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Abstract

This thesis addresses the energy-aware scheduling issue in real-time embedded sys-

tems, while considering single-core, multi-core and distributed architectures.

In actual computational platforms, the energy consumption is rapidly growing due

to the continuous technological improvements which let designers deploy far more

transistors per inch, increasing the provided facilities. Besides the higher cost to power

the electronic systems, the higher energy dissipation represents a serious design issue

as such energy is transformed in heat which, if not effectively dissipated, may increase

the probability of faults and shorten the overall lifetime.

In real-time systems, the data correctness does not depend only on the their val-

ues, but also on when they are produced. In other words, real-time schedulers are in

charge of guaranteeing that jobs are successfully executed by their deadlines. Such

time-critical systems are widely used in industry to increase the predictability and reli-

ability, spreading from soft real-time systems (e.g.: video-conference software) where

a deadline miss affects only the quality of service, to hard real-time systems (e.g.: flight

controllers) in which consequences may be harmful.

Such a scenario introduces an interesting trade-off between time requirements as-

sociated to the workload execution and energy dissipation. On one hand, real-time

applications require high performance to meet timing constraints. On the other hand,

the energy is minimized by either lowering the performance level or switching the sys-

tem off, which both lead to a delay in the workload execution. According to such

assumptions, schedulers must judiciously grant the appropriate amount of computa-

tional resources to the pending workload in such a way their deadlines are guaranteed

and the overall dissipation is reduced, at the same time.

Concerning single-core platforms, we proposed an innovative approach which, ex-

ploiting a different task model, significantly beats the state of the art. Then, the energy-

saving problem is enhanced by considering bandwidth requirements which features

sensor nodes and a scheduling algorithm is provided to handle it. In addition, the ac-

tual beliefs about the energy issue are pragmatically put in discussion and analyzed

from a practical point of view.

Multi-core platforms have also been taken into account, providing an analysis of

several partitioning heuristics.

Finally, the problem of partitioning a real-time workload on distributed systems

was taken into account, dealing also with fault tolerance issues rather than only with

real-time and energy constraints.

The analysis starts motivating the problem in Chapter 1, detailing the reasons be-

hind the energy dissipation and introducing the actual solutions which aim at keeping

it under control. Then, Chapter 2 considers the power and workload models which

have been considered, whereas Chapter 3 reports the state-of-the-art algorithms which

addressed the same problem. The analysis proceeds with the description of the pro-

posed solutions for single-core, multi-core and distributed systems which are reported

in Chapter 4, Chapter 5 and Chapter 6, respectively. In addition, Chapter 7 addresses

the real-time scheduling issue for systems with renewable energy. Finally, Chapter 8

concludes the thesis remarking the main results.
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Chapter 1

Introduction

In the last decades, the Information Technology has grown exponentially and enhanced

many fields, spreading from consumer electronics (e.g., desktops and notebooks) to

specific sectors, such as embedded and high performance domains.

According to the data published by the World Bank [WBL] referred to the pe-

riod 2009-2013, the numbers of internet users and mobile devices (represented in Fig-

ure 1.1(a) and Figure 1.1(b), respectively) have reached astonishing peaks in developed

and BRIC countries. More precisely, in north America, the 96% of the population own

an internet subscription and, in the eastern part of the world, almost three mobile de-

vices belong to each person. Moreover, an interesting grown features also the develop-

ing countries, as such technologies represent a profitable market and an extraordinary

tool for improving the quality of life.

(a) Internet users per capita (b) Mobile phones per capita

Figure 1.1: World Bank statistics for the period 2009-2013.

However, the previous numbers state only the actual facts. Scientists [Gat07,Gor13]

agree unanimously on the fact that such trends are steadily growing and can not be

stopped or even slowed down. Hence, we are part of a world whose energy demand

will keep rising constantly regardless the development level of each country. In order

to make such an aspect more clear, let us consider how the energy consumption has

varied in the U.S. houses in almost 15 years, as reported by the Residential Energy

Consumption Survey [REC] and depicted in Figure 1.2. The average consumption due
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to electronics has rose up of an additional 10%, passing from 24% to 34.6%.

For such reasons and others, which are unfortunately out of the scope of this thesis,

the energy consumption is a crucial point which must be effectively addressed in cur-

rent systems. More precisely, this work focuses its attention on the real-time scheduling

issue of systems in which the software execution is characterized from time constraints.

This chapter proceeds analyzing the problem from an engineering point of view,

detailing the technical aspects which feature the energy dissipation (Section 1.1) and

giving a glance at the actual solutions (section 1.2).

Figure 1.2: Results of the Residential Energy Consumption Survey.

1.1 Energy issue

The most widespread electronic technology in actual digital circuits is CMOS (Comple-

mentary Metal-Oxide Semiconductor), whose peak power dissipation happens during

the state transitions of the transistors.

Intuitively, the higher the number of implemented features, the higher the number

of transistors in the system and, consequently, the higher the power dissipation. In

other words, a higher request of energy is the direct consequence of the increased

performance. This is the side effect of the Moore’s empiric law which states the growth

of the number of transistors in the processors, as showed in Figure 1.3: the number of

transistors in a chip doubles every eight months.

For such a reason, the frequency scaling feature has been introduced for enabling

the application level to scale the performance down in order to reduce the transition rate

and then, the consequent energy dissipation. Other techniques which are widely ex-

ploited at design time consists of implementing different physical parameters (such as

supply and threshold voltage) to characterize particular circuits with less strict perfor-

mance requirements. However, such techniques mainly concern design-time strategies

which are out of the scope of this work.

Another side effect of the increased power consumption is related to the fact that

most power is converted in heat which must be effectively dissipated. The trend of

heat density is depicted in Figure 1.4, representing the not easy task which designers

have to deal with. Besides the intuitive drawback of physically dissipating such heat by

appropriate cooling systems, high temperatures drastically reduces performance (scat-

tering effect), leading to the infamous power wall. In other words, it represented a stall
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Figure 1.3: Moore’s law about the transistor number in processors.

point in which any attempt to improve performance by either adding more transistors

or increasing the frequency, caused an overall powerfulness reduction.

Figure 1.4: Heat density in Intel single-core processors.

Along with the memory and ILP walls, such limitations led to the adoption of

multi-core systems. In such architectures, although cores run at lower frequencies, the

overall performance is boosted up by the parallel execution of threads.

However, single-core systems are still widely used in the embedded system domain

which generally requires lower performance but higher predictability and reliability.

As a consequence of progresses in the VLSI manufacturing, miniaturization has

considerably shrunk the transistor size, lowering the supply voltage, thereby reduc-

ing the dynamic power consumption. Although the threshold voltage has also been

lowered, the gap between supply and threshold voltages was reduced. This led to a sig-

nificant increase in the leakage consumption, because the smaller the gap, the higher
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Figure 1.5: Dynamic and leakage dissipation for different technology processes.

the sub-threshold dissipation [SPG02, NC10, KSH02]. Thus, the static power con-

sumption, whose contribution was considered negligible, has become as important as

the dynamic power. More precisely, the leakage consumption is ascribable to quantum

phenomenons and it is always present, not depending on the system activity. Figure 1.5

reports the contribution of the leakage and dynamic dissipation for different technology

processes in Intel [INT] CPUs, remarking the rising impact of the static consumption.

To address such an issue, several low-power states have been introduced to let the

system reduce the power dissipation when there is no workload to execute. More pre-

cisely, such states suspend the code execution and switch off several components of the

system: the more components are disabled, the lower the power consumption. How-

ever, the required time to enter and exit the low-power state depends on the number

and kind of asleep components, which may introduce conflicts with the time require-

ments of the applications. For such a reason, actual processors provide a wide range of

low-power states, characterized from different consumption and overhead.

Figure 1.6: Growth of battery capacity in 20 years.
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The last note, but not least, is related to the gap between required and supplied

power for battery-operated platforms. Within a certain margin of approximation, we

can assert that the power consumption broadly doubles every eighteen months as a con-

sequence of the Moore’s law, however, the battery capacity doubles every ten years, as

highlighted in Figure 7.11. In other words, two different improving paces feature power

suppliers and consumers, leading to a gap which should be addressed by software or

by other mechanisms.

1.2 Energy management systems

Nowadays, many end-user and specific-purpose processors provide hardware facilities

which attempt to automatically reduce the power dissipation through frequency throt-

tling and low-power states, such as Intel’s SpeedStep and AMD’s PowerNow! [AMD].

However, much effort has been profused to address the problem at a more abstract

layer in order to implement strategies which are hardware independent.

The first attempt to keep energy consumption under control was Advanced Power

Management (APM), introduced in the 1992 by Intel and Microsoft [MIC]. The main

purpose consisted of increasing the battery duration in notebooks which started to be-

come popular in that period. The component allows APM-aware applications to com-

municate their energy requirements to the APM-driver provided by the operating sys-

tem. The requests are subsequently supplied to the APM-aware BIOS, in charge of

managing the APM-compliant hardware. The main drawback of this approach is that

figuring out and requesting a specific power management policy from the operating

system becomes essentially a responsibility of the application – ideally power manage-

ment should be transparent to the individual applications. However, one of its most

important contribution was the introduction of APM-compliant hardware to support a

set of different states with specific power consumption and functionality features.

In 1996, Intel, Microsoft, and Toshiba [TOS] released an enhanced framework,

called Advanced Configuration and Power Interface (ACPI), which has became the

standard de facto for device configuration and monitoring. In particular, ACPI offers

the operating system (in charge of handling the settings and power state transitions)

an easy and flexible interface to discover and configure the compliant devices. The

main contribution consists of having moved the policies from the application level to

the operating systems (OSPM - Operating System Power Management), implementing

a better abstraction. For instance, unused system components, as well as the entire

system, can be switched to a low-power state, according to the current state and user

preferences transparently to the running processes.

Despite the ACPI approach is very flexible and effective for many general pur-

pose systems, it is considerably expensive in terms of computation and memory re-

quirements for small footprint systems. For such a reason, in the embedded systems

domain, the problem is mostly addressed in a tailored way in order to deal with the

limited resources. However, Brock and Rajamani [BR03] proposed a solution with a

set of pre-defined policies. The tasks are divided into groups according to either their

energy requirements or importance classes. The current policy is chosen by the policy

manager, a component provided by the system designer. The system behavior is en-

coded as a grid, where each cell represents the configuration to be adopted when a task

of a specific group runs on the processor and a policy is active.
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Chapter 2

System model

This section presents the most relevant models used in the literature for the design and

analysis of energy-aware scheduling algorithms. Specifically, Section 2.1 overviews

various power models, and Section 2.2 presents the computational workload models.

2.1 Power model

The power consumption of a single gate in CMOS technology has been modeled accu-

rately in the literature [CSB95]. Specifically, the power consumption Pgate of a gate is

expressed as a function of the supply voltage V and clock frequency f :

Pgate = psCLV
2f + psV Ishort + V Ileak (2.1)

where CL is the total capacitance driven by the gate, ps is the gate activity factor (i.e.,

the probability of gate switching), Ishort is the current between the supply voltage

and ground during gate switching, and Ileak is the leakage current, which is indepen-

dent of the actual frequency and system activity. The three components of the sum

in Equation (2.1) correspond to dynamic, short circuit and static power components,

respectively.

In essence, the dynamic power is the power required to load and unload the out-

put capacitors of the gates. Unlike the dynamic component, the short circuit current

Ishort depends on the temperature, size, and process technology. The leakage current

is a quantum phenomenon where mobile charge carriers (electrons or holes) pass by

tunnel effect through an insulating region, leading to a current that is independent from

switching activity and frequency. Such a dissipation is due to three causes: gate leak-

age (from gate to source loses), drain junction leakage (losses in the junctions) and

subthreshold current (from drain to source losses).

In Equation (2.1), the two variables that do not depend on the physical parameters

are the supply voltage V and the clock frequency f . However, they are not completely

independent, because the voltage level limits the highest frequency that can be used:

the lower the voltage, the higher the circuit delay. Specifically, the circuit delay is

related to the supply voltage V by the following equation:

circuit delay =
V

(V − VT )2
(2.2)
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where VT denotes the threshold voltage, which is defined as the minimum voltage

needed to create a channel from drain to source in a MOSFET transistor.

In the literature, the processor is assumed to be able to dynamically scale the clock

frequency f in a given range [fmin, fmax]. Often, the analysis is performed by replac-

ing the clock frequency by the processor speed s, defined as the normalized frequency

s = f/fmax, so that the maximum processor speed is considered as smax = 1.0.

In the existing work, we observe two main approaches: in one research line, the fre-

quency/speed range is assumed to be of fine granularity; i.e., the system’s frequency

is considered continuous. As opposed to this ideal model, the second research line

considers m discrete speed/frequency levels. This line is based on the observation that

the current processors offer typically a small number of discrete speed levels.

To characterize the power consumptionP (s) of the single-core system as a function

of the processor speed, one of the most general formulations has been proposed by

Martin and Siewiorek [MS01]:

P (s) = K3s
3 +K2s

2 +K1s+K0. (2.3)

The K3 coefficient expresses the weight of the power consumption components that

vary with both voltage and frequency. The second order term (K2) captures the non-

linearity of DC-DC regulators in the range of the output voltage. The K1 coefficient is

related to the hardware components that can only vary the clock frequency (but not the

voltage). Finally, K0 represents the power consumed by the components that are not

affected by the processor speed.

Another variant of Equation (2.3) used in literature (e.g., [ZA09b]), is

P (s) = Pind + Pdyn(s) (2.4)

where the power dissipation is explicitly divided into static (Pind) and dynamic (Pdyn(s))
power components. Pind is assumed to be independent of the system speed, and Pdyn

is assumed to be a polynomial function of the speed s.

A more specific power model (e.g., [BBL09]) considers the set of operating modes

supported by the processor. Each mode is described by three parameters: the frequency

f , the lowest voltage V that supports that frequency level, and the corresponding power

consumption. To some extent, Martin’s equation can be considered a generalization of

this model, as it provides an interpolation of the various operating points on an ideal

processor where the speed/voltage can be adjusted in a continuous manner.

Switching from one speed level to another involves both a time and energy over-

head. These overheads depend both on the original and final speed levels (e.g., [XMM07,

MHQ07]). When scaling the speed, the execution is suspended and the overhead is

mostly due to the time required to switch the crystal on and/or adjusting the Phase-

Locked Loop (PLL). Generally, the wider the difference between the two frequencies,

the higher the introduced overhead. In this work, the notation µs1→s2 denotes the time

overhead when transitioning from the speed level s1 to the speed level s2.

When the leakage power dissipation is not negligible (i.e., K0 6= 0 and Pind 6= 0
in Equation (2.3) and Equation (2.4), respectively), scaling the system speed down also

increases the computation times and leakage energy consumption, which in turn may

increase the total energy consumption. To address this issue, the concept of critical

speed (also known as the energy-efficient speed), denoted by s∗, was introduced to

denote the lowest available speed that minimizes the total energy consumption, which

consists of dynamic and static power figures (e.g., [ADZ06,CK06]). Specifically, if we

assume P (s) as in Equation (2.3), it becomes strictly convex, and s∗ is defined as the

9
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Figure 2.1:
δP (s)/s

δs function of DPM- and DVFS-sensitive models.

lowest speed that minimizes the energy consumption per cycle, which is equivalent to

the speed value that makes the derivative of P (s)/s null.

For instance, let us consider the power function P (s) = 0.2 + 0.8s3. The deriva-

tive of P (s)/s is
δP (s)/s

δs = 1.6s − 0.2/s2 which is null for s = s∗ = 0.5, im-

plying that, scaling the speed below 0.5 is not energy-efficient. This can be eas-

ily shown by considering a task with WCET = 10 time units while assuming that

it can be executed at any speed ∈ {0.2, 0.5, 0.7, 1.0} without missing its deadline.

The relative energy consumptions for executing the task at the different speed assign-

ments are: E(0.2) = P (0.2) ∗ 10/0.2 = 10.32, E(0.5) = P (0.5) ∗ 10/0.5 = 6,

E(0.7) = P (0.7) ∗ 10/0.7 = 6.8 and E(1.0) = P (1.0) ∗ 10 = 10. The minimum en-

ergy consumption is indeed obtained for s∗, while it increases at both lower and higher

speeds. One can see that the energy consumption of a task is a quadratic function with

global minimum at s∗. A model whose critical speed is lower than the maximum one

is identified as DVFS-sensitive, whereas a DPM-sensitive architecture is characterized

by s∗ = 1.0. Figure 2.1 shows the
δP (s)/s

δs function of the previously considered model
(

P (s) = 0.2 + 0.8s3
)

in contrast with a DPM-sensitive model (P (s) = 0.4 + 0.6s).
It is worth noting that such an analysis minimizes only the energy consumption during

the time intervals when tasks are executed, because it implicitly assumes a negligible

power consumption during the CPU idle intervals.

An additional feature provided by almost all the current processors is the ability to

switch to low-power states when the task execution is suspended. Each low-power state

σx is characterized by its power consumption (Pσx
) and the time and energy overheads

involved in entering and exiting that state, denoted as δs→x, δs→x, Es→x and Ex→s,

respectively. For the sake of simplicity, we use the overall time and energy overheads

associated with the low-power state σx, namely δσx
and Eσx

, as the sum of the initial

and final transition overheads. In general, the “deeper” a low-power state, the lower

the power consumption, but also the higher time and energy overheads involved in the

transition. An exhaustive analysis of the low-power states in actual architectures has

been undertaken by Benini et al. [BBDM00].

Considering the time and energy overheads involved in transitions to low-power

states, there is, in general, a minimum time interval that justifies switching to a specific

low-power state – this is because, if the system returns to active state too quickly, the

energy overhead of the transition would offset the power savings of the low-power state.

Consequently, the parameterBσx
, referred to as the break-even time, corresponds to the
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Figure 2.2: An example with two low-power states.

length of the shortest idle interval that must be available in the schedule to effectively

exploit the sleep state σx. Specifically, Bσx
is the maximum of the time required to

perform a complete transition and the minimum idle time length that can amortize the

switching energy (e.g., [QNHM04, ZA09a]):

Bσx
= max

(

δσx
,
Eσx
− δσx

· Pσx

Pref − Pσx

)

(2.5)

where Pref is the power consumption of the processor in a default state when tasks

do not execute. For instance, Pref can be the power consumption of a particular in-

active state which requires a negligible transition overhead, or, in case the processor

is kept active during idle intervals, it may correspond to the power consumption at the

minimum speed level.

Different low-power states are characterized by different parameters. Figure 2.2

illustrates two different state transitions. The first case illustrates a low-power state

σ1 with a medium power consumption and a relatively short break-even time. On the

other hand, the second low-power state σ2 guarantees the lowest power consumption

but introduces a significant temporal overhead from active to sleep and back to active.

Finding the most suitable low-power state depends on the length of the available idle

interval which, in turn, is determined by the timing constraints.

When multi-core processors are considered, the overall power consumption is func-

tion of the particular state and speed of each core. More precisely, the energy consump-

tion of the entire system in the interval [t1, t2] can be expressed as:

E(t2, t1) = ECPU (t2, t1) + ENO CPU (t2, t1). (2.6)

whereECPU denotes the energy dissipated by the processors and ENO CPU the energy

dissipated by the remaining components, including the main memory, disks, network

interfaces and other peripherals whose behaviors can be considered not directly af-

fected by the running frequency of the processors. Although running tasks impact on

such devices, for the sake of simplicity, we assume a constant average device dissipa-

tion, that is:

ENO CPU (t2, t1) = (t2 − t1) · PNO CPU ,
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where PNO CPU is the power consumed by the devices. In other papers, PNO CPU

is also referred to as Puncore. Since each processor can have a different state/speed at

any time, the processor energy dissipation is the integral of power consumption in the

interval [t1, t2]:

ECPU (t2, t1) =
∑

j

t2
∫

t1

PCPUj
(t)dt.

Basically, the processor power consumption at time t is a function of the actual state of

each processor: the low-power state in use if it is asleep, or the running speed if active.

To characterize the power model of the processors, the equations concerning the ac-

tive power consumption (Equation (2.3) and Equation (2.4)) can be extended to handle

m different variables for each core (e.g., [CH14]). However, considering the scenario in

which several cores are put in one of the low-power state while the remaining units are

active is not representable with the previous approach. In order to provide a representa-

tion for such configurations, an effective solution, in spite of its simplicity, consists of

tabling the power dissipation for a subset of all the possible scenarios (e.g., [BBB13]).

2.2 Workload model

In hard real-time systems, the computational workload is typically characterized by a

set Γ of n periodic or sporadic tasks {τ1, τ2, ..., τn}. Each task τi is cyclically acti-

vated on different input data and therefore generates a potentially infinite sequence of

instances τi,1, τi,2, . . ., referred to as jobs. The jobs of a periodic task τi are regularly

separated by a period Ti, so the release time of a generic job τi,k can be computed as

ri,k = Φi + (k − 1)Ti

where Φi denotes the activation time of the first job, also referred to as the task offset.

On the other hand, in the case of sporadic task τi, the period Ti indicates the mini-

mum inter-arrival time of its jobs: ri,k+1 ≥ ri,k + Ti ∀k. A real-time task τi is also

characterized by a relative deadline Di, which specifies the maximum time interval

(relative to its release time) within which the job should complete. Depending on the

specific assumptions, relative deadlines can be less than, equal to, or greater than pe-

riods. In the most common case, the relative deadlines are equal to periods, which is

commonly called as implicit-deadline task sets. Once a job τi,k is activated, the time

at which it should finish its execution is called the absolute deadline and is given by

di,k = ri,k +Di.

Each task τi is also characterized by a Worst-Case Execution Time (WCET) Ci(s),
which is a function of the processor speed. In a large body of works, WCET is con-

sidered to be fully scalable with the speed, i.e., Ci(s) = Ci/s. However, a number of

research works (e.g., [SAMR03, ADZ06]) noted that this is only an upper bound, be-

cause several I/O and memory operations are performed on devices and memory units

that do not share the clock frequency with the CPU. For instance, if a task moves data

to/from hard disk drive, the operation depends mostly on the bus clock frequency, the

hard disk reading/writing speed, and the interference caused by other tasks accessing to

the bus. To take the speed-independent operations into account, the task’s WCET can

be split into a fixed portion Cfix
i not affected by speed changes and a variable portion

Cvar
i which is fully scalable with the speed. Hence,

Ci(s) = Cfix
i + Cvar

i /s.
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Figure 2.3: An example task schedule and corresponding power consumption.

An equivalent representation (e.g., [BBMB13a]) which is often used to model such

feature is

Ci(s) = αCmax
i + (1− α)Cmax

i /s,

where Cmax
i is the overall execution time at the maximum speed (Cmax

i = Ci(1.0) =

Cfix
i + Cvar

i ) and α = Cfix
i /Cmax

i is the fraction of speed-independent code.

In terms of CPU scheduling, tasks may be assigned a fixed-priority level, represent-

ing the relative importance or urgency of the task with respect to the others. In systems

with dynamic priorities, the priority levels of jobs of a given task may vary over time:

for instance, with the Earliest-Deadline-First (EDF) policy [LL73], the priorities are

determined according to the absolute deadlines of the current active jobs of the periodic

tasks, and hence, naturally vary over time.

In most algorithms, tasks are assumed to be fully preemptive, meaning that they can

be suspended at arbitrary points in favor of higher-priority tasks. Preemption simplifies

the schedulability analysis, but introduces a runtime overhead ξ (preemption cost) dur-

ing task execution, which includes several penalties such as the context switch cost, the

pipeline invalidation delay, and the cache-related preemption delay. The preemption

cost is often assumed to be constant and speed independent. On the other hand, non-

preemptive scheduling, while characterized by negligible runtime overhead, introduces

significant blocking delays on high priority tasks that heavily penalize schedulability.

To visualize the power consumed during task execution, the scheduling diagram

is typically extended by representing the power consumed by a task on the vertical

axis. Consequently, the total energy E(ta, tb) consumed by a task in an interval [ta,

tb], which is the integral of the power function during the interval, is given by the

corresponding execution area. Figure 2.3 illustrates the schedule of two tasks where, at

time t1, the speed is changed from 1 to 0.5, and at time t2 the processor enters a sleep

state. The speed scaling overhead µ1.0→0.5 and the preemption cost ξ are also shown

in the diagram.
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Chapter 3

Related work

This section introduces the most relevant algorithms which have addressed the energy-

aware scheduling issue in real-time systems.

Several surveys on energy-aware scheduling have been published recently, their

primary focus was on DVFS algorithms. For instance, Chen and Kuo [CK07] ad-

dressed single and multi-core systems, by classifying algorithms according to the task

periodicity. Similarly, Kim [Kim06] surveyed the intra- and inter-task DVFS algo-

rithms, by considering only single-core systems. Saha and Ravindran [SR12] reported

a performance comparison of a number of single-core DVFS algorithms through their

implementation in the GNU/Linux kernel [LIN]. More recently, [Mit14] has presented

a general survey of energy management techniques for embedded systems, including

also micro-architectural techniques. As an effort to provide a greater in-depth overview

of the existing DVFS- and DPM-based algorithms, we surveyed in [BAB14] the most

relevant energy-aware scheduling algorithms, focusing our research only on single-core

systems.

This section broadly divides the algorithms in a first group which considers single-

core platforms and a second one which deals with multi-core architectures. These two

classes are presented in Section 3.1 and Section 3.2, respectively. A taxonomy is pro-

posed for each group to further catalog algorithms and make the analysis easier. In

addition, Section 3.3 reports several problems which are related to the energy aware-

ness in real-time systems.

3.1 Energy-aware scheduling on single-core systems

This section considers energy-aware real-time scheduling algorithms for single-core

systems which are organized according to the taxonomy illustrated in Figure 3.1. The

algorithms are first classified along the DVFS and DPM dimensions, based on the

primary power management technique that they use. The DVFS algorithms (Sec-

tion 3.1.1) are then divided according to the type of slack (the unused CPU time) that

they reclaim for scaling speed to save energy: static, dynamic, or both. Specifically, the

algorithms that exploit only the static slack consider the residual processor utilization

in the worst-case execution, whereas those that reclaim the dynamic slack take advan-

tage of the difference between the worst-case and the actual execution time of the jobs.

In other words, the DVFS algorithms that exploit the dynamic slack take advantage of

the runtime variability of the workload, since in practice many real-time jobs complete
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Figure 3.1: Algorithm taxonomy for single-core systems.

early (i.e., without presenting their worst-case workload).

Such a classification does not immediately apply to DPM algorithms (Section 3.1.2),

since, due to their work-conservative nature, the dynamic slack is automatically ac-

counted in almost all the cases. Thus, they are classified as offline and online ap-

proaches.

