increase scalability. PlanetLab tries
to address this problem by combining a proportional share scheduler with a mech-
anism that limits the maximum amount of time available for each VM [13]. How-
ever, additional experiments [14] show that the scheduler used in PlanetLab is not
able to fully isolate the temporal behaviors of the various VMs, and the authors
propose to implement hard reservations.

If virtual machines are scheduled using proper real-time algorithms, the sys-
tem can be modeled as a hierarchy of schedulers, and its real-time performance
can be evaluated by using hierarchical scheduling analysis techniques. For exam-
ple, Saewong and Rajkumar extended the RR framework to support hierarchical
reservations [85]. Shin and Lee proposed a different approach based on a com-
positional real-time scheduling framework [91], where the timing requirements of
complex real-time components are analyzed in isolation and subsumed into an ab-
stract specification called interface, then combined to check schedulability of the
overall system.

Mok and others [74, 36] presented a general methodology for hierarchical par-
titioning of a computational resource, where schedulers may be composed at arbi-
trary nesting levels. Specifically, they associate to each resource partition a char-
acteristic function that identifies, for each time window of a given duration, the
minimum time that the processor is allocated to the partition. On the other hand,
Lipari and Bini [61] addressed the problem of how to optimally tune the schedul-
ing parameters for a partition, in order to fulfill the demand of contained real-time
task sets. However, in this dissertation the focus is on providing temporal isolation
among VMs for enhancing predictability, rather than on analyzing the schedula-
bility of real-time tasks running in a VM. Interested reader can refer to a former
publication [25], in which such problem has been also addressed.
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4.2 Probabilistic Guarantee Test

This section introduces a probabilistic admission control test to be run by service
providers to decide about the admission of new workflows into the system. The
context of this problem is largely inspired by the IRMOS project, where providers
have to deal with interactive real-time workflows that terminate very shortly af-
ter each activation and rarely saturate underlying resources. The proposed admis-
sion test, by leveraging statistical knowledge of actual usage by the users, allows
providers to trade resources saturation/overbooking levels for possible penalties
that it may have to pay back to customers in case of SLA violations. Also, tradi-
tional deterministic admission test is presented, in order to provide strong real-time
guarantees.

These admission tests enhance the so-called “advance reservation” mecha-
nisms, that reserve-“in advance”- available resources for a given time span so that
the hosted applications may be run with acceptable Quality of Service (QoS) lev-
els. The advance reservation concept, introduced in the context of Grid computing
(not to be confused with the “resource reservation” scheduling framework), could
be useful leveraged in case of large-scale SOIs.

4.2.1 Model

The considered infrastructure consists of a number of autonomous sites in each of
which a set of computational hosts is participating and can be approximated by
a star topology architecture. The center of this SOA is occupied by a resource
management service, which controls the sharing of the hosts’ resources, and is
directly connected with them through a wide area network (WAN). As hosts we
consider time-shared machines with various processing speeds and soft real-time
scheduling capabilities at the OS level. Various implementation of such a capability
on the Linux OS exists, even in a way that is transparent to the applications [77, 18].

We consider the following problem whereby the users want to perform execu-
tions of a workflow application on the described SOI during a time interval in the
future. The users want to have full control of the start time of the executions, i.e. the
user is the one that initiates each time the execution of the workflow. Each work-
flow application consists of one or more services s from a given set of services S,
and instances of the same service may reside in multiple hosts and machines within
the same host. In order to execute a workflow application, an advanced reservation
request, denoted as r, must be made prior to its execution. An advance reservation
r has to be specified in terms of start-time and finishing-time for availability of
resources. At the time a new request (rnew) arrives to the resource management
service, each of the machines in the underlying infrastructure may already host a
set of advance reservations R = {r1, r2, . . . rn} that were accepted in the past.
When rnew arrives, the resource management service makes an evaluation of the
hosts and presents the user with different ways of running the workflow application
on probabilistic guarantees. The cost of the offers fluctuates according to the cal-
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culated by the resource management service probabilistic guarantee and the host’s
business policies. If the user chooses to accept one of the offers, the resource man-
agement service assigns the sub-services of the workflow application to the chosen
machines within the hosts for future processing. For simplicity and without loss
of generality, we assume that the completion time of a service is dominated by the
execution time of the service itself, thus a possible delay that may be encountered
when communicating with the hosts is considered negligible.

More formally, the problem may be defined as follows:

• Relatively to advance reservations, time is specified in time slices {Tk}k∈N
of X time units, following the paradigm of time slice based processors, with
Tk+1 = Tk +X . Each time slice represents the smallest temporal unit.

• Each service s ∈ S, activated in the context of r, is associated with a worst-
case execution time (WCET) Cmrs that the service may need on a given ma-
chine m (the machine index m will be omitted from the notation whenever
implicitly identified). In the following, we assume that the WCETs of the
services have been estimated by assuming entire execution on a single CPU,
among the available ones on a given machine. Also, for the sake of simplic-
ity, we do not address the issue of how and whether to exploit parallelism
on the underlying CPU, when dealing with a single service that needs to be
run on a physical node (note that parallelism in a workflow is not completely
ruled out).

• As already stated, users want to perform multiple runs of the workflow ap-
plication without fixed execution start times. To accommodate this require-
ment imposed by the unknown number of executions and arbitrary start time,
the resource management service evaluates and reserves computational re-
sources for each service in the workflow across the same time interval, which
is equal to the reserved time for the entire workflow TRr. However, it is rea-
sonable to assume that, within the time period reserved by the user for all
services in the workflow, each service is active only for a short time within
it.

• Each execution of a workflow application associated to r corresponds to
one at most activation of each service involved in the corresponding work-
flow (having a WCET of Crs). In our model, we are using general service
times (as opposed to exponential service times), and each r is associated
with a minimum inter- arrival period Tr, corresponding to the minimum time
that may elapse between two consecutive requests of activation of the same
workflow and consequently between two consecutive activations of the same
service in the workflow. The reservation on underlying physical resources
should be tuned to sustain at most one execution of the entire workflow ev-
ery time Tr.



66 CHAPTER 4. QOS GUARANTEES FOR VIRTUALIZED SERVICES

• Each service s needed within each advance reservation is associated with a
deadline drs constituting a timing constraint: the execution of the service
instance should only be allowed if the response time (i.e. the time between
the activation and the completion of the service execution) is less than or
equal to the deadline. More formally, if we denote the activation time of
the service by akrs (that may not necessarily be equal to the start time due
to the scheduling of other activities) and the finishing time by fkrs, then this
constraint may be formalized as:

∀k, fkrs − akrs ≤ drs (4.1)

The response-time for the kth activation of a service s, can be defined as
ρkrs = fkrs−akrs. The minimum allowed value for ρkrs is Crs, but such a strict
value, which is the best achievable one, would imply no possibility for time-
sharing the same physical node with other activities.

4.2.2 Methodology

Grouping of overlapping reservations

An advance reservation r will host an application workflow that consists of ser-
vices and is characterized by a QoS constraint expressed in terms of an end-to-end
deadlineDr on the overall response-time ρr. We may assume that such a constraint
is split into individual relative execution deadlines {drs} for the services compos-
ing the workflow. For example, the technique by Yuan et al. [110] may be used for
such purpose. From now on, let focus on a single machine m. Let R denote the
set of advance reservations already allocated on m. By assuming that the resource
management service maintains a registry of such reservations, the time slices Tk on
each machine can be grouped under common combinations of overlapping reser-
vations. To formulate this process, we introduce the following notation:

• Let G = {g1, g2, . . . gv} be the set of different groups of overlapping reser-
vations in a given machine during TRnew. Each group g is a set, whose
elements are the overlapping reservations. For each g, let rng be its cardinal-
ity (rng ≡ |g|) which indicates the number of included reservations within
g.

• Let Tg and tng be the set of time slices Tk and their number respectably
inside a given group g ∈ G.

To clarify this grouping process, we give the following example: let us consider
the case of a candidate machine which has two pre-existing advance reservations
r1 and r2 with reserved time intervals T3 ≤ TR1 ≤ T5 and T5 ≤ TR2 ≤ T7
respectably. We examine the arrival of a request rnew = r3 with reserved time
interval T2 ≤ TR3 ≤ T6. For the requested service we discover candidate hosted
machines. As candidate machines at this early stage, we consider all the machines
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Figure 4.1: Grouping of time slices according to overlapping reservations

m that are hosting the described service on which the worst-case execution time of
service Cmrs doesn’t exceed the deadline drs defined by the user.

