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Preface

Main objective of the thesis

Embedded and Real-Time Systems are systems often characterized by lim-
ited resources as: memory availability, processing power or battery lifetime.
Since most of these systems are battery-operated, and for some applications
human maintenance is prohibitive or not comfortable, energy consumption
and system lifetime became crucial. For such a systems the objective of
reducing power consumption is of paramount importance and it represents
the main objective of this work. According with this requirement, this the-
sis focus on power management for Embedded and Real Time Systems and
provides a novel set of strategies to cope with the problems of limiting power
consumption and guaranteeing interconnection support. This last capability
is fundamental since most of the Real Time and Embedded applications are
distributed and they operate in a networked scenario.
Most of the modern embedded architectures provide the capability to reduce
energy consumption by using DVS (Dynamic Voltage and Frequency Scal-
ing) or DPM (Dynamic Power Management) strategies. These techniques
represent the state of the art in matter of power management in last gen-
eration processors. They are typical techniques used on CPU1 and devices
to reduce power consumption through speed variation and power switching,
respectively.

The effectiveness of DVS and DPM methods, needs to be taken into
account in the development of a power management policies for systems
characterized by the availability of DVS or DPM support.

1CPU: Central Processing Unit
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Proposed solution

According with these requirements, the existing DVS and DPM methods
would be combined in much more complex strategies to cope with the
double-sided problem concerning limiting power consumption on one end,
and guarantying the interconnection of the distributed systems on the other.
This thesis focus on this issue: saving energy and guarantying interconnec-
tion among computing nodes in a networked scenario.
Some novel strategies concerning the problem of limiting power consump-
tion and optimizing the use of a shared communication bus will be proposed.
These approaches are based on DVS and DPM technologies but they also
take into account the communication-media assignment policy. The already
mentioned DVS and DPM power saving methodologies are combined in or-
der to exploit their power and maximizing system lifetime. This objective
is achieved by complying both the communication requirements and timing
constraints, that are typical of a real time distributed systems.

Thesis overview

Chapter 1 introduces real time computing fundamentals. They consist of
general definitions, main scheduling algorithms, mathematics frameworks
and approximations used in the analysis of real time systems. This part of
the thesis is developed according to the notions exposed in [29], but limit-
ing the description only to the aspects strictly necessary to figure out the
concepts of the next chapters. The end of the chapter illustrates the basic
notions of Real Time Calculus according to [71], that synthesizes some of
the relevant results mentioned in this thesis.

Chapter 2 focuses on power management of the embedded systems. In
particular it starts with the problem statement, followed by an exhaustive
presentation of the power model currently adopted. In conclusion, the chap-
ter ends with the taxonomy of the main families of power management al-
gorithms, and finally the most relevant results have been presented for each
family.

Chapter 3 treats in detail the case of large-scale interconnected systems.
In particular the chapter starts with the problem of a radio interconnected
system, then two novel solutions to reduce power consumption have been
proposed for this specific case. Most of the modern approaches to this prob-
lem consider power management and communication support separately,

7



this is not correct since battery-operated and distributed systems must be
apply a power saving strategy and guarantee communication support at the
same time to accomplish with their final goal. The novel solutions proposed
in this chapter [60, 72] provide two algorithms to cope with the problem of
saving energy and guarantee communication capability under the constraint
of a assigned bandwidth chunk.

Chapter 4 investigates the problem of power management for multipro-
cessors systems sharing a communication bus. The chapter introduces an
adaptive strategy to better assign communication bandwidth among pro-
cessors, furthermore a novel strategy to cope with the problem of managing
overload has been proposed [23]. It consists of a framework operating at
two levels: software and hardware. At software level a Real Time kernel
is in charge of managing workload by applying elastic scheduling, while at
hardware level a sound dynamic assignment of communication bandwidth
among processors over a shared bus is performed. The proposed approach
demonstrates that such a strategy improves system performances both in
term of quality of control and power saving.

Chapter 5 concludes the thesis by summarizing the obtained results pre-
sented in this work in chapter three and four. The conclusions concerning
each problems have been synthetically pointed out in order to highlight the
advantages and the effectiveness of the described solutions.
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Chapter 1

Introduction

Real Time computing is becoming crucial in the modern world since most of
the human activities are strongly dependent on computers. More and more
often in our everyday life, we get in touch with these devices. Some applica-
tions where the use of real time systems is needful are avionics, automotive,
transports, defense, robotics, biomedical, telecommunication, aerospace, air-
traffic control, security or biomedical.

As just said, the importance of such a systems is of paramount impor-
tance and we expect it will increase in the future, even because they are
recently adopted in much more familiar scenarios: entertainment systems,
simulators, virtual reality, consumer electronics or home automation.