Finally, the algorithms that use both DVFS and DPM techniques are designated as

integrated algorithms (Section 3.1.3). These algorithms are further divided according

to when the speed assignment decisions are made, either offline or online.

3.1.1 DVFS algorithms

The DVFS-based algorithms rely on the system’s capability of adjusting the processor

supply voltage and frequency (hence, the speed) to reduce the power consumption,

while still meeting the real-time constraints. Historically, such speed scaling techniques

have been the first approach to face the energy management challenge, as in CMOS

circuits the dynamic power consumption was recognized to be much more important

than the leakage (static) consumption.

Most of the early DVFS algorithms have assumed a power function equal toP (s) =
sα (2 ≤ α ≤ 3), implicitly ignoring the leakage power. Using such a power function,

the lower the speed, the lower the consumed energy; hence, this power model favors

the algorithms that use the lowest speed that can still meet the deadlines, leaving no

idle intervals in the schedule.

The slack of a job refers to the CPU time that it does not use before its deadline.

Hence, the static slack available to any job of a task τi can be computed offline as

slacki = Di − Ri, where Ri is the worst-case response time of τi. At runtime, extra

slack (referred to as dynamic slack) may become available when the job completes

early, without consuming its WCET.

The DVFS solutions can be also classified as inter-task and intra-task algorithms.

In inter-task algorithms, when a job is dispatched, it is guaranteed to execute at the

same speed level until it completes or is preempted by another (high-priority) job.

When it resumes execution (after preemption), the scheduler may re-adjust its speed

by considering the available slack at that time. The inter-task algorithms form the

majority of the current DVFS solutions, as it requires only the information about the

WCET of the jobs, and involves low run-time overhead. On the other hand, if the

information about the execution time of the job is available, in particular its probabil-

ity distribution, then there may be benefits in adjusting the job’s speed while it is in
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progress, at well-determined points. This is the main idea behind the intra-task algo-

rithms [XXMM04, XMM05, SKL01], in which the job starts to execute at a low speed

level (relying on the fact that its early completion is more likely than the worst-case

scenario), and then its speed is increased gradually at well-determined power manage-

ment points (PMPs) as it continues to execute. Thus, for each task, a speed schedule

is computed offline, showing what speed level will be assigned to its jobs during their

execution, and at what point. The intra-task algorithms aim at minimizing the expected

dynamic energy consumption, however they also require that the compiler generates

code to enable the application to make system calls to the operating system at the well-

determined PMPs during job execution, and they involve more overhead due to more

frequent speed changes.

The rest of this section provides an overview of the most relevant DVFS algorithms,

divided according to the type slack they exploit for scaling speed: static slack, dynamic

slack or both.

Static slack reclaiming

One of the first papers on DVFS based energy-aware scheduling is proposed by Yao

et al. [YDS95]. The paper presented three algorithms by considering aperiodic tasks,

continuous CPU speed, no speed scaling overhead, negligible power consumption dur-

ing idle intervals, and task computation times inversely proportional to CPU speed

(C(s) = C/s). The first algorithm consists of recursive identification of time inter-

vals with maximum computational density (defined as the sum of CPU cycles of the

tasks with arrival and deadline within the interval, divided by the length of the interval

length). Specifically, the algorithm identifies the interval with the maximum inten-

sity, sets the CPU speed to the intensity value for that interval, and it is recursively

re-invoked for the remaining execution intervals in the schedule. The offline algorithm

is proved to be optimal and has an O(n log2 n) complexity for n aperiodic jobs. A

second algorithm, executed online, considers jobs that may arrive dynamically. The

algorithm recomputes the optimal schedule at each arrival time considering only the

new and pending jobs. The third algorithm (AVR) sets the speed, for each instant,

equal to the sum of density of those jobs whose arrival and deadline range contains the

time instant under consideration. Although the complexity of AVR is lower than the

previous optimal approaches, deadline misses may occur. In fact, since the speed is set

equal to the sum of the worst-case utilization of the active jobs, the processor can be

significantly slowed down when there are few active tasks, so the system may not be

able finish the remaining work if additional tasks arrive, leading to deadline misses.

Ishihara and Yasuura [IY98] provided an analysis for synchronous frame-based

real-time tasks (with identical release time and period), proving that under their as-

sumed system model (no overhead and all tasks consume the same amount of energy),

the energy is minimized when each job completes just at its respective deadline. That

result implies that on a system with continuous speed/voltage, the total energy is min-

imized at the speed/voltage that reduces the idle time to zero. While that result is also

implicit in the optimal [YDS95] algorithm mentioned above, the main contribution

of [IY98] is the derivation of an important property of the systems with discrete speed

levels: when the system is constrained to use a finite set of speed/voltage, the energy

is minimized by using the two speed/voltage values adjacent to the speed value that is

optimal assuming a continuous range. When systems where tasks may have different

power consumption characteristics are considered, an immediate result is that using a

uniform speed across all tasks is longer optimal, and there is a need to adjust the CPU
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speed at context switch times. In two of the earliest efforts,

The problem of finding an optimal solution on a system with discrete speed lev-

els was discussed in [BBL09], for a set of periodic or sporadic tasks under both EDF

and Fixed-Priority (FP) scheduling policies. The authors provided a method to com-

pute the optimal speed offline (first assuming a continuous speed spectrum) and then

introduced a speed modulation technique to achieve the target speed using two dis-

crete values. The analysis selects the pair of available frequencies that minimize the

energy consumption by also incorporating time and energy switching overheads. The

execution time consists of a part that is speed-dependent and another one which is not.

Dynamic slack reclaiming

All the algorithms considered here are based on EDF and assume that the computa-

tional times scale linearly with the speed (C(s) = C/s).

Lee and Shin [LS04] proposed OLDVS, an algorithm which accumulates the dy-

namic slack due to early completions and exploits it to decrease the CPU speed so that

the current task is completed at the same time that it would complete in the schedule

with the worst-case workload. The idea was improved in [GSL07] through the intra-

task algorithm OLDVS∗, which divides each job execution in two parts: the first part

is executed at a low speed level and the speed is increased if does not complete by the

end of the first part. This approach relies on the observation that the probability of

completing the job in the first part is significantly higher than finishing in the second

half. Both algorithms assume a discrete set of speeds, negligible power consumption

during the idle intervals, and zero switching overhead.

Zhu et al. [ZM05] combined the DVFS mechanism with feedback control theory

to save energy for periodic real-time task sets with uncertain execution times. Their

approach uses a PID controller to compute the estimated execution time of the next job

as a function of the difference between the actual and the expected execution time of

the previous job of the same task. The plant in the closed control loop is represented

by the EDF scheduler. The frequency/voltage selection is greedy, as it considers the

estimated execution time for the running task and WCET for the others. Moreover,

the frequency spectrum is assumed to be continuous and the speed scaling overhead

is considered negligible. It is also assumed that the CPU uses the lowest speed level

during the idle intervals.

Lawitzky et al. [LSP08] implemented an energy saving algorithm based on the

Rate-Based Earliest Deadline (RBED) framework [BBLB03], which supports CPU

time budget allocation and dispatching. The paper took speed scaling overhead into

account and offers a system-wide view by considering not only the CPU, but also bus

and memory. The speed scaling overhead is automatically accounted within the CPU

budget assigned to each task. In addition, the authors proposed to manage also the

static slack which, otherwise, would be entirely allocated to non real-time tasks. Their

proposal consists of increasing the utilization values of real-time tasks to exploit the

entire remaining static slack, even though, the actual execution times are not changed.

In such a way, at runtime, the overestimated utilization is automatically transformed

into dynamic slack which is, in turn, easily handled within the presented framework.

Dynamic and static slack reclaiming

All the algorithms reported here consider periodic tasks whose computational times

scale linearly with the speed (C(s) = C/s). Moreover, the speed scaling overhead is
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considered negligible and the power consumption is modeled as P (s) = β · s3.

Pillai and Shin [PS01] proposed three algorithms considering both EDF and RM

scheduling policies. The first approach, referred to as Static Voltage Scaling (SVS),

runs offline and exploits only the static slack: when the system starts, the running

speed is set equal to the lowest available speed level which guarantees the task set

feasibility. Then, the cycle-conserving algorithm (cc-EDF and cc-RM) is introduced.

The algorithm, at every scheduling event, sets the running speed to the lowest level

that guarantees timing constraints using the actual execution time for the completed

jobs and the WCET information for future jobs. Notice that the cc-EDF algorithm

generates a schedule identical to the SVS schedule if the actual workload is identical to

the worst-case. The last proposed algorithm, called Look-Ahead RT-DVS (LA-DVS),

runs only under EDF and aims at further reducing the running speed of the current

(earliest-deadline) job as much as possible, while still guaranteeing the deadlines of

other jobs. Hence, although the actual speed until the next deadline can be quite low,

it may be necessary to execute future jobs at high speed levels to meet their timing

constraints, in case the current job takes (close to) its WCET. However, this side effect

is significantly reduced thanks to frequent early task completions in practice.

Aydin et al. [AMMMA04] proposed three algorithms at increasing complexity and

sophistication levels, for periodic real-time tasks. All the algorithms assume a continu-

ous speed range and a negligible switching overhead. The first algorithm computes the

running speed as the utilization of the task set (similar to SVS) and it is not changed

at runtime. The algorithm works with all the scheduling algorithms which guarantee

the full utilization of the processor while guaranteeing the feasibility, such as EDF

and Least Laxity First (LLF). The second algorithm (Dynamic Reclaiming Algorithm,

DRA) uses a queue structure called α-queue where each element contains the deadline

and the remaining execution time remi of task τi. When a task arrives, its absolute

deadline and execution time at the optimal speed are inserted in the α-queue. At ev-

ery scheduling event, the remi field of the α-queue’s head is decreased by the amount

of the elapsed time since the last event. In other words, the α-queue represents the

ready queue in the worst-case schedule at that specific time. Once a new job is about

to be scheduled, its remaining execution time is summed with the remi values in α-

queue whose deadlines are less than or equal to the task in question, and then the speed

is scaled accordingly. This procedure enables the current job to reclaim the dynamic

slack of already completed higher-priority jobs, while still ensuring it does not com-

plete later than the instant when it would complete in the worst-case schedule. The

algorithm is improved by incorporating the One Task Extension (DRA-OTE) technique

which, when there is only one task in ready queue and its worst-case completion time

at the current speed falls earlier than next scheduling event, slows the speed down to let

the task terminate at the next event. The third algorithm, Aggressive Speed Reduction

- AGR 1, relies on the idea that when all the ready tasks have deadlines earlier than the

next task arrival time, then the computational budget can be exchanged among those

tasks without affecting the feasibility. Specifically, in such a situation the algorithm

reduces the speed of the current job by allocating some of the CPU time of other low-

priority ready tasks. This approach may force other pending tasks to execute at very

high speed levels to meet their deadlines in some execution scenarios. To mitigate this,

another algorithm (AGR-2) is proposed, which limits the extent of the slowdown for

the current task by considering the information about the average case workload.

18



3.1.2 DPM algorithms

DPM-based energy management algorithms are based on the principle of putting the

processor to low-power (sleep) states at runtime. A main problem involved in DPM

research is to make sure that the transitions are beneficial in terms of energy savings,

because as explained in Section 2.1, there is a minimum time interval (called the break-

even time) that amortizes the time and energy overhead associated with each transition.

In fact, a common technique is to use the task procrastination technique which post-

pones the execution of the ready jobs as much as possible by exploiting the system

slack at that time, thereby compacting busy periods and yielding long idle intervals.

By doing so, the number of runtime transitions and overhead are also reduced. On the

other hand, utmost care must be taken to avoid the violation of the timing constraints

in real-time systems, when employing the procrastination technique.

The rest of this section introduces the most interesting offline and online DPM

approaches proposed in the literature

All the algorithms discussed in this section consider the break-even times for the

CPU explicitly in their analysis. Although some papers consider only a single low-

power state, we note that their approach can be easily extended to systems with multiple

low-power states by exploiting the “deepest” inactive state with break-even time shorter

than or equal to the length of the available idle interval.

Offline DPM algorithms

Rowe et al. [RLZR10] presented two techniques to harmonize task periods with the aim

of clustering task executions (i.e., to combine processor idle times whenever possible).

The framework assumes a system without the DVFS feature. The first algorithm, Rate-

Harmonized Scheduler (RHS), introduces the concept of harmonizing period (TH). The

scheduler is notified by the task arrivals only at the integer multiples of the harmonizing

period. The harmonized period is computed as a function of the shortest period. For

instance, if the effective arrival time is at 3.5 and the harmonizing period is 1, then

the scheduler considers this arrival only at time 4. Since all the arrivals are considered

at integer multiples of the harmonizing period, if there is no task to execute, then the

processor can be put in sleep state until the next period. The approach considered fixed-

priority tasks whose priorities are assigned by the Rate Monotonic policy. Although

the exact schedulability can be checked by evaluating the worst-case response time

through the Time Demand Analysis, the utilization bound for schedulability reduces to

0.5, in the general case. The second algorithm, called Energy-Saving RHS (ES-RHS),

introduces a new task with period equal to TH (highest priority). Its computation time is

evaluated by considering TH and the spare utilization. The new task enables putting the

processor to sleep state when it is invoked and when its computational budget is longer

than or equal to the break-even time. The main advantage of ES-RHS with respect to

RHS is that the idle times generated by task early terminations extend the sleep interval

in the next period. In such a way, multiple short idle intervals are combined to a single

longer interval, giving an advantage over RHS. Two low-power states are taken into

account, idle and sleep, considering a short and long break-even time, respectively. In

addition, a real implementation on a sensor node is reported.

Online DPM algorithms

Lee et al. [LRK03] proposed two leakage control algorithms for procrastinating task

executions as long as possible, to prolong and compact idle intervals, both under dy-
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namic (LC-EDF) and fixed (LC-DP) priority scheduling. Both algorithms assume peri-

odic tasks with periods equal to the deadlines and a system without DVFS feature. The

main idea behind the algorithms is to compute at each job arrival the maximum time

the job can be delayed without missing its deadline. Under EDF scheduling, whenever

the CPU becomes idle, LC-EDF computes the maximum time duration∆k that the task

with the earliest arrival time (τk) can be delayed by using the following equation:

∑

i∈{1,...,n}/{k}

Ci

Ti
+

Ck +∆k

Tk
= 1.

Then, the system is put to the low-power state (procrastinated) for ∆k time units. If

another higher-priority task τj with absolute deadline shorter than the τk’s deadline

arrives before the end of the procrastination interval, the procedure is executed again,

by considering the length of the idle interval already elapsed, δk, and obtaining the new

value of the procrastination interval ∆j through the following equation:

∑

i∈{1,...,n}/{k,j}

Ci

Ti
+

Ck + δk
Tk

+
Cj +∆j

Tj
= 1.

For fixed-priority systems, the authors resort to the dual priority scheme [DW95] in

order to to compute the length of the procrastination interval. More precisely, the ad-

ditional sleep time is computed as the minimum promotion time Yi (relative deadline

minus the worst-case response time) among the tasks in the lower run-queue. The pro-

motion time of each task is computed statically as the difference between its relative

deadline and the worst-case response time, derived from Time Demand Analysis. The

main limitation of such an approach is that it requires a dedicated hardware to imple-

ment the algorithms and manage sleep and wake up operations. Although task early

terminations are not directly involved in the analysis, the work-conserving (non-idling)

nature of the algorithms can indirectly incorporate the dynamic slack at run-time.

Awan and Petters [AP11] proposed an algorithm under EDF, called Enhanced

Race-To-Halt (ERTH), which targets at dynamically monitoring and accumulating both

static and dynamic slack, in order to apply the DPM technique effectively. The authors

considered sporadic tasks with different criticality (hard, soft real-time and best effort)

and a processor model with several low-power states. Essentially, the algorithm uses a

single counter to keep track of both static and dynamic slack. When the system is idle,

the processor is put to the deepest low-power state with break-even time not exceeding

the amount of the existing slack at that time. Similarly, if there are some ready tasks,

and the amount of available slack is longer than or equal to the break-even time, then

the processor is switched off as long as possible without causing any deadline miss. On

the other hand, if the amount of slack is less than the break-even times, the processor

executes the current workload at the maximum speed and then attempts to switch to

a sleep state when idle. The proposed algorithm has been compared with LC-EDF,

showing that, under certain conditions, it achieves a lower energy consumption.

3.1.3 Integrated DVFS-DPM algorithms

This section considers the algorithms that use both DVFS and DPM techniques. Specif-

ically, these integrated algorithms exploit both speed scaling and low-power states to

maximize energy savings, unlike the techniques that use only one feature.

First, the algorithms that make the speed scaling decisions offline are considered

then, those that compute the speed scaling factors online are introduced.
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Offline speed scaling

All the algorithms reported here are designed for periodic real-time tasks and do not

explicitly consider dynamic slack.

Jejurikar et al. [JPG04] proposed an approach (CS-DVS-P) based on the critical

speed analysis and task procrastination, for periodic preemptive tasks executed under

the EDF scheduling policy. Offline, the algorithm first computes the lowest speed

(higher than or equal to the critical speed, s∗) that guarantees the task set feasibility.

Then, the maximum amount of time (Zi) each job of task τi can spend in the sleep state

within its period without leading to any deadline miss is evaluated using the following

equation:

Zi

Ti
+

i
∑

k=1

Ck

Tk
= 1.

At runtime, when there is no pending job, the processor is put in a low-power sleep

state (as deep as justified by the break-even time and available slack) until the next

job arrival. When a job arrives and the processor is still in sleep mode, an external

controller continues to keep the processor in sleep state for an additional time period

computed as the minimum of remaining time to wake-up and the precomputed delay

of the newly arriving job.

[JG04] extended the algorithm to fixed-priority (CS-DVS-P1) and dual-priority

(CS-DVS-P2) systems. With respect to the original algorithm given in [JPG04], only

the computation of the Zi values is different, leaving the online step the same. More-

over, the authors showed that the dual-priority scheduler is able to guarantee longer Zi

values than the fixed-priority scheduler.

Chen and Kuo [CK06] showed that the DPM part of the algorithm proposed by

[JG04] may lead to deadline misses, thus they proposed two solutions to avoid them,

Online Simulated Scheduling (OSS) and Virtual OSS (VOSS). Both algorithms consider

periodic independent tasks for fixed-priority systems where priorities are assigned ac-

cording to the Rate Monotonic policy. Initially, all tasks are assigned the lowest speed

that still guarantees the feasibility, subject to the lower bound of critical speed. OSS

runs when the ready queue is empty and simulates the execution of tasks that arrive

earlier than the earliest absolute deadline, accounting for their idle time. Then, the

arrivals of those tasks are delayed for the relative accounted time, while the processor

is put in sleep mode until the first job arrival (if and only if the available idle time

is longer than the break-even time). VOSS enhances OSS by combining the online

simulation with the virtual blocking time. Specifically, in the simulation phase, the

algorithm considers as arrival time the value of ri,k +Zi where Zi represents the max-

imum blocking tolerance that each task can afford without causing deadline misses.

Zi is computed offline through the response time analysis. In this way, the arrivals of

the tasks taken into account result further delays than those provided in OSS, leading

to longer sleep intervals. The complexity of the online step is due to the simulation

phase, which is O(n · log(n)), while the offline computation of the virtual blocks has

pseudo-polynomial complexity.

Online speed scaling

Jejurikar and Gupta [JG05a] extended the algorithm in [JPG04] to explicitly consider

task early terminations on dynamic priority systems. The algorithm is called Dynamic

Slack Reclamation with Dynamic Procrastination (DSR-DP). The first improvement
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consists in collecting unused computation times (dynamic slack) in a Free Run Time

(FRT) list, which also includes information of the priority of the task that generated

it. To prevent any deadline miss, each job can only use the dynamic slack generated

by tasks with higher or equal priority. Such additional CPU time is partially exploited

to slow down the processor speed while the job is executing and also to extend the

time spent in sleep state. Specifically, the slack distribution algorithm primarily uses

the additional slack to scale the speed down and, if the critical speed is reached, the

residual time is used to extend the sleep interval.

Irani et al. [ISG07] introduced two techniques for dynamic speed scaling with and

without low power states: DSS-S and DSS-NS. DSS-NS is based on using mostly

speed scaling while DSS-S executes the workload at the maximum speed to maximize

the use of the low-power states. Both the P (s) and P (s)/s functions are assumed to be

convex and the scheduler implements the EDF policy. An offline algorithm for DSS-S

and two online solutions for DSS-S and DSS-NS were presented. The main idea behind

the offline algorithm is to procrastinate tasks and execute them at a speed no lower than

the critical speed. Under the assumptions of convexity, the proposed offline algorithm

achieves an approximation ratio of 3 with respect to the optimal solution. However, the

overheads due to the speed scaling and state transition are not taken into account.

3.2 Energy-aware scheduling on multi-core systems

This sections presents the state-of-the-art algorithms for multi-core platforms, exploit-

ing the taxonomy shown in Figure 3.2. Algorithms are broadly divided according to

the heterogeneity of the system they assume to deal with. More precisely, the first

kind of algorithms assumes to handle a set of homogeneous cores whose performance

and consumptions are identical, whereas the second group takes into account heteroge-

neous cores (with at least two different kinds of cores). Such algorithms are detailed in

Section 3.2.1 and Section 3.2.2, respectively.

For each class, algorithms are further collected according to the approach they im-

plement: partitioned, global or hybrid. The first one statically assigns a task to a spe-

cific core, forbidding its jobs to migrate onto another core even though it is idle. This

method allows designers to easily check the system feasibility but, in many cases, it

leads to a waste of computational resources. Global approaches improve the system

utilization by allowing task migration at any time in any processor, but are more dif-

ficult to analyze and may introduce significant run-time overhead. Hybrid scheduling

approaches try to combine the two previous strategies to reduce their drawbacks and

exploit their advantages.

3.2.1 Homogeneous cores

One of the first papers which has considered the partitioning problem of a set of pe-

riodic tasks on a multi-core system was proposed by Aydin and Yang [AY03]. The

authors compared the behavior of four well-known heuristics (First-Fit, Next-Fit, Best-

Fit and Worst-Fit) on a system whose dissipation is highly dependent on the running

speed. The work stated that Worst-Fit Decreasing (WFD), which aims at balancing

the workload among the cores, is the most effective for reducing the energy consump-

tion while considering cubic power functions. More precisely, spreading the workload

among all the cores lets us use many processors which run at a low frequencies. On the

other hand, collecting the workload on few cores (and switching off the others) is not
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an effective strategy as the energy dissipation of those few cores is much higher than

having all cores active and running at low speeds.

Yang et al. [YCK05] proposed an algorithm which partitions a set of frame-based

tasks (with same period and deadline) using the Worst-First strategy and then scales

speed in particular instant according to the task features. In addition, all cores must

share the same running frequency and voltage, meaning that the speed selection is done

according to the most loaded CPU. However, cores are allowed to enter into a low-

power state independently. Although the algorithm is characterized by a good approx-

imation factor with respect to the optimal scheduling, the authors made several non-

realistic assumptions, such as continuous and infinitive frequency range (s ∈ [0,∞])
and negligible consumption in idle state.

Kandhalu et al. [KKLR11] considered the issue of partitioning a set of periodic

real-time tasks on multi-core systems characterized by a single voltage island (all the

processors share the same voltage and frequency). Moreover, deadlines are assumed to

be equal to periods. Within a voltage island, the core with the highest load is the one

which imposes the running frequency. In other words, the load balancing is crucial.

Since it has been already proven that, under EDF, the overall energy dissipation is min-

imized when the load is perfectly balanced among the cores, the authors focused their

attention on tasks with fixed priorities. They proved the approximation upper bound

for the classical Worst-First Decreasing heuristic and then, their own algorithm (Fre-

quency Assignment Algorithm - SFAA) was provided to overcome several limitation of

the state of the art by taking explicitly task periods into account during the partitioning.

Finally, the power model was obtained from a NVIDIA’s Tegra 2 processor.

Ghasemazar et al. [GPP10] provided a global approach based on the control analy-

sis to minimize the overall energy consumption while guaranteeing the desired through-

put. The homogeneous cores, which share the L2 cache, are assumed to be switched off

independently. When a new job arrives, the hierarchical scheduler computes the num-

ber of core to keep active and then a feedback control loop sets the frequency which

lets the system provide the required throughput. Finally, the new job is assigned to a

core which is in charge of executing it according to its priority.

Pagani and Chen [SJJ13] carried out an analysis that, independently from the task

partitioning algorithm, found the approximation ratio of the Single Frequency Approx-

imation (SFA) scheme on multicore voltage islands with respect to the optimal solu-

tion. More precisely, SFA consists of setting the frequency of the voltage island equal

to the maximum utilization among the cores. Despite its simplicity, SFA is the easiest

algorithm to be implemented and it is widely used in actual systems.

Unlike other papers, Langen and Juurlink [dLJ06] considered a multi-core proces-
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sor whose cores can vary their frequency independently. The authors considered a

scenario in which the leakage power consumption is as important as the dynamic dis-

sipation and then, they integrated such a contribution into the analysis. More precisely,

according to the actual value of the leakage current, the provided algorithm (referred to

as LAMPS) computes the number of core to be kept active, their frequencies and volt-

ages in order to minimize the energy dissipation. Results were obtained by comparing

the energy consumption with the Schedule and Stretch (S&S) algorithm which aims

at spreading as much as possible the workload among the available cores (similarly to

what WFD does).

Recently, Carrol and Heiser [CH14] have revisited several common beliefs, show-

ing empirically that on the latest-generation ARM multi-core processors, the static

power is almost negligible. First, they extended the concept of critical speed to each

core, in order to define the frequency which locally optimizes the energy consumption.

Then, a governor for the Linux cpufreq deamon was implemented whose algorithm

executes the following steps every 100ms:

• computing the slowest frequency which guarantees the feasibility on each core;

• if such a speed is higher than the critical one, then wake an asleep core up;

• if such a speed is lower than the critical one, then put a core in sleep state.

3.2.2 Heterogeneous cores

Petrucci et al. [PLM+12] considered the problem of partitioning a set of independent

tasks on heterogeneous systems. Such systems are composed of a set of high perfor-

mance sophisticated cores and a set of low-power cores. Their analysis relies on the

fact that CPU-intensive applications should run on performing cores, while I/O appli-

cations should take advantage of low-power cores. More precisely, they introduced a

periodic partitioning algorithm (implemented as ILP problem) which migrates tasks

among cores according to their actual phase (interval in which the code is mostly either

CPU or I/O intensive) in order to better exploit the energy efficiency of each core.