This situation is depicted in Figure 4.1. As illustrated, the introduction of r3
is translated into a set of three groups G = {g1, g2, g3}. There is no pre-existing
r during time slice T2. Hence, T2 is not included in any group since there is no
conflict. On the other hand, during time slices T3 and T4 there is potential conflict
between the new r3 and the pre-existing r1. Therefore, both these time slices are
grouped under g1, where g1 = {r1, r3}, Tg1 = {T3, T4} , and so on. At the
end of this process all time slices within the requested reserved time are grouped
under common pre-existing reservations. This grouping process takes place for
all candidate machines in the underlying infrastructure every time a new r arrives
and helps to narrow down the complexity of the problem by avoiding identical
calculations that take place during the next stages of the algorithm.

Probabilistic model

Any given group g ∈ G that derives from the described grouping process can be
divided into two subgroups: gc, which contains the advance reservations whose
services are executing in a given time slice and gc′ containing the rest, i.e. those
that are not executing:

g = gc ∪ gc′ (4.2)

Focusing on a single time slice Tk ofX units belonging to a group g, letErs be
the event of having the service s (reserved for r) executing in the given time slice
Tk. The arbitrariness of the start-time of each workflow instance is modeled as the
knowledge of a probability πrs that each service would actually be active in Tk if
the underlying physical resource were utilized exclusively by it. As we focus on a
single machine m, for the sake of notational brevity, we will omit the dependency
from s in sums and products of related terms, but we will maintain the subscript
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s in the notation, to stress that we refer to a service s inside r (deployed on m).
Therefore, the probability P (Ers) of the event P (Ers) can be written as:

P (Ers) =

{
πrs ∀Tk ∈ TR

0 otherwise
(4.3)

For example, πrs could be computed using queuing theory as the steady-state
probabilities of each service having at least one item under processing, under an
appropriate model for the stochastic process of the workflow activations. Using
Eq. 4.2 and 4.3, the generic probability of having rnew grouped under common
subgroup executing in any time slice, is given by the following generic equation:

Pgc =
∏
r∈gc

P (Ers)
∏
r∈gc′

P (Ers) (4.4)

where P (Ers) is the complementary event of Ers. It is worth to note that, in
Eq. 4.4, P (Ernews) is included in the first term of equation.

4.2.3 Admission Control

Assuming entire execution on a single CPU among the available ones on a given
machine allows for the use of efficient partitioned processor scheduling strategies
such as EDF. With this scheduling strategy, it is possible to reach theoretical full
saturation of each processor, along with a very simple utilization-based admission
control test that simply checks if the sum of the computation requirements for all
of the active services on the same processor is less than or equal to 1:

∑
r∈R

Crs
min{Tr, drs}

≤ 1 (4.5)

Also, by enriching the scheduling strategies with RR, it is possible to provide
the temporal isolation property, i.e., each r may receive scheduling guarantees in-
dependently of the behavior of the others. By assigning a budget Qrs and a period
Prs, the associated service: (a) is guaranteed the possibility to consume Qrs time
units of the resource in every period Prs; (b) is forced not to overcome the con-
sumption of Qrs time units of the resource in each period Prs.

Under these premises, and in order to fulfill a service deadline constraint, it is
sufficient to tune the scheduling parameters for a service within a reservation by
assigning a budget Qrs equal to the estimated WCET Crs, and minimum period
Prs equal to the minimum between Trs and drs. As Prs represents also the time
granularity by which we may control the actual finishing time of each activation, it
is useful also to set it to a sub-multiple of such quantity. In any case, the reserved
utilization is Urs = Qrs

Prs
.
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Deterministic admission test

The admission control that checks whether a new r may be admitted on the node
under consideration is given by∑

r∈R
Urs + Urnews ≤ Umax (4.6)

where the parameter Umax has been introduced as the maximum capacity of
a single processor, which may not necessarily be equal to 1. In fact, whenever
scheduling overheads need to be accounted for, this value is set minor to 1, or the
overhead has to be embedded in the WCET values. Actually, as the potentially
active advance reservations are not the entire set R but vary dynamically in time
depending on the overlapping at any given time slice Tk, the just shown admission
test needs to be repeated for each g including rnew. Consider the setGr of groups in
G including reservation r,Gr = {g ∈ G|r ∈ g}, the admission test for considering
the machine under examination as a candidate becomes:

∀g ∈ Grnew ,
∑
r∈R

Urs + Urnews ≤ Umax (4.7)

Finally, it is important to note that, under a scheduling reservation (Qrs, Prs),
the maximum time needed by the service to compute once it is started may be
approximated as:

ρrs =

⌈
Crs
Qrs

⌉
Prs ∼=

Crs
Urs

(4.8)

where the index k, relative to each activation of the service, is omitted for
simplicity.

Probabilistic admission test

The above shown assignment for resource scheduling parameters is adequate when-
ever the system is subjected to such a load that, within each r, each service works
almost continuously, i.e., an actual usage of the reserved amount of resources for
each reservation that gets quite close to saturation. However, in the context of the
problem formalized in Section 4.2.2, the services are not going to be continuously
active within the time span TRr due to their dependencies from other services in
the workflow, or because the user do not simply use it. In such cases, it could be
more convenient for the resource provider to exploit the expected statistical mul-
tiplexing among hosted applications (i.e. their activation patterns are supposed to
be independent among each other) by offering a probabilistic guarantee at a lower
rate, rather than a deterministic one at a higher rate. Of course, this would be trans-
lated in the opportunity to host within the same time slice a number of services that
theoretically would not be allowed to do so, due to the processor’s capacity.
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By applying the described real-time scheduling strategies, service components
have to share the underlying physical resource, so each service does not use it in
an exclusive manner. For this reason, the probability defined in Eq. 4.3 must be
properly modified, taking into account the CPU share of the service. In virtue of
the impact of the share on the response times of the service (see Eq. 4.8), it is
reasonable to assume that the actual probability of having the service component
actually active in each time slice be inversely proportional to the resource share:

P (Ers) =

{ πrs
Urs

∀Tk ∈ TR
0 otherwise

(4.9)

Now, let us focus on a single time slice Tk, and the group g it belongs to. For
each subgroup gc of g, gc ∈ P(g), it is possible to compute the probability Pgc of
having as active at the same exactly all of the r in gc using Eq. 4.4:

∀gc ∈ P (g) , Pgc =
∏
r∈gc

πrs
Urs

∏
r∈gc′

(
1− πrs

Urs

)
(4.10)

The available utilization by a new r can be considered as a discrete random
variable u(gc). In fact, in the event of over-allocation, to comply with the time
constraints of the existing advance reservations, this random variable may take a
finite number of possible values, one for each subgroup gc:

ugc = Umax −
∑

r∈gc\{rnew}

Urs (4.11)

Therefore, the mean utilization Uo, related to the new r when experimenting
resource overloads, is now given by the sum of possible values multiplied with the
corresponding probability of the subgroups gc that exhibit over-allocation. Denot-
ing the set of these subgroups as gover = {gc ∈ P(g)|r ∈ g,

∑
rs Urs > Umax},

Uo can be obtained as
Uo =

∑
gc∈gover

ugcPgc

Using the same reasoning and Eq. 4.8 it is also possible to estimate the expected
response-time, conditioned to an activation of the workflow in any time slice Tk
belonging to the group g:

E [ρrs|Tk ∈ Tg] =
∑

gc∈gover

Crs
ugc

Pgc +
Crs
Urnews

(
1−

∑
gc∈gover

Pgc

)
(4.12)

It is now possible to estimate the expected value of the overall execution re-
sponse time for the new reservation during the time span Prs:

E [ρrs] =
1

Prs

∑
g∈G

tngE [ρrs|Tk ∈ Tg] +

Prs −∑
g∈G

tng

 Crs
Urnews

(4.13)
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The value obtained for the expected response time could be used by the re-
source management service to check whether or not a given allocation of the ser-
vices of the new reservation could be made to certain host machines, giving that its
cost is acceptable by the user. For example, ifDrnew denotes the average end-to-end
response time that the allocation should respect, then the test could be written as:∑

s

E [ρrnews] ≤ Drnew (4.14)

Such a test can be easily incorporated as a QoS parameter inside the Service
Level Agreement (SLA) established between the client and the provider prior to
the reservation. It should be noted that the test given by Eq. 4.14 allows providers
to admit more applications than the one given by Eq. 4.7, as expected [53].

4.3 Virtual Machine Scheduling

The term virtualization refers here to the capability, for a computing machine (re-
ferred to as the host), to emulate the behavior of one or multiple computing ma-
chines (the guests), in such a way that any software capable of running on the raw
hardware may also seamlessly run within the emulated machine (in particular, the
applications running on a guest are not able to distinguish whether they are running
in a virtual machine or on real hardware).