Real Time systems are often characterized by limited resources and much
more often they operate in dangerous environments, where human interven-
tion is dangerous and therefore technical maintainability are uncomfortable
or even impossible. In these scenarios, system design and implementation
represent a key features. One of the most important resource featuring real
time systems is battery. Since a wide set of such a systems are battery
driven, lifetime represents one of the most crucial point to be taken into
account. According with this requirement, during the design phase, a specif
project methodologies have to be considered in order to cope with this issue.
A system able to face this problem provides power management capabilities.

Among all families of embedded and real time systems there exists a
particular class that recently is becoming very pervasive, they are the net-
worked embedded systems. The spread of these systems is increased fast,
and a lot of them are becoming more and more familiar in our everyday life.
Some examples of such a systems are WSN (Wireless Sensor Network) used
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in intelligent building applications, traffic monitoring or surveillance. An-
other example is CPS (Cyber Physical Systems), mostly used in aerospace,
civil infrastructures, chemical or transportation; for this kind of systems the
combination, synchronization and interconnection among computing units
and physical infrastructures is very tight. A subset of these systems can
be found in other industrial domains like Automotive and Aerospace where
their guidelines are respectively formalized in AUTOSAR (Automotive Open
System Architecture) [68] and IMA (Integrated modular avionics) [39] stan-
dardizations.
An important point to be highlighted is that the interconnected systems
do not scale only to the high level to compose complex systems or geo-
graphically distributed systems, but they can be even found in miniaturized
systems like MPSoCs (Multi-Processor Systems on Chip), where each com-
puting units provide power-saving support but the interconnection over a
shared communication bus has to be guaranteed whatever the cost, in order
to keep the system fully operating.
These systems have to guarantee communication link during data transmis-
sion or reception, therefore power consumption has to be reduced as mush
as possible in order to extend the whole system lifetime.
This thesis focus on this kind of systems, in particular power management
aspects will be considered in detail. The current chapter presents the most
important results gained in the domain of Real Time and Embedded sys-
tems, and the notion exposed in the current chapter, have been introduced
with the only intent to introduce the basic notion of Real Time Systems, in
order to provide to the reader all the fundamentals needed to deal with this
work.

1.1 Real-Time Systems

Real Time systems are computing systems that must to react within precise
time constraints to events in the environment [29]. This means that the
correctness of the result has not to be only computing correct, but even
provided before a given time instant, otherwise it has not to be considered
useful or still reliable. This last consideration depends on the fact that a
delayed result can be useless, or for particular applications it may result in
a catastrophic outcome.

Most of modern computing applications rely with control, these systems
play a crucial role since they gather informations from the environment and
determine the behavior of the systems in relationship with the information
provided by the environment itself. Some examples of this class of applica-
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tions requiring real time computing are:

• Chemical and nuclear plants;

• supply chain and industrial process;

• railway signaling;

• automotive;

• air traffic control and avionics systems;

• robotics;

• industrial and home automation;

• defense;

• space exploring;

• multimedia and entertainment;

• virtual reality and simulators.

These technologies are very common since long time, but despite they
play an important role in our society, there is a sort of misconception about
real time systems and most of the application having real time requirements
are developed with ad hoc techniques or heuristic approaches. In fact, very
often applications with real time constraints are developed using optimized
assembly code, programming a lot of interrupts, manipulating interrupt pri-
ority or enabling or disabling tasks preemption in a multitasking scenario.
Of course, code with this particular features can be very fast and performing
but there are also a lot of disadvantages:

• Tedious programming. The code produced according with this
strategy is very time consuming and often the result may depend on
the software developer ability.

• Difficult code understanding. Often the only people able to figure
out such a code is only the developer who wrote that code.

• Maintainability. more the complexity and the dimension of the ap-
plication increases, more the effort to maintain code increase with it.
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• Validation of time constraints. Without specific software tools for
this kind of testing, timing constraints checking becomes impossible
as well as the validation of the written code.

The consequences of this strategy is that the software empirically pro-
duced is error prone and the predictability of the system is seriously compro-
mised. If the time constraints cannot be verified a priori and if the operating
system does not provide features to handle stringent real time requirements,
the systems is no more reliable and if it apparently seems to work properly
during the test phase, this does not prevent from a failure in case of rare
but possible scenarios.
The collapse of such a systems may have very catastrophic consequences,
for instance people may be injured or serious damages can be caused to the
surrounding environment.

Testing is fundamental for real time applications but it does not prevent
from faults. Since most of real time applications are control based, the flow
of control depends on input parameters, and often is not possible to ex-
haustively replicate all possible input scenarios and environment conditions.
This does not means that testing is not necessary, but it has to be considered
as the system response concerning with a subset of input parameters.