Awan and Petters [AP13] proposed a two-step partitioning algorithm for heteroge-

neous systems with two kind of cores. Firstly, the algorithm assigns tasks to the core

which optimizes its execution while considering only the dynamic energy consump-

tion. Then, the second step reduces the static energy consumption by improving the

effective use of low-power states, involving tasks’ parameters into the analysis (such as

periods and execution times). For example, allocating a task with short period (despite

its execution time) may prevent the system to put the core in a deep low-power state

even though the overall utilization is low. For such a reason, tasks which forbid the

use of deep sleep states should be moved somewhere else in order to reduce the static

energy consumption.

Schranzhofer et al. [SCT10] proposed two different partitioning approaches for

the problem in question. The first one assigns tasks to cores statically, independently

from the actual context, in a static fashion. The second solution assigns a task to

a core according to the actual scenario at runtime. More precisely, the mapping is

chosen among several possible alternatives which have been pre-computed at design

time. Although the first approach is less flexible than the second, it requires a smaller

amount of memory to store the additional information (in the form of a mapping table).

Hung et al. [HCK06] addressed the energy-efficient real-time scheduling issue on

systems mounting two cores with and without speed scaling feature, respectively. The
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workload consists of a set of periodic real-time tasks and jobs which may migrate

from one core to the other when necessary. When the power consumption of the non-

DVFS cores is independent from the workload, a fully polynomial-time approximation

scheme (FPTAS) is provided for energy-efficient scheduling. On the other hand, when

the energy consumption of the non-DVFS cores depends on the assigned workload, a

0.5-approximation algorithm is introduced to save energy.

3.3 Similar problems

This section briefly overviews other problems related to the energy issue which con-

sider additional objectives. Since the energy harvesting problem has been addressed in

this thesis, a deeper analysis is provided for it in Section 3.3.1.

An interesting problem is related to the joint scheduling of real-time and non real-

time tasks, where the goal is to minimize the overall energy consumption, while guar-

anteeing real-time constraints and reducing the response time of non real-time tasks.

As in the case of real-time tasks, providing short response time to the non real-time

tasks, in general, conflicts with the energy saving objective. Aydin and Yang [AY04]

investigated the impact of speed scaling decisions on the responsiveness of non real-

time tasks and overall energy consumption, while still meeting the timing constraints

of hard real-time tasks. Saewong and Rajkumar [SR08] proposed to exploit the slack

available in real-time tasks to execute non real-time tasks at the maximum speed to

minimize their response time.

The energy-aware scheduling of tasks that share resources which must be accessed

in non-preemptive fashion is another important problem that was addressed in [ZC04,

LKL07, JG05b]. In [ZAZ12], the energy-aware scheduling of periodic real-time tasks

with task-level reliability constraints has been considered.

A more general energy-aware co-scheduling problem includes both the CPU and

devices in the analysis. Devices are typically considered speed independent, providing

low-power states and requiring non-preemptive access [CG06, DA08, YCK07]. Other

authors considered the problem of co-scheduling tasks and messages [YPH+09].

Another variant of the problem occurs in settings where the real-time system has to

operate within a given strict energy budget. This is also called the energy-constrained

real-time scheduling problem. AlEnawy and Aydin [AA04] proposed several static and

dynamic algorithms that select the most valuable jobs to execute in energy-constrained

settings, while considering systems with and without speed scaling feature. Later,

[AA05] reformulated and addressed the problem for weakly hard real-time systems,

where each periodic task has to meet m out of k deadlines in k consecutive invocations.

Chen and Kuo [CK05] addressed the problem of maximizing the total task execution

time given an initial energy budget.

Finally, in the temperature-aware scheduling problem, the objective is to minimize

maximum system temperature at run-time, or the number of thermal peaks, instead of

minimizing the energy consumption. The main technique, called Dynamic Thermal

Management (DTM), has two main variants: proactive techniques ( [CWT09]) have

the objective of preventing thermal violations while the reactive techniques ( [WB08])

are invoked as a response to an imminent thermal violation.

25



3.3.1 Energy harvesting

The energy harvesting problem considers an energy replenishment functionPr(t) (mod-

eling solar panels or piezoelectric harvesters) which provides additional time and envi-

ronment dependent power for the processors and batteries.

Rakhmatov and Vrudhula [RV03] addressed the problem of minimizing the energy

consumption, while guaranteeing a common deadline and avoiding battery failure for

real-time tasks. Their first algorithm decides how to schedule the tasks by considering

the precedence constraints and battery characteristics. Then, when the system restarts

after a battery failure, the algorithm is invoked to exploit idle states or modulate the

processing speed.

Chetto et al. [CMM11] considered the real-time scheduling problem under the Rate

Monotonic policy for systems with renewable energy. They proposed five reactive

heuristics, which are executed whenever the battery becomes empty. The first heuristic

keeps the processor in sleep state for a predefined fixed interval x, while the second

extends the inactive period until the charge level reaches a certain threshold. The third

one (called EDeg, later labeled as PFPst in [ACM13a]) uses the entire available slack

time. The fourth heuristic stops charging when the battery is completely charged. An-

other fifth algorithm is invoked when the battery energy level drops below a predefined

lower bound.

El Ghor et al. [EGCC11] proposed an algorithm under the EDF policy that applies

task procrastination to the energy harvesting problem. Specifically, the pending jobs

are executed if there is enough energy to complete them, otherwise the available slack

time is exploited to charge the battery.

Chandarli et al. [CAM12] considered the problem of formally guaranteeing the

real-time and energy feasibility, given a workload and a replenishment function. When

a battery failure occurs, their algorithm, called PFPALAP , exploits all the available

slack for recharging. The feasibility check considers the worst busy period assuming

an infinite battery capacity. Then, the analysis is extended by noting that, if the total

harvested energy during spare time is lower than the battery capacity, then no battery

failure happens. However, the case in which the battery capacity is reached, and then

some energy is wasted, is not addressed.

Abdeddaı̈m et al. [ACM13a] proposed an optimal algorithm, called PFPasap. The

algorithm puts the processor in sleep state for the shortest time interval that still guar-

antees to harvest the required energy for executing only the next computational unit

of the highest priority task (which is equivalent to the first heuristic in [CMM11] by

considering x = 1). Despite the algorithm’s optimality, the paper shows that PFPasap

introduces a significant number of state transitions and preemptions. Moreover, the

overhead associated with transitions to/from low-power states is not considered.

Abdeddaı̈m et al. [ACM13b] further improvedPFPASAP by considering the effect

of incoming high priority load on the actual execution of low priority tasks. Basically,

the analysis checks whether the actual execution of a task may affect the feasibility of

jobs that would arrive later. If this happens, the actual execution is suspended. Al-

though this approach reduces the drawback due to the reactive nature of the algorithm,

it heavily relies on the response time analysis at each step.

Chetto and Queudet [CQ13] proved that optimality is not guaranteed for non-idling

online algorithms, such as EDF. Moreover, they also shown that an online clairvoyant

algorithm is not optimal if, at any instant t, it is not able to foresee what happens until

t+D, where D is the longest relative deadline.

Kooti et al. [KDMB12] proposed an algorithm which divides the analysis operation
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interval (one day) into a set of frames (30 minutes each) without any correlation with

the task periods. They assume no more than n out of m consecutive jobs of a task miss

their deadlines. At design time, an ILP solver computes for each frame the allocated

energy and the number of hard real-time and best-effort jobs. Then, within each frame,

the online step executes the hard real-time tasks while the best-effort tasks are executed

only if there is enough energy.

Moser et al. [MCT10] defined a 3-layered solution for energy harvesting systems:

Application Rate Control, Service Level Allocation, and Real-Time Scheduling. For

the first two layers, a long-term analysis is conducted to guarantee an average high per-

formance level. For the real-time scheduling phase, an algorithm called Lazy Schedul-

ing Algorithm (LSA) is proposed. Specifically, by using the EDF policy, the algorithm

sets the start time of a job equal to its deadline minus the total harvested energy divided

by the power consumption. In this way, idle intervals that can be used to recharge the

battery are introduced in the schedule. However, the transition overheads associated

with low-power states are not considered. The idea is further followed in [MBTB06],

which provides a admission condition that considers the energy demand and supply

functions.
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Chapter 4

Energy-aware scheduling on

single-core systems

This chapter introduces the proposed approaches to address the energy-saving issue on

single-core systems with real-time constraints.

In Section 4.1, the first contribution [BBMB13a], extending the idea presented

in [BBB12], exploits the limited preemptive task model to further reduce the energy

consumption, significantly improving the actual state of the art.

The energy-aware real-time co-scheduling of tasks and messages is considered in

Section 4.2 where the algorithm DEAS [MBP+11] (Discrete Energy-Aware Schedul-

ing) is presented. Besides the real-time requirements, addition constraints related to

the bandwidth management are involved into the analysis.

The last two sections consider the energy-aware issue from a practical point of

view. Section 4.3 presents a kernel module [BPMB11] implemented in a Real-Time

Operating System (RTOS), showing the actual effectiveness of several energy-aware

algorithms. Then, Section 4.4 aims at bridging the gap between theoretical algorithms

and actual platforms. More precisely, the analysis [BMB14] simulates several well-

known algorithms while considering realistic power models, in order to truly evaluate

the effectiveness of the actual beliefs.

4.1 Energy efficiency exploiting the Limited Preemp-

tive model

This work exploits the limited preemptive scheduling model in order to reduce preemp-

tion costs and further extend sleep intervals under fixed-priority systems. Moreover,

DVFS and DPM techniques are integrated to further reduce energy consumption.

The limited preemptive model has been adopted as it takes advantage of both fully-

preemptive and non-preemptive modes, mitigating their drawbacks. As shown in liter-

ature [BBY13], limited preemptive scheduling increases the schedulability even when

the preemption overhead is neglected. The improvement is even more significant when

considering the preemption cost, which generally includes the context switch time for

suspending the running task and dispatching the new one, the time taken to flush the

pipeline, and the cache-related preemption delay due to cache misses. Moreover, lim-

ited preemptive scheduling allows an implicit mutual exclusion management (when
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critical sections are encapsulated inside non preemptive regions) and permits reducing

the minimum stack memory requirements.

The algorithm consists of an offline DVFS stage which selects the speed that min-

imizes energy consumption during active intervals while guaranteeing the feasibility

of the task set under limited preemptive scheduling. For those architectures taking ad-

vantage of speed scaling techniques for reducing energy consumption (DVFS-sensitive

architectures), the speed computed by the proposed offline algorithm is shown to be

lower than the one selected by existing DVFS algorithms under fully preemptive or

non-preemptive models. Conversely, for those architectures in which the use of low-

power states is more convenient (DPM-sensitive architectures), the offline stage returns

the highest available speed. In the second stage, a DPM technique is applied online to

prolong idle intervals as long as possible to take advantage of low-power states. It is

shown that such a technique is able to significantly decrease energy consumption with

a negligible runtime overhead. This is possible thanks to the offline phase, used to

compute the longest delay that can be added after an idle interval to keep the processor

in sleep mode, so avoiding complex online computations.

Experimental results illustrate the benefits of the presented techniques under differ-

ent architectural parameters, including the break-even time and the preemption over-

head. With respect to other proposed algorithms [CK06] our method delays task exe-

cutions rather than job arrivals, allowing a further reduction of the number of preemp-

tions. Since the algorithm is invoked when the processor becomes idle, spare times

due to early terminations are automatically reclaimed. No extra hardware is required,

except for a timer (active also when the processor is in sleep mode) needed to han-

dle the wake-up events. Concerning complexity, even though the offline analysis is

pseudo-polynomial, at runtime the algorithm has a constant complexity, O(1).
The analysis proceeds introducing in Section 4.1.1 the system model. The moti-

vation example in Section 4.1.2 shows the ample room of improvement given by the

limited preemptive model. Section 4.1.3 reports the schedulability analysis for the lim-

ited preemptive task model that is adopted in this paper. Section 4.1.4 presents the

proposed solution and an implementation of the algorithm, while Section 4.1.5 reports

the experimental results obtained by exhaustive simulations.

4.1.1 System model

In accordance with the model in Chapter 2, we consider a set Γ of n fixed priority peri-

odic tasks, τ1, τ2, . . . , τn, executing upon a single processor platform with preemption

support. Priorities are assigned according to Rate Monotonic. Without loss of general-

ity, we assume that tasks are indexed in decreasing priority order (i.e., if 0 < i < j ≤ n,

then τi has higher priority than τj ).

In addition, each task τi consists of a sequence of non-preemptive chunks and can

be preempted only at the end of a chunk. For the sake of the analysis, the duration of

the longest chunk (at the current speed s) is denoted as qmax
i (s), and the one of the

last chunk is denoted as qlasti (s). Note that the last non preemptive chunk of a task

is crucial for decreasing its response time, because it reduces the interference from

higher priority tasks. For this reason, it is convenient to make the last chuck as long

as possible. However, qmax
i (s) can not be arbitrarily large to limit the blocking time

imposed to higher priority tasks. Note that, under such a model, tasks do not need to be

independent, but can interact through shared resources, provided that critical sections

are entirely contained within a non-preemptive chunk.
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The worst-case execution time (WCET) of τi is computed as CNP
i (s) = αiC

NP
i +

(1−αi)C
NP
i /s, where CNP

i denotes the time to execute τi in a non-preemptive mode

at the maximum speed (CNP
i = CNP

i (sm)) and αi represents the portion of execution

time that does not scale with the speed (e.g. I/O operations). Moreover, the symbol

Ci(s) denotes the worst-case execution time of task τi in limited preemptive mode,

including the preemption overhead. Relative deadlines can be smaller than, equal to,

or greater than periods. All parameters are assumed to be in N
+.

4.1.2 Motivational examples

To illustrate the benefit of limited preemption scheduling to save energy, two analysis

are here reported. The first one shows the perk which comes from the increased number

of feasible task sets in terms of lowest feasible speed, whereas the second, which is

extracted from [BBMB13b], highlights the side effect of the preemption overhead on

the overall energy consumption.

Impact of the higher number of feasible task sets

Consider a processor with two speeds, s1 = 0.5 and s2 = 1, without low-power

states (the processor is always on), executing two tasks, τ1 and τ2, with the following

parameters: C1 = 30, T1 = D1 = 80, C2 = 25 and T2 = D2 = 200 (computation

times are referred to speed s2). Tasks are scheduled using Rate Monotonic and, for the

sake of simplicity, preemption costs are considered negligible and ∀τi : αi = 0. The

processor utilization factor at speed s2 is U = 0.5 and the task set is feasible under

fully-preemptive, non-preemptive, and limited preemptive scheduling. Switching to

s1, however, computation times become C1 = 60 and C2 = 50, making the task set

unfeasible under both fully-preemptive and non-preemptive modes. Nevertheless, a

feasible schedule can be found under the limited preemptive model by splitting task τ2
into three chunks of length 10, 20, and 20 units of time, respectively, under speed s1.

The schedules produced by the Rate Monotonic under the three different preemption

modes are shown in Figure 4.1.

This example shows that, using the limited preemption model, the processor can run

with a speed lower than that allowed by fully-preemptive and non-preemptive models,

hence saving more energy.
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Figure 4.1: Schedules produced by Rate Monotonic at speed s = 0.5 under Non-

Preemptive (NP), Fully-Preemptive (FP), and Limited Preemptive (LP).
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Impact of the preemption overhead

Let us consider synthetic task sets composed of 10 periodic tasks, randomly generated

using the UUniFast algorithm [BB05], with computation times uniformly distributed

in the interval [100, 500].
Simulations have been carried out assuming a processor with 19 discrete uniformly

distributed speeds and power model P (s) = 0.9s3 + 0.1. For the sake of simplicity, a

single sleep state σ is considered, with Pσ = 0.0025, and Eσ = 0.1 · Bσ, where the

break-even time Bσ = 500 (as long as the longest computational time).

All simulations have been performed on the VOSS algorithm, by Chen and Kuo

[CK06] as it is the state of the art under fixed priority systems. It is worth noticing that

VOSS is an online algorithm with a complexity of O(n · log(n)), which has to be paid

at each idle interval.

Figure 4.2 reports the energy improvement of VOSS for different preemption costs

(ξ ∈ {0, 5, 10}), with respect to a plain DVFS solution with no preemption overhead.

Setting ξ = 10, the energy improvement at U = 0.7 drops from almost 10% down

to less than 4%. This is due to the large preemption number in the considered systems.

As noted by Kim et al. [KKM04], executing at the lowest possible speed leads to an

increase in the number of preemptions. The reason is that there is less idle time, so

that higher priority arrivals are more likely to happen when another task is executing,

leading to a preemption. This causes an additional workload that must be executed by

the system, increasing the energy consumption.

Increasing the utilization, the performance loss due to preemptions is larger. Com-

paring the curves with ξ = 0 and ξ = 10, the energy loss due to the preemption

overhead goes from 1−2% at utilization 0.4, to 6−7% at utilization 0.8. Note that the

number of preemptions is almost constant at different utilizations, due to speed scal-

ing. The performance loss at higher utilizations is instead due to the larger impact of

the preemption overhead when executing at higher speeds. The additional overhead is

executed at energy-expensive speeds, increasing the overall consumption.

This analysis briefly shows that a model which keeps the preemption number under

control may reduce the overall dissipation more effectively.
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Figure 4.2: Percentage of saved energy with ξ ∈ {0, 5, 10}.
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4.1.3 Background on limited preemption

The limited preemption scheduling model has been introduced to limit the preemption

overhead of fully preemptive schedulers, without incurring in the blocking overhead of

non-preemptive solutions. According to this model, each task is divided into a set of

non-preemptive regions, so that preemptions can take place only at chunk’s boundaries.

Two different sub-models have been defined in the literature. In the Floating Non-

Preemptive Region model [BB10,YBB09], the location of each non-preemptive region

is not known a priori, but might vary during task execution. Instead, in the Fixed Non-

Preemptive Region model [Bur94,BLV09], a set of fixed preemption points is statically

defined for each task, so that a task might be preempted only at these well-determined

points. This last model has been shown in [BBY11a] to dominate all other techniques,

since it is able to schedule a strictly larger number of task sets than the fully preemptive,

the non-preemptive and the floating non-preemptive region models. This model, which

will be adopted throughout the remainder of the paper, has several benefits, including:

• A bounded preemption number, strictly smaller than the number of chunks;

• A simpler and tighter evaluation of the preemption overhead, as a task can be

preempted only at a small number of deterministic locations;

• A smaller preemption cost due to a smaller cache-related preemption delay, by a

reduced number of cache misses;

• A smaller worst-case memory stack, which is used to store the contexts of the

running and suspended tasks [BBM+10];

• A simplified management of the mutual exclusions, as critical sections contained

in a non-preemptive chunk do not need any shared resource protocol.

An exact scheduling analysis for such a model was provided by Bertogna et al.

[BBY11a]. Here, the main results are reported, adapting them to the task model con-

sidered in this paper (in particular, considering the dependence of the execution param-

eters to the processing speed).

Note that the number of chunks into which a task is divided depends on the selected

speed and is denoted as pi(s). The duration of the k-th chunk of task τi at speed s is

denoted as qi,k(s). Hence, the task computation time with limited preemption (at speed

s) can be also expressed as the sum of the chunk durations: Ci(s) =
pi(s)
∑

k=1

qi,k(s). Note

that the preemption overhead is included within each chunk length qi,k(s), and the

worst-case execution time which considers preemption overhead is

Ci(s) = CNP
i (s) + ξ · (pi(s)− 1). (4.1)

The maximum length qmax
i (s) of a chunk is computed for a specific speed, as ex-

plained in Section 4.1.4. Then, the last chunk is assigned the maximum length, setting

it to qlasti (s) = qmax
i (s), in order to reduce as much as possible the interference on the

considered task. The remaining chunks are all assigned the maximum length qmax
i (s),

except for the first one, which takes the remaining computation time1. Therefore,

pi(s)
def
=

⌈

CNP
i (s)− qmax

i (s)

qmax
i (s)− ξ

⌉

+ 1. (4.2)

1Actual chunk sizes might be slightly smaller to accommodate potential critical sections within a non-

preemptive region. In this way, there is no need of any shared resource protocols.
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{

qi,1(s) = Ci(s)− (pi(s)− 1)qmax
i (s)

qi,j(s) = qmax
i (s) ∀j ∈ [2, pi(s)].

(4.3)

The maximum blocking time Bi(s) actually experienced by a generic task τi can

then be computed as

Bi(s) = max
i<j≤n

{

qmax
j (s)− 1

}

. (4.4)

Another important parameter useful for checking the feasibility of a task τi is the

maximum amount of blocking that τi can tolerate from lower priority tasks without

violating any of its deadlines. Such a time is referred to as blocking tolerance and is

denoted as βi(s). As shown in [BBY11a], the blocking tolerance of task τi can be

computed as the minimum blocking tolerance among all its jobs arriving in the largest

level-i active period Li:

βi(s) = min
k∈[1,Ki]

βi,k(s), (4.5)

where Ki is the number of jobs in Li: Ki =
⌈

Li

Ti

⌉

, and Li is the largest level-i active

period, computed recursively as















L
(0)
i (s) = Bi(s) + Ci(s)

L
(l)
i (s) = Bi(s) +

i
∑

j=1

⌈

L
(l−1)
i (s)

Tj

⌉

Cj(s),
(4.6)

until L
(l)
i (s) = L

(l−1)
i (s)2.

Finally, as shown in [BBY11a], the blocking tolerance of job τi,k can be computed

as

βi,k(s) = max
t∈Πi,k

{

t− kCi(s) + qlasti (s)−Wi(t, s)
}

, (4.7)

where Πi,k(s) is the set of arrivals of jobs interfering with τi,k:

Πi,k(s)
def
=

[

(k − 1)Ti, (k − 1)Ti +Di − qlasti (s)
]

⋂

{hTj − 1, ∀h ∈ N, j ≤ i}
⋃

{

(k − 1)Ti +Di − qlasti (s)
}

,

(4.8)

while Wi(t, s) represents the cumulative execution request of all tasks with priority

greater than τi over any interval [a, b] of length t. It is computed as

Wi(t, s)
def
=

i−1
∑

j=1

RBFj(t, s). (4.9)

For any task τi and any non-negative number t ∈ N
+, the request bound function

RBFi(t, s) denotes the maximum sum of the execution requests at the specific speed s
that could be generated by jobs of τi arriving within a contiguous time-interval [a, b] of

length t, considering the preemption costs. It has been shown [LSD89] that the request

bound function for a task τi is:

RBFi(t, s)
def
=

(⌊

t

Ti

⌋

+ 1

)

Ci(s). (4.10)

2As shown in [BBY11a], βi,1(s) can be used as an upper bound of Bi(s), whenever the latter value is

not known.
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As a result of the provided analysis, a task set is considered feasibile at speed s
under the limited preemptive task model if and only if all the task blocking tolerances

are not negative, i.e. ∀τi ∈ Γ : βi(s) ≥ 0.

4.1.4 Proposed approach

The proposed approach consists of a two-stage algorithm: the first step is executed

offline and computes the slowest available speed that guarantees the task set feasibility

(also considering preemption costs and energy model). The computed speed is set

at the system start and is never changed during execution. The second part of the

algorithm is executed at runtime and aims at prolonging the idle intervals as long as

possible for exploiting the sleep state, as short idle intervals might not be usable due to

the break-even time.

The offline stage of the algorithm is analyzed first, then the online stage is detailed.

An example concludes the presentation in order to better show how the algorithm works

in practice.

DVFS Algorithm

The offline stage of the method, reported in Algorithm 1, consists of finding the slowest

speed that guarantees the task set feasibility, considering the worst-case preemption

costs and the particular power function P (s). The speed found by this procedure is

never changed at run time.

Algorithm 1 DVFS algorithm

1: function DVFS ALGORITHM (Γ, ξ)

2: s∗ ← compute critical speed ()
3: S′ ← {s ∈ S | s ≥ s∗}
4: for each s ∈ S′ do

5: βmin ←∞
6: for i ∈ [1, n] do

7: qmax
i ← min (Ci(s), βmin + 1)

8: βi ← compute task tolerance (i, s, ξ)
9: βmin ← min (βi, βmin)

10: if βmin < 0 then

11: break

12: end if

13: end for

14: if βmin ≥ 0 then

15: return [s, βmin]
16: end if

17: end for

18: return No speed found
19: end function

The algorithm receives as input the task set Γ and the worst-case preemption cost

ξ. The first line of the code computes the critical speed s∗, as described in Section 2.1.

Then, the speed subset S′ is created by sorting the speeds in ascending order and dis-

carding those that are smaller than s∗, since they are not convenient from an energy

point of view. Speeds greater than s∗ might instead be needed when the task set is
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not feasible at s∗. For DPM-sensitive architectures, S′ will contain only s∗ = 1.0,

even though lower speeds might be feasible. For each speed in S′ (cycle at line 4), all

parameters introduced in Section 4.1.3 are computed to find a feasible solution. When

a speed that leads to a feasible solution is found, the procedure provides the feasible

speed and the corresponding minimum blocking tolerance, denoted as βmin.

The cycle at line 6 checks, from the highest to the lowest priority task, whether

the considered task can be executed at such a speed without missing deadlines. The

feasibility test is done at line 10 by checking whether βmin (the minimum blocking

tolerance among the tasks analyzed so far) is negative. In fact, βmin < 0 means that

a task may be blocked by a lower priority task for a time longer than its slack. The

value of βmin is first initialized for each speed at line 5 and then updated at line 9

based on the blocking tolerance of the current task (computed at line 8 according to

Equation 4.5).

Once all the tasks have been considered at a specific speed, if the minimum block-

ing tolerance is not negative, then the algorithm completes successfully as the slowest

speed that guarantees the feasibility has been found. At this point, the length of each

chunk is easily computed by Equation 4.3.

Note that Algorithm 1 increases the complexity of the preemption point placement

procedure (which is pseudo-polynomial) by a factor of m (the speed number).

DPM Algorithm

Once the slowest feasible speed has been found for scheduling the task set under limited

preemption, a further power reduction can be obtained by exploiting low-power sleep

states. Indeed, whenever the processor can be left idle for an amount of time larger

than Bσ (the break-even time) without missing any deadline, it is convenient to switch

to the sleep state to save more energy. The longer the processor can remain in sleep

mode, the smaller the energy consumption.

In this section we present a new online DPM algorithm that exploits limited pre-

emptive scheduling to extend idle intervals as much as possible. The idea behind the

proposed algorithm is that, whenever a new job arrives and the processor is idle, this

job can be delayed by at least the minimum blocking tolerance βmin. In this way, the

processor can safely remain in sleep mode for a longer time. An advantage of the pre-

sented method is that it does not require any particular online computation of the slack

times of the incoming jobs. All meaningful parameters are statically computed before

runtime, and no external hardware is needed to compute the length of the idle times

and to enforce the sleep states.