In a virtualized environment, multiple activities may be hosted on the same
physical hardware in different ways. They may run in different VMs that are mul-
tiplexed on the same bare hardware (inter-VM scheduling), or they may coexist
within the same VM where a OS-level scheduler multiplexes them on the same vir-
tualized hardware (intra-VM scheduling), and other VMs may possibly be running
concurrently on the same physical node. In all cases, appropriate inter-VM and
intra-VM scheduling mechanisms are needed to guarantee that the individual ac-
tivities exhibit the expected Quality of Service (QoS) levels, whenever timeliness
requirements are in place.

For developers and designers of time-sensitive software components, virtual-
ization adds a set of new challenging issues that need to be addressed by research.

First, new methodologies are needed to correctly account for the impact of the
virtualization overhead on the execution time of real-time tasks, especially in pres-
ence of virtualized peripherals, that turn I/O intensive activities into CPU intensive
ones (e.g., networking). The capability to migrate VMs on different types of hard-
ware adds complexity to the problem. For example, in the context of SOAs, it
is necessary to foresee how a software component would perform if deployed on
various physical nodes, in order to choose the optimum deployment that provides
the performance promised in the SLA. Common approaches based on direct mea-
surement of the execution time distribution on the target hardware, is not sufficient.
A hardware-independent characterization of the execution times, plus a hardware-
specific model of the variability of execution times, may be needed.
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Second, when the OS is being hosted along with other OSes concurrently run-
ning, the time measured in a VM may be discontinuous, or have a strange granu-
larity. Timer devices are emulated by the virtualization engine, and their resolution
may be dramatically affected by the inter-VM scheduler and timer virtualization
mechanism (affecting the precision and granularity of timers and clocks). The
progress rate of a virtualized OS is also not as uniform as expected, due to inter-
VM scheduling, and this may have high impact on the response time of virtualized
software components.

Finally, multiprocessor and multicore platforms add a new dimension to the
problem of real-time virtualized computing. Software components written for high
performance parallel machines may not run as expected when executing within a
virtualized environment, especially if multiple multicore VMs are running concur-
rently. For example, spin-lock synchronization primitives (that usually rely on the
assumption that the lock owner running on a different processor will release the
lock in a short time) may cause problems if the virtualization layer schedules away
the VM owning the lock. Suitable mechanisms are needed to mitigate such is-
sues. For example, the VMWare ESX Server1embeds mechanisms to address such
issues, but more investigations are needed to understand what solutions are most
suitable for meeting real-time application requirements.

4.3.1 Problem Presentation

A host is modeled as a set of guest VMs {VMk : k = a, b, . . .} scheduled by a root
(or global) scheduler2. Each VM VMk is modeled as a real-time system composed
by a set T k of real-time tasks T k = {τki : i = 1, 2, . . .}. Each one of such tasks
is a stream of jobs Jki,j , characterized by an arrival time rki,j , an execution time cki,j ,
and an absolute deadline dki,j (which is respected if the finishing time fki,j of the job
is smaller than it).

For the sake of simplicity, the following of this section will only consider peri-
odic real-time tasks3 τki = (Cki , T

k
i ), with Cki = maxj{cki,j} (Worst Case Execu-

tion Time - WCET), and dki,j = rki,j+1 = rki,j + T .
All the tasks τki ∈ T k are scheduled by a local scheduler running in VMk;

hence, the root scheduler selects a VM first, and then the local scheduler selects one
of the tasks which are running in such VM. This is a typical example of hierarchical
scheduling. A hierarchical scheduling system is denoted from here on by the X/Y
notation, where X denotes the inter-VM scheduling strategy on the host, while Y
denotes the intra-VM scheduling strategy on the guests (assumed to be the same

1 See “Co-scheduling SMP VMs in VMware ESX Server, version 3” at
http://communities.vmware.com/docs/DOC-4960

2 The root scheduler may either be implemented in a host OS so to perform inter-VM schedul-
ing (e.g., the KVM approach), or it may be implemented in the virtualization layer (i.e., the Xen
approach).

3 Note that the techniques and results described here can be extended to sporadic real-time tasks,
and to tasks with relative deadline different from the period.
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Figure 4.2: CDF of tasks’ response times when scheduled on real hardware
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Figure 4.3: CDF of tasks’ response times when executed in KVM

on all the guests for the sake of brevity).
As mentioned, an important feature of VMs is that the host behaves as a real

PC, and applications running in a VM can be designed as if they ran on real
hardware. However, this property does not apply to the temporal behavior in-
side the virtualized OS. For example, consider the periodic task set T = {τ1 =
(30ms, 150ms), τ2 = (50ms, 200ms)}: on a real hardware, real-time scheduling
theory guarantees that, if tasks are scheduled with fixed priorities assigned accord-
ing to RM, then all the deadlines are respected. In fact, this is verified through a
simple experiment made by running the task set (with execution times forced as
equal as possible to the mentioned WCET values) on a real hardware. Figure 4.2
shows the Cumulative Distribution Function (CDF) C(x) = P{ρi < x} of the
response times ρi,j = fi,j − ri,j of the two tasks. By looking at the figure, it is
possible to see that C(x) arrives to 1 before the deadline of the task, hence all the
deadlines are respected.

However, when the same task set T is run inside a VM (in this example,
KVM [51] on Linux has been used, as described in the following), most of the
deadlines are easily missed, as shown in Figure 4.3.

Such a behavior occurs every time a general-purpose scheduler is used to sched-
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ule concurrent VMs, because of the unpredictability of the temporal interferences
that each VM experiences due to the behavior of the other VMs on the same phys-
ical host. In the example of Figure 4.3, the VM was scheduled by using the stan-
dard completely fair scheduler currently present in the Linux kernel. The problem
of correctly scheduling the VMs can be addressed by modeling the system (com-
posed by the host and by the various guests) as a hierarchy of schedulers and by
using the hierarchical scheduling analysis that has already been developed in the
real-time community. This problem will be addressed in the next section.

Moreover, the overhead introduced by the VM must be proper taken into ac-
count. The CPU virtualization and I/O emulation overhead depends on the used
virtualization technology and on the implementation of the VM. In this case KVM
is used, that is based on the virtualization features provided by modern Intel and
AMD CPUs, and emulates a standard PC by allowing to directly execute the guest
code on the host in many situations. Hence, the CPU virtualization overhead is ex-
pected to be low, but the I/O performance can be an issue, as the guest devices are
entirely emulated in software by the VM. The I/O overhead could be reduced by
virtualizing the Operating System instead of emulating a full hardware machine, as
done by OpenVZ 4. The overhead of the CPU virtualization mechanism in KVM
has been measured by running a simple CPU intensive task that executes a busy
loop for 100ms and measures the number of cycles that it has been able to per-
form 5. The task has been ran 10 times, resulting in an average value of 5390029
cycles on real hardware (with a 90% confidence interval of 2643) and an aver-
age value of 5251935 cycles on the virtual machine (with a confidence interval of
3598). These results show that for a CPU-intensive task KVM introduces an over-
head of about 2.6%, and the execution times in the virtual machine are quite stable
(the confidence interval is 0.069% of the average value). Instead, to understand
the impact of the I/O overhead introduced by KVM, the netperf program can be
used to measure the network performance of the host, and the network performance
of a guest running on it. Early results (interested readers can refer to the work by
Cucinotta et al. [26] for a deeper analysis) showed that the emulated network card
is able to provide a good throughput, at the cost of a high CPU usage: netperf mea-
sured a throughput of 96Mbps on the host (close to the network capacity, which is
100Mbps) and a throughput of 89Mbps on the guest (close to the value measured
on the host). However, the confidence interval was very large (about 28%) and the
VM consumed a large amount of CPU time (about 60% of the total CPU time). To
work around the I/O overhead introduced by hardware devices emulation, KVM
provides a mechanism called virtio, which allows to directly exchange data be-
tween the host and the guest without emulating a device. When using virtio for the
network, the throughput measured by netperf did not change significantly (a value

4More information is available at the URL http://wiki.openvz.org/
5Since the performance provided by KVM looked compatible with the requirements for running

real-time virtual machines, other virtualization technologies have not been tested. However, compar-
ison with other virtualization mechanisms such as OS-level virtualization could be performed in a
future work.

http://wiki.openvz.org/
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of 94Mbps was measured), but the confidence interval went down to 0.1% (in-
dicating that virtio can make network performance very predictable) and the VM
consumed only 1.5% of the CPU.

4.3.2 Approach

As discussed, one of the requirements for fixing the problem showed in Figure 4.3
is a proper scheduling of the VMs in the host, hence the root scheduler has to use
a real-time scheduling algorithm.

A first approach to VM scheduling could be to schedule the various VMs with
fixed real-time priorities. However, this solution can be problematic, especially
when multiple VMs are ran simultaneously on the same host:

1. If a VM consumes more than the expected CPU time, it can stall the whole
system (affecting the real-time performance of other unrelated VMs, and
even preventing the system administrator from logging into the host)

2. Even if all the tasks respect their WCETs and all the VMs do not consume
more than the expected time, this solution can result in a deadline miss.