According with these concepts a higher level of robustness has to char-
acterize these systems. This objective can be only achieved by adopting
advanced design methodologies able to guarantee to the systems a better
response even in presence of the most pessimistic scenario. This approach
includes static analysis of code, off-line guarantee techniques and providing
specific mechanisms at the operating system level, able to support comput-
ing even in presence of stringent timing constraints.

1.2 Main definitions and modeling

Real-Time systems represent an object of study since long time, and several
methodologies have been introduced in the past to cope with the problem of
improving the predictability of such a systems, as well as their performances.
Predictability and performances can be considered being among the most
important aspects featuring Real Time Systems because timing constraints
and efficiency requirements are crucial in modern applications. In order to
fugue out the concepts proposed in the next chapters, an introduction of
basic aspects of this discipline is required.

12
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Figure 1.1: Queue of ready tasks

One of the basic point of this domain is the concept of process. Con-
cerning with the definition of process, it is necessary to explain a common
misconception about its meaning. The most relevant software entity treated
by an operating system is the process; process can be considered as a compu-
tation activity performed by the CPU1 in a sequential order. In this thesis
the words process and task (or thread) are used as synonyms. However, it
is worth to point up that some authors prefer to distinguish among task
(or thread) as a sequential execution of code that does not suspend itself
during execution, and process as a more complex software entity composed
by many tasks.

The strategy according to which a single CPU is assigned to a particular
task is called scheduling algorithm or scheduling policy. The scheduling algo-
rithm (or scheduling policy) represents a set of rules that determines which
is the task that have to be executed at any time. The particular operation
of allocating a CPU to a single task is called dispatching.

Without delving into any particular implementation details, the status
of a task with respect to the operating systems can be recognized to be:
active, ready or running. According with the Figure 1.1, a task that can
potentially executes on a CPU is called active. A task waiting for a CPU
availability is called ready task, ready tasks are usually kept in a queue
called ready queue. The task currently running on a CPU is called running
task, a CPU can run only one task a time.

Lets consider a task set J = {J1,.....,Jn}, a schedule of J can be consid-
ered as an assignment of tasks belonging to the task set J to the processor
so that each tasks executes until its completion.

A more formal definition can be provided considering a schedule as a

1CPU: Central Processing Unit
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function σ, so that:

σ : R+ → N | ∀t ∈ R+, ∃t1, t2 t ∈ [t1, t2) ∧ ∀t′ ∈ [t1, t2)σ(t) = σ(t′) (1.1)

In other words, a schedule is an integer step function. Therefore σ(t)=
k, with k > 0, means that task Jk is running at time t, while σ(t) = 0 means
that CPU is idle.

1.3 Classification of scheduling algorithms

Real time systems literature consists of several scheduling algorithm and
their variations, but it is possible to identify some main classes.

• Preemptive. By adopting a preemptive scheduling algorithm, a task
can be interrupted at any time in order to assign the CPU to a different
task, according with a given policy.

• Non-preemptive. By adopting this scheduling policy a task, once
started, cannot be stopped until its completion, any other decision is
taken after this instant;

• Fixed. According with this strategy, scheduling parameters are assign
at task activation and they will never change at run-time;

• Dynamic. According with this strategy, scheduling parameters can
be recomputed at run-time;

• Off-line. In this case scheduling algorithm run off-line over the whole
task-set. The obtained solution is stored in a proper data structure
and subsequently used as is;

• On-line. Scheduling decision taken at run-time. Whenever a new
task is activated or an existing task terminates the execution, a new
scheduling decision is taken at run-time;

• Optimal. An algorithm is said to be optimal if it minimizes a given
cost function;

• Heuristic. An algorithm is said to be heuristic it searches for a fea-
sible scheduling by using a objective function (Heuristic function);

Another fundamental concept concerning the classification of an algo-
rithm in this domain is represented by the clairvoyance. An algorithm is
said to be clairvoyant if it knows in advance the arrival time of all tasks.
This kind of algorithm is obviously inexistent, but is used with the sole
purpose of comparing the existing algorithms with best possible one.
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1.4 Periodic task scheduling

Real-time control systems are mostly characterized by periodic activities,
this features is strictly related with the nature of such a systems. In fact
most of them are control systems and therefore their functioning depends
on sensors feedback, low level activities, monitoring and so on. Each task is
cyclically triggered at a given sample rate, and it has to perform its activity
concurrently with other tasks. In this context, the role of the operating
systems is crucial because all of these tasks have individual timing require-
ments and they have to execute within their deadlines.

This chapter focus on the problem of scheduling periodic tasks, and
the main basic algorithm developed to cope with this specific issues will be
treated in details. They are: rate monotonic, earliest deadline first, deadline
monotonic and finally the EDF version to treat tasks with deadline less then
periods. For each algorithm will be introduced basic concepts, schedulabil-
ity analysis and guarantee test.