The larger blocking tolerances allowed under limited preemptive scheduling [BBY11b]

can extend the sleep time to save a significant amount of power, comparable to the

power saved by more aggressive online DPM algorithms that require a much higher

runtime computational effort. As an example, the algorithm presented in [CK06] re-

quires building the schedule after each idle instant until the earliest deadline, computing

the idle time of each job in the considered window, and postponing the arrival of each

job by the corresponding idle time. Everything needs to be done online, whereas the

algorithm presented here is able to obtain a similar performance without any of the

above online operations.

The pseudo code of the DPM procedure is reported in Algorithm 2 and is invoked

every time a job ends and the ready queue is empty. The algorithm takes as input the

parameters of the task set (Γ) and as a result it prolongs the idle intervals as much
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as possible by postponing the execution of the jobs that may arrive in between, still

preserving their deadlines.

Algorithm 2 DPM algorithm

1: function DPM ALGORITHM (Γ)

2: t← current time ()
3: tact ← next arrival ()
4: tup ← tact + βmin

5: if (tup − t) ≥ Bσ then

6: sleep for (tup − t−Bσ→s)
7: wake up ()
8: end if

9: end function

After reading the current time t, the algorithm invokes a function that returns the

arrival time of the next job. Then, the minimum blocking tolerance computed by Al-

gorithm 1 is added to the arrival time in order to find when the system can be awaken

without missing any deadline.

In case the interval spendable in sleep mode is longer than the break-even time Bσ ,

the routine invoked at line 6 handles all the operations to switch into sleep mode. More

precisely, this function sets the job arrival interrupt mask, sets an external timer to send

an external waking up interrupt at time tup−Bσ→s and physically switches the system

off.

As soon as the external waking up interrupt arrives, the code execution is recovered

from line 7, which unmasks job arrival interrupts and handles pending job activations.

The particular way in which the DPM algorithm is implemented allows extending

the sleep state and taking advantage of different slack sources:

• unused processor bandwidth related to task set utilizations smaller than one (at

the critical speed) and idle times due to the use of a speed higher than the optimal

one, since only a discrete set of speeds is available;

• spare capacities associated to early task terminations are automatically reclaimed

by the work-conserving nature of the scheduler and collected in the first idle

interval.

Note that no external hardware controller is needed to implement the DPM al-

gorithm, except for a simple timer (available in most of the processors) that is pro-

grammed by the processor itself before entering the low-power sleep state.

Assuming that task activations are retrieved in constant time, the complexity of the

presented DPM algorithm is O(1), making it suitable even for the simplest micropro-

cessors.

Algorithm example

To better explain the proposed algorithm, let us consider a system with four speeds

s1 = 0.3, s2 = 0.6, s3 = 0.7 and s4 = sm = 1.0, power function P (s) = 0.9s3 + 0.1
and break-even time Bσ = 10. The task set consists of two periodic tasks, τ1 and τ2
characterized by C1 = 18, C2 = 42 (at s = 1.0), T1 = 60, T2 = 150 and hyperperiod

of 300. For the sake of simplicity, preemption costs are considered negligible and

∀τi : αi = 0.

36



The DVFS algorithm starts computing the critical speed s∗ = 0.4, which lets us

discard s1 from the analysis. The first speed taken into account is s2, at which com-

putation times become C1(s2) = 30 and C2(s2) = 70, causing a negative blocking

tolerance. Thus, the procedure considers next speed s3, at which computation times

become C1(s3) = 26 and C2(s3) = 60, the blocking tolerance is βmin = 34, and the

task set is feasible. Thus, the algorithm stops. According to this configuration, τ1 runs

in a non-preemptive way for all its execution and τ2 is split into two chunks of 26 and

34 units of time, respectively.

The task set execution at the slowest feasible speed without using the DPM algo-

rithm is reported in Figure 4.3. Many idle intervals shorter than Bσ are present in the

schedule, leading to a waste of energy.

t

τ1

τ2

Figure 4.3: Task execution at speed s3 without using the DPM algorithm on a DVFS-

sensitive architecture.

The advantage of introducing the DPM algorithm is shown in Figure 4.4. The

algorithm is invoked for the first time at the end of the second job of τ1 and all the

small idle times are collected into a single longer interval, postponing the execution of

the third job of τ1 and the second job of τ2.

t

τ1

τ2

P (t)

βmin

Figure 4.4: Task execution at speed s3 using the DPM algorithm on a DVFS-sensitive

architecture.

A new instance of the DPM algorithm is launched before the end of the hyperpe-

riod. Since βmin is longer than the break-even time Bσ, the processor switches to the

sleep state.

For DPM-sensitive architectures, the only speed taken into account is the maxi-

mum one (s = s∗ = 1.0) which leads to a feasible schedule. The two tasks contain

only a single chunk each, meaning that they are executed in a non-preemptive way,

with βmin = 42. As shown in Figure 4.5, scheduling the task set without using the

DPM algorithm generates several idle intervals, which are compacted when the DPM

algorithm is enabled (as depicted in Figure 4.6).

4.1.5 Experimental results

The synthetic task sets used in the tests are composed of 10 periodic tasks randomly

generated using the UUniFast algorithm [BB05], where the total utilization U is var-

ied in a given range and each computation time CNP
i (sm) is uniformly distributed in
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t

τ1

τ2

Figure 4.5: Task execution at speed sm without using the DPM algorithm on a DPM-

sensitive architecture.

t

τ1

τ2

P (t)

βmin

Figure 4.6: Task execution at speed sm using the DPM algorithm on a DPM-sensitive

architecture.

[100,500]. For the sake of simplicity, αi = 0.2 is set for each task. In these tests,

relative deadlines are set equal to periods, which are derived once computation times

and task utilizations have been generated. Tasks are scheduled under fixed priorities

assigned with the Rate Monotonic algorithm and each simulation run is performed until

the hyperperiod.

A processor with 19 discrete speeds has been considered, varying in the range of

[0.1, 1] with step 0.05.

Two power models have been considered in the experiments: P (1)(s) = 0.9s3+0.1
and P (2)(s) = 0.278s+0.722. The first one is often used in literature to model DVFS-

sensitive architectures and is characterized by a critical speed s∗ = 0.4. The second

one represents the power consumption of a NXP LPC1768 (Arm Cortex M3), mod-

eling a DPM-sensitive architecture with s∗ = sm (making speed scaling not energy-

convenient). The power consumed in the sleep state and the energy required for a com-

plete state transition (from active to sleep and then back to active) are P
(1)
σ = 0.05,

P
(2)
σ = 0.4, E

(1)
σ = 0.051 ·Bσ and E

(2)
σ = 0.45 · Bσ.

The experiments are divided in two parts: the first set shows the performance of

the two phases of the proposed method under several scenarios, whereas the second set

aims at comparing the proposed approach with the VOSS algorithm presented by Chen

and Kuo [CK06].

Performance of the proposed approach

The first experiment aims at testing the impact of the DVFS algorithm under different

scheduling approaches. In particular, the average lowest speed achieved by the limited

preemptive scheduler is compared with the ones obtained by the fully preemptive and

non-preemptive schedulers, for different task set utilizations and under different pre-

emption costs. Only two preemption costs are shown: ξ = 0 and ξ = 10. The second

value represents a system with a preemption cost equal to one tenth and one fiftieth of

the shortest and longest possible task execution (as CNP
i ∈ [100, 500]), respectively.

For each utilization, the average lowest speed was computed over 700 feasible task

sets.
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Figure 4.7 reports the resulting average lowest feasible speed as a function of the

utilization factor. Note that, although the non-preemptive scheduler does not suffer

from preemption overhead, it always requires the highest speed. Moreover, the speed

found under fully-preemptive scheduling is always higher than or equal to the one un-

der limited preemption, even with zero preemption cost. Such a benefit comes from the

capability of limited preemptive schedulers of increasing the number of feasible task

sets. Note that the introduction of a preemption cost ξ = 10 leads to a significant speed

increase for the fully preemptive model, while its impact on the limited preemptive

scheduler is almost negligible. Also observe that, for utilizations higher that U = 0.9,

only the limited preemptive approach can achieve a feasible schedule for a significant

number of generated task sets (at least one out of two). Finally, the plateau observed

for U > 0.92 under the limited preemptive model is due to the fact that almost all the

feasible task sets require a speed of one, while most generated task sets are discarded

since their feasibility could be guaranteed only with a speed greater than the maximum

one. This leads to an average value near to s = 1 for several utilization points.
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Figure 4.7: Average lowest speed for different schedulers and preemption costs.

The second experiment aims at evaluating the energy saved by the two-step algo-

rithm with respect to the case in which the processor is kept always active at s = 1.

The power model considered in this test is P (1)(s), representing a DVFS-sensitive ar-

chitecture, since in DPM-sensitive architectures the DVFS stage would not introduce

any contribution, always returning the maximum speed.

Results are reported in Figure 4.8 for ξ = 10 and two values of Bσ (0 and 500

time units). The Pure DVFS curve represents the energy consumption obtained by us-

ing only the DVFS step. The introduction of the DPM stage allows a further energy

reduction, which is about 8%, in the best case. Note that high break-even times push

the curve closer to the one of pure DVFS, as the algorithm is not able to switch the

processor off during all idle intervals. For the sake of completeness, the figure also

shows the behavior of the algorithm under a pure DPM approach, where only the sec-

ond stage is considered at the maximum speed. Since the power model is intrinsically

speed scaling-convenient, DPM consumes more than the others, even assuming a null

break-even time.
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Figure 4.8: Energy saved by our approach with respect to running always at the maxi-

mum speed s = 1.

Comparison with VOSS

A second set of experiments was carried out to compare the proposed approach against

existing solutions available in the literature. Among the existing works that deal with

fixed priority systems and that do not require additional hardware controllers, the algo-

rithm that showed the best performance in terms of energy saving is VOSS, presented

in [CK06]. We therefore decided to compare our algorithm only against VOSS, as the

improvements over other existing solutions would be even greater. However, it is worth

noticing that VOSS is an online algorithm with a complexity of O(n·log(n)) to be paid

at each idle interval, whereas our online algorithm is O(1). Finally, an improved ver-

sion of VOSS is adopted that computes the feasible speed using the tighter Response

Time Analysis [ADM11] (including preemption costs) instead of Liu and Layland’s

bound [LL73].

Figure 4.9 shows the energy percentage saved by the proposed approach with re-

spect to VOSS as a function of the total utilization, using the P (1)(s) model and for

different preemption costs (ξ ∈ {0, 10}) and break-even times (Bσ ∈ {250, 500, 750}).
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Figure 4.9: Energy percentage saved by the proposed approach with respect to VOSS,

for a DVFS-sensitive architecture.
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As shown in the graph, the energy improvement of our approach (considering both

DVFS and DPM algorithms), when the preemption cost is neglected, is around 7%. Us-

ing more realistic values for the preemption overhead (one tenth of the shortest task),

the improvement increases up to 16%. This is a consequence of the reduced number

of preemptions of our approach, which makes it even more competitive for higher pre-

emption costs. The impact of the break-even time is smaller, although the longer Bσ ,

the higher the gain. The reason is that our method exploits longer blocking tolerances

than VOSS, overcoming the break-even time limit more easily. When Bσ is either

too long or too short, the performance of the DPM algorithms are equivalent. At high

utilizations, the margin of improvement is barely usable, due to the reduced number

of feasible task sets and the short idle time, so the behavior of the two algorithms is

similar. Note that, for ξ = 10, the analysis ends at U = 0.9 as there are no feasible

task sets under fully preemptive scheduling.

The two algorithms have also been compared under the second power model P (2),

typical of DPM-sensitive architectures, under which the speed returned by our offline

DVFS algorithm is always equal to the maximum available (never exploiting the speed

scaling feature), and the whole energy improvement is due to the DPM algorithm.

Figure 4.10 reports the improvements achieved by the proposed approach with re-

spect to VOSS as a function of the total utilization, with Bσ ∈ {250, 500, 750} and

ξ ∈ {0, 10}.
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Figure 4.10: Energy percentage saved by the proposed approach with respect to VOSS,

for a DPM-sensitive architecture.

Note that the proposed approach always outperforms VOSS. Also, increasing the

preemption cost leads to a higher improvement, as the context switch overhead of the

fully-preemptive model becomes higher. For the same value of ξ, the higher Bσ , the

higher the energy gain, as the blocking tolerance used to delay task execution under the

limited preemption model is longer than that in fully preemptive mode. This happens

up to a certain utilization, after which no algorithm is able to postpone task execution

for a time longer than Bσ . When U = 0.75, our algorithm consumes almost 6% less

than VOSS. The improvement would be even bigger when accounting for the additional

number of online operations required by VOSS at every idle time (O(n log(n)) instead

of O(1)).
An additional experiment showed that by increasingαi, the DVFS algorithm is able

to reach slower speeds (as a more significant fraction of the task code is not affected
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by speed), so leading to higher savings than those reported in Figure 4.9. For DMP-

sensitive platforms, the results shown in Figure 4.10 are not influenced by αi as speeds

lower than sm are not taken into account.

4.2 Energy-aware co-scheduling of tasks and messages

This paper addressed the problem of reducing the energy consumption in embedded

nodes with time and communication constraints. The proposed solution, referred to

as DEAS (Discrete Energy-Aware Scheduling), reduces the energy dissipation by ex-

ploiting both DPM and DVFS techniques, balancing them according to the specific

architecture characteristics, actual workload, and bandwidth allocation.

In distributed systems, processor and network bandwidth must be taken into ac-

count to guarantee performance requirements. In particular, in wireless distributed em-

bedded systems, energy consumption and quality of service represent two crucial de-

sign objectives. Although a lot of research has been done to reduce power consumption

while guaranteeing real-time and bandwidth requirements, most papers focus either on

task scheduling or network communication, separately. However, co-scheduling of task

and messages would explore more degrees of freedom and could lead to higher energy

saving.

To simplify the analysis, in this paper the communication bandwidth is assumed to

be statically allocated according to a TDMA scheme and the platform is forced to be

active during such intervals.

This work improves the approach previously proposed by Santinelli et al. [SMP+10]

in several directions. First of all, tasks are assumed to be sporadic, rather than periodic.

Second, the DVFS model is more realistic, since the CPU frequency is assumed to vary

within a set of discrete values, rather than in a continuous range. Third, the algorithm is

completely redesigned to consider the effects of the execution platform, while contain-

ing the overall computational complexity. Finally, the experimental section includes

new test cases and simulation results.

Section 4.2.1 presents the differences in the system model. A background on

schedulability analysis is reported in Section 4.2.2, while Section 4.2.3 illustrates the

proposed algorithm. Section 4.2.4 ends the analysis with the simulation results carried

out to evaluate the performance of the approach.

4.2.1 System model

We consider a distributed real-time embedded system composed by autonomous nodes

interconnected through a shared media (e.g., wireless communication). A generic node

executes a set Γ = {τ1, . . . , τn} of sporadic tasks scheduled by Earliest Deadline First

(EDF) [LL73].

In addition to the parameters in Chapter 2, each task τi produces a message mi

characterized by a payload Mi and a deadline Li relative to the task activation, such

that Li > Di. The absolute deadline of the message produced by job τi,j is denoted by

li,j = ri,j + Li.

The analysis we are proposing assumes a given bandwidth allocation specified ac-

cording to a Time Division Multiple Access (TDMA) scheme, modeled as a set of

disjointed slots B = {slot1, . . . , slotr}, where each slot slotk is described by a start

time bsk and an end time bek. Such slots are externally assigned by a network coor-
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dinator that guarantees that messages are transmitted/received within their deadlines.

However, the design of the coordinator is out of the scope of this work.

To simplify the power management algorithm, task scheduling is decoupled from

message communication by making the following assumptions:

1. The messages generated by a task are moved into a shared communication buffer

and transferred to the transceiver internal buffer whenever the bandwidth is avail-

able. The transfer time is considered to be negligible;

2. To allow messages transfer between buffers, the processor must be active during

communication slots, whereas CPU activity is not required outside such inter-

vals;

3. The bandwidth slots allocated by the external network coordinator are such that

any scheduling algorithm that guarantees the timing constraints of the task set

also meets the messages deadlines.

A graphic explanation about all the defined parameters is reported in Figure 4.11

for both the computational and the communication components.
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Figure 4.11: Timing parameters for a task (b) and its generated message (a).

Each node consists of a CPU (processing element) and a Transceiver (transmitting

and receiving element). The CPU supports speed scaling and can be in active, standby

(σ1) or sleep (σ2) state. In active mode, the power consumption is computed according

to Equation 2.3 and the available speeds are bounded in number. The break-even times

of the low-power states are negligible and non-negligible, respectively.

In this work, we assume the usage of a standalone transceiver with minimal func-

tionality, with only two states: ON and OFF . As the transceiver implements only the

physical layer of the communication stack, the computational unit has to manage the

remaining layers. This choice forces the device to be OFF if the CPU is in Standby or

Sleep states. As our analysis needs only these two fundamental working states, it is ap-

plicable to all existing communication devices. In the following, the transceiver power

consumption in the ON and OFF states are denoted as Pon and Poff , respectively.

Radio On Radio Off

CPU Sleep Not allowed Pσ2
+ Poff

CPU Standby Not allowed Pσ1
+ Poff

CPU On P (s) + Pon P (s) + Poff

Table 4.1: Allowed power modes.

Table 4.1 summarizes all the allowed modes with their total power consumption.
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4.2.2 Background on schedulability analysis

Schedulability analysis of the task set is performed using the demand bound function

dbf [BMR90] to describe the application computational requirements, and the supply

bound function sbf [SL08] to characterize the service provided by the processor.

In the case of EDF, Baruah [Bar03] showed that the dbf of a sporadic task set, in a

generic interval, can be computed as

dbf(t1, t2) =
∑

i∈Γ

(⌊

t2 + Ti −Di

Ti

⌋

−

⌈

t1
Ti

⌉)

Ci. (4.11)

In the processing model considered in this paper, the processor can run at a speed

s whenever the processor is in active mode, while it is steady if the processor is in

standby or sleep mode. Hence, the sbf linearly increases with slope s when the CPU

is active, and remains constant in standby and sleep states. For a given power state, the

sbf in an interval [t1, t2) is computed as

sbf(t1, t2, f) = (t2 − t1)s. (4.12)

The real-time constraints of a scheduling component are met if and only if, in any

interval of time, the resource demand of the component never exceeds the resource

supply curve. That is, if and only if

∀t1, t2 ∈ ℜ
+, t2 > t1, dbf(t1, t2) ≤ sbf(t1, t2, s). (4.13)

Ripoll [RCM96] gave an upper bound La on the time interval in which Equa-

tion (4.13) must be checked, under the assumption that Di ≤ Ti for each task τi.
This work extends such an analysis taking into account the system speed s as

La(f) = max
{

D1, . . . , Dn,
∑

i
(Ti−Di)Ui

s−U

}

.

Spuri [Spu96] also defined the Busy Period (BP ) as the longest interval of time

where the processor is never idle, computed assuming synchronous and offset-free ac-

tivations of tasks. This work extends the concept of BP considering a system working

at speed s. Hence, BP (s) can be used as another upper bound for the schedulability

test. Therefore, if U < s, to guarantee the feasibility it is sufficient to check Equa-

tion (4.13) just at the task deadlines in [t1, t1 + L∗(s)), where L∗(s) is defined as

L∗(s) = min{La(s), BP (s)}. (4.14)

To speed up the schedulability test, the QPA algorithm proposed by Zhang and

Burns [ZB09] could be used in our approach.

4.2.3 Proposed approach

The proposed approach mixes at runtime DVFS and DPM techniques to reduce energy

consumption while meeting all task deadlines. The combination of DVFS and DPM

is done by forcing a CPU sleep interval followed by an active interval executed at a

fixed speed. Such a speed is selected to minimize the energy (per unit of computation)

between the current and the next invocation of the analysis.

The j-th instance of the analysis is performed either at the end of an active interval

or at the end of a communication slot. The former instant represents the beginning of
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an idle period that can be prolonged further by the analysis, while the latter is selected

to exploit the slack, if any, collected during the forced activity inside the slot.

The following terminology is used to identify particular timing instants.

• t denotes the current time;

• next act(t) denotes the next activation time after t;

• taj
denotes the time at which the j-th instance of the analysis is invoked. If

there are pending jobs at time t, taj
is set at the current time t, otherwise taj

is

postponed at next act(t):

taj
=

{

next act(t), if no pending jobs at t;

t, otherwise.
(4.15)

The index j referring to a particular instance will be omitted whenever not nec-

essary;

• twi
denotes the latest time after taj

at which the processor can return active with

speed si and still guarantee the schedulability of the task set;

• tidlei denotes the first idle time after twi
assuming the processor is executing at

speed si;

• tei denotes the effective time at which the processor can become idle considering

the activity constraint inside bandwidth slots. Hence, if tidlei falls before bsk, tei
is set at tidlei ; otherwise tei is forced to occur at the end of the bandwidth slot,

that is, tei = bek.

When the analysis is invoked at time ta, the following actions are performed:

1. For each speed si, the analysis derives the longest inactive interval δi exploitable

in sleep state from ta, such that the task set is still feasible when the CPU is

turned active at ta+ δi. A negative value of δi implies that the task set can not be

schedulable at that speed. δi is determined as the minimum among the inactive

intervals computed for each deadline, that is

δi(t) = min
dj∈[t,t+L∗(fi))

{

dj −
dbf(t, dj)

si
− t

}

; (4.16)

2. To ensure that the CPU is active during the assigned bandwidth slots, the wake

up time twi
is set equal to the minimum between ta + δi and the beginning of

the next slot bsk
twi

= min{ta + δi(ta), b
s
k}; (4.17)

3. For each speed si, the analysis also computes the next idle time tidlei from twi

assuming worst-case executions. In particular, tidlei is computed as the mini-

mum value satisfying the following recurrent relation:

ts+1
idlei

(ta) =
∑

τj active

cj(ta)

si
+

∑

j∈Γ

(⌊

tsidlei
Tj

⌋

−

⌊

ta
Tj

⌋)

Cj

si
.

(4.18)
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initialized with value t0idlei (ta) = ta +
∑

τj active

cj(ta)
si

.

The analysis then computes the effective idle time tei taking into account the

bandwidth constraint.

tei =

{

tidlei , tidlei < bsk;

bek, otherwise.

4. Under a speed si, the energy consumptionEi in the interval [ta, tei] is computed

as the sum of the energy spent in sleep mode in [ta, twi
] and in active mode in

[twi
, tei ], that is

Ei(ta, twi
, tei) = (twi

− ta)Pσ + (tei − twi
)P (si). (4.19)

Since each speed si causes a different amount of computation in the interval

[ta, tei ], denoted as Wi(ta, tei), the normalized parameter Energy Per Cycle

(EPCi) is introduced, representing the energy cost per instruction cycle. It is

computed as

EPCi(t) =
Ei(ta, twi

, tei)

Wi(ta, tei)
; (4.20)

A detailed analysis about the computation of Wi is carried out in the next sub-

section.

5. Among the possible speeds that guarantee feasibility, the approach selects s∗ fea-

turing the minimum EPCi. t
∗
w and t∗e denote the wake up time and the effective

idle time resulting from the selected speed s∗, respectively;

6. If the interval [t, t∗w) is shorter than taσ+ tσa, it is not possible to adopt the sleep

state to wake up within t∗w, so the standby state is chosen; otherwise, the sleep

state is selected;

7. The instant of the next occurrence of the analysis taj+1
is set equal to t∗e; however,

if the next idle time is advanced due to early completions, the analysis is triggered

as soon as the idle occurs and taj+1
is updated accordingly.

Figure 4.12 illustrates an example that clarifies the steps of the proposed approach.

In the example, the CPU supports three different speeds sorted in ascending order: s1,

s2 and s3.

In the example, speed s1 leads to an unfeasible schedule, since δ1 is negative,

whereas s2 and s3 produce feasible solutions, since both δ2 and δ3 are positive.

Notice that, when considering speed s2, ta+δ2 falls before bsk, hence tw2
= ta+δ2,

whereas for s3, tw3
is set equal to the beginning of the slot bsk, as ta + δ3 ≥ bsk.

For both speeds s2 and s3, te2 and te3 takes the value of bek, as both tidle2 and tidle3
occur after bsk.

To choose between the two feasible speeds (s2 and s3), the normalized energy

consumption is computed. Such a value is intrinsically derived from the platform power

model.

Finally, the algorithm which implements the proposed approach is reported in Al-

gorithm 3.
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Figure 4.12: Example of the analysis’ behaviour.

Algorithm 3 Discrete Energy Aware Scheduling - DEAS

1: function DEAS(t) ⊲ ∀k, t /∈ [bsk, b
e
k)

2: compute ta according to Equation (4.15);

3: for all si do

4: compute δi(ta) as in Equation (4.16);

5: if δi(ta) < 0 then

6: set si not feasible and continue;

7: end if

8: compute twi
according to Equation (4.17);

9: compute tei ,Wi;

10: compute EPCi according to Equation (4.20);

11: end for

12: compute s∗ feasible that minimizes EPCi;

13: set wake up time at t∗w;

14: set CPU speed to s∗;

15: if t∗w − t ≥ taσ + tσa then

16: put the processor in sleep state;

17: else

18: put the processor in standby state;

19: end if

20: end function

Workload computation

The procedure compute te W , which computes the effective idle time tei and the

effective workload Wi is formally defined in Algorithm 4. The algorithm, based on the

current workload, computes next idle times tidlei till tei is found, taking into account

bandwidth constraints. However, note that the procedure output is composed by tei and

Wi only. To reduce the DEAS algorithm complexity, such computations are integrated
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into a single routine.

Algorithm 4 Procedure to compute tei and Wi

1: function compute te W (si, twi
)

2: Wi = 0; tstart = twi
;

3: loop

4: t0idlei = tstart +
∑

τj active
cj(tstart)

si
;

5: do

6: compute tsidlei according to Equation (4.18);

7: if ts−1
idlei

< bek ≤ tsidlei then

8: tei = bek;

9: Wi += (tei − tstart)si;
10: return;

11: end if

12: while ts−1
idlei
6= tsidlei ;

13: Wi += (tsidlei − tstart)si;
14: if tsidlei /∈ [bsk, b

e
k] then

15: tei = tsidlei ;

16: return;

17: else

18: if next act(tsidlei) ≥ bek then

19: tei = bek;

20: return;

21: end if

22: tstart = next act(tsidlei);
23: end if

24: end loop

25: return (tei , Wi)

26: end function

Figure 4.13 shows the effective workload of three key scenarios. For each case,

the effective workload is represented by the sum of the slashed areas. Such a value is

expressed as number of machine cycles, so the working speed must be considered.
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Figure 4.13: Examples of effective workload.

First, to determine tidlei the iterative approach is initialized as previously described.