Problem 2 is due to the fact that when scheduling the VMs with fixed priorities
all the tasks running on the highest priority VM will have priority over all the tasks
running in the other VMs, independently from their periods.

The alternative approach used in this work for VM scheduling is based on re-
source reservations, which allow to reserve a hardware resource (the CPU, in this
case) to a task or application for a time Q in a period P . Although this abstraction
can be very effective for serving real-time virtual machines, not all the reservation
algorithms can be safely used. For example, to properly serve the real-time appli-
cations executing in a VM a reservation mechanism must be designed to correctly
cope with aperiodic activations. However, most of the reservation techniques previ-
ously used to schedule VMs exhibit the same behavior of a Deferrable Server [96]
and are not able to provide temporal isolation to tasks that activate and deactivate
dynamically [4].

A resource reservation algorithm is said to be hard [83] if it guarantees that
a resource will be allocated to a task (or to a set of tasks) for a time Q every
reservation period P , and it does not allow to use the resource for more than the
reserved amount of time. Our results (presented in Section 4.4) seem to indicate
that a scheduler providing hard reservations is more appropriate for scheduling
VMs: in fact, most of the hierarchical scheduling analysis for reservation-based
systems is based on the assumption that a reservation provides exactlyQ time units
every P time units, and using a hard reservation algorithm is the easiest way to
enforce this requirement (this requirement is not satisfied, for example, by some
scheduling algorithms that allow to use the reserved time in advance, such as in
the first conception of the CBS [1]). As an example, consider a VM VMa with
T a = {τa1 = (15, 50), τa2 = (75, 300)} served by a reservation RSV a = (25, 50),
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scheduled together with a second reservation RSV b = (75, 150) which serves a
time-consuming task. If hard reservations are used, it is possible to see that both
τa1 and τa2 are able to respect their deadlines as shown in Figure 4.4 (note that this
happens because the two tasks start at the same time and periods are harmonic).
However, Figure 4.5 shows that if VMa is scheduled by an algorithm that does not
provide a hard reservation behavior (in this case, the CBS algorithm is used), then
some tasks (in this case, τa1 ) can miss a deadline.

Because of the reasons explained above, the solution presented in this disser-
tation is based on the CBS algorithm, modified to implement a hard reservation
behavior. Although different algorithms have been proposed in the context of hi-
erarchical systems, this work presents the correct application of reservation-based
scheduling to real implementations of VMs running on real hardware.

Some previous works [69, 5] proposed to add a reclaiming mechanism to the
hard reservation behavior, to overcome the throughput problems presented by hard
reservations. However, this work is focused on predictability more than on per-
formance, hence a reclaiming mechanism is not needed. Moreover, a reclaiming
mechanism can make VMs execution less predictable, because the speed of a VM
ends up depending on the host workload (the reservation mechanism provides a
minimum performance, which is then improved in a non-predictable way by the
reclaiming mechanism). If the only goal of the system is to respect the deadlines
of tasks running in the various VMs (and not to keep the speed of each VM stable),
then hard reservation mechanisms which provide reclaiming can be used.

Once proper real-time scheduling algorithms are used in the guest and in the
host, it is possible to apply well-known techniques to analyze the system schedu-
lability [25].
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4.4 Experimental Results

This section presents some experimental results that has been performed for evalu-
ating the proposed approach for scheduling VMs in order to support the execution
of time-sensitive virtualized services.

Being able to provide accurate estimations of the response times is very impor-
tant in a SOA environment, which is moving away from the old best-effort Internet
model. In fact, a service provider has to take QoS into account, for example in order
to meet business policies or because QoS guarantees are required by consumers.
Hence, the proposed approach has been evaluated in a typical SOA scenario, with
web servers running inside VMs. In particular, the Apache 2 web server has been
selected as a representative of a typical SOA workload.

The main goal of such experiments is to show that service response times can
be flattened by using the proposed approach, thus reducing uncertainty in response
time estimations. In such a way, providers can offer strong QoS guarantees in the
provisioning of services regulated by SLAs.

4.4.1 Benchmarks

First, a simple setup has been used. It is composed of a single VM (denoted as
guest) running inside a host machine. In this experiment, a set of 10 clients re-
quested a dynamic web page, generated by using a CPU-bound CGI script which
rotates an image of 2000x2000 pixels by an angle α = 20◦. Each one of the 10
clients generates 10 requests, for a total of 100 requests per simulation, and each
simulation has been repeated 20 times.

The first column pair of Table 4.1 reports statistics on the response times of the
service concerning two cases: (a) the service is provided by the web server running
on the host machine; (b) the service is provided by the web server running inside
a KVM instance. The table reports the maximum and average response time per
request, plus the standard deviation of such a value. The 90% confidence interval
is 0.2% of the average value for the web server running on the host, and 1.3%
of the average value for the web server running on the guest. It can be seen that
the overhead due to virtualization is 7% for average times and 6.4% for maximum
times. As this overhead does not affect service response times in a tangible way, it
makes sense to exploit all the benefits of virtualization for this type of tasks.

However, the situation changes drastically when the host system is overloaded.

Host Guest Guest Guest-rsv
(unloaded) (unloaded) (loaded) (loaded)

avg 1.14 1.22 11.367 2.044
max 7.91 8.42 89.880 10.832

std.dev 1.26 1.07 15.449 1.275

Table 4.1: Response times (in seconds) for single-VM setup
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In fact, the third column of Table 4.1 shows how response times obtained in the
guest (the 90% confidence interval is 0.4% of the value) increase when the host is
put through a synthetic load that tends to saturate the CPU bandwidth. Note that,
with respect to the case of the KVM instance running in an unloaded host, service
response times increase by a factor of 10. Moreover, the standard deviation value
is quite large, to indicate that fluctuations from average values often occur. This
issue is particularly critical in SOA environments, where it could be necessary
to provide guarantees in service provisioning: such fluctuations do not allow for
precise estimations of service response times, what precludes the possibility for
a provider to share the same physical node for multiple VMs that need to exhibit
precise QoS levels.

These problems can be addressed by reserving a proper amount of execution
time to the KVM instance. The fourth column of Table 4.1 reports service response
times obtained by running the web server inside a KVM instance attached to a
(3ms, 5ms) hard CBS. In this case, the 90% confidence interval is 0.9% of the
value. The results show how the response times scale to values much closer to
that of the first column pair of Table 4.1, even when the host is overloaded. This
fact, due to the temporal isolation property provided by the CBS, is particularly
remarkable because it could allow service providers to offer services with QoS
guarantees.

4.4.2 Performance Control

Then, a more complex set-up has been build, with multiple web servers executed
in different VMs (e.g., each VM has its own external IP address directly accessible
on the same LAN as the host, so that a client cannot distinguish a VM from a phys-
ical host). These experiments use two VMs VMa and VM b running an Apache 2
web server and the same CGI script of Section 4.4.1 for rotating large images. Two
kinds of requests are performed by using the Apache ‘ab’ program: req1 (consist-
ing in the rotation of a 1000x1000 image) and req2 (consisting in the rotation of a
2000x2000 image).

To reproduce a realistic scenario, each VM has been put through a different
workload, obtained by varying the number of concurrent clients. In particular,
VMa has been tested in serving 10 concurrent clients and VM b has been tested
in serving 20 concurrent clients. Half of the clients of each VM performed 10
requests for the req1 service, and the other half performed 10 requests for the req2
service. For the sake of brevity, only response times related to req2 (the most
computational intensive kind of request) has been reported.

The first column pair of Table 4.2 reports statistics on the response times of the
service when each VM is executed alone on the host (the 90% confidence interval
is 5.4% of the average value). All these values increase in an almost unpredictable
way when the two VMs are executed simultaneously on the same host: the service
times for VMa and VM b are reported respectively in the third and in the fourth
column of Table 4.2 (in this case, the 90% confidence intervals are about 6.9%
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VMa VMb VMa VMb

(alone) (alone) (concurrently) (concurrently)

avg 0.768 1.603 1.564 2.416
max 7.7 14.114 13.253 23.056

std. dev 1.547 2.754 2.434 4.409

Table 4.2: Response times (in seconds) for multiple-VMs setup

VMa VMb

avg 1.961 3.146
max 10.424 19.508

std.dev 1.967 3.237

Table 4.3: Response times (in seconds) when each VM is served by a CBS

of the average values). This experiment shows that the behavior of each VM is
affected by the interference from the other VM: as a result, average and maximum
response times increase in a remarkable way. The standard deviations also increase,
indicating that fluctuations from average values are large and frequent. As a result,
it is not possible to control the response times for the hosted virtualized services.