In order to make the read easy, the basic concepts will be pointed out
and a set of hypothesis will be assumed to simplify the scenario without loss
of generality. As a consequence of the foregoing mentioned, the following
notations will be introduced:

Γ denotes a set of periodic tasks;

τi denotes a generic periodic ith task;

τi,j denotes the j th instance of task τi;

ri,j denotes the release time of the j th instance of task τi;

Φi denotes the phase of task τi. It also reppresents the release time of the
forst instance of the task (Φ = ri,j);

Di denotes relative deadline of task τi;

di,j denotes the absolute deadline of the j th instance of task τi. It is also
given by di,j = Φi + (j − 1)Ti +Di;

si,j denotes the start time of the j th instance of task τi. It represents when
task start running;

fi,j denotes the finishing time of task j th instance of task τi. It represents
when task stop running.

15



In order to simplify the analysis, the following hipothesys and assump-
tions will be considered:

A1. the instances of a periodic task are activated at constant rate. The
interval Ti between two consecutive activations represents the period
of task;

A2. all instances of a periodic task τi have the same worst case execution
time (WCET) Ci;

A3. all instances of a task has the same relative deadline Di. All the
deadlines are assumed to be equal to the periods Ti;

A4. there not exist any precedence constraints among the tasks belonging
to the task-set Γ;

A5. each task cannot suspend itselfe (i.e.: for I/O operations);

A6. task-set Γ is fully-preemptive;

A7. the system overhead is negligible.

According with the notation introduced above, a task-set can be sum-
marized as follow:

Γ = {τ(Φi, Ti, Ci), i = 1, ..., n}; (1.2)

while arrival times ri,j and relative deadline di,j of the generic kth in-
stance of the ith task can be easily computed as:

ri,k = Φi + (k − 1)Ti; (1.3)

di,k = ri,k + Ti = Φi +KTi. (1.4)

Another set of parameters that characterized the scheduling of a periodic
task-set are:

• Response Time. It is the time at which the task instance terminates.
It is measured starting from the release time:

Ri,k = fi,k + ri,k; (1.5)

16



1.4.1 Utilization factor

Given a teask-set Γ, composed by n tasks, the utilization factor is the frac-
tion of time spent by the CPU to execute the task-set. It is formally defined
by

U =
n
∑

i=1

Ci

Ti
. (1.6)

where Ci

Ti
denotes the fraction of time spent by the CPU for the execution

of task τi [58]. The utilization factor can be improved by modifying Ci and
Ti but there exist a maximum value of U that, in case of overcame, it uields
a not schedulable task-set. This particular value depends on the features
of the task-set and the adopted scheduling policy. Whe can denote with
Uub(Γ, A) the upper bound of the utlization factor for a given task-set Γ
and scheduling algorithm A. Under the particular condinition in which
Uub = Uub(Γ, A), the processor is know to be fully utilized, according with
this status any other incresing of the computation time of even a single task,
caused task-set to be not schedulable.
Given an algorithm A and a task-set Γ, let us to introduce the concept of
least upper bound Ulub(A) of the processor utilization factor, as the minimum
of the utilization factors considering all possible task-set that fully utilize
the processor:

Ulub(A) = min
Γ

Uub(Γ, A). (1.7)

Since Ulub(A) is the minimum of all upper bounds, any task-set with a
utilization factor less or equal to Ulub(A) is certainly schedulable.

Another important results concerning the utilization factor is that a
task-set with an utilization factor greater then one, cannot be schedulated
by any algorithm:

∀A,Γ | U(A) > 1 ⇒ Γ is not schedulable by A (1.8)

1.4.2 Rate Monotonic scheduling

Rate Monotonic (RM) is a fixed priority scheduling algorithm that consist
of a priority rule assignment based on tasks arrivals rate. Once the priorities
are assigned they cannot be modified at run-time. Tasks with an high rate
of arriving instants have high priorities, tasks that are characterized by a
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low rate of arrival instants have low priorities.
Another feature of RM is that it is intrinsically preemptive, because if a new
instance of a task arrives and it has a greater priority, it preempts the task
currently executing.

In 1973, Liu and Layland [58] demonstrate that RM is optimal among all
fixed priority scheduling algorithms. This means that no other fixed priority
algorithms can schedule a given task-set that cannot be scheduled by RM.