Whenever tsidlei , at a generic step s, crosses the end of the current bandwidth slot

ts−1
idlei

< bek ≤ tsidlei (cases a and c), the procedure stops setting tei = bek and accounting

in Wi the workload between the beginning of the current Busy Period and the end of

the bandwidth slot bek. Note that, if the recurrent relation converges (ts−1
idlei

= tsidlei )

outside the bandwidth slot, no slot occurs during the analyzed Busy Period, hence
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tei = tsidlei and Wi is increased by (tsidlei − twi
)si. If tsidlei converges inside the

bandwidth slot (cases b and c), Wi is incremented by (tsidlei − twi
)si. Then, the routine

checks whether a new task activation occurs after the end of the current bandwidth slot,

i.e. next act(tsidlei) ≥ bek. In such a case (case b), the effective idle time tei is set to

bek and Wi is increased by (tsidlei − twi
)si; otherwise (case c), the contribution of the

next Busy Period must be taken into account considering next act(tsidlei ) as a starting

instant.

Complexity

Equation (4.15), executed at line 2, has the complexity of an extraction from an ordered

list of task activation times; that is, O(1). On the other hand, the insertion complexity

is O(log2(n)), where n is the number of tasks. Given n and the maximum number of

deadlines a single task can produce in the analysis interval, p, the maximum number of

analysis points of the dbf is np. The upper bound of p is computed as the number of

occurrences of the task with the shortest period in the analysis interval:
⌈

maxiL
∗(fi)

mini{Ti}

⌉

.

Supposing to arrange the active deadlines in a sorted list, with complexity O(log2(n))
(as the active deadlines are always n) to keep the ordering, the computation of dbf ,

executed every time the algorithm is invoked, has a total complexity of O(log2(n)np).
The computation of the δi, at line 4, involves a complexity O(np). The computa-

tion performed at line 9 has a complexity of O(nq), where q is defined as the maximum

number of activations a task can generate in [taj
, taj

+maxiL
∗(fi)+maxk{b

e
k−b

s
k}].

The reason is that the algorithm analyzes all the activations, computing the actual work-

load and any idle gap. The q upper bound is computed as
⌈

maxiL
∗(fi)+maxk{b

e
k−bsk}

mini{Ti}

⌉

.

The computation of the EPCi has complexity O(1). Hence, the for loop, executed

at line 3, has a complexity of O(nF (p + q)), where F is the total number of available

speeds.

Globally, the proposed algorithm has a complexity of O((log2(n) + F )qn), being

q ≥ p.

Example

The behavior of the DEAS algorithm is now illustrated using the example in Fig-

ure 4.14. The assigned bandwidth is composed by one slot in the interval [bs1, b
e
1] equal

to [12,15]. The CPU allows 2 speeds equal to s1 = 0.5 and s2 = 1.0, and schedules

a task set of 2 synchronous implicit periodic tasks with periods T1 = D1 = 5 and

T2 = D2 = 7, and worst-case execution cycles C1 = 1 e C2 = 1. For the task set

under analysis, we have L∗(s1) = 4 and L∗(s2) = 2. The result of the off-line com-

putation for Lmax is 7. The power consumptions in the active state are P (s1) = 3 and

P (s2) = 6, while Pσ2
= 1 and Bσ2

is considered negligible for the sake of simplicity.

The algorithm has its first invocation at ta1
= 0 because two jobs are already

pending. Both speeds guarantee the task set feasibility with wake up times tw1
= 3

and tw2
= 4, respectively.

Executing at speed s1, the first idle time tidle1 occurs at t = 13 because, from time

tw1
= 3, the busy period consists of three instances of τ1 and two instances of τ2, for

a total execution of 10 units of time. Due to the bandwidth activity constraint, te1 is

set to 15. Instead, running at speed s2, the next idle time tidle2 , from time tw2
= 4,

occurs at time t = 8 and, since it falls before bs1, we have te2 = 8. Once the interval
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Figure 4.14: DEAS example.

[twi
, tei ] is determined, the algorithm computes EPC1 = 0.71 and EPC2 = 0.70,

and therefore sets s∗ = s2.

Using s2, the second invocation of the algorithm occurs at t = 8, causing the

postponement of ta2
to t = 10. Running at speed s2, the CPU can wake up at 13,

but, for the activity constraint, tw2
is set to bs1 = 12. Consequently, tidle2 = 13 and

te2 = be1 = 15. Instead, using speed s1, the algorithm obtains tw1
= 12, tidle1 = 18,

and te1 = be1 = 15.

In such a scenario, the energy consumptions are EPC1 = 0.73 and ECP2 = 1,

and therefore the chosen speed is s∗ = s1.

4.2.4 Experimental results

A set of experimental results is here reported to show the effectiveness of our approach

with respect to other classical solutions. The results are obtained by simulation using a

synthetic workload under three power consumption profiles derived from the Microchip

dsPic33FJ256MC710 microcontroller:

• DPM-sensitive P (s) = 5.6s2 + 246.12s+ 25.93;

• DVFS-sensitive P (s) = 330.62s− 53.32;

• Mixed P (s) = 150.55s2 + 24.5s+ 100.78.

The frequency range of the CPU used in the simulation is [12.5, 40]MHz. The

sleep state consumption Pσ is 1.49 mW and the wake up time takes about 20 ms.

The standby state has a higher consumption Ps of 9.9 mW, but a shorter wake up

time within 8 cycles. All the simulations have been executed using a set of 8 evenly

distributed frequencies.

For comparison purposes, the proposed algorithm DEAS have been compared with

the three following scheduling policies:

• EDF with no energy considerations, where the processor is assumed always ac-

tive at the maximum frequency, even during idle intervals;
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• pureDVFS on top of EDF, where the CPU runs with the minimal speed, computed

off-line, that guarantees feasibility according to the task set. The actual speed is

the lowest frequency greater than the minimal one;

• pureDPM, where, as soon as there is an idle time and no assigned bandwidth,

the task execution is postponed as much as possible and then scheduled by EDF

at the maximum speed.

An execution scenario is characterized by the tuple (U, nt, B, nB), where U de-

notes the utilization of the task set, nt the number of tasks, B the communication band-

width (expressed as a percentage of the hyperperiod), and nB the number of chunks in

which the bandwidth is split. All the slots are generated with the same length, whereas

slot positions are randomly generated with a uniform distribution.

Given the total utilization factor U , individual task utilizations are generated ac-

cording to a uniform distribution [BB05].

Payload and message deadlines are generated to meet the hypothesis on messages

guarantee. The computed values are not described here because they have no effect on

the task scheduling algorithm.

Trying to find a trade-off between the simulation accuracy and the simulation time

(it increases exponentially with the number of tasks), each result was computed as

the average consumption of 30 executions. To simplify comparisons, the results are

normalized against the value obtained applying the EDF policy to the same tuple

(U, nt, B, nB).
In the first experiment, the energy consumption is evaluated as a function of the

utilization U and the number of tasks nt. All the three algorithms have been tested with

Bandwidth B = 0.3, nB = 5 chunks and three different utilization factors. The results

show that both U and nt do not affect energy consumption significantly, therefore the

graph is not reported.

The next experiments evaluate the energy consumption, under different power mod-

els, as a function of the utilization factor U with nt = 7, B = 0.3 and nB = 10.

Figure 4.15: Analysis of consumptions with a DPM-sensitive power model.

Results show that DEAS always outperforms the other algorithms for all power

models and for any utilization.

As shown in Figure 4.15, due to the activity constraint posed by the bandwidth slots,

DEAS outperforms pureDPM even in DPM-sensitive models. Instead, Figure 4.16
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Figure 4.16: Analysis of consumptions with a DVFS-sensitive power model.

Figure 4.17: Analysis of consumptions with a Mixed power model.

shows that in DVFS-sensitive power models such a constraint has no effect on pureD-

VFS: keeping the system active represents the default behavior and, with respect to the

analyzed power model, the best solution. For this reason, DEAS and pureDVFS have

similar performances.

Under a DPM-sensitive and in a mixed context, Figure 4.15 and Figure 4.17 shows

that pureDVFS acts better than pureDPM for low U values, because the CPU can not

be switched off inside bandwidth slots. Instead, for higher utilization values, the con-

sumptions are similar. Note that all the graphs show that DEAS is always able to select

the right balance between DVFS and DPM depending on the specific characteristics of

the architecture.

4.3 Energy-aware framework in tiny RTOS

This work presents a module for managing power consumption in tiny kernels for

real-time embedded systems with limited resources, such as memory, CPU and power

supplier. The proposed module achieves considerable energy savings, satisfying the

application’s timing constraints and exploiting a high modular design. The proposed

solution has been implemented in the Erika Enterprise kernel to manage CPUs, timers,

and servomotors. Experimental results show the effectiveness of the approach high-
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lighting how the module can be used to select the most appropriate policy for a specific

application on a given architecture.

The analysis proceeds in Section 4.3.1 presenting the architecture of the kernel

module, its working flow and its interaction with the operating system. Section 4.3.2

describes the policies implemented in the module, while Section 4.3.3 reports the ex-

perimental results performed on the hardware.

4.3.1 Architecture

The energy saving module (also referred to as the Power Manager) is part of the kernel

and interacts with the scheduler, the hardware devices, and the application, as illus-

trated in Figure 4.18. While the scheduler selects the next task to execute, the Power

Manager chooses an appropriate running configuration (i.e., speed and voltage).

Hardware

Applications

Manager

Power
Scheduler

RTOS

Figure 4.18: Interaction of the Power Manager with the other system components.

A block diagram of the Power Manager is reported in Figure 4.19. It consists of

three hierarchically organized modules: the Application Programming Interface (API),

the CPU Manager and the Devices Manager. Such a modular implementation allows

the programmer to easily remove sub-components when not needed by the application,

so helping to reduce the footprint.

API

CPU policy

CPU driver

driver 1
power

device
driver 1

power
driver N

driver N
device

Device interface

Device policy

.....

Device Manager CPU Manager

Figure 4.19: Block diagram of the Power Manager.

The API module implements the interface defined for the interaction with the ker-

nel and the applications. The CPU Manager is responsible for the power management

of the CPU. Using a set of special callback functions called hooks, the kernel informs
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the module about four scheduling events: task activation, task termination, task pre-

emption, and task dispatch.

The CPU policy submodule implements the energy saving policies, which typically

select the best speed to meet the applications constraints, while satisfying a given set of

performance requirements. The CPU driver is in charge of setting the CPU parameters,

such as frequency and energy saving state. It is located at the lowest abstraction level

as its code is hardware-dependent.

The Devices Manager handles internal and external peripherals. Inside it, the De-

vice policy submodule contains all the device policies, developed according to the De-

vice Interface, which offers a single access point to the devices. For each of them,

two stacked components, Power driver and Device driver, abstract the device behavior

using a discrete set of states, as shown in Figure 4.20. Each state is characterized by a

specific power consumption and quality of service level.

S1

S2

Sm

Hardware Abstraction Layer

Platform Dependent Code

Hardware

Power Driver

Device Driver

Figure 4.20: Device stack.

The link between the CPU and the Device module is necessary to adjust the con-

figurations of devices, whenever a speed scaling or mode switching event occurs. For

instance, when a new speed is set, the system timers need to be automatically reconfig-

ured to offer the same tick period.

When an internal error occurs, a user-defined callback function is invoked, demand-

ing the user to manage the exception. A typical scenario could occur on speed scaling:

if a device detects that the modified configuration is not able to guarantee the same

performance of the previous state, the callback is invoked to solve the situation. For

instance, if an UART transceiver with a modified system speed is not able to sustain

the communication baud rate, the user has to specify how to fix this issue.

Sample scenarios

This section describes two examples to better explain how the modules interact with

each other. The first scenario, shown in Figure 4.21, supposes that a new task instance

becomes running. The kernel, after having managed the event, informs the CPU Man-

ager by invoking the corresponding hook (1). Once the event is notified, the active

policy selects the best frequency to execute the actual workload within the specified

timing constraints. The new speed is communicated to the CPU driver, which makes it

effective (2).

Once the new frequency is fully operational, the CPU manager notifies the new

configuration to the Device Manager (3), which in turn informs the devices under its

control (4) (5). Finally, each device sets its hardware registers to obtain the same
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Figure 4.21: First example of modules interaction.

performance with the new configuration (6). If this is not possible, the module invokes

the error callback to solve the situation.

Figure 4.22 presents another situation in which a running task has to control a

servomotor to properly hold a given load with the minimum energy, using a torque

sensor. The controller reads the torque sensor, computes the load value and notifies it,

through the API, to the Device Manager (1).

Device interface

Device policy

API

servo power
driver

servo
driver

Device Manager

(1)

(2)

(3)

(4)

Figure 4.22: Second example of modules interaction.

The active policy chooses the appropriate state able to hold the actual load with

the minimum energy consumption and notifies it, through the Device interface (2),

to the corresponding Power driver (3), which translates the communicated state in an

appropriate set of commands for the specific servo driver, modifying the actuator per-

formance (4).

4.3.2 Implemented policies

This section presents the policies implemented inside the CPU Manager and the Device

Manager. Such policies are configured offline and are automatically invoked at runtime

without any user interaction.

CPU policies

The policies implemented in the CPU Manager work for a single CPU and adopt a

discrete speed set and s′ denotes the lowest speed ensuring the task set feasibility in
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the worst-case scenario.

The following three policies are implemented:

• OnLine Dynamic Voltage Scaling (OLDVS) is a policy proposed by Lee and

Shin [LS04] that selects the minimum available speed to prolong a task execution

time up to its WCET;

• Bonus Sharing DVFS (BSDVFS) is a variant of OLDVS proposed in this work

to take switching overheads into account;

• BSDVFS∗ is a variant of OLDVS∗, originally introduced by Gong et al. [GSL07],

extended in this work to take switching overheads into account.

All the analyzed policies compute the most suitable frequency to exploit tasks early

terminations. Note that the tasks deadlines are not considered to slow the CPU down:

all policies exploit the unused computation time, if any, from the previous jobs, pro-

longing the execution of the current job (at a lower speed) until its worst-case finishing

time ei (that is, the time at which the task would finish in the worst case at speed s′).
To better illustrate the implemented approaches, the three policies are instantiated

on a CPU with a set S of three speeds S = {0.5, 0.75, 1} and are applied to a task

set consisting of two tasks with WCETs equal to C1 = 40 and C2 = 30 (note that all

WCETs values refer to the tasks executing at the highest speed s = 1). For the sake of

simplicity, we assume that task set parameters are such that s′ = 1.

Figure 4.23 shows a schedule in which each task executes for its WCET on the

CPU running at speed s′. Having no early terminations, the speed is not changed and

no energy can be saved in this case.

If τ1 and τ2 arrive at a1 = 0 and a2 = 5, their worst-case finishing times will be at

e1 = 40 and e2 = 70, respectively.

1
0.75
0.5 τ1 τ2

e1 e2a1 a2

C1/s
′

C2/s
′

s

t

Figure 4.23: Tasks execute for their WCETs.

To apply any of the policies listed above, the system has to keep track of the actual

execution time used by a task τi. Such a monitoring can be efficiently implemented

by starting a timer each time a task becomes running and stopping it when the task

is preempted or completed. If ε denotes such an interval executed at a speed s, the

remaining WCET of the task can be computed as

ci = Ci − ε s. (4.21)

Moreover, a bonus time, denoted as B, is introduced to account for the unused time

accumulated by previous tasks’ executions: when τi finishes, the saved time ci is added

to B, which can be exploited as an extra time available for the next scheduled task.

Figure 4.24 shows the schedule produced by OLDVS when τ1 finishes at time t =
8. At the beginning, τ1 runs at the highest speed since no computation time is saved at

time t = 0 (thus B = 0). At time t = 8, τ1 completes, saving c1 = 32 units of time.
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Thus, B is incremented by c1 and τ2 can exploit B to execute at a slower speed such

that C2/s = (C2 + B)/s′. In general, having a bonus time B, a task τi with residual

WCET ci can still meet its deadline by running at the speed

sOLDVS = min
sj∈S

{

sj ≥
ci

ci +B
s′
}

. (4.22)

In the example shown in Figure 4.24, since B = 32 and C2 = 30, the lowest feasible

speed is sOLDVS = 0.5. With such a speed, τ2 would finish in the worst-case at t = 68.

1

0.75

0.5 τ1
τ2

e1 e2a1 a2

s

t

Figure 4.24: Schedule produced by OLDVS.

Figure 4.25 illustrates the schedule produced by BSDVFS, when taking switching

overheads into account. In such a scenario, the minimum speed under which a task τi
with residual WCET ci and bonus time B can still meet its deadline is computed as

follows:

sBSDVFS = min
sy∈S

{

sy ≥
ci

(ci +B)/s′ −∆BSDVFS(sx, sy)

}

(4.23)

where

∆BSDVFS(sx, sy) , µsx→sy + µsy→s′ .

The term µsy→s′ accounts for the overhead needed for restoring the speed at s′ in the

case the next running task is not able to slow the CPU down further. In the consid-

ered example, the switching overheads are considered symmetric (µsx→sy = µsy→sx )

and proportional to the speed gap. In particular: µ0.5→0.75 = 2, µ0.5→1.0 = 5, and

µ0.75→1.0 = 2.

For the given task set, the feasibility test is satisfied only for s = 0.75 and s = 1,

since for s = 0.5 τ2 completes at t = 78 (i.e., beyond time e2 = 70). Therefore, the

running speed is set to 0.75, causing τ2 to finish in the worst case at t = 50.

1

0.75

0.5 τ1 τ2

e1 e2a1 a2

s

t

µ1.0→0.75 µ0.75→s′

Figure 4.25: Schedule produced by BSDVFS.

The idea behind BSDVFS∗ consists of splitting a task τi in two parts, τ L

i and τ H

i ,

with WCETs c L

i and cH

i , executed at different speeds, sL and sH, set as the lower and

the higher adjacent speed of sBSDVFS. The switching instant, and therefore the two values

(c L

i ,cH

i ) are computed to prolong τi’s execution until its worst-case finishing time ei.
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Hence, they are computed as follows:






c L

i + cH

i = ci
c L

i

sL

+
cH

i

sH

+∆BSDVFS∗(sx, sL, sH) ≤
ci +B

s′
(4.24)

where

∆BSDVFS∗(sx, sL, sH) , µsx→sL
+ µsL→sH

+ µsH→s′ .
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Figure 4.26: Schedule produced by BSDVFS∗.

It is worth observing that BSDVFS∗ is the only method able to fully exploit the

time bonus to make the current task to complete at its worst-case finishing time ei.
Note that if a task instance finishes earlier, most of the execution is spent at the lower

speed sL, so achieving higher energy reduction.

Figure 4.26 shows the schedule produced by BSDVFS∗, using sL = 0.5 and sH = 1,

which are the adjacent speeds of sBSDVFS = 0.75. In this example, µsH→s′ = 0 since

sH = s′ = 1.

According to Equation (4.24), the execution times of τ L

2 and τ H

2 result to be c L

2 = 22
and cH

2 = 8, respectively. Note that τ2 finishes exactly at time e2 = 70.

Device policies

The policies implemented in the Device Manager support timers and servomotors.

Servomotors are devices driven by Pulse-Width Modulation (PWM) signals, whose

absorption peak is concentrated at the beginning of the signal period with a constant

intensity and a duration proportional to the detected angle error.

The Power driver offers m states, each one identified by a specific PWM period.

The policy inside the Device Manager associates a specific power state to the required

torque according to a pre-specified internal look-up table.

To be implemented, the servo driver (or a PWM peripheral) uses a timer to generate

the control signals and the Device Manager interacts with such peripherals to vary the

PWM period.

Despite of the negligible energy consumption, timers are managed by the module

to maintain the consistency of the system time independently of the running speed. The

Device Manager does not provide any policy for them and the Power driver offers only

two states, ON and OFF , corresponding to the timer active and timer inactive modes,

respectively.

4.3.3 Experimental results

The Power Manager has been developed as module of the Erika Enterprise kernel and

tested on the Evidence FLEX boards equipped with a Microchip dsPIC33FJ256MC710

microcontroller.
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CPU

A set of experiments has been carried out to evaluate the impact of the three policies

on the energy consumption. The experimental measurements refer to the whole board.

The CPU driver supports eight different frequencies: 40, 35, 30, 20, 16, 10, 8 and 2

MIPS (Million of Instructions Per Second).

The switching overhead depends on the specific frequency levels, because the low-

est frequency is obtained directly from the external clock signal, while the other fre-

quencies are derived by a PLL. Switching the PLL on takes about 1ms, while turning

it off or adjusting it to any other frequency takes between 4µs and 40µs.
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Figure 4.27: CPU power consumptions.

Figure 4.27 shows the current consumption of the CPU as a function of the fre-

quency. The upper curve in the figure refers to actual measurements on the entire

board, whereas the others two are derived from the datasheet and refer to the CPU

only. Note that, for the considered architecture, halving the frequency doubles the ex-

ecution time, but does not reach a current consumption of 50%. For instance, reducing

the frequency from 40 to 20 MIPS, the current consumption goes from 86.12 mA to

59.12 mA. Such a result indicates that DVFS approaches are not effective on this archi-

tecture, where higher saving would be achieved by algorithms that run the application

at higher speeds.

In the next experiment the three policies have been tested on ten periodic tasks with

a total worst-case utilization Uwc = 0.98. The lowest frequency which guarantees the

task set feasibility in the worst case is 40 MIPS (corresponding to a speed s′ = 1).

Figure 4.28 shows the energy consumption (normalized with respect to the case

of no online policy) as a function of the ratio of the actual utilization (Ureal) and the

worst-case one (Uwc). As observed above, in the considered architecture, policies us-

ing higher speed achieve a lower energy consumption. Therefore, although BSDVFS∗

is able to exploit slower frequencies than BSDVFS, its average consumption is sim-

ilar to BSDVFS, because it is compensated by longer execution times. Note that at

high utilization ratios (Ureal/Uwc > 0.5) OLDVS is characterized by higher energy

consumptions because, by neglecting switching overheads, it is able to select lower

speeds. On the other hand, at low utilization ratios (Ureal/Uwc ≤ 0.5), both BSDVFS

and BSDVFS∗ achieve higher consumptions because, at the end of each job, they re-
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store the speed to s′ to ensure task set feasibility. Such an effect is enhanced for very

low utilization ratios due to the higher overhead (1 ms) introduced when switching to

the minimum frequency.
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Figure 4.28: Normalized energy consumptions of the policies.

Devices

Another set of experiments has been performed on a servomotor to derive a policy for

driving the device with the minimum average energy consumption. The servomotor

used in this test is a Hitec HS-645MG, characterized by a minimum absorption of

12.56mA, and a peak current of 1A. The peak occurs at the beginning of the PWM

period and has a duration proportional to the detected angular error.

The experimental tests compare the measured mean power consumption as a func-

tion of the applied torque, using three different PWM periods: 10, 20 and 40 ms. As

shown in Figure 4.29, the effectiveness of each period depends on the energy needed

to correct the accumulated error between two consecutive updates.

Note that for very small torques (< 0.5 kg × cm) the consumption is not affected

by the PWM period, because the angular error on the axis is below the threshold used

by the internal position controller. Low torques (∈ [0.5, 1) kg × cm) typically gen-

erate similar errors for any PWM period, leading to similar energy costs per update;

therefore, longer periods produce less updates per time unit and consume less energy.

For torques higher than 1.0 kg×cm, a period of 40 ms copes with higher errors, accu-

mulated between two consecutive updates, resulting in a higher consumption. More-

over, this period cannot guarantee an angular error less than 5◦ with torques greater

than 1.5 kg×cm; hence, the measures for such a period are not considered for higher

torques. For medium torques (∈ [1, 1.6) kg × cm), the errors produced by 10ms and

20 ms PWM periods are similar, hence the longer period (20 ms) leads to a better

performance. The shorter period (10ms) is more suited for heavier loads, because it

frequently corrects smaller errors, so leading to lower consumptions.

As a result, the implemented policy binds torque ranges with the period that min-

imizes the energy consumption, according to the results reported in Figure 4.29. To

optimize the implementation, the results are stored in a look-up table that associates

the period leading to the minimum consumption to the corresponding torque range,
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which also defines a power state. Table 4.2 shows the specific state values derived

from Figure 4.29.

Torque range (kg ∗ cm) Power state Period (ms)

[0.0, 1.0) STATE2 40

[1.0, 1.6) STATE1 20

[1.6, 2.5] STATE0 10

Table 4.2: Look-up table used by the servomotor policy.

4.4 Algorithm evaluation

This work discusses the factors to consider when deciding which technique to imple-

ment on a given single-core architecture, highlighting the limitations of the current

mainstream.

The principal DVFS and DPM algorithms are compared on three representative

platforms, evaluating their behaviors for different task characteristics. The current be-

lief that considers DVFS algorithms less effective than DPM ones is questioned, evalu-

ating the system parameters that mostly affect the validity of this assumption on actual

hardware.

The following algorithms, which are detailed in Chapter 3, have been selected for

their popularity and their reasonable runtime complexity:

• DVFS algorithms:

– SVS [PS01] (Static Voltage Scheduling): only the static slack (1 −
∑

τi

Ci

Ti
)

is exploited;

– DRA-OTE [AMMMA01] (Dynamic Reclaiming Algorithm - One Task Ex-

tension): mostly the dynamic slack due to task early terminations is used

to scale the speed down;
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– LA-DVS [PS01] (Look-Ahead RT-DVS): both static and dynamic slacks

are considered;

• DPM algorithms:

– CS-DVS-P [JPG04] (Critical Speed DVS with Procrastination): the maxi-

mum time that a task can be delayed is computed offline;

– LC-EDF [LRK03] (Leakage-Control EDF): job delays are entirely com-

puted at runtime.

Results confirmed that the actual assumption stating that DPM algorithms work

generally better than DVFS ones on actual hardware is true. However, experiments

also highlighted that such a consideration can easily be invalidated when other aspects

are involved in the analysis. For instance, short periods can drastically reduce the

effectiveness of DPM algorithms, and tasks that intensively interact with peripherals

can make DVFS algorithms more effective. In addition, it was empirically shown that

task early terminations help both DPM and DVFS algorithms in further reducing the

energy consumption.

This analysis proceeds showing in Section 4.4.1 a motivational example. Sec-

tion 4.4.2 provides the power models of several real processors while Section 4.4.3

analyzes the algorithms’ performance.

4.4.1 Limits of existing approaches

The energy needed to execute a job is the product of the active power and the execution

time at the selected speed. Note that a higher speed reduces the execution time, but

increases the power consumption. For this reason, the concept of critical speed s∗ has

been introduced for defining the speed that minimizes the overall active energy con-

sumption. Analytically, s∗ is computed as the speed that minimizes the active energy

consumption per cycle
P (s)
s , and can be derived from

dP (s)/s
ds = 0.