The problem of interferences between VMs can be avoided by attaching each
VM to a hard reservation, in order to provide temporal isolation between different
VMs. This has been verified by measuring the response times when VMa is served
by a (40ms, 100ms) hard CBS and VM b is served by a (50ms, 100ms) hard CBS.
The response times collected by using this setup has been reported in Table 4.3
(the 90% confidence intervals are about 1.17% of the average values). Note that
average response times are slightly increased respect to the previous example, but
maximum response times are reduced. Standard deviation values are also very
low, indicating that response times do not deviate too much from average values:
as a result, in this case response times can be estimated with a higher degree of
accuracy.

This degree of uncertainty is however considerable and can be attributed to the
interferences between requests inside each VM. It could be pulled down by even
attaching the requests to a reservation. For doing so, the difference in accuracy
of timers in the host and in the guest must be taken into consideration, e.g. by
reducing reservation period respect to the previous experiment. Consider VMa

served by a (3ms, 10ms) hard CBS and VM b served by a (6ms, 10ms) hard CBS.
Focusing on VM b, if the Apache instances serving req1 and req2 are respectively
attached to a (4ms, 100ms) reservation and a (5ms, 100ms) reservation, results
give a standard deviation value of 0.977s, which is a very low value. In this case
average and maximum response time values of req2 are respectively of 3.881s and
6.793s, sustaining that response times are flattened with respect to the previous
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Figure 4.6: Response times varying Q

experiment (see column 2 of Table 4.3).
When using reservations to serve a VM, it is also possible to apply more flex-

ible policies in resource provisioning. For example, it is possible to give more
importance to requests towards VM b by increasing the amount of time reserved to
it and decreasing the amount of time reserved to VMa (for instance, by assigning
a reservation (2ms, 10ms) to VMa and a reservation (7ms, 10ms) to VM b).

Focusing on a single VM, it could be easily shown that response times can be
controlled by modifying the parameters of a reservation. The experiment reported
in Figure 4.6 shows how the average response times of VMa change at varying as-
signments of the maximum budgetQa (the reservation period P a is kept constant).

4.5 Summary

In this chapter the problem of providing soft real-time guarantees for virtualized
service components has been faced, with a particular focus on CPU guarantees. In
particular, an approach has been presented for scheduling VMs and services hosted
within, in a manner that temporal isolation is achieved not only for multiple VMs
running on a host but also for virtualized services running inside a VM. Basically,
such approach leverages theory on hierarchical real-time scheduling and combines
it with the RR framework. Experimental results have been presented for highlight-
ing that such approach is effective in achieving a better predictability for virtualized
services concurrently running on heavy-loaded hosts. Moreover, it allows provider
to control performance of each VM for fine-tuning service provisioning according
to internal policies (e.g. offering better performances to “gold” users with respect
to “silver” ones).



Chapter 5

QoS Management for Wireless
Sensor Networks

The enterprise production processes strictly interact with the physical environ-
ment, and these interactions can have a significant impact on the quality of the
final product, both directly, in case of outdoor production (e.g. agriculture, en-
vironmental protection, vehicular traffic monitoring), and indirectly, by affecting
the correct functioning of the factory plant (e.g. in factory automation, monitoring
and control). Nowadays, many low-cost technologies exist that permit the collec-
tion of data from the physical world. Among them, Wireless Sensor Networks
(WSNs) can be considered the reference technology [112] for the data-gathering
level. WSNs are characterized by some distinctive features (like the small size and
the scarcity of energy and computational resources) that make them strictly bound
to hardware components and/or embedded operating systems. Thus it is difficult to
integrate them into enterprise information systems.

One of the main problems is that performance control and the QoS manage-
ment of the results are obtained by manual ad-hoc programming and configuration.
For example, most WSN devices are powered by batteries, and it is therefore im-
portant both to minimize their energy consumption, and to monitor and estimate
their lifetime. The power consumption depends on the rate at which the data is
sampled and sent via radio. Therefore, the final user may want to control and trade
off sampling frequency against device lifetime. In addition, for some application it
may be important to change the monitored data and area during the system lifetime.
However, every time one of the parameters of the monitoring application has to be
changed, it is necessary to access the device with its own interface and reprogram
it. To simplify integration with higher level software layers, an abstract interface
of the WSN is needed, in order to hide the low-level details while maintaining full
control over the management of WSN applications.

In the author’s opinion, a general solution to this challenging task passes through
the adoption of the SOA design methodology for abstracting the data-gathering
level, as it permits to build flexible and interoperable systems in which perva-
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sive technologies can be integrated in a seamless way for assuring both intra-
organizational and inter-organizational cooperation and collaboration.

In this chapter a service-oriented, flexible and adaptable middleware (Sen-
sorsMW) is proposed for allowing high-level applications to easily configure the
data-gathering level and exploit provided functionality in an effortless manner. In
the remainder of the chapter, related work is briefly analyzed in Section 5.1, whilst
Section 5.2 describes the architecture of the proposed SOA middleware for WSN.
Section 5.3 details a case study that has been built to show the effectiveness of the
proposed solution, and Section 5.4 summarizes the chapter.

5.1 Related Work

SensorsMW is a middleware proposed for the ART-DECO 1 Italian research project,
to allow an easy and seamless integration of pervasive technologies into the in-
formative system of networked enterprises. For this reason, a service-oriented
middleware is a natural choice, as it assures both intra-organizational and inter-
organizational interoperability, making available precious information to applica-
tions, that can take advantage of them in an effortless manner.

The proposed approach does not aim to implement a service-oriented middle-
ware directly on sensor nodes, forcing SOA-compatible protocol stacks in resource
constrained devices [86] [29]. In my opinion, the latter approach has the major
drawback to impose too much complexity in devices that are not enough powerful
to transmit and elaborate XML messages. These constraints often lead developers
to adopt a-priori knowledge in XML message definition, and thus loosing middle-
ware flexibility. Moreover, usage of web services in resource constrained devices
imposes a certain energy and latency overhead (as an example, cost for such im-
plementations has been quantified in the work by Priyantha et al. [82]) that could
be unacceptable in some cases.

Instead, the proposed middleware allows high-level applications to exploit data-
centric network functionalities and configure a WSN according to their needs. It is
thus devoted to expose network functionalities as services, besides of the low-level
technologies used for programming the WSN.

In fact, the logic that allows to abstract the WSN is concentrated on a powerful
gateway, to which the sink node is connected. The traditional technique of backup
nodes is used to overcome the single-point-of-failure issue, in case it arises. The
gateway solution is not new, for example it has been used by Kansal et al. [42]
for building a peer-to-peer infrastructure for sharing sensors through the Internet.
However, as their work covers a wide range of sensors, it does not explicitly ad-
dress typical WSN issues. A gateway-based solution has been also proposed by
Moeller and Sleman [73], aiming at integrating WSNs into other existing IP-based
networks. However, their work is oriented to ambient intelligence at home, so they
do not abstract functionalities of the whole network but only of single sensors.

1More information is available at the URL http://artdeco.elet.polimi.it/

http://artdeco.elet.polimi.it/
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Also, they do not offer a Web Service interface, thus making it difficult to integrate
and compose such services.

Moreover, a common criticism of previous mentioned works is that they do
not allow applications to reconfigure WSNs according to their needs and are not
flexible with respect to existing network protocols. In supporting these features,
our approach has some similarities with MiLAN [44], a middleware that allows
applications to specify their QoS requirements and configure the network to maxi-
mize the application lifetime while providing the required QoS level. However, in
MiLAN applications specify their requirements by means of graphs that have to be
specialized for each particular sensing scenario. Moreover, data directly flow from
each single node to applications, and thus a-posteriori treatments of data cannot be
exploited for transparently addressing different application requirements related to
same nodes. For these reasons, this approach is less suitable for ensuring integra-
tion and interoperability.

We instead allow applications to specify their requirements in a standardized
way, by means of SLAs that each application can independently negotiate at run-
time, in such a way that an application does not need to know the QoS requirements
of other applications. In addition, our architecture allows applications to exploit
gathered data by means of Web Services technologies, both for ensuring flexibility
in data delivery and guaranteeing integration and interoperability.

It is worth to note that our approach completely differs from that of querying
systems like TinyDB [65]. In fact, such systems permits to extract data from a
WSN but they do not generally provide high-level interfaces for QoS configuration
and management. Moreover, such systems usually exploit low-level techniques
for gathering data and can thus be considered as tight extensions of a particular
WSN technology. For this reason, they could in turn be used for developing a
WSN whose configuration and management are provided by our architecture, that
is, as explained in the next section, independent by design of the underlying WSN
technology.

5.2 Middleware Description

SensorsMW is characterized, with respect to the state of the art, by the following
innovative features.