Ci Ti

τ1 1 4

τ2 2 5

τ3 3 10

Table 1.1: RM Analysis: task set composed by three tasks (case 1)

Let’s consider a task-set composed by three tasks, whom main schedul-
ing parameters are summarized in Table 1.1, the arrival time of the first
instances of each tasks is at t = 0 (ai = 0 ∀i = 1, 2, 3). A typical schedul-
ing performed by RM is depicted in Figure 1.2. At t = 0 the highest priority
task is τ1 because it has the shortest period, hence it execute first. It termi-
nates at t = 1, instant in which τ2 can start its execution till it terminates at
t = 3. At t = 3, the lowest priority task τ3 can start its execution till t = 4
where it has been preempted by the highest priority task τ1. After that
tasks τ1 and τ2 terminates respectively at t = 5 and t = 7, task τ3 resumes,
but it is preempted one more time at t = 8 when a new instance of task
τ1 arrived, it resumes at t = 9 and terminates at t = 10 that corresponds
with its period. Notice that RM guarantees the high priority task to be
executed without delay while, from this point of view, the most penalized
task is the one with the lowest priority that experiences a major number of
preemptions. This feature is typical of RM.

Under rate Monotonic, the Ulub value calculated for an arbitary number
N of tasks composing the task set is

Ulub = n(21/n − 1) (1.9)

This value decrese with n and for high value of n, the least upper bound
converges to

Ulub = ln2 ≃ 0.69 (1.10)
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Figure 1.2: Rate Monotonic scheduling

To check for the schedulability of a given task set under RM, the following
condition has to be verified

U =
n
∑

i=1

Ci

Ti
< Ulub = n(21/n − 1) (1.11)

An alternative schedulability test called Hyperbolic Bound (HB) [19]
[20], less pessimistic but characterzied by the same compexity of the orig-
inal Liu and Layland bound is provieded as a sufficient condition for the
schedulabiliy of a task set under RM.

Theorem 1 Let Γ = τ1, ..., τn be a set of n periodic tasks, where each task
τi is characterized by a processor utilization Ui. Then, Γ is schedulable with
RM algorithm if

n
∐

i=1

(Ui + 1) ≤ 2. (1.12)

As previously mentioned the hyperbolic bound provides a less pessimistic
test to check for the schedulability of a task set under RM. In order to
appreciate this feature of the HB test, let’s consider the tesk set in Table 1.2.

Ci Ti

τ1 1 3

τ2 1 5

τ3 2 8

Table 1.2: RM Analysis: task set composed by three tasks (case 2)
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According with the formula reported in the equation 1.9 the Ulub for that
task set is 0.78, while the utilization factor of the task set according with the
equation 1.6 is U = 1/3 + 1/5 + 2/8 = 0.7833. But 0.783 is slightly greater
then 0.78, that is the Ulub computed by 1.9, hence the task set should be
considered not schedulable under RM.
If we compute the HB test in 1.12 with the same task set we obtain (1/3 +
1)× (1/5+1)× (2/8+1) = 2 that complies with the HB condition, therefore
the task set is schedulable under RM.

Notice that these conditions are only sufficient to prove the schedulabity
of periodic tasks set under RM. Therefore if the condition is verified the
task set is schedulable, if it fails we cannot conclude anything about the
feasibility of the given task set.

1.4.3 Earliest deadline First

The Earliest deadline First (EDF) algorithm belongs to the family of dy-
namic priority algorithms. In fact the priority assignment rule is based on
the absolute deadlines position in time. The rule consists of assigning the
highest priority to the task with the earliest absolute deadline at current
time.
The formula used to compute the absolute deadline of the jth job of ith task
is

di,j = Φi + (j − 1)Ti +Di (1.13)

Acording with the formula 1.13 the priority is dynamic at task level but,
once it is assigned at job level, it is kept fixed till the job completetion.

An important result concerning EDF is that it is otpimal in the sense
of feasibility as demonstrated by Dertouzos in [34]. This means that if a
feasible solution for a given task set Γ exists, then EDF is able to find it.

Let’s consider the same task set of Table 1.1, the scheduling of such a
task set under EDF is shown in Figure 1.3.
At t = 0 the highest priority task is τ1 because it has the earliest absolute
deadline at t = 4, hence it execute first. It terminates at t = 1, instant in
which τ2 can start its execution till it terminates at t = 3. At t = 3, the
task τ3 starts its executing because it is the only active task in the system,
hence it can continues its execution till t = 4 where it has been preempted
by the highest priority task τ1, in fact at t = 4 the deadline of τ1 is at t = 8,
while the deadline of task τ3 is at t = 10.
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Figure 1.3: Earliest Deadline First scheduling

After that tasks τ1 terminates at t = 5, a new job of τ2 is activated and
it has the next deadline at t = 10 like τ3. Since task τ3 is already suspended,
it starts first, terminates the execution at t = 7, then τ2 can start running
till t = 9. Notice that at time t = 8 a new instance of τ1 arrived but it
cannot be executed in place of τ2 since its deadline is at t = 12 while the
deadline of τ2 is at t = 10.