As an example, assume a processor with ten speeds uniformly distributed from

0.1 to 1.0, and with active power consumption P (s) = 0.9s3 + 0.1. The dominant

non-linearity in the power function makes it a DVFS-sensitive architecture, where the

speed that minimizes the energy consumption is s∗ = 0.4. When instead the power

consumption is characterized by a significant constant component (independent of the

speed), as in P (s) = 0.3s+ 0.7, the critical speed results to be equal to the maximum

available (s∗ = 1), hence speed scaling is not effective to minimize the active energy

consumption. Such a behavior is typical in DPM-sensitive architectures, which inte-

grate a significant amount of memory, I/O controllers and other devices whose power

consumption does not depend on the processing speed.

One big limitation of the above approach is that it only analyzes the active power

consumption, neglecting the power consumed when the processor is not executing.

Therefore, the critical speed gives a reliable indication of the best operating frequency

only if the system is assumed to consume no power when the processor is idle. As

the static power consumed during idle intervals gets bigger, the critical speed is less

suitable to characterize the best operating frequency of the processor. To have a more

precise characterization of the power consumption, it is therefore necessary to account

for the time spent in low-power states.

Depending on the ability of the system to exploit deeper sleep states, the best op-

erating speed can be higher or smaller than the critical speed. For example, a DVFS-

sensitive architecture with s∗ = 0.4 could be better operated at a higher speed if the
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slack created could be spent in a low-power state with Pσ < P (s∗). Conversely, it

could be beneficial to reduce the speed of a DPM-sensitive platform, even with s∗ = 1,

if the idle intervals are not sufficiently large to allow entering a low-power state.

Intuitively, the highest consumption is obtained when the algorithm is never able

to put the processor in sleep state, so that the slack time is entirely spent in the more

consuming idle state. Conversely, a lower bound on the overall power consumption can

be derived considering that any idle interval fully exploits the deepest sleep state.

Figure 4.30 shows the average power consumption of a NXP LPC1768 chip (P (s) =
0.3s+0.7) for different task utilizations. The power consumed in idle and in sleep state

is taken from real measurements, as detailed in Section 4.4.2. The straight lines repre-

sent the upper and lower bounds on the DPM power consumption, while the staircase

line shows the DVFS consumption obtained from executing the generic task set at the

slowest available feasible speed. Even if the device is DPM-sensitive, with a critical

speed equal to one, the performance of a simple DVFS approach is rather close to the

ideal DPM performance. Unlike the actual general opinion that DPM algorithms work

always better than DVFS ones, the example shows that task set characteristics are cru-

cial to decide which technique works best, as short periods and reduced idle intervals

(or, equivalently, large BETs) can forbid the use of deeper low-power states, making

DVFS approaches more competitive.

What said above is even more relevant when task computation times do not entirely

scale with the speed, that is when each task τi has αi > 0. Indeed, memory-bound tasks

with a large constant part αiCi tend to privilege DVFS techniques, as similar execution

times can be obtained executing at a lower speed, with a smaller power consumption.

Finally, when the entire consumption of the SoC is considered, the dissipation in

low-power states is not as low as expected, because many components can not be turned

off (such as the main memory), thus reducing the impact of DPM-based algorithms.
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Figure 4.30: DPM bounds vs. simplest DVFS algorithm.

4.4.2 Measurements

This section aims at providing a detailed analysis of the power characteristics of the

following processors:

1. Microchip dsPic33FJ256MC710, with frequencies within [4, 40]MHz with step

of 1MHz;
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2. NXP LPC1768 (ARM Cortex M3), characterized by frequencies in [36, 96]MHz

with step of 4MHz;

3. Intel Pentium4, providing frequencies from 375MHz up to 3.0GHz with step of

375MHz.

These architectures have been selected to cover a wide spectrum of real platforms,

from small digital signal processors to average embedded controllers, including reliable

general-purpose processors.

Except for the last processor, the other measurements refer to the entire platform

(i.e., core, cache, memory and peripherals) as everything is embedded on a single chip.

Performance evaluation

The following measurements have been carried out running the Coremark benchmark

[COR] as workload, which implements CPU bound code (Ci(s) = Ci/s).

The benchmark scores at the maximum speed for the analyzed platforms are 57
(without hard FPU), 218.7 and 14413.0, respectively.

These results have been achieved on systems with light workload, meaning that the

processor was entirely assigned to the benchmark in execution.

Active state

The power functions of the platforms, considering normalized speed and normalized

power, are reported in Figure 4.31, whereas the numerical values of the parameters of

Equation 2.3 are summarized in Table 4.3. Note that, on these platforms, the critical

speed is always equal to the maximum available (s∗ = 1.0).

Processor K3 K2 K1 K0

LPC1768 0.0 0.0 0.3 0.7

dsPic33 0.0 0.0 0.55 0.45

Pentium4 0.0 0.09 0.44 0.47

Table 4.3: Parameters of the power models.
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Figure 4.31: Power consumption models.

Concerning the components of the power consumption, the static dissipation, mostly

due to leakage currents, is represented by the coefficient K0 as it is speed independent,
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while the rest of consumption is ascribed to the dynamic dissipation. Note that the

static component includes the consumption due to the cache, which can not be turned

off.

Considering the absolute power consumption, the dsPic and the LPC1768 proces-

sors have similar consumptions (0.56W and 0.695W, respectively), but the latter is

around four times more performing. On the other hand, the Pentium4 consumes 88.8W

when active.

Low-power states

Concerning the low-power states, the dsPic processor provides two states: Idle and

Sleep. The first one switches few components off, leading to a consumption equal to

66% of the power at the maximum speed, with a state transition of 8 clock cycles.

The Sleep state consumes 31% of the maximum power, with a break-even time around

15ms (the clock crystal and PLL are put off).

The LPC1768 offers Sleep, Deep Sleep, Power Down, and Deep Power Down

states, which consume, with respect to the consumption at the maximum speed, 90%,

70%, 70% and 65%, respectively. The overhead is negligible for the lighter state,

whereas it takes about 10 milliseconds for the deepest.

On the Pentium4, the ACPI module exploits only a single state, called Idle, with

a relative consumption of 34% and a break-even time of a few hundreds milliseconds

[NRM+06].

4.4.3 Experimental results

This section presents a set of simulation experiments carried out for evaluating the

considered algorithms on the different platforms under different scenarios.

The synthetic task sets are composed of 10 periodic tasks randomly generated using

the UUniFast algorithm [BB05]. For each utilization step of 0.05, 30 different task sets

were generated and tested.

The speed scaling overhead (in the order of µs) was considered negligible with

respect to the task execution times (in the ms). The frequencies of buses and memories

were assumed to be constant and independent of the processor frequency.

The following simulations are divided into three categories: analysis of the algo-

rithm performance in the worst case, online improvement due to task early terminations

and impact of speed-independent code.

Worst-case analysis

This section presents the average power consumption obtained by the considered algo-

rithms assuming always the worst-case execution. Since task early terminations are not

considered, the algorithm DRA-OTE is not taken into account as it would exhibit the

same performance of SVS. Computation times are assumed to scale linearly with the

speed (∀τi ∈ Γ : αi = 0).

The results are reported in Figure 4.32 considering two scenarios in which the short-

est task period is larger than or comparable to the sleep break-even time, respectively.

When the shortest period is much larger than the break-even time, DPM-based algo-

rithms tend to work better, especially at lower utilizations when a considerable amount

of slack is available. When instead the shortest period becomes comparable to the

break-even time the performance of DPM-algorithms drops significantly.
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The first case is shown in Figure 4.32(a), 4.32(c) and 4.32(e), where periods are

generated in the range [25, 250]ms for the dsPic and LPC1768, and in the range [300,

3000] ms for the Pentium4. Among DPM algorithms, CS-DVS-P has always a lower

consumption than LC-EDF. Among DVFS-based approaches, SVS and LA-DVS ob-

tain the same performance on the dsPic because the power function is linear. For ex-

ample, consider a job of 10ms. When it is executed at s = 0.5, hence for 20ms, the

energy consumption is 14.554 mJ. If the same job is executed for 15ms at s = 0.3̄
and for 5ms at s = 1.0, leading to the same overall execution time (20ms), then the

overall energy consumption is again P (0.3̄) · 15 + P (1.0) · 5 = 14.554 mJ. Hence, an

aggressive DVFS algorithm may be ineffective when the power consumption is linear.

However, LA-DVS consumes less than SVS on the other two platforms because the

limited number of speeds does not allow SVS to exploit the entire static slack. The

best DPM algorithm (CS-DVS-P) has always a better performance than DVFS ones,

although the difference is rather small for the LPC1768 due to the limited savings al-

lowed in sleep mode with this architecture. Instead, LC-EDF has always the largest

power consumption.

In the second case, the minimum task period is decreased, becoming comparable

to the low-power state transition overhead (Figure 4.32(b), 4.32(d) and 4.32(f)). More

precisely, periods were generated in the range [8, 80]ms for the dsPic and LPC1768, and

in the range [100, 1000]ms for the Pentium4. As expected, while the performance of

DVFS strategies remains the same, that of DPM algorithms drops significantly, making

DVFS strategies more competitive.

Average execution analysis

This section considers the average power consumption obtained by the algorithms tak-

ing into account that jobs may terminate earlier than their worst case. More precisely,

the actual execution time of each job of τi is generated in the range [Ci/10, Ci].
The results for the three platforms are shown in Figure 4.33, assuming periods in

[25, 250]ms for the dsPic and LPC1768 platforms, and in [300, 3000]ms for the Pen-

tium4 (shortest period larger than sleep BET).

The trend among DPM algorithms is not altered, with CS-DVS-P still guaranteeing

better performance than LC-EDF. Among DVFS techniques, SVS does not improve as

it cannot take advantage of the online slack freed by task early terminations. However,

DRA-OTE has always worse performance than SVS, because it scales the speed down

in order to make jobs last as long as the worst case. Since the critical speed is equal to

the maximum one, DRA-OTE increases the energy consumption without introducing

any benefit. LA-DVS is the best DVFS algorithm as jobs can usually end before scaling

up to high speeds, leading to a lower consumption.

Similarly to the previous analysis, decreasing task periods makes DPM algorithms

much less effective than DVFS ones. The above trend is the same when computation

times have different variances between worst and best case execution times.

Speed-independent code

This section analyzes the case in which computation times do not fully scale with the

speed. Such a behavior is modeled by the α parameter. More precisely, α = 0 means

that the computation fully scales with the speed (C(s) = C/s), whereas α = 1 leads

to a constant computation time, completely speed independent.
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(b) dsPic with periods in [8, 80]ms.
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(c) LPC1768 with periods in [25, 250]ms.
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(d) LPC1768 with periods in [8, 80]ms.
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(e) Pentium4 with periods in [300, 3000]ms.
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(f) Pentium4 with periods in [100, 1000]ms.

Figure 4.32: Average power consumption assuming worst-case execution.

For example, a job with α = 0 that lasts for 10ms at the maximum speed, will

take 20ms when executed at s = 0.5. On the other hand, if α = 0.5, only half of

the execution time is scaled with the speed, so that the job would last for 20ms when

executed at s = 0.3̄. Both cases have a similar completion time, but the second one has

a lower speed, resulting in a smaller power consumption.

Figure 4.34 reports the average power consumption on the LPC1768 processor

when ∀τi ∈ Γ : αi = 0.5. Execution times and periods are generated as in the previous

experiment, within [Bi = Ci/10, Ci] and [25, 250]ms, respectively.

The introduction of speed-independent code improves the performance of DVFS

algorithms. More precisely, with respect to the equivalent analysis in Figure 4.33(b)
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(c) Pentium4 with periods in [300, 3000]ms.

Figure 4.33: Average power consumption considering task early terminations.
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Figure 4.34: Average power consumption considering task early terminations and ∀τi :
αi = 0.5.

(α = 0.0), the performance of LA-DVS gets very close to that of CS-DVS-P, while

SVS becomes more convenient than LC-EDF. The only DVFS algorithm that does not

take a significant advantage from speed-independent sections of code is DRA-OTE.

The performance on the other two platforms shows the same trend. In general,

the effectiveness of DVFS algorithms increases with the fraction of speed-independent

code, as foreseen in Section 4.4.1.
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Chapter 5

Energy-aware scheduling on

multi-core systems

Due to the massive introduction of multi-core processors in actual computational sys-

tems, the energy issue has become more complex. On one hand, the scheduling prob-

lem is still an open issue and, on the other hand, the number of dissipation points is

higher with non-trivial dependencies among them (such as voltage islands and shared

memory).

The paper [BLBL13], which is detailed in Section 5.1, investigated such a problem

by analyzing several well-known heuristics on homogeneous multi-core systems. A

partitioned approach was considered as it requires only a polynomial complexity, even

though, it may be too pessimistic for systems whose workload significantly differs

from the worst-case execution. Although the work mostly considered high performance

systems, results can be easily extended to multi-core embedded platforms.

5.1 Energy-aware partitioning on homogeneous multi-

core platforms

This work considers the problem of partitioning and scheduling a set of real-time tasks

on a realistic hardware platform consisting of a number of homogeneous processors.

Partitioned techniques statically assign each task to a specific CPU forbidding a

task to migrate onto another processor even though it is idle. Such an approach allows

designers to easily check the system feasibility, even though, it may be too pessimistic,

leading to a waste of resources. On the other hand, global algorithms increase the

system adaptability by allowing task migration at any time, but are more difficult to an-

alyze and may introduce significant runtime overhead. Conversely, hybrid scheduling

approaches mix the two techniques, aiming at reducing their drawbacks and enhancing

their advantages.

The analysis takes into account two opposite heuristics: Worst-Fit Decreasing and

Best-Fit Decreasing. The first approach aims at exploiting all the available processors

and reducing the overall performance while the second attempts to reduce the number

of active processors by optimizing execution. Despite the actual state of art, which tries

to uniformly distribute the workload on the cores, the approach which minimizes the

number of active cores is the most energy efficient. This result is a direct consequence
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of modern hardware which is characterized by high static dissipation whose impact is

around the 75% of the overall consumption.

A real platform (Dell PowerEdge R815 [DEL]), designed for high-performance

computation, is taken into account in this work. An additional contribution is that we

consider the power consumption of the entire system, not only the dissipation due to

the processor. This is particularly relevant, as considering only a single component

may give misleading results that are not valid in a general case.

In the following, Section 5.1.1 introduces the system model taken into account

in the analysis; Section 5.1.2 explains how the heuristics work, while Section 5.1.3

compares them on the system under analysis.

5.1.1 System model

In accordance with the task model in Chapter 2, we consider a multi-processor platform

composed of m homogeneous processors (φj , j = 1, . . . ,m) whose running speed,

picked up from a discrete set, can be set independently from each others.

The energy consumption model is computed according to Equation (2.6), while

low-power states are assumed to be ACPI compliant. More precisely, each processor

provides several low-power states characterized by different power consumption and

different time overhead for entering and leaving such states. More generally, the system

provides the following operative states:

• S0: The system is fully operative (both processors and memory);

• S1: Although caches are flushed and code execution is suspended, processors

and memory are active;

• S2: Processors are switched off and the dirty cache is flushed to the memory.

Other devices may be kept on;

• S3: Similar to S2 but more devices are put in sleep;

• S4 (hibernation): Data in memory is copied in to the hard drive and all the system

is powered down;

• S5: The system is completely off except for the logic that allows the system to

switch on. Putting the system in to S0 requires a complete boot and no data is

retained.

Each processor can be put independently in S1, S2 and S3.

For the sake of simplicity, periods and computation times are assumed to be much

longer than state transition and speed scaling overheads, which can then be discarded

from the analysis.

The ACPI module is in charge of putting the processor in a predefined low-power

state (statically selected in the BIOS) whenever there is no process running. Typically,

the most used state is S3, as it provides a good trade-off between power consumption

and time overhead for almost all the applications.

The workloadΓ consists of n fully-preemptive periodic tasks {τ1, τ2, . . . , τn}whose

parameters are assumed to be in N
+. The utilization term Ui(s) = Ci(s)/Ti deter-

mines the processor bandwidth that task τi requires at speed s. Assuming to schedule
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the periodic workload by the EDF policy [LL73], the tasks assigned to the processor

φj do not miss any deadline if and only if

Uφj
=

∑

τi∈Γ|τi→φj

Ui(si) ≤ 1. (5.1)

The overall task set is feasible if Equation 5.1 is satisfied for each processor.

Finally, we define the hyperperiod H as the time interval after which the schedule

repeats itself. In the case of periodic tasks, such analysis horizon is computed as the

least common multiple of periods, H = lcm(T1, T2, ..., Tn).

5.1.2 Heuristics

Two heuristics are here considered: Worst-Fit Decreasing (WFD) and Best-Fit De-

creasing (BFD).

First of all, both heuristics sort the task set by descending utilization: Γ̄ = {τi ∈
Γ|ui−1 ≥ ui ≥ ui+1}. Then, starting from the first element in Γ̄, WFD assigns each

task to the processor with the highest unused utilization, while BFD chooses the one

whose spare utilization fits better.

Let us consider three processors and five tasks with the following utilization values:

u1 = 0.6, u2 = 0.5, u3 = 0.3, u4 = 0.3 and u5 = 0.1. The WFD heuristic would

start assigning each of the first three tasks to one free processor, τ1 to φ1, τ2 to φ2,

and τ3 to φ3. Then, the spare utilization on each processors become 0.4, 0.5 and

0.7, respectively. Next, the fourth task is assigned to φ3 which has the highest spare

capacity, reducing it down to 0.4. Finally, τ5, characterized by the lowest utilization, is

assigned to φ2. The final partitioning is shown in Figure 5.1.

Conversely, the BFD heuristic assigns τ1 to φ1 and then tries to allocate τ2 to φ1, but

the residual utilization of φ1 is not enough to accommodate τ2, which is then allocated

to φ2. Unlike the previous case, τ3 is allocated on φ1 and all the remaining two tasks

are assigned to the second core φ2. The BFD result is reported in Figure 5.2.

In conclusion, WFD led to a task partitioning that left 0.4, 0.3 and 0.4 as spare

capacity on the three cores, while BFD utilized entirely the second core and partially

the first (90%), leaving the third processor off.

φ1 φ2 φ3

τ1 (1st) τ2 (2nd)
τ3 (3rd)

τ4 (4th)

τ5 (5th)

0%

100%

Figure 5.1: Task partitioning obtained by the WFD heuristic.

As this simple example has shown, BFD aims at reducing the number of active

cores, while WFD attempts to exploit all processors to reduce the overall working

performance.
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φ1 φ2 φ3

τ1 (1st) τ2 (2nd)

τ3 (3rd)
τ4 (4th)

τ5 (5th)

0%

100%

Figure 5.2: Task partitioning obtained by the BFD heuristic.

Once tasks have been partitioned, the remaining utilization on each core can be

exploited to further reduce energy consumption. In this paper, we consider two extreme

approaches:

• DVFS: when the system starts, for each core, the slowest speed that guarantees

the task set feasibility is set;

• DPM: the workload is executed at the maximum performance and then ACPI

exploits low-power states when there are no pending tasks.

Since we deal with a discrete set of frequencies, if DVFS is not able to exploit the

whole residual utilization, DPM is used in addition to take advantage of it.

5.1.3 Experimental results

In this section, the power measurements related to the multi-core platform is first re-

ported to provide the consumption profile. Then, the two heuristics introduced in Sec-

tion 5.1.2 are compared in terms of energy consumption.

Consumption profile

The considered platform, a Dell PowerEdge R815 rack server, is equipped with 48 ho-

mogeneous cores supporting the following frequency range {0.8, 1.0, 1.3, 1.5, 1.9}GHz

which leads to the speed set: {0.42, 0.53, 0.68, 0.79, 1.0}. Each core can set its fre-

quency independently of the others. Cores are divided in 8 clusters, each containing 6

cores. The platform runs the GNU/Linux kernel 3.10.0-rc3 [LIN].

The power measurements reported in the paper have been obtained by monitoring

the absorbed power from the entire platform, including memory, I/O peripherals, and

buses.

In the considered scenario (48 cores, 5 frequencies each and two low-power states),

the configurations to be checked are 748. Since the number is extremely high, we mea-

sured the consumption for a set of key configurations and then the others are obtained

by interpolation. More precisely, for each speed, we measured the consumption of

setting all the active cores to the speed under analysis while varying the number of

fully loaded cores (from 1 to 48). The workload consists of an endless execution of

the EEMBC Coremark benchmark [COR], which implements mathematical operations

(CPU-intensive code) and keeps the processor always busy (no I/O phases). As a re-

sult, the execution time perfectly scales with the frequency. Concerning the unused
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processors, the two low-power states used by the ACPI driver have been considered.

The first one is called IDLE and it is automatically inserted by the module when there

are no pending tasks, while the OFF state is manually set by the user.

The first consideration related to the measurements reported in Figure 5.3 concerns

the impact of the low-power state. More precisely, the OFF feature was supposed

to guarantee the lowest consumption but it exploits S1 and introduces a significant

overhead for updating the kernel data structures. On the other hand, the IDLE state

exploits S3, guaranteeing lower consumption and shorter overhead.
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Figure 5.3: Power consumption as a function of active clusters and low-power states.

Given such measurements, the configurations in which all the processors exploit the

same frequency but only some of the cores in the cluster are active (e.g., 3 processors

out of 6) are assumed to dissipate the interpolated value. We empirically tested such

an assumption for several configuration and it turned out to be an acceptable approx-

imation. When the processors exploit different frequencies, we consider the average

consumption as the weighted average of the consumption assuming all the active pro-

cessors running at the same frequency. Formally, it can be expressed as:

PCPU (t) =
∑

sj

wj f̄(sj),

where wj is the actual number of CPU at speed sj divided by the total number of

active cores and f̄(sj) represents the consumption obtained by setting all the active

cores at speed sj . For example, if there are two clusters at frequency 1.0GHz and one

at 1.5GHz, the consumption would be:

PCPU (t) =
12

18
360 +

6

18
375 = 365W,

where 360 and 375 are the consumptions of having three clusters at 1.0 and 1.5 GHz,

respectively.

It is worth noting that when the system keeps active only a single cluster, the power

consumption can be varied from 335 to 365 (from 0.8GHz to 1.9GHz, respectively),

meaning that speed scaling techniques can affect less than the 10%. Even when the

spread between minimum and maximum consumption is the widest (all the processors

are awake), the dynamic dissipation is only around 25%. In other words, the static

dissipation is ascribed to dissipate at least the 75% of the overall power.
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Performance evaluation

The following analysis compares the performance of the partitioning heuristics in terms

of average power dissipation for different task set parameters. The workload has been

generated using the UUniFast [BB05] algorithm. Once the heuristics are executed,

the average power consumption is computed analytically by assuming that all jobs are

released at the beginning of the hyperperiod, meaning that each processor φj is active

for Uj ·H while it is off until next hyperperiod. This assumption is pessimistic because

it leads to having the maximum number of active cores (∀φj : Uj > 0) for the longest

time

(

min
φj

Uj

)

.

The first experiment considers the average power consumption obtained from the

heuristics varying the number of tasks (from 25 to 300 with step 25) at three different

utilizations: low (U = 5.0), medium (U = 20) and high (U = 35.0). The results are

shown in Figure 5.4(a), Figure 5.4(b) and Figure 5.4(c), respectively. Note that, using

the EDF policy, the utilization upper bound is equal to the number of processors (in

our case, 48), but it is not easily achievable due to fragmentation.

The first significant result consists of showing the high average consumption ob-

tained from WFD with respect to BFD. Such a result is mainly ascribable to the power

model of the board, as it privileges approaches that switch off as many processor as pos-

sible rather than reducing their performance. Indeed, all the previous work assumed a

cubic power function
(

p(s) = β · s3
)

, which heavily reduces consumption when the

speed is scaled down. Note that performance is not affected by the number of tasks, as

WFD is slightly affected by fragmentation. Finally, note that applying either DPM or

DVFS techniques produces the same result.

As already discussed, BFD fits well with this kind of architecture as it aims at com-

pacting the workload on few cores and putting the others in low-power state. This

approach drastically reduces the static dissipation, which accounts for at least 75%
of the overall dissipation. According to the presented results, the higher the number

of tasks, the lower the average power consumption. This can be easily explained by

considering that in a larger task set tasks have smaller utilization, hence the heuristic

can better compact them, reducing fragmentation. Concerning the strategies applied

after task partitioning, the DVFS approach is more effective up to a certain point, after

which DPM becomes more convenient. Such a turning point depends on the overall

task utilization and the number of tasks. Basically, for a given utilization, small task

sets create more significant fragmentation and such a spare capacity is better exploited

by slowing the speed down. On the other hand, when the number of tasks increases,

fragmentation reduces and the smaller slack time is optimized by the DPM approach.

Generally, we can state that the higher the utilization, the higher the number of tasks

that make the DPM strategy more effective. In the first case (Figure 5.4(a)), the uti-

lization is low (U = 5.0) and DPM is already more suitable. When the utilization is

U = 20.0 (Figure 5.4(b)), the turning point is at n = 150, while it reaches n = 275 for

U = 35.0 (Figure 5.4(c)).

For the sake of completeness, Figure 5.5 presents a different reading key, show-

ing the average power consumption with 150 tasks for different utilizations (U ∈
[5.0, 40.0] with step 2.5). As previously highlighted, the turning point is at U = 20.0
with 150 tasks. Moreover, Figure 5.5 shows what happens when computational times

do not entirely scale with the frequency. More precisely, the higher the value of α,

the lower the average power consumption obtained by the DVFS approach. As already

highlighted by Bambagini et al. [BBMB13a], this is due to the fact that scaling speed

74



 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 360

 370

 25  50  75  100  125  150  175  200  225  250  275  300

A
ve

ra
ge

 P
ow

er
 [W

at
t]

Task number (n)

WFD+DPM

WFD+DVFS

BFD+DVFS

BFD+DPM

(a) U = 5.0.

 360

 370

 380

 390

 400

 410

 420

 430

 25  50  75  100  125  150  175  200  225  250  275  300

A
ve

ra
ge

 P
ow

er
 [W

at
t]

Task number (n)

         WFD+DPM

         WFD+DVFS

         BFD+DVFS

         BFD+DPM

(b) U = 20.0.

 455

 460

 465

 470

 475

 480

 485

 50  75  100  125  150  175  200  225  250  275  300

A
ve

ra
ge

 P
ow

er
 [W

at
t]

Task number (n)

WFD+DPM

WFD+DVFS

BFD+DVFS

BFD+DPM

(c) U = 35.0.