Service-orientation It allows for a fruitful exploitation of pervasive technologies
in enterprise contexts, by abstracting WSNs as a collection of services.

Flexibility It can be used in many contexts or domains, even when specific net-
work critical issues have to be addressed.

Adaptability It can support well-known low-level techniques or legacy deploy-
ments that can be already in-place.
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The proposed middleware has been designed keeping in mind the main issues
of this domain [109, 70], as highlighted by its key features, that can be summarized
as follows:

• it supports QoS specification and management by using a contract nego-
tiation scheme based on SLAs. As an example, it permits an easy access to
network-provided data with different time and space granularity; it supports
time and space recognition of network events; it provides both periodic data
sampling and event-driven notifications.

• it allows applications to reconfigure and maintain the network during its
lifetime. As an example, the middleware supports fault detection manage-
ment by signaling when the number of active devices in a certain area goes
below a certain threshold specified in a special contract. Other contracts per-
mits the energy monitoring, by treating it as a special case of generic data
monitoring. Moreover, it is possible to implement energy-aware data collec-
tion and data fusion in the network itself to spare energy depending on the
user requirements.

• it is independent of the underlying WSN technology. In fact it does not
depend on the network size and topology and porting from one technology
to a different one implies the porting of just two sub-components (see the
WSNGateway component). It is possible to transparently perform services
within the network (e.g. data fusion and filtering) or in the gateway, depend-
ing on the services available in the low level WSN technology.

It is also noteworthy to mention that, thanks to its flexibility, the middleware
can always embed features that are not explicitly supported by design, as it is com-
pletely independent from low-level techniques implemented at the device level.

In this section, the proposed architecture is over-viewed by describing its com-
ponents in details. Moreover, the specifications of contracts that regulate pro-
vided services are presented, in order to illustrate the different capabilities of Sen-
sorsMW.

5.2.1 Architecture

The architecture design of SensorsMW follows the guidelines presented in Chap-
ter 2, especially regarding the division in the QoS Negotiation Layer and QoS Pro-
visioning Layer. However, the architecture takes into account and support specific
issues of pervasive environments, as can be seen in Figure 5.1.

In fact, it provides the possibility to configure a WSN according to the needs
of client applications by leveraging the WS-Agreement framework for an easily
creation, management and monitoring of SLAs. The SensorsMW acts as a service
provider, as it provides services to client applications, that have to negotiate SLAs
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Figure 5.1: SensorsMW architecture
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Figure 5.2: SensorsMW interactions with client applications
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(also called agreements or contracts in this scope) before consuming services. The
interaction scheme with clients is depicted in Figure 5.2.

The SensorsMW architecture is comprised by four main components that are
described in the following.

ContractsCreator

This component is responsible for interacting with client applications in all the op-
erations that regard contract creation and management. It comprises the following
sub-components.

SensorsMWFactory. It interacts with the client in the agreement creation process
and is responsible for publishing the agreement templates related to services pro-
vided by the system (see section 5.2.2 for details about template specifications).
The templates are fulfilled by clients according to their needs and then evaluated
by the system. In case the client proposal can be satisfied, the SensorsMWFactory
interacts with the SensorsMWAgreement in creating the agreement.

SensorsMWAgreement. It realizes all the operations related to an agreement, by
providing status information for agreements and allowing for an anticipate ending
of them. It appears only if an agreement creation process has been successful
completed by the SensorsMWFactory component. There will be an instance of
SensorsMWAgreement for each contract that is actually in-place.

BrokerAgent. It is responsible for forwarding requests of SensorsMWFactory
and SensorsMWAgreement to the lower levels of the architecture. In particular, it
forwards:

• admission requests coming from the SensorsMWFactory when a new con-
tract has to be admitted;

• delete requests coming from the SensorsMWAgreement when a contract has
to be deleted.

The introduction of this sub-component allows to improve responsiveness of the
SensorsMWFactory and SensorsMWAgreement sub-components, that have to in-
teracts with clients, and also allows for decoupling the ContractsCreator and the
WSNGateway, that could be deployed in two different physical hosts.

ServiceProvider

This component is responsible for providing services to client applications, in ac-
cordance with established contracts. Services are made available by using Web
Services technologies, that permits an easily integration and interoperability in en-
terprise systems. In SensorsMW, three main services have been identified as es-
sentials: they exploit the database provided by the DataRegistry component for
providing their functionalities, as described in the following. Please note that con-
tracts related to such services will be described in Section 5.2.2.
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DataMeasurement. This service allows client applications to obtain presently
gathered data, by presenting the identifier of the previously established contract,
that contains all the configuration parameters used by the WSN for gathering mea-
surement data related to a certain physic quantity.

EventNotification. This service allows client applications to receive notifications
about events of interest, related to the measurement of a certain physic quantity.
Applications can configure events they are interested on, and subscribe to them by
means of specific contracts.

NetworkMaintenance. This service allows client applications to perform net-
work maintenance by measuring and monitoring quantities that are necessary for a
proper WSN functioning, like the battery level or the number of active sensors in a
certain region. Applications can exploit this SensorsMW features by establishing
proper contracts.

DataRegistry

This component is responsible for managing all the data that have to be persistently
stored for the proper functioning of SensorsMW. It comprises the following sub-
components.

ContractsRegistry. This sub-component maintains the registry of all contracts
presently established with client applications. Each contract is represented by an
unique identifier plus the featuring parameters, that depend on the type of contract
(see Section 5.2.2 for a detailed description of such parameters). The knowledge
contained in this registry can be used for admitting new contracts and for providing
applications with information regarding established contracts.

MeasuresRegistry. This sub-components maintains the registry of measures gath-
ered by the WSN, in accordance with the presently established contracts. A mea-
sure is represented in the registry by the following information:

• the identifier of the measured physical quantity,

• the measure value,

• the datum aggregation type,

• the location in which the datum has been gathered,

• the time at which the datum has been gathered,

• the date in which the datum has been gathered.
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In order to provide applications with requested data, the knowledge contained
in the MeasuresRegistry is leveraged by the ServiceProvider component, that also
contains the logic for binding data with contracts and for correlating data in order to
respect established contracts: as an example, the ServiceProvider component may
aggregate data a-posteriori if such in-network processing feature is not available
in the WSN.

WSNGateway

This component is responsible for acting as a gateway respect to the WSN, in the
sense that all the communications to and from the WSN pass from this component.
It comprises the following sub-components.

Decision-maker. This sub-component appears when a new contract has to be
admitted and it decides if a service requested by a client with a certain parameter
configuration can be provided by the system. This can comprises both an analysis
of existing contracts and of the current status of the WSN. When the component
takes decision about an high-level request, it communicates the response to the
BrokerAgent, that in turn forwards it to the SensorsMWFactory. If the response
is negative, the Decision-maker does not take any further action; if positive, it
triggers the creation of a new contract in the DataRegistry and interacts with the
Executor for triggering tasks for the WSN, in order to fulfill new requirements of
applications.

Executor. This sub-component receives commands from the Decision-maker and
translates them into a language understandable from the sensor nodes. This level
of indirection allows the independence of the admission control logic from the
low-level technology used for the WSN programming, to whom the Executor is
strictly bound. It is worth to note that, in order to port SensorsMW to another
WSN technology, the Executor and the Listener, described later, are the only sub-
components that need to be customizable.

Listener. This sub-component receives data gathered from sensor nodes and store
them in the DataRegistry. It can be subdivided in two main modules (not high-
lighted by figure 5.1): one is responsible for listening data communications from
sensors and it is strictly dependent to the low-level WSN technology, the other
one is responsible for binding data coming from nodes with respective locations,
formatting measures as specified by the MeasuresRegistry and triggering storage.

5.2.2 Contract Specification

SensorsMW allows applications to configure the WSN according to their needs
before service provisioning. In particular, for each kind of service, SensorsMW
provides an agreement template that has to be fulfilled by applications in order to
create agreement proposals. If an agreement proposal is accepted, a contract is
established with the client application, and both parties are obliged to honor it.
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The agreement templates provided by the SensorsMW layer have been de-
signed by keeping in mind the following principles:

1. they should be well-structured and easily usable by clients;

2. they should be compatible with the limited hardware resources of sensor
nodes (e.g. battery power).

For these reasons, templates are specified by using the WS-Agreement [10]
framework and are characterized by a certain time span of validity ∆t, that is based
on an estimation of the remaining lifetime of nodes as a function of the current bat-
tery level and the requested sampling time. By assuming an exponential discharge
of the battery, the voltage over time obeys to the law

V (t) = c(s)eα(s)t (5.1)

with c(s) and α(s) being coefficients depending on the sampling period s, whose
values can be estimated through experimental measurements [8]. Notice thatα(s) <
0 since the battery discharges over time. From Eq. (5.1), the validity interval of the
contract can be computed as:

∆t =
1

α(s)
log

Vmin

V0
(5.2)

where V0 is the current measure of the voltage and Vmin is the minimum operative
threshold for the node.