Under the EDF scheduling Ulub is equal to one. This means that our
task set can exploits the processor up to 100%, still guaranteeing the schedu-
lability of the tasks. This result formalized in the following theorem [58,76]
that provides a necessary and sufficient condition for the schedulability of a
set of periodic tasks under EDF.

Theorem 2 A set of periodic tasks is schedulable with EDF if and only if

n
∑

i=1

Ci

Ti
≤ 1. (1.14)
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Ci Di Ti

τ1 1 4 6

τ2 2 6 8

τ3 3 5 10

Table 1.3: task set with deadline less the period

1.4.4 EDF with deadline less or equal to the periods

In case of EDF with deadlines less or equal to the periods, the analysis to
guarantee the schedulability of the task set can be made by using the method
proposed by Baruah et al. in [15] and also used by [49]. This approach is
called processor demand criterion and it is based on the concept of demand
function.

Definition 1 The demand function for a task τi is a function defined in the
interval [t1,t2], that represents the computation time that has to be executed
for τi in [t1,t2] to make τi itselfe schedulable.

dfi(t1, t2) =
∑

ai≥t1,di≤t2

Ci. (1.15)

This is true for a single task, for the whole task set we have:

dfi(t1, t2) =
n
∑

i=1

dfi(t1, t2). (1.16)

For instance, let’s consider the task set in table 1.3

The demand function in the interval [7,22] is:

df(7, 22) = 2× C1 + 2× C2 + 1× C3 = 9;

This computation example can be easily understood by looking at the
Figure 1.4.

Theorem 3 A task set is schedulable under EDF if and only if:

∀t1, t2 (t1 < t2) df(t1, t2) < t2 − t1. (1.17)
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Figure 1.4: demand function interval [7,22]

For the previous example t2−t1 = 15, therefore the condition df(7, 22) =
9 < 15 guarantees the schedulability of the task set in Table 1.3 but only
for the inteval [7, 22]. In order to check the schedulability of the task set we
have to verify the condition for a huge of intervals. This is unsustainable,
hence a new test, characterized by a limited complexity, has to be found.
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1.5 Demand Bound Function (DBF)

The Demand Bound Function (dbf), introduced by Baruah et al. in [16], and
then used also by Jeffay and Stone [49] to handle the interrupt costs under
EDF, represents the total amount of computation that must be executed
in each interval of time when tasks are scheduled by EDF. For a generic
periodic task τi activated at time t = 0, its dbfi(t) in any interval [0, t], it is
computed as

dbfi(t) = max

{

0,

(⌊

Ti −Di

Ti
+ 1

⌋

Ci

)}

. (1.18)

For the whole task set Γ composed by n tasks simultaneously activeted
at t = 0, the dbf function is computed as

dbfΓ(t) =
n
∑

i=1

dbfi(t). (1.19)

The processor demand for a set of n tasks in the interval [0,L] can be
computed as

dbf(L) =
n
∑

i=1

⌊

L+ Ti −Di

Ti

⌋

Ci ≤ L. (1.20)

Finally, a theorem to prove the schedulability of a give task set under
EDF, by limiting the number of intervals in which computing the test.

Theorem 4 A set if synchronous periodic tasks, with U ¡ 1, is schedulable
by EDF if and only if:

∀L ≤ L∗ dbf(L) ≤ L (1.21)

where

L∗ =
U

1− U

n
∑

i=1

(Ti −Di) (1.22)

In order to figure out the computation of the dbf in real context a simple
example is proposed. Let’s consider the previous task set in Table 1.3. For
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Figure 1.5: dbf and interesting deadlines in [0,12]

that case U = 1/6 + 1/4 + 3/10 = 0.7167, while L = 12.64. This means
that we have to extend the analysis for all the deadlines till L∗. The set of
interesting points (i.e deadlines) is {4, 5, 6, 10} as shown in Figure 1.5

Therefore the values of the dbf computed in all intersting intervals are:

• df(0, 4) = C1 = 1 < 4;

• df(0, 5) = C1 + C3 = 4 < 5;

• df(0, 6) = C1 + C2 + C3 = 6 ≤ 6;

• df(0, 10) = 2C1 + C2 + C3 = 7 < 10;

Since for all L < L∗ we have that dbf(L) ≤ L, the task set is schedulable
under EDF.