Figure 5.4: Average power consumption vs. task number with U ∈ {5.0, 20.0, 35.0}.
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with high α is equivalent to schedule a task set with lower utilization than the origi-

nal one, meaning that lower speeds can be effectively exploited while no deadline is

missed.
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Chapter 6

Energy-aware scheduling in

distributed systems

Nowadays, many embedded systems are interconnected together via wired or wireless

links, in order to exchange data and pursuit a global target, which can not be guaranteed

from only a single computational unit.

The problem of mapping a real-time workload on a distributed system has been

studied in [PBB+12] and here reported in Section 6.1. Besides the energy issue, the

problem formulation is enriched with bandwidth constraints and redundancy require-

ments (which is a way to increase the system fault tolerance).

6.1 Energy and bandwidth-aware co-allocation

The energy consumption in distributed systems depends on several inter-related fac-

tors, including task partitioning, process redundancy, fault tolerance, task and message

scheduling, and communication bandwidth allocation. Although some of these issues

have been considered in the literature in isolation, a systematic approach considering

all the constraints is still missing.

The presented work addresses the problem of allocating a task set and the required

communication bandwidth on a distributed embedded system, aiming at reducing en-

ergy consumption while guaranteeing timing and redundancy constraints. While re-

dundancy improves reliability and precision, it increases the energy consumption due

to the additional workload and traffic. The problem is complicated by the fact that there

are situations in which reducing the energy consumption on a node may increase the

energy dissipated in other nodes, so shortening the lifetime of the entire system.

More specifically, the problem consists of co-scheduling tasks and messages in

a feasible way with the objective of minimizing the overall energy consumption and

guaranteeing a minimum number of task copies and system lifetime. Two heuristic

approaches are proposed and compared against a complete method and simulated an-

nealing. Simulation results show the effectiveness of the proposed approaches.

Section 6.1.1 presents the system model, in terms of processing nodes, commu-

nication bandwidth, power model, computational and communication workload. The

problem statement is introduced in Section 6.1.2, including the specification of all the

system constraints and the performance metric used to evaluate the goodness of an allo-

cation. Section 6.1.3 illustrates the proposed approaches, whereas Section 6.1.4 reports
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the experimental results.

6.1.1 System model

This work considers a distributed system of m homogeneous nodes Ψ1, Ψ2 . . ., Ψm

logically connected as illustrated in Figure 6.1. Each node performs sensory acquisition

and sends messages to a coordinator node (Ψ0), according to a star topology, using a

TDMA-based communication protocol that guarantees a bounded transmission delay.

In each TDMA time wheel, each node Ψi is assigned a bandwidth slot of length wi.

Note that, the coordinator Ψ0 is not subject to the analysis carried out in this work,

since it is assumed to be always on and available to the nodes.

Since the system is intended as a network of nodes, throughout the rest of the paper,

the terms system and network are used interchangeably.

...Ψ1 Ψ2 Ψ3 Ψm

w1,Γ1 w2,Γ2 w3,Γ3 wm,Γm

Ψ0

Figure 6.1: A sample network with a node coordinator.

The system is assumed to run an application Γ consisting of a set of n sporadic real-

time tasks Γ = {τ1, . . . , τn} with implicit deadlines. Each job τj,k sends a message of

payload Mj to node Ψ0 at its termination, which can occur any time within the interval

between its arrival aj,k and its absolute deadline: (aj,k, aj,k + Dj ]. The overhead

of transferring a message generated by a task into the transmission buffer is already

accounted in its worst-case execution time. The utilization of task τj is denoted by uj

and is computed as Cj/Tj .

Each node Ψi hosts a subset Γi of Γ. The utilization of node Ψi and the system

utilization are denoted as Ui and Utot, respectively. Note that a task τj can run in more

than one node, but each node can execute at most one copy of τj . The number of

running instances of task τj on the entire network is denoted as µj .

For each task τj , the application specifies a reward function denoted as γj , which

grows with the number of task instances and, hence, measures the satisfaction of the

task redundancy across the system.

Tasks in each node are scheduled by the Earliest Deadline First (EDF) [LL73] al-

gorithm, but the analysis can easily be extended to different scheduling policies.

The timing parameters introduced above are summarized in Figure 6.2.

Bandwidth model

The communication between the nodes and the coordinator is managed by a TDMA-

based communication protocol, according to a star topology. Each node Ψi is assigned

a time slot wi in each TDMA wheel where it can transmit its messages. The messages

produced by the tasks running in node Ψi are enqueued in a transmission buffer of

length Θi adopting a FIFO policy and then sent as soon as the bandwidth becomes

available.
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Figure 6.2: Timing parameters.

A necessary condition to guarantee that each node can transmit its messages with-

out overflowing the transmission buffer requires the wheel length W to be no shorter

than the minimum period in the task set, hence W is set as

W = min
j∈[1..n]

Tj . (6.1)

Each task τj of node Ψi is assigned a time budget Qj sufficient to ensure the correct

delivery of the related message within 2Tj from the associated job release time rj,k .

Then, wi is set as the sum of the budgets Qj’s of the tasks allocated to node Ψi:

wi =
∑

τj∈Γi

Qj . (6.2)

The task budget Qj is computed as follows:

Qj =
Mj
⌊

Tj

W

⌋ . (6.3)

Observe that
⌊

Tj

W

⌋

represents the number of complete TDMA wheels available

during a task period Tj , i.e., the number of time slots that the node running τj can

exploit to transmit the message generated by such a task. Since Mj is the length of

any message generated by τj , the rationale behind the computation of Qj is to assign a

time budget sufficient to send a message of length Mj every Tj time units.

If wcom denotes the sum of the slots wi assigned to the nodes, the overall commu-

nication load on the network is wcom/W . Since for each node Ψi, the time slot wi

is computed in such a way the node can send all messages generated by its tasks, it

follows that a necessary and sufficient condition to guarantee all message deadlines is:

wcom ≤W. (6.4)

To save energy, the adopted bandwidth scheme reserves a slot S = W − wcom

over each W in which the communication is not allowed and all the nodes turn their

transceiver off.

Consider a sample scenario featuring three nodes (Ψ1,Ψ2,Ψ3) and a task set com-

posed by two tasks (τ1, τ2), where node Ψ1 hosts both the tasks, node Ψ2 hosts τ1,

and node Ψ3 hosts τ2. The resulting TDMA wheel partition is illustrated in Figure 6.3.

Note that, throughout the paper, the slot lengths wi are ordered by the node indexes

inside the wheel, while the budgets Qj inside the slot are ordered by the task indexes.
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Figure 6.3: Bandwidth allocation example.

Power Model

Since this work focuses on a network-wide approach for reducing energy consumption,

a simplified power model is adopted for the nodes to estimate their power consumption.

A finer model would be unnecessarily detailed in this context, considering that each

node could apply further runtime strategies to save energy.

In particular, each device (i.e., CPU or transceiver) is only assumed to be in either

active or sleep. In the active state, the power consumed is denoted by PCPU
a and P com

a ,

respectively. In the other state, the dissipation is PCPU
s and P com

s , respectively.

The overhead to switch between power states for both the devices is assumed to be

negligible, both in terms of time and energy.

The node power consumption is estimated as follows:

Pi = UiP
CPU
a + (1− Ui)P

CPU
s +

wi

W
P com
a +

(

1−
wi

W

)

P com
s . (6.5)

The node and system mean power consumption is estimated assuming that each

node exploits the idle intervals in task and message schedules turning the CPU and the

transceiver off during idle periods and outside bandwidth slots, respectively, as follows:

P = UtotP
CPU
a + (m− Utot)P

CPU
s +

wcom

W
P com
a +

(

m−
wcom

W

)

P com
s . (6.6)

The current energy level of node Ψi is denoted by Ei and every node is provided

with the same initial energy E(0).

Lifetime model

The system lifetime is a key element for evaluating sensor networks. Its definition is

not univocal because it depends from a lot of application parameters (e.g., number of

sensors, network coverage, quality of service, etc) and its value is an aggregation of

all nodes statuses. The network can only fulfill its purpose as long as it is considered

alive, but not after that. Therefore, the lifetime is an indicator for the maximum utility

a sensor network can provide.

There are a lot of lifetime definitions [DD09], but the most common and most fre-

quently used in the literature is the m-of-m lifetime. In this definition, the distributed
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system lifetime L ends as soon as the first node fails, thus L = min
i

Li, with Li repre-

senting the lifetime of node Ψi computed as Ei/Pi.

A common constraint on the lifetime imposes a minimum amount of time (L) in

which the system has to stay alive. The minimum lifetime could be formalized as:

min
i

Ei

Pi
> L.

Allocation specific parameters

An allocation describes the distribution of the tasks instances among the nodes of the

system. Since a task τj can run on different nodes simultaneously, an allocation matrix

X ∈ {0, 1}m×n is defined to keep track of such a distribution on the network. The

generic element xij of the allocation matrix X is a boolean variable indicating whether

task τj is present on node Ψi or not. Note that each node can execute at most one copy

of τj . In the following, a set of previously defined parameters are formalized based on

X .

The subset Γi of tasks running on node Ψi is expressed as

Γi = {τj |xij = 1}, (6.7)

while the length wi of the communication bandwidth slot assigned to the node Ψi is

computed as

wi =

n
∑

j=1

xijQj . (6.8)

The total utilization Ui of node Ψi and the system utilization Utot are formally

defined as Ui =
n
∑

j=1

xijuj and Utot =
m
∑

i=1

Ui.

The actual number µj of instances of task τj across the system is computed as

µj =

m
∑

i=1

xij . (6.9)

The worst case scenario for the transceiver buffer occurs when two instances of the

same task generate a message between the end of the previous Qj and the start of the

next one, as depicted in Figure 6.4. In the example illustrated in the figure, the Qj is

supposed to occur at the beginning of each wheel. More than two generations are not

possible because the wheel is equal to the minimum task period. This leads to consider

that the minimum required size Θmin
i of the transceiver internal buffer on node Ψi is

computed as:

Θmin
i = 2

m
∑

j=1

xijMj.

6.1.2 Problem statement

This paper addresses the problem of allocating a real-time task set over a distributed

system composed by homogeneous embedded nodes. Such an allocation has to meet a

set of constraints:
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Figure 6.4: Example of worst-case buffer use.

Task schedulability All the tasks running in each node have to terminate within their

deadlines. Under the assumption that all the tasks have relative deadlines equal to

periods and are scheduled by EDF, such a constraint is expressed as follows:

∀i ∈ [1,m] Ui ≤ 1; (6.10)

Bandwidth To guarantee the schedulability of the messages produced by the tasks,

the sum wcom of all the slots assigned to the nodes must not exceed the wheel W :

wcom ≤W ; (6.11)

Buffer For each node, the transmission buffer (whose length Θ is equal for each

node) must be long enough to contain all the messages generated in the worst case:

∀i ∈ [1,m] Θ ≥ Θmin
i ; (6.12)

Redundancy To improve the accuracy level of measurements, a minimum number

µmin
j of running instances for each task τj must be guaranteed to be executed in the

system, that is:

∀j ∈ [1, n] µj ≥ µmin
j . (6.13)

Lifetime To guarantee a desired system lifetime L, the initial energyE(0) available in

each node must be sufficient to keep the entire network alive for the required duration,

that is:

∀i ∈ [1,m]
E(0)

Pi
≥ L. (6.14)

Performance evaluation

To evaluate the performance of a generic allocation, three distinct normalized indexes

(∈ [0, 1]) are introduced to measure redundancy, energy saving, and uniformity. Such

factors are combined to obtain a normalized scalar function able to compare the good-

ness of different allocations.
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The performance function is modeled to operate also in the case of unfeasible allo-

cations. Such a function is built so the co-domain range of the performance function

is [−3, 1], equally distributed between the feasible situations ([0, 1]) and the unfeasible

ones ([−3, 0)).
As already explained in Section 6.1.1, more instances of each task can execute on

the network. Note that an implicit limit on the running instances of a task τj exists as

at most m nodes can run a single instance of τj .

For each task τj , a monotonic function γj is provided by the application designer

to specify the reward according to the actual number of task instances running in the

system, from µmin
j to m. γj is a function with bounded output value in [0, 1). The

redundancy index ρ is defined as

ρ ,

∑n
j=1 γj

n
.

The overall energy consumption of the system is a key parameter taken into account

by the analysis carried out in this work. The index ξ measures the energy saving of an

allocation with respect to the highest power consumption Pmax that the system can

experience, that is:

ξ ,
max(0, Pmax − P )

Pmax
.

Notice that Pmax refers to an ideal allocation in which all the nodes are fully loaded

(i.e. all nodes have utilization equal to 1) and the bandwidth slots are assigned in such

a way that wcom is equal to W .

Based on the definition of system lifetime assumed in this work, how task instances

are spread across the system nodes is of key importance, as a more uniform load distri-

bution results in a longer global lifetime (due to the proportionality between utilization

and power consumption at node level).

The utilization uniformity of the allocation is evaluated through the variance σ2 of

the total utilization Ui of each node Ψi computed as follows:

σ2 ,
1

m

m
∑

i=1

(

Ui −
Utot

m

)2

.

As for the previous indexes, the uniformity of the allocation is evaluated through

an index α normalized in the interval [0, 1]:

α ,
max(0, σ2

max − σ2)

σ2
max

,

where σ2
max denotes the variance in the worst-case scenario in which half nodes are

fully loaded and half are empty, leading to a value of σ2 equal to 0.25.

Considering the trade-off between redundancy and power consumption, a parame-

ter η ∈ [0, 1] is introduced to balance the two contributions. Notice that such a param-

eter remains constant throughout all the optimization process.

For a feasible allocation, the performance function Φ is defined as follows:

Φ+
η (X) = α[ηρ+ (1 − η)ξ], (6.15)
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whereas, for an unfeasible allocation, it is defined as follows:

Φ−(X) = −
1

n

n
∑

j

max(0, µmin
j − µj)

µmin
j

+

−

∑m
i max(0, Ui − 1)

(Utot − 1)m
+

−
max(0, wcom −W )

m
∑n

j Qj
. (6.16)

Such a function is composed by three terms, each introduced to weigh the violation

of one of the evaluated constraints. Note that while the second term is defined at a

node level, since it concerns CPU overrun, the last term operates at a system level, as

the communication wheel is shared among all the nodes.

6.1.3 Proposed algorithms

This section presents three types of algorithms that try to maximize a user-defined

performance function under the constraints formalized in Section 6.1.2.

The cost of each approach is measured through the number of performance eval-

uations, rather than through the total processing time, since the execution time of an

algorithm is affected by several factors (e.g., processor speed, memory, and implemen-

tation efficiency). The complexity to evaluate a specific allocation is O(nm).

Complete search

A branch and bound search is provided to evaluate the distance of the optimal solution

with respect to the other methods, at least for a small system size. The exhaustive

search uses an EDF feasibility test on single nodes to prune unfeasible branches.

Note that, at low total utilizations, the number of feasible (single node) allocations

is exponential on the number of tasks, since very low tasks utilizations make any task

combination feasible, and drops down at higher utilizations.

Since the embedded nodes composing the system are homogeneous, several solu-

tions are symmetric, thus leading to the same performance. To avoid the generation

of symmetric allocations, this approach combines the solutions previously found to

reduce the number of possible configurations.

Heuristics

This section presents two heuristic approaches, Heuristic A and Heuristic B.

Heuristic A starts from an empty allocation and, at each step, generates all the

possible configurations that differ from the current one by a single task (by switching

a single element of matrix X from 0 to 1). Then, the configuration with the highest

performance is selected. In the case of multiple configurations featuring the highest

performance, the first occurrence is selected. The algorithm stops as soon as it fails to

improve the current best performance.

Since at each step the approach performs at most n×m evaluations, its worst-case

complexity is O(n3m3), as it is possible to insert at most n×m instances to fill the X
matrix.

Heuristic B is a variation of Heuristic A, since at each step it selects the node with

the lowest utilization, testing the resulting performance at each addition. Since at each
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step the approach has to evaluate n different configurations, the worst-case complexity

is O(n3m2). Like Heuristic A, the approach stops as soon as it fails to improve the

current best performance.

Simulated annealing

Simulated Annealing [KGV83] is an effective technique for finding an acceptably good

solution in a fixed amount of time, even in large search spaces. In this approach, a

generic point s of the search space is called a state, and the neighborhood of a state s
is defined as the set of states produced from s by suitable alterations.

In this implementation, a state is represented by a global allocation, and its neigh-

borhood is the set of allocations that differ from the starting one only for one boolean

element of the matrix X . This means that the neighborhood of a state is another alloca-

tion in which a single task is added (if it was not present) or removed (if it was present).

The other parameters, that is the cooling factor, the maximum number of tries at fixed

temperature, and the temperature threshold, are selected to improve performance.

In this work, the simulated annealing has been implemented according to two ap-

proaches, which differ for their initial state. The first approach starts from the empty

allocation matrix and it is referred to as Basic Simulated Annealing (BSA), while the

second one lies upon the result of Heuristic A and, hence, it is referred to as Heuristic

Simulated Annealing (HSA).

6.1.4 Experimental results

This section presents a set of experimental results of the approaches proposed in Sec-

tion 6.1.3. Such results are obtained by simulation on synthetic workloads adopting

the power profile taken by the Microchip dsPIC1 datasheet, interpolating the typical

consumptions.

An execution scenario is characterized by the tuple (n,m,U,B), where n de-

notes the number of tasks, m the number of nodes in the network, U the total task

set utilization, and B the total communication bandwidth required by the task set

(B =
∑n

j=1 Mj/Tj).

Given a total utilization factor (U and B), the task set features (Cj , Tj and Mj) are

computed according to a uniform distribution [BB05]. From such values, the wheel

length W and task bandwidth slots (Qj) are computed according to Equation (6.1) and

Equation (6.3).

As already exposed in Section 6.1.2, the application designer has to specify the

reward function γj for each task τj . Let µsat
j denote the number of running instances

of τj beyond which the measures have no gain on accuracy, then:

γj =
(

1− e∆j
)

,

where

∆j =
−5(µj − µmin

j )

µsat
j − µmin

j

.

For all the experiments, µsat
j is set equal to the number of nodes m. The balancing

parameter η between redundancy and energy saving is chosen to be 0.5.

1dsPIC33FJ256MC710 microcontroller
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Due to the complexity of considering all the parameters introduced in the analysis,

the set of experiments described in this section do not check the violation of the con-

straints on the minimum buffer and the minimum lifetime formalized in Equation (6.12)

and Equation (6.14), respectively.

The first experiment evaluates the complexity of the algorithms as a function of the

product n × m, for all the approaches, setting U = m/2 and B = 0.3. Table 6.1

reports the number of performance evaluations averaged on 50 runs of each approach.

The Complete Search (CS) approach represents an effective method to find the optimal

solution only for small problem size, as the number of evaluations becomes too high

already at n×m = 10×6. The number of evaluations performed by each approach re-

flects the complexity values reported in Section 6.1.3. Simulated annealing techniques

have a higher number of evaluations since they explore the search space until the sys-

tem is cooled but with a conditional stop criterion on the stability of the result. The

performance difference between CS and the other approaches is under 5%.

n×m CS Heu A Heu B BSA HSA

5x4 519 161 40 14684 20603

10x6 4.8·109 1186 168 22561 50234

15x8 - 4036 432 43598 63678

20x8 - 7139 787 57663 79626

25x10 - 15101 1309 91628 126059

Table 6.1: Problem complexity.

The second experiment evaluates the performance index Φ as a function of the task

set utilization U , and results are shown in Figure 6.5. All the approaches have been

tested with n = 25, m = 10 and B = 0.3. The utilization is normalized on the number

of nodes m.
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Figure 6.5: Performance analysis of the approaches.

As Figure 6.5 shows, Heuristic B outperforms all the approaches. BSA performs

poorly at utilizations higher than 0.5. Heuristic A is often able to find a reasonable

solution, although it can be improved by HSA, whose performance is very similar to

that of Heuristic B.

The third experiment deeply investigates Heuristic B, analyzing the three compo-

nents of the performance index as a function of the utilization U , normalized on the

number of nodes m.
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Figure 6.6: Performance components.

The results are reported in Figure 6.6, which clearly shows that the α factor is

about constant, revealing that the solutions found by Heuristic B are characterized by

uniform allocations. As expected, both the redundancy and energy saving indexes

decrease with the growing of the normalized CPU load. This occurs because tasks

with higher utilization are difficult to spread across the network without violating the

schedulability constraint and causing a sensible increase of power consumption.

The fourth and last experiment analyzes Heuristic B as a function of both n and

m, for a bandwidth utilization B = 0.3. The values of n range in {5, 10, 15, 20, 25},
while the values of m range in {4, 6, 8, 10, 12}. In this experiment, the utilization U is

always set to m/2.

 5
 10

 15
 20

 25

 4
 6

 8
 10

 12

 0.2

 0.3

 0.4

 0.5

Φ

# of tasks# of nodes

Φ

Figure 6.7: Performance analysis of Heuristic B when B=0.3.

As reported in Figure 6.7, the performance obtained by Heuristic B improves as the

number of tasks increases. This is due to the higher fragmentation of the task set, that

results in a wider feasible solution space. Instead, the performance index decreases

as the number of nodes grows. Since the utilization U is always set to the half of m,

the tasks result in a higher utilization. As for the third experiment, the approach is

able to spread only a few tasks instances across the network paying a higher power

consumption.
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Chapter 7

Energy-aware scheduling with

renewable energy

Energy harvesting systems are gaining increasing importance in the embedded systems

domain, as they provide an effective solution to bridge the gap between the energy

supply and demand by using solar panels and piezoelectric units.

With energy harvesting, in theory it becomes possible to design and build energy-

neutral systems [HZK+06]: systems that manage their energy consumption activities

in such a way that they can perpetually sustain their operation, subject to the hardware

faults/longevity only. In an energy-neutral system, over any time interval [0, t], the

consumed energy does not exceed the available energy, which is the harvested energy

augmented by the initial energy reserves.

Researchers have recently started to investigate the impact of adding energy har-

vesting dimension to the existing frameworks. In general, energy-harvesting algorithms

apply task procrastination as the conditions warrant: for instance, due to the current

low energy level, or as a way to proactively prevent a future energy shortage. Based on

this distinction, we can broadly divide the existing algorithms into energy-greedy and

computation-greedy classes depending on the actions they take when the energy level

is low. Under that condition, energy-greedy algorithms exploit the available slack in

the system by procrastinating tasks and charging the battery as much as possible. In

contrast, the computation-greedy algorithms give priority to execute the pending work-

load, and charge the battery only for the shortest time which guarantees the execution

of the next computational unit.

For fixed-priority real-time embedded systems which are more common in prac-

tice, the two well-known algorithms are PFPst (also called EDeg) [CMM11] and

PFPasap [ACM13a], that represent energy-greedy and computation-greedy algorithms,

respectively. In particular, PFPasap is shown to be optimal: any task set that can be

feasibly scheduled by any other fixed-priority energy-harvesting scheduling algorithm

can be also scheduled by PFPasap. On the other hand, the same paper shows that in

terms of the preemption numbers and other run-time overhead metrics, PFPst has a

clear advantage, while its average feasibility performance lags behind PFPasap by a

small margin.

Our work is partly inspired by the observation that, despite their theoretical impor-

tance, the existing algorithms assume power models that do not fully comply with exist-

ing processors: for instance, it is assumed that the CPU can be switched to/from a low-
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power (sleep) state instantaneously and without any energy overhead. Moreover, there

is only one sleep state and its power consumption is negligible. Contemporary pro-

cessors have typically multiple low-power states, each with different power/transition

overhead characteristics, such as standby, idle, and deep sleep states. Another objective

is to develop a simple, proactive and highly-predictable framework that seamlessly in-

tegrate the energy-harvesting capabilities into existing and widely known fixed-priority

systems.

This work proposes a novel and highly-predictable energy management algorithm

for fixed-priority real-time systems with renewable energy, called Periodic Charging

Scheme (PCS). The main idea consists of planning in advance for periodically alter-

nating charging and discharging phases to avoid battery failures. Specifically, the task

execution is suspended periodically and for a pre-determined duration, to allow the

system to re-charge the battery. At design time, the algorithm computes the duration

of the phases, taking into account the characteristics of tasks and the embedded plat-

form, as well as the break-even times of the existing low-power states. At runtime, the

algorithm opportunistically extends the duration of the charging states whenever pos-

sible, to further increase the energy level. Moreover, we also provide an enhancement

to increase the spare bandwidth that can be used by non real-time aperiodic tasks, if

included in the workload, without affecting the overall feasibility.

We perform extensive simulations to compare the performance of PCS against the

state-of-the-art techniques. We show that when realistic power parameters are con-

sidered, PCS outperforms other techniques in terms of feasibility ratio, which is the

percentage of the task sets that are feasibly scheduled with the given energy profiles.

We also evaluate several other performance indicators, such as the number of preemp-

tions and the length of the average sleep intervals.

Section 7.1 introduces the power and workload models, while Section 7.2 gives the

details of the proposed approach. Finally, Section 7.3 compares our algorithm with the

state-of-the-art techniques, experimentally.

7.1 System model

7.1.1 Power model

As depicted in Figure 7.1, we assume a system with energy harvesting capability. The

harvester unit is in charge of scavenging energy from the environment and storing in the

energy storage unit (which may be a battery or supercapacitor). The energy available

to the embedded system at time t is denoted by E(t). This energy level is bounded by

C, which is called the battery capacity. The energy is harvested at the rate of Pr(t).
As common in energy harvesting research ( [HZK+06, LSK10, ZSA11]), we assume

that the operation interval is divided into equal length time slots (or, epochs): in each

time slot (of duration Tr) the energy harvesting/replenishment rate can be assumed to

be constant. For example, several papers assumed Tr ranging from 15 to 60 minutes.

The power consumption of the processor in the active state (denoted as σ0) is given

by a constant value PCPU that accounts for both dynamic and leakage dissipation. The

overall power consumption due to the entire set of remaining system components (e.g.,

I/O devices/peripherals) is denoted by Pdev . The total power Pσ0
consumed by the

system in the active state is the sum of processor power and total power consumption

of the specific subsets of peripherals in use by the running task; thus, at any time,

PCPU ≤ Pσ0
≤ PCPU + Pdev . As in [CMM11, ACM13a], we do not assume DVFS
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Figure 7.1: Components involved in the energy flow.

capability in the system; i.e., task execution takes place at a constant frequency level.

A set Φ = {σ1, . . . , σm} of low-power states features the platform as defined in

Section 2.1.

Given the above notation, if the system remains in state σk (which may be the active

state σ0 as well as one of the low-power states σi (i ≥ 1)) from time t1 to t2, then the

battery energy level at time t2 is expressed by:

E(t2) = min



C, E(t1) +

t2
∫

t1

(Pr(t)− Pσk
) dt



 .