In SensorsMW, we define three different types of services, whose execution pa-
rameters can be negotiated by means of templates. Correspondingly, three different
kind of contracts have been specified, that can be summarized as follows:

1. periodic measurement contract, to periodically measure a certain physical
quantity;

2. event monitoring contract, to monitor specific events related to quantity mea-
surement;

3. network management contract, to control and maintain particular situations
related to WSN functioning.

Each kind of contract is characterized by key parameters, that will be de-
scribed in the following. In particular, as such parameters are negotiated by using
templates specified with WS-Agreement, we will concentrate on the Service
Description Term (SDT) section of each template type, as it is devoted to
contain service-related parameters (see also Section 2.2.1 and Figure 2.2). The
time span of validity of a contract is instead stored into the Context section, as it
refers to the contract as a whole.
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Periodic measurement contract

The periodic measurement contract allows to periodically measure a certain phys-
ical quantity. It requires specifying some parameters that characterize the WSN
behavior during service provisioning.

For this kind of contract the following parameters have been defined:

• physical quantity to be measured

• time span for which the measurement has to be done

• sampling period

• type of data aggregation

• region to be measured

• QoS level

SensorsMW allows applications to negotiate such parameters by formally de-
scribing them with XML Schema elements, that are inserted in the SDT section
of an Agreement. A single SDT can refer to only one physical quantity, as the
different quantities that a WSN can measure, can have very different features from
one each other. A possible SDT for a template related to a periodic measurement
service can be the following.

<wsag:ServiceDescriptionTerm wsag:Name="temperature_measurement"
wsag:ServiceName="data_measurement">

<smw:DataMeasurement xmlns:smw="schemas.sensor_mw">
<smw:Measure>Temperature</smw:Measure>
<smw:AggregationPeriod>PT1H10M</smw:AggregationPeriod>
<smw:SamplingTime>PT10S</smw:SamplingTime>
<smw:Aggregation>avg</smw:Aggregation>
<smw:Aggregation>max</smw:Aggregation>
<smw:Region>

<smw:Location>North Area</smw:Location>
<smw:Location>Sensor185</smw:Location>

</smw:Region>
<smw:QoSLevel>100</smw:QoSLevel>

</smw:DataMeasurement>
</wsag:ServiceDescriptionTerm>

Referring to the proposed example, the meaning of values associated to each
element is explained below.

Measure. It expresses the physical quantity to be measured as enumerate. The
example specifies the temperature as the quantity of interest.

AggregationPeriod. It expresses the period for data aggregation, by using the
duration XML data type [66]. In the example, data are aggregated each 1h and
10min. In the simplest case, this value is equal to the SamplingTime.
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SamplingTime. It expresses the sampling period of sensing by using the duration
XML data type. In the example, data are sampled by sensors each 10 seconds.

Aggregation. It expresses the aggregation mode of data collected in the same
location, by using an enumerate data type (possible values could be avg, max,
min).

Region. It expresses the list of locations we are interested to monitor.

Location. It expresses the location of interest by using an unique identifier (it
could also be a human-readable name).

QoSLevel. It expresses the QoS level to be provided, by using values belonging
to the set {x ∈ N : 0 ≤ x ≤ 100}. A QoS level equal to 100 is equivalent to the
maximum quality of service.

It is worth to note that the QoSLevel parameter gives an high level of flex-
ibility to SensorsMW. In fact, it has been introduced for conveying other non-
functional parameters besides of those explicitly considered in the contract. In
this way, the middleware can address different contexts and clients can specify
application-dependent QoS requirements (e.g. minimum coverage area, accuracy
of measurements). Thus, the mapping between the values assumed by the QoSLevel
parameter and the provided QoS varies according to the application domain.

Depending on the particular service configuration, some parameters could not
be negotiated during the agreement phase: as they are bind to the physic quan-
tity to be measured, a different SDT is used for each quantity. Other parameters
are instead negotiable and their default values can be modified by applications
when presenting an agreement proposal. In particular, for being adherent to WS-
Agreement specification, the CreationConstraints template section must
contain an Item element for each SDT parameter that can be modified.

By using the Item element, possible values for variable parameters can also
be specified, as highlighted in the following example, in which usable values for
the Aggregation item are limited to min, max and avg.

<wsag:Item wsag:Name="AggregationItem">
<wsag:Location>

//wsag:ServiceDescriptionTerm[@Name=
’temperature_measurement’]/smw:DataMeasurement/smw:Aggregation

</wsag:Location>
<wsag:ItemConstraint>

<xs:simpleType xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:restriction base="xs:string">

<xs:enumeration value="min"/>
<xs:enumeration value="max"/>
<xs:enumeration value="avg"/>

</xs:restriction>
</xs:simpleType>

</wsag:ItemConstraint>
</wsag:Item>
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This fragment also highlights as restrictions on values can be specified in an
Agreement Template by following the XML Schema model.

Event monitoring contract

The event monitoring contract allows applications to express an interest in certain
events, and, in particular, to monitor specific events related to quantity measure-
ment.

An event monitoring contract has some similarities with the periodic measure-
ment contract, as some of its key features are the same. In particular, the following
key parameters have been considered:

• the physic quantity of interest

• the event triggering condition

• the event notification delay

• the data aggregation mode

• the region of interest

• the QoS level

The condition that triggers the event has been specified in the formal definition
as an interval on values of the physical quantity of interest, in order to express
comparative and equality conditions in the same way.

An agreement template provided by SensorsMW for this service can contain
many ServiceDescriptionTerms, where each SDT is relative to a single
quantity and can specify a single event triggering condition. A possible SDT sec-
tion, containing default values for each element, can be the following one.

<wsag:ServiceDescriptionTerm wsag:Name="temperature_monitoring"
wsag:ServiceName="event_monitoring">

<smw:EventMonitoring xmlns:smw="schemas.sensor_mw">
<smw:Measure>Temperature</smw:Measure>
<smw:MeasurementInterval>

<smw:LowerBound>20.0</smw:LowerBound>
<smw:UpperBound>INF</smw:UpperBound>

</smw:MeasurementInterval>
<smw:NotificationDelay>PT15S</smw:NotificationDelay>
<smw:Aggregation>avg</smw:Aggregation>
<smw:Region>

<smw:Location>1</smw:Location>
<smw:Location>3</smw:Location>

</smw:Region>
<smw:QoSLevel>100</smw:QoSLevel>

</smw:EventMonitoring>
</wsag:ServiceDescriptionTerm>
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Besides already described elements (see section 5.2.2), specific elements for
the event monitoring contract are the following.

MeasurementInterval. It expresses the condition that triggers the event as an in-
terval on values of the physical quantity of interest. The event is generated when
the measured value falls into the closed interval. Such interval is specified by
the LowerBound and UpperBound elements, whose values are interpreted ac-
cording to the International System of Units (for temperature we consider Celsius
temperature). In the example, the event is triggered when the temperature reaches
a value greater than 20◦C (in fact the upper bound of the interval is +∞).

NotificationDelay. It expresses the granted delay from when an event occurs to
when the same event is notified. It is specified by using the duration XML data
type. The example shows a delay of 15 seconds.

Network maintenance contracts

The correct behavior of a WSN can be compromised by many events, like sensor
node failures, battery discharges, node displacements or additions. Thus, this kind
of contract allows to configure services for controlling and maintaining a WSN, in
order to prevent dangerous events or take proper actions in case they happen.

SensorsMW allows to negotiate both measurement services and event-based
services on critical quantities for the WSN maintenance, like energy consumption
and the number of sensors in a certain region.

The negotiation of network maintenance services is very similar to that de-
scribed for periodic measurement services and event monitoring services (please
refer to Sections 5.2.2 and 5.2.2), as the number of sensors or the battery level can
be treated as quantities to be measured in the network.

As an example, it is possible to establish a contract for monitoring the number
of sensors on a region and triggering an event when it is behind a certain threshold
by using the following excerpt:

<wsag:ServiceDescriptionTerm wsag:Name="sensor_number"
wsag:ServiceName="network_maintenance">

<smw:NetworkMonitoring xmlns:smw="schemas.sensor_mw">
<smw:Measure>SensorNumber</smw:Measure>
<smw:MeasurementInterval>
<smw:LowerBound>20.0</smw:LowerBound>
<smw:UpperBound>INF</smw:UpperBound>

</smw:MeasurementInterval>
<smw:NotificationDelay>PT15S</smw:NotificationDelay>
<smw:Region>

<smw:Location>1</smw:Location>
<smw:Location>3</smw:Location>

</smw:Region>
</smw:NetworkMonitoring>

</wsag:ServiceDescriptionTerm>
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In that case the event is triggered when there are less than 20 nodes in the region
formed by locations tagged as 1 and 3.