1.6 Supply Bound Function (SBF)

For a periodic resource model (Θ,Π) where Π is a period (Π > 0) and Θ is a
periodic allocation time (0 < Θ ≤ Π) as defined in [citazione!!!!]. A resource
capacity UΓ of a periodic resource Γ(Π,Θ) is defined as Θ

Π . The periodic
model (Θ,Π) has the following property:

supplyΓ = (kΠ, (k + 1)Π) = Θ, where k = 0, 1, 2, .... (1.23)

According with the periodic model Γ the supply bound function sbf(t)
in the time interval t is defined as:
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Figure 1.7: sbf(t) for t = 25

sbfΓ(t) =

{

t− (k + 1)(Π−Θ) ift ∈ [(k + 1)Π− 2Θ, (k + 1)Π−Θ],

(k − 1)Θ otherwise

where:

k = max((t(ΠΘ))/Π, 1) (1.24)

The sbf function can be also provided in a linear fashion by defining the
lsbf(t) (linear supply bound function) that represents a lower bound for the
sbf(t).

sbfΓ(t) =

{

Θ
Π (t− 2(Π −Θ)) if t ≥ 2(Π −Θ),

0 otherwise

The functions sbf(t) and lsbf(t) are represented in Figure 1.6 for Γ(5, 2)
respectively in red and green.
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Let’s consider a further example to facilitate the comprension of the sbf
function. For instance, Π = 10, Θ = 4, and t = 25. In this case and
according with 1.24 k = 2, the interval of t is [22, 26]. This means that
t ∈ [22, 26], in fact t = 25. The sbf(25) for this example is equal to 7 as
pointed out in Figure 1.7.

1.6.1 Schedulability analysis

According with the function defined in the previous chapter, under EDF
the schedulability of a task set Γ within a reservation R is guaranteed if and
only if:

∀tdbf(t) ≤ sbf(t) (1.25)

For the case of fixed priority (FP) scheduling, a task set Γ is schedulable
within a reservation R if and only if:

∀i ∃t ∈ Pi w(t) ≤ sbfR(t) (1.26)

where Pi represents the set of points where the schedulability conditions
has to be verified.

The 1.25 and 1.26 are necessary and sufficient conditions. By renounc-
ing this feature, it is possible to derive two necessary condition by using the
linearization of the sbf function.

Proposition 1 (EDF schedulability). The schedulability of a task set Γ
under EDF within a reservation R can be guaranteed if

∀t dbfΓ(t) ≤ lsbfR(t) (1.27)

Proposition 2 (FP schedulability). The schedulability of a task set Γ under
FP within a reservation R can be guaranteed if

∀i ∃t ∈ Pi w(t) ≤ lsbfR(t) (1.28)
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Figure 1.8: sbf(t) for t = 25

In Figure 1.8 it is possible to appreciate the demand bound function
dbf(t), the supply bound function sbf(t) and the linear supply bound function
lsbf .
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Chapter 2

Power management in Real
Time Systems

Battery-operated systems have experienced a huge proliferation due to a
pervasive presence of electronic devices in today’s technology. In such sys-
tems, it is crucial that applications are developed to optimize resource usage,
reduce the power consumption and increase lifetime. Moreover, in real-time
embedded applications, an increasing number of systems could improve the
overall performance by leveraging the advantages of power management.
However, in time critical embedded systems, reducing the energy consump-
tion may create overload conditions that can jeopardize the schedulability
of the task set. Hence, the issue of reducing energy consumption must be
considered as well as the timing constraints. In addition, many energy-aware
scheduling methods introduce high variability in task execution times or even
timing anomalies, hence they are not suitable for safety-critical systems. Fi-
nally, most of the system models proposed in the literature for carrying out
the feasibility analysis are not very accurate for describing both the CPU
power consumption and the task execution behavior. Such a simplified view
of the system certainly allows achieving interesting theoretically results, but,
at the same time, limits the applicability of the results, because most of the
effects of power management are neglected and the proposed approaches
are unrealizable with respect to the technologies provided by the existing
hardware architectures. The Real Time community is extremely sensible to
these open issues and more and more often these requirements are becoming
mandatory in recent real applications, so that they have been addressed ac-
cording with different strategies as described in the recent Predator Project
1 deliverable [26].

1Predator: Predator is a three-year focused-research project within the European
Commission’s 7th Framework Programme on Research, Technological Development and
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The aim of this chapter is to collect the most significant approaches pro-
posed in literature for managing power in embedded real-time systems, with
the objective of reducing energy consumption without jeopardizing system
predictability. In particular, a realistic power model is presented to evalu-
ate the effectiveness of different approaches and a taxonomy is proposed to
classify the most significant approaches available in the literature.

The notions exposed in the current chapter are necessary to introduce
basic concepts, power models and the state of the art concerning power
management of Real Time Systems. The reading of this chapter represents
a preliminary step for the chapter three and four that represent both the
real focus of the thesis.