7.1.2 Task model

The workload Γ consists of a set of n real-time sporadic independent tasks, {τ1, τ2 . . .
τn}, with implicit deadlines. In addition to the parameters in Chapter 2, each task τi is

characterized by an average power consumption Pi, including both the processor and

the peripherals dissipation (PCPU ≤ Pi ≤ PCPU + Pdev). Note that two tasks having

the same WCET may consume different energy if they use different peripherals. H
denotes the hyperperiod of the task set, computed as the least common multiple of all

the periods: H = lcm(T1, . . . , Tn).
Finally, priorities are assigned according to Rate Monotonic and tasks are indexed

in decreasing priority order, so that τ1 has the highest priority.

7.2 Proposed approach

The proposed approach is based on a periodic scheme which alternates between active

and inactive phases of the processor: the first one is in charge of executing the pending

workload, while the second one replenishes energy until the next active phase.

The inactive phase is implemented by adding a new hypothetical periodic task (τs)

that puts the processor in a low-power state for an interval Cs in every period Ts, in

order to charge the battery continuously, without any interruption by other tasks. To

this aim, the highest priority in the system is assigned to τs; implying that whenever it

is ready, the system will be put in a low-power state and continuous re-charging will

be enforced in a predictable and periodic fashion. Moreover, its “execution time” Cs is

chosen in such a way that the system will be able to exploit the deepest possible low-

power state offered by the platform, by considering the break-even times of the existing

states, while still guaranteeing the deadlines of real-time tasks. In other words, our

periodic charging scheme (PCS) provides both a predictable harvesting mechanism
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and an ability to comply with the requirements of the low-power states of the processor,

in terms of the overhead amortization.

According to this framework, the problem can be reformulated as finding a valid

pair of Cs and Ts which avoid deadline misses and energy failures while executing

τs at the highest-priority level. Note that the assignment of the highest priority to τs
is critical to enforce its “non-preemptive” execution, to enable the system to enter a

low-power state effectively.

In systems with renewable energy, the concept of feasibility is extended to con-

sider also battery (or, energy) failures ( [CMM11, ACM13a]). Specifically, in addition

to guaranteeing task completions no later than their respective deadlines, in order to

ensure feasibility, the algorithm must also guarantee that the battery level never drops

below a certain threshold Elow: ∀t, E(t) > Elow. Without loss of generality, we

consider the case of Elow = 0; for higher thresholds, the battery capacity can be down-

sized accordingly and the problem can be re-stated as an instance with Elow = 0.

Note that, if an energy failure happens, it may not immediately lead to a deadline miss

as the required time to charge the battery may not violate real-time constraints. Our

adopted definition is stricter than this interpretation: our proactive approach treats any

energy underflow as a failure condition, which may indeed introduce unpredictability

in real-time embedded system design.

Compared to the existing energy-greedy and computation-greedy energy harvest-

ing algorithms, PCS is conceptually much simpler and easier to implement with

low online complexity. Moreover, thanks to its design principles, it explicitly con-

siders the time/energy overheads involved in the processor state transitions, through

the explicit analysis of the break-even times. In contrast, the energy-greedy algo-

rithms (e.g., PFPst [CMM11]) involve online computation of the existing slack to

re-charge the battery, which is, in general, of pseudo-polynomial complexity. Simi-

larly, the computation-greedy algorithms (e.g., the theoretically optimal PFPASAP )

result in very frequent invocation and processor state transitions with prohibitive costs

on real systems that have non-zero transition overheads.

τ1 τ1τ1τ1 τ2 τ2τ2τ2 τ3 τ3τ3τ3

τs

t

C

Cs Ts

E0

E(t)

Γ

Ω

∆E ≥ 0

Figure 7.2: Example of algorithm execution.
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An example of our approach is illustrated in Figure 7.2, showing how the battery

level varies while executing the instances of τs and the workload. For the sake of sim-

plicity, the replenishment function has been assumed constant and all tasks consume

the same power. Since τs runs at the highest priority (in order to guarantee a non-

preemptive execution), any time an instance of τs is released, the actual running job is

preempted, the processor enters into a low-power state, and the battery is replenished.

Then, the workload execution is resumed when τs instance completes its execution,

running for at most Ts − Cs time units before next instance arrives.

We first present the details of the proposed algorithm, then, a sufficient condition is

provided to test the system feasibility at design time. Finally, for workloads that may

include non real-time components, an online enhancement is introduced to improve the

responsiveness of such tasks, without affecting the feasibility of the real-time workload.

7.2.1 Algorithm

This section gives the details of the proposed algorithm: Periodic Charging Scheme

(PCS). Specifically, at design time, the algorithm computes the period Ts and charg-

ing time Cs which lets τs execute periodically in a non-preemptive fashion. Then, at

runtime, the algorithm opportunistically compacts idle intervals and τs execution, to

further extend battery phases and exploit deeper low-power states.

First, let us consider the design-time step. The shortest period among the real-time

tasks is assigned to Ts in order to let τs have the highest priority and run in a non-

preemptive way. The computational time Cs is assigned according to the sensitivity

analysis proposed by Bini et al. [BDNB08], which computes the highest spare utiliza-

tion that τs can have, without causing deadline misses among the lower priority tasks.

In this case, lower priority tasks correspond to the entire original task set Γ. Although

the sensitivity analysis considers fully-preemptive tasks, the non-preemptive execution

of τs is automatically guaranteed by its highest priority, without invalidating the anal-

ysis. Moreover, the specific low-power state σk to which the system switches during

the τs’s execution is chosen as the deepest sleep state whose break-even time is shorter

than or equal to Cs. The corresponding pseudocode is presented in Algorithm 5.

Algorithm 5 PCS: Design-Time Algorithm

1: function PCS AT DESIGN TIME(Γ)

2: Ts = min
τi∈Γ

Ti

3: Cs = ∆Cs /* From sensitivity analysis [BDNB08] */

4: Γ← Γ ∪ {τs}
5: k = max

σi ∈Φ∧Bσi
≤Cs

i

6: end function

On the other hand, the runtime component of PCS is executed whenever the

ready queue becomes empty. Specifically, when the processor is idle, the algorithm

first computes earliest possible next arrival time of any periodic task (next arrival),
which can be easily computed given the minimum inter-arrival time information of the

tasks. Then, it re-adjusts the next arrival time of τs to coincide with next arrival.
In this way, the system enters an extended charging phase from the current time until

next arrival + Cs, potentially enabling the exploitation of even deeper low-power

states simultaneously.
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To prove that the schedulability is not affected by re-adjusting the next invoca-

tion time of τs arrival, let us assume a generic task set whose feasibility is statically

guaranteed. Recall that τs has the highest priority in the system. According to the

well-known fixed-priority schedulability analysis techniques, the response time of any

task is maximized when its job arrives simultaneously with the jobs of higher-priority

tasks [BDNB08]. Since the task set is deemed feasible at the static phase, the response

time of any task does not exceed its deadline even in that critical instant, by definition.

Hence, by aligning the next invocation time of τs with the next arrival, other dead-

lines cannot be compromised. Then, forcing τs to arrive at the same time lets us obtain

a configuration equivalent to the critical instant, whose feasibility is already assumed

in the static analysis.

The pseudocode in Algorithm 6 gives the details of the runtime component of

PCS, which computes the actual charge length (Tcharge), adjusts τs’s next invoca-

tion time as,j and selects the deepest low-power state to use during that specific charge

step.

Algorithm 6 PCS: Runtime Algorithm

1: function PCS AT RUNTIME (t) ⊲ t: CPU becomes idle

2: t1 = next arrival
3: Tcharge = Cs + (t1 − t)
4: as,j = t1
5: k′ = max

σi∈Φ∧Bσi
≤Tcharge

i

6: end function

An example is reported in Figure 7.3, representing the schedules without and with

the runtime component of PCS. Specifically, when the runtime component is enabled,

it is invoked at t (when the CPU becomes idle) and, computing the next arrival time

in Γ as t1, τs’s execution and the idle interval are compacted to form a single longer

interval (of duration Cs + (t1 − t)). With longer intervals, the algorithm gains the

ability to potentially exploit deeper low-power states.

Without Runtime Adjustment With Runtime Adjustment
tt t1t1

τs

Γ

P

Figure 7.3: Schedule examples without and with the PCS runtime component.

At runtime, the introduced complexity for the scheduler is negligible as the algo-

rithm only requires to schedule the additional task τs. The complexity of the static

(design-time) component is pseudo-polynomial with respect to the number of tasks

due to the sensitivity analysis. Finally, the runtime component of PCS has also low

complexity: assuming the earliest next arrival time can be evaluated in constant time,
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then the overall complexity is linear with respect to the number of low-power states,

which is O(m).

7.2.2 A sufficient condition for schedulability

In PCS, the feasibility in terms of timing constraints is explicitly guaranteed through

the sensitivity analysis. On the other hand, providing a simple necessary and sufficient

condition to check whether a given system configuration, with a certain initial energy

budget and harvesting profile is feasible or not, is not trivial.

Nevertheless, a sufficient condition to guarantee execution without energy failures

can be derived, for design-time (offline) analysis. The condition is based on guarantee-

ing that, even in the worst-case scenario, the difference between the harvested energy

and the consumed energy during one period Ts of τs is not negative. If this holds,

due to the periodic nature of τs’s invocations, the energy level of the system will never

decrease in the long run, guaranteeing feasibility.

Specifically, the difference in the energy levels at the beginning of two consecutive

invocations of τs is given by:

∆E = (Pr − Pσk
) · Cs − (Pact − Pr) · (Ts − Cs) ≥ 0, (7.1)

wherePact is the maximum task power consumption in the active state

(

Pact = max
τi

Pi

)

and σk is the low-power state selected by the offline phase of PCS.

An intuitive example is shown in Figure 7.4, illustrating how the battery level E
varies while executing τs and real-time tasks. The first term in Eq. (7.1), (Pr−Pσk

)·Cs,

gives the net energy gain during the charging phase, while the second term (Pact−Pr)·
(Ts − Cs) corresponds to the energy loss during the discharging phase.

τs

Γ

E(t)

E0

∆E ≥ 0

Ts

Cs

Figure 7.4: Energy level changes during one period of τs

Eq. (7.1) can be reformulated with respect to Cs, as:

Cs ≥
Pact − Pr

Pact − Pσk

Ts, (7.2)

Note that this condition is pessimistic, because it is assumed that the system is

always in active state (σ0), executing the task with the maximum power consumption
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characteristics, when τs is not running (i.e., during the discharge phase of length Ts −
Cs). However, it provides a simple formula that can be checked in constant time,

regardless of the initial energy level. In the rest of the paper, we refer to this version of

PCS which checks feasibility at design time by using Equation (7.2), as PCS∗.

7.2.3 Enhancing the algorithm for mixed workloads

In some cases, thanks to a favorable scenario, the energy stored in the battery may reach

the capacity, leading to a waste of energy. Although battery overflows do not represent

a problem for neither real-time nor energy constraints, the scheduler may optimize the

use of resources, such as energy and CPU time.

In fact, such an optimization may be quite useful for mixed workloads that contain

both sporadic real-time and aperiodic non-real-time (NRT) tasks. For mixed work-

loads, the traditional objective is to meet the hard deadlines of the real-time tasks,

while improving the responsiveness (i.e., average response time) of NRT tasks [But04].

Hence, in our settings, some instances of τs may be skipped, making available its al-

located computation time to NRT tasks. Figure 7.2, at the bottom schedule, illustrates

the execution of an NRT task Ω during the idle intervals of the PCS schedule. If the

third job of τs is discarded, the response time of Ω can be shortened without causing

any energy failure.

However, skipping too many instances of τs may hurt feasibility in the long term;

in particular, as the harvesting rate Pr changes at the end of each epoch Tr, typically of

length 15-30 minutes, one should still try to maximize the battery energy level as much

as possible by the end of the current epoch. Consequently, our proposed enhancement

is based on skipping one instance of τs out of j + 1 consecutive instances (j ≥ 1),

while ensuring maximization of the battery level by the end of epoch. Specifically,

by denoting the initial energy level at the beginning of the epoch as E0, the net energy

harvested until the end of the current epoch has to be no less than the available capacity

(C − E0) in the battery:

N ·∆E∗ ≥ C − E0 ≥ 0, (7.3)

Above, N is the number of skipped instances during the current epoch
(

N =
⌊

Tr

(j+1)·Ts

⌋)

and ∆E∗ is the difference between harvested and consumed en-

ergy in a time interval of length (j + 1) · Ts:

∆E∗ = j · (Pr − Pσk
) · Cs − (Pact − Pr) · (j · Ts − j · Cs + Ts) ≥ 0. (7.4)

Since Tr>>Ts, we can approximate N as Tr

(j+1)·Ts
. From Eqs (7.3) and (7.4), we

can derive a lower bound for j:

j ≥
(Pact − Pr) · Ts +

C−E0

Tr
Ts

(Pact − Pσk
) · Cs − (Pact − Pr) · Ts −

C−E0

Tr
Ts

, (7.5)

The value of j must be set as the smallest integer that satisfies Eq. (7.5) – a higher

value of j may decrease the responsiveness of the NRT workload, while wasting en-

ergy that cannot be stored in the battery. This enhanced version of PCS, denoted

by PCSNRT , is invoked whenever an epoch starts and has constant-time complexity

(O(1)), as only Eq (7.5) needs to be solved.
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7.3 Experimental results

In this section, we provide the results of simulation experiments we carried out to eval-

uate the performance of our proposed algorithms under different system parameters.

We considered an embedded system equipped with an NXP LPC1768 [NXP] pro-

cessor (ARM Cortex M3 [ARM]), powered by a battery with capacity C = 500mAh
and two solar panels, each providing a maximum of 500mW . The power consump-

tion of the processor in active state, without considering the peripherals, is PCPU ≈
690mW . When all peripherals are activated, the overall power consumption is around

1W , givingPdev = 310mW . Two low-power states are considered: idle (σ1) and sleep

(σ2). Their power consumption and break-even times arePσ1
= 490mW , Bσ1

≈ 0ms,

Pσ2
= 290mW and Bσ2

= 15ms. Observe that, although the sleep state consumes

least power, its break-even time is not negligible.

The synthetic task sets used in the tests are composed of 10 tasks randomly gen-

erated using the UUniFast algorithm [BB05], where each period Ti is uniformly dis-

tributed in the range of [40, 500]ms. In our simulations, we generated 4000 task sets

(200 for each utilization value under consideration). The power consumption Pi of

each job of task τi is computed as:

Pi = PCPU + xi · Pdev,

where 0 < xi ≤ 1.0 is a real number generated randomly. By choosing different xi

values, tasks can consume different amount of power per time unit of execution.

We report the results of our experiments in three parts. The first set evaluates the

effectiveness of the proposed algorithms in terms of the ratio of the task sets that are

scheduled in feasible manner (called the feasibility ratio), with respect to both timing

and energy constraints. The second set of experiments assess several online metrics,

such as average sleep interval length and preemption count, and the last set analyzes

the spare CPU bandwidth that is made available to potential non-real-time tasks.

7.3.1 Feasibility ratio
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Figure 7.5: Feasibility ratio vs. Utilization (Bσ1
= 0, Pσ1

= 0W , Pr = 70%).

To evaluate the feasibility ratio under different system configurations, we imple-

mented the following algorithms in our discrete-event simulator:
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• PFPasap: the computation-greedy algorithm whose optimality for fixed-priority

systems with renewable energy, but only under negligible state transition over-

heads assumption, was formally proven in [ACM13a];

• PFPst (also calledEDeg, from [CMM11]): the energy-greedy algorithm whose

feasibility performance was shown to lag slightly behindPFPasap in [ACM13a];

• PCS∗ that evaluates only the sufficient condition given by Eq. (7.2) at design

time, to guarantee the feasibility;

• PCS – the proposed algorithm;

• Bound that represents a theoretical limit on the feasibility performance of any

scheduling algorithm.
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(a) Pr = 50%.
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(b) Pr = 70%.

Figure 7.6: Feasibility ratio vs. Utilization for non-negligible transition overhead.

The executions of PFPasap, PFPst and PCS are simulated, assuming an ini-

tial energy level of E0 = 0 (the worst-case scenario) and checking for any deadline

misses or battery failures during the hyperperiod H . To implement Bound, we adopted

a methodology similar to the one suggested by Pagani and Chen [PC13], by transform-

ing the problem into another one where tasks have identical release times and identical

deadlines (equal to the hyperperiod H of the original task set) while keeping task uti-

lizations the same. Specifically, the battery capacity limit is ignored, and the longest

possible charging interval within the hyperperiod is considered. In these ideal settings,

the entire workload with utilization U can be procrastinated for (1−U) ·H time units

and the system is feasible if and only if the energy harvested in (1 − U) ·H is higher

than or equal to the energy consumed in U ·H time units of execution.

Since PFPasap and PFPst were developed assuming negligible state transition

overheads, they have been updated to incorporate a simple mechanism to deal with

those overheads at run-time. Specifically, PFPasap, which procrastinates only to har-

vest the energy necessary to execute the next computational unit, chooses the deepest

sleep state whose break-even time is not longer than the required time to harvest the

missing energy amount. Similarly, PFPst, which exploits the whole available slack to

charge the battery when it becomes empty, selects the deepest low-power state whose

break-even time is shorter than or equal to the target procrastination delay. In addition,

both algorithms are enhanced by putting the processor to the deepest low-power state

which lets the system be fully operational by the next job arrival, when the CPU is idle.
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In Figure 7.5, we first report the results for a system with “ideal” settings, that is,

the one with a negligible power dissipation and zero break-even time associated with

the sleep state (i.e., Bσ2
= 0ms and Pσ2

= 0W ). The harvesting rate Pr is set to 70%
of the maximum system power consumption (PCPU + Pdev).

As expected, in this scenario with no overheads, PFPasap’s optimality is demon-

strated: it yields a feasibility ratio higher than PFPst and PCS. Also, in accordance

with what is experimentally shown in [ACM13a], PFPst is a close second – in fact,

its performance almost coincides with that of PFPasap. PCS comes next, showing

that putting periodically the processor in sleep state is not the best approach on systems

with zero transition overhead and zero sleep power.

However, when a realistic set of low-power states is considered, the picture changes

entirely. The results are reported in Figure 7.6(a) and Figure 7.6(b), for Pr = 50% and

70% of the maximum power consumption (PCPU + Pdev), respectively.

Our approach outperforms PFPst and PFPasap as it periodically guarantees re-

plenishment phases which last longer than the sleep state’s break-even time, over-

coming the limitations due to short idle intervals. For instance, when Pr = 70%,

PFPasap’s performance degrades when U = 0.35, while PCS successfully schedules

all the task sets up to U = 0.45. The performance of PFPasap drops because it is able

to exploit only shallow low-power states. The difference between PCS∗ and PCS
is entirely due to the pessimistic nature of the offline test. Finally, although PFPst’s

performance is close to PCS, its online complexity is pseudo-polynomial whereas our

simple algorithm has a linear complexity at runtime.

Figure 7.7 presents the impact of the relative harvesting rate (Pr/(PCPU + Pdev))
on the feasibility ratio when U = 0.4. In other words, this analysis shows the min-

imum required harvesting rate that guarantees schedulability. Again, PCS offers the

best performance (besides Bound, which gives the theoretical limit): it guarantees the

feasibility for the lowest harvesting power.
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Figure 7.7: Feasibility ratio vs. Harvesting rate (U = 0.4).

Next, we analyze how the performance changes as a function of the different break-

even times associated with the sleep state, in Figure 7.8(a) and Figure 7.8(b), for PCS∗

and PCS, respectively. The results are obtained for Pr = 65%, and the minimum

period value of 40ms. As expected, the results show that the longer the break-even

time, the lower the feasibility ratio. However, PCS is less affected than PCS∗ by

the changes in the break-even time: this is because, it opportunistically manages to

compact inactive intervals at runtime.
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(a) Under PCS∗.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65
Utilization

0ms
15ms
75ms

135ms
225ms
300ms

F
ea

si
b
il

it
y

ra
ti

o

(b) Under PCS.

Figure 7.8: Feasibility ratio vs. Utilization under different break-even times for Pr =
65%.

7.3.2 Online metrics

This subsection considers some online metrics that are relevant to characterize the al-

gorithms’ performance at runtime:

• average time spent in sleep state: this metric shows the capability to exploit

the deepest low-power state for as long as possible. In generally, the longer the

sleep intervals, the higher the harvested energy and the higher the probability to

execute the workload without battery failures;

• number of preemptions: this metric shows the total number of preemptions ex-

perienced by each algorithm. Obviously, an algorithm with prohibitive number

of preemptions is not desirable, due to the associated overhead;

• average battery energy level: this metric highlights the success of the algorithms

in effectively harvesting energy, while executing the workload.

The comparisons in this section involve only PCS and PFPst, due to the fact that

the results in [ACM13a], that are in line with ours, clearly show that PFPst outper-

forms PFPasap by a significant margin when considering these online metrics.

First, we analyze the average length of the sleep intervals for PFPst and PCS in

Figure 7.9. We observe that PCS guarantees longer sleep intervals on the average;

however their lengths tend to decrease with increasing utilization (the time assigned

to τs becomes shorter). Conversely, the average sleep interval length for PFPst first

remains constant with the utilization (due to the feasibility constraint and reaching the

battery capacity during recharging), before dropping. It is worth noting that for PFPst,

the total length of the idle intervals is comparable to that of the sleep intervals. Note

that some values are not reported for certain data points whenever the corresponding

algorithm does not generate a feasible solution for that utilization value.

When the absolute time spent in low-power states (idle + sleep) is considered in-

stead of the average duration, PCS and PFPst have similar trends. Specifically, the

difference is around only 5% of the entire hyperperiod during which PFPst puts the

system in the idle state rather than the sleep state, due to the break-even time.

Next, in Figure 7.10, we show the number of preemptions of PCS, normalized

with respect to PFPst’s. PCS has the side effect of introducing a higher preemption
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Figure 7.9: Average sleep interval vs. Utilization under PCS and PFPst.

count than PFPst as the system executes the additional charging task τs with the

period set to the minimum period value. However, except for very low utilization

values, the increase is only around 50% compared to PFPst during the hyperperiod.

The preemption ratio is not reported for utilization values where PFPst or PCS does

not generate feasible values.
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Figure 7.10: Ratio of preemption number in PCS to that in PFPst (percentage).

Finally, in Figure 7.11, we analyze the average battery level, normalized to the bat-

tery capacity, within a hyperperiod. We observe that both PCS and PFPst guarantee

a similar average battery level, even though, charging principles and timing are differ-

ent. In general, the higher the utilization, the lower the average battery level as the

available time to charge the battery is shorter. In addition, the higher the harvesting

rate Pr, the higher the average battery level as the charging process is more effective.

Despite similar performance trends, we note that the online component of PFPst has

pseudo-polynomial time complexity (due to the computation of the maximum slack at

runtime), while PCS has linear complexity.

7.3.3 Effective spare CPU bandwidth

Finally, we undertake an experimental analysis of PCSNRT which targets allocating

as much CPU bandwidth as possible to non-real-time (NRT) tasks in order to improve

their responsiveness. Recall that under PCSNRT , effectively additional CPU band-
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Figure 7.11: Average battery level vs. Utilization under PCS and PFPst.

width is reserved by skipping an instance of τs out of j + 1 consecutive instances,

where j is computed statically at the beginning of each epoch, to preserve feasibility in

terms of deadlines and energy constraints.

In these experiments, the utilization of the real-time task set is set to 0.5, potentially

leaving 50% of the CPU time to non-real-time tasks, regardless of τs’s configuration.

Figure 7.12(a) shows the effective spare CPU bandwidth that is left for the NRT work-

load, by considering also τs’s invocations, as a function of the harvesting rates and

initial battery level E0. In this first simulation, the battery capacity is C = 500mAh
and the average τs utilization is 0.4. When the online enhancement is not able to skip

any τs instance (mainly due to low initial battery level E0, or scarce harvested power

Pr), the CPU bandwidth allocated to NRT tasks is around 10%, which is equivalent to

the static slack (0.5 − 0.4). As soon as more favorable execution scenarios occur (ei-

ther thanks to the higher initial battery level E0 or higher harvesting rate Pr), several

of τs’s jobs can be skipped without hurting the feasibility. Specifically, in the best case,

the effective spare CPU bandwidth goes from 10% to 30%, meaning that the actual

utilization of τs is 0.2 (i.e., an instance is skipped out of 2).

In Figure 7.12(b), the same analysis is repeated for a system with lower battery

capacity, C = 250mAh. Since the maximum amount of energy that can be stored is

lower, the upper bound on the effective spare CPU bandwidth is now reached sooner.
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Figure 7.12: Feasibility ratio vs. Utilization under different break-even times for Pr =
65%.
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Chapter 8

Conclusions

This PhD thesis considered the energy-saving issue in real-time systems in which the

execution correctness does not depend only on the result values, but also on when such

results are produced. Most attention was focused on embedded systems which are

specific-purpose computers in charge of achieving dedicated functions, while exploit-

ing limited resources (such as memory, computational capability and power supplier).

The analysis started considering single-core systems, which are still widely used in

the embedded domain thanks to their high reliability and predictability. The first contri-

bution exploited the limited preemption task model to further reduce the overall energy

dissipation with respect to the actual state of art. Another work handled the impact of

additional constraints (due to the communication bandwidth) by proposing a solution

which synchronizes task execution and message transmission, putting the system in

sleep state for longer intervals. In addition, several algorithms with low online com-

plexity were implemented in a real system to evaluate their real effectiveness. Finally,

the previous work was extended by profiling a bunch of widely used platforms in the

embedded systems domain and then, using those models to simulate the most popular

energy-aware real-time scheduling algorithms, showing their behaviors in practice.

Multi-core systems have also been considered, mostly focusing on high perfor-

mance computing. More precisely, two opposite partitioning heuristics were compared:

the first approach aims at spreading the workload on all the available cores (lowering

the utilization on each core), while the second strategy compacts the workload on few

cores (increasing their utilization and switching off the others). In contrast with the

actual belief, the second approach provides a lower energy consumption on a real sys-

tem. Such a result is particularly interesting as the scheduler and load balancer in actual

operating systems implement the first strategy which guarantees lower response times.

The energy issue has also been analyzed in distributed systems in which a new

trade-off between dissipation and fault tolerance (implemented through task redun-

dancy) is introduced. Several partitioning strategies are compared to investigate the

bliss point among all the constraints: real-time requirements, bandwidth utilization,

lifetime, required redundancy and energy dissipation.

Finally, the energy harvesting problem has been studied, considering external power

suppliers whose contribution is time dependent. More precisely, a high predictable al-

gorithm is introduced which, combining task and environmental parameters, guaran-

tees the schedulability for a higher number of task sets with respect to the actual state

of art.
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