5.3 Case Study

In this section a case study is presented to show the effectiveness of the proposed
architecture and demonstrate its adaptability and flexibility for building a middle-
ware for networked enterprises.

As a candidate application, we consider the temperature monitoring in a certain
region of a vineyard and we study the behavior of a concrete implementation of
SensorsMW, tailored onto TinyOS 2.x.

For the purpose of this case study, we also designed and deployed a WSN
testbed with a star topology, in which a node acts as a coordinator and the other
ones act as end-devices. This topology has been chosen for the sake of simplicity,
as it does not require the use of routing algorithms and can be easily implemented.
In any case, other more complex topologies, better suited to particular applica-
tions (e.g. the monitoring of a vast vineyard), can be used in conjunction with the
proposed middleware, as it does not rely on any low-level technique.

The nodes of the WSN are deployed all around the monitored area and have
different tasks according to their category:

• The Coordinator node, connected to a resource-unconstrained machine,
is responsible for interfacing the WSN with the SensorsMW architecture.
In particular, it receives data coming from nodes and forwards them to the
WSNGateway. Also, it receives commands from the WSNGateway and for-
wards them to proper end-devices.

• An End-Device node is responsible for gathering data from active sensors
and sending them to the Coordinator.

For tailoring SensorsMW onto TinyOS, only the Listener and the Executor
sub-component (see Section 5.2) of SensorsMW has been modified, by properly
adapting the Listen and Send TinyOS applications.

In this case study, applications can require DataMeasurement services, that can
be configured by filling a periodic measurement contract (see Section 5.2.2) with
the desired values. Applications can require QoS-enabled or QoS-disabled ser-
vices and the application-dependent QoS parameter is considered the reliability of
the measure. A QoS-enabled service can be requested by setting the QoSLevel
parameter equal to 100, whilst a QoS-disabled one can be requested by setting
QoSLevel equal to 0. When applications require QoS-enabled services, Sen-
sorsMW sets the sampling time of nodes in a certain location to the minimum
value necessary to gather data at the exact instants of time. Instead, in case of
QoS-disabled services, data may be gathered at instants different than required.
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Application Agreement Sampling (s) Location

app1 agr1 30 loc1, loc3
app2 agr2 20 loc2
app3 agr3 10 loc1

Table 5.1: Application requested parameters for the SensorsMW case study
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Figure 5.3: Varying of temperature for location loc1

As a possible scenario, consider the situation in which no contract has been
stipulated and three client applications require a QoS-enabled DataMeasurement
service related to the temperature monitoring. Applications configure the service
by creating contracts that differ for the parameters described in Table 5.1.

By analyzing these parameters, it can be noticed that each application can spec-
ify the desired values independently from the other applications. In fact, applica-
tions can specify a different sampling period, even in case they choose the same
location for monitoring. This capability is highlighted by Figure 5.3, in which the
temperature obtained by app1 and app3 for location loc1 is plotted as a func-
tion of time. It can be seen that both applications receive data according to their
requirements.

What happens behind the scene is that, when app3 requires a sampling of 10s
for location loc1, the sampling time of nodes in that location is set to 10s, in
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a manner that both app1 and app3 can obtain data gathered at the required time
instants. Then, the ServiceProvider component is responsible for analyzing the
contract established by each application and for providing data following their re-
quirements.

This scenario is particularly suited for highlighting as SensorsMW can trans-
parent support different requirements of applications, even when consuming ser-
vices related to the same areas of a WSN.

5.4 Summary

In this chapter, a service-oriented, flexible and adaptable middleware for QoS con-
figuration and management of WSNs has been presented. Thought its architecture
design follows the guidelines presented in Chapter 2, it has been extended and tai-
lored to support specific issues of pervasive environments. A case study has been
also built and presented to show the effectiveness of the proposed solution.

In particular, the architecture supports QoS specification and management by
using a contract negotiation scheme based on SLAs; it allows applications to re-
configure and maintain the network during its lifetime and it is independent of the
underlying WSN technology. Moreover, it is characterized by an accurate design
that permits to both abstract WSNs for a seamless integration into enterprise in-
formation systems and address specific low-level features that must be taken into
consideration for guaranteeing certain QoS levels.



Chapter 6

Conclusion

In this dissertation the importance of QoS management in SOA has been stressed,
as it allows service providers to offer strong guarantees and to be flexible and adapt-
able in applying business strategies. In particular, it has been highlighted that re-
specting QoS guarantees for service provisioning is a critical issue, especially when
SLAs are put in action and the violation of such guarantees could cause penalties
or money losses. The benefits of embracing SOA have been also described and a
panoramic of the SOA application on different environments has been given (see
Chapter 1). However, particular issues arise for the QoS management in SOAs
when the application environment changes. This dissertation presents a general
approach for the problem but also faces specific issues for the next generation in-
dustrial automation platforms, for the virtualized environments characterizing the
forecoming Cloud computing era and, finally, for the pervasive environments fo-
cusing on WSNs.

A general layered architecture has been proposed for negotiating QoS guar-
antees and providing services respecting such guarantees. An implementation
for Linux has been also provided and, in particular, the mod reserve module for
Apache 2 has been implemented for providing temporal isolation to services and
thus for respecting CPU QoS guarantees. Realistic scenarios tied to the indus-
trial automation world has been built for validating the effectiveness of the pro-
posed approach based on the use of proper soft real-time scheduling techniques. In
Chapter 2, experiments are mainly focused on providing low-level QoS parameters
(i.e. CPU and network bandwidth shares), whilst in Chapter 3 experiments pro-
viding more high-level QoS parameters (i.e. service response time) are presented,
together with the QoS registry leveraged in the proposed algorithm for allowing
service providers to offer such guarantees.

The problem of providing QoS guarantees has been also faced in the case of
virtualized service components (see Chapter 4) and an approach has been presented
for scheduling VMs and services hosted within, in a manner that temporal isolation
is achieved not only for multiple VMs running on a host but also for virtualized
services running inside a VM. The presented experimental results have highlighted
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that such approach is effective in achieving a better predictability for virtualized
services concurrently running.

Finally, the issues related to pervasive environments have been treated in Chap-
ter 5, where the proposed QoS architecture has been tailored for building a service-
oriented middleware that permits to both abstract WSNs for a seamless integration
into enterprise information systems and to address specific low-level features nec-
essaries for guaranteeing certain QoS levels. A case study has been also built for
showing the effectiveness of the proposed solution.

Considerations on future directions for this work can start by considering that
here the use of soft real-time techniques for QoS management has been advocated
for providing service guarantees and the Resource Reservation (RR) approach has
been adopted for providing temporal isolation in the underlying OS. In particular, a
strong focus has been put on offering CPU guarantees for stand-alone services and
experimental results related to real-world scenarios have been gathered for proving
the effectiveness of such approach. Moreover, some work on network guarantees
has been carried on, showing the viability of the RR approach for providing such
guarantees. However, only a simple Switched Ethernet (SE) network model has
been considered and a future work in this direction could be done by considering
a more detailed SE model and/or other network models. Also, the provisioning
of disk guarantees could be taken into consideration, especially when providing
services that have to load/save a large amount of byte from/to the local hard disk.
To this purpose, the Budget Fair Queuing (BFQ) [99] disk scheduler could be ef-
fectively leveraged and easily integrated. In fact, it is also based on the concept
of bandwidth assignment and, as most of our work, it has been implemented on
Linux.

Moreover when a service consumer requests real-time applications composed
by several services, more aspects must be considered for the QoS management. A
possible approach for providing end-to-end guarantees for such applications com-
prises the operation of composition, by choosing between different service imple-
mentations that may be provided by different nodes. Each implementation is char-
acterized by different real-time requirements and thus applications can be dynam-
ically composed for respecting end-to-end deadlines. The work by Estevéz-Ayres
et al. [35] already addressed the problem of time-bounded service composition and
may be interesting to apply such algorithm in the proposed QoS architecture.

Instead, an application can be already defined by a graph of dependencies that
includes precedences among services and messages exchanged, because it is a user
submitted workflow or it has been composed offline by the provider. In such a case,
allocating the “right” resource share for the execution of each service becomes
crucial for respecting end-to-end deadlines. In this direction, some preliminary
work [23] has been conducted by the author for creating an heuristic algorithm
that allocates services on nodes and assigns resource shares to each service in a
manner that end-to-end deadline constraints are respected. Such heuristics, that
promises to be very efficient so as to be usable for on-line allocation decisions,
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could be integrated in the proposed QoS architecture for evaluating its effectiveness
in the QoS management of real-time service-oriented applications with end-to-end
guarantees.
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