2.1 Existing power models

Power dissipation is going to become an important design issue in a wide
range of computer systems in the past decade. Power management with
energy efficiency considerations is not only useful for mobile devices for pro-
longing their duration, but it is also helpful for server systems for the reduc-
tion of power bills. Dynamic power consumption due to switching activities
and static power consumption due to the leakage current are two major
sources of power consumption of a CMOS circuit. For micrometer-scale
semiconductor technology, the dynamic power dominates the power con-
sumption of a processor. However, for technology in the deep sub-micron
(DSM) domain, the leakage power consumption is comparable to or even
more than the dynamic power dissipation. Figure 2.1 shows the trend of the
different power consumption components [50].

Figure 2.1: CMOS power consumption trend

Demonstration - http://www.predator-project.eu/.
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The power consumption of a CMOS system is due to three components:

P = PD + PSC + PLK . (2.1)

where each single component represents:

PD is the dynamic power, that is the power needed to load and unload
the output capacitors of the gates. It is independent of the transistor size,
but it depends on switching activities as in Figure 2.2;

Vdd

VoutVin

Figure 2.2: CMOS dynamic power consumption

PSC is the power consumption during the gate switching, because in
that precise moment, the power source is linked with the ground. Finite
slope of the input signal causes a direct current flow from VDD to GND for
a short period of time during switching when both the NMOS and PMOS
transistors are conducting, this scenario is represented in Figure 2.3;

PLK is the leakage power that depends by the currents generated for
physical reasons and it increases exponentially with the temperature. In
Figure 2.4 both sub-threshold current (in red) and drain junction leakage
(in blue).

The power consumption formula for each component is given by:

PD = CL · V 2
DD · f ; (2.2)

PCS = tSC · VDD · IPeak · f ; (2.3)
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Figure 2.3: CMOS short circuit power consumption

Vdd

VoutVin

Figure 2.4: CMOS leakage power consumption

PLK = VDD · ILK ; (2.4)

where the list of symbols used is shown below:

VDD is the supply voltage;

f is the clock frequency;

CL is the equivalent load capacitors;

tSC is the short circuit time during the gate switching;
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IPeak is the short circuit current during the gate switching;

ILK is the leakage current;

Hence the complete formula commonly adopted is:

P = CL · V 2
DD · f + tSC · VDD · IPeak · f + VDD · ILK ; (2.5)

However, reducing voltage naturally affects frequency. The highest fre-
quency fmax under which a processor can operate is determined by the
critical path τ (the longest path a signal can travel) of its circuitry, which
is given by:

τ =
VDD

(VDD − VT )2
; (2.6)

where VT is the threshold voltage and VDD the input gate voltage. Hence,
fmax = 1/τ . The processor will cease to function if the voltage is lowered
such that the propagation delay induced by it is too large for the desired
operating frequency. Lowering supply voltage thus demands lower operating
frequencies. However, the overall energy consumption of the system also
depends on other components. Martin et al. [Mar01] derived the following
model to describe the power consumption as a function of the processor
speed, defined as a normalized frequency (s = f/fmax):

P (S) = K3 · S
3 +K2 · S

2 +K1 · S +K0; (2.7)

where K3 is a coefficient related to the consumption of those compo-
nents that vary both voltage and frequency; K1 is a coefficient related to
the hardware components that can only vary the clock frequency, whereas
K0 represents the power consumed by the components that are not affected
by the processor speed. Finally, the second order term K2 describes the non
linearity of DC-DC regulators in the range of the output voltage.

When dynamic power consumption dominates the other components
(due to switching and leakage), the K3 coefficient is greater than the others
and, power consumption can be approximates as:

P (S) = K3 · S
3; (2.8)
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2.2 Power aware scheduling

The different power-aware scheduling algorithms proposed in the literature
can be classified according to the taxonomy illustrated in Figure 2.5.

DVS

Dybamic Power

DPM

Leakage

On−line Off−line

System wide Task specific

Scheduling

Power−Aware

Figure 2.5: Taxonomy of power scheduling techniques

Two most part of power-aware algorithms can be distinguished based on
the kind of power they try to reduce. The methods focusing on dynamic
power use Dynamic Voltage Scaling (DVS) techniques, while those focus-
ing on leakage-related consumption adopt Dynamic Peripheral Management
(DPM) approaches.
Within the DVS family, algorithms can be distinguished between on line
and offline. Offline algorithms compute the working speed using static val-
ues for parameters, like inter-arrival times and execution times, while on
line methods re-compute the parameters during the jobs execution, taking
advantage of possible early completions. A final discrimination can be done
inside the offline algorithms, splitting them in system-wide and task specific.
System-wide algorithms compute a single speed for all the tasks, whereas
task specific algorithms may use a different speed for each task.
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2.2.1 Dynamic Voltage/Frequency Scaling (DVS)

A widely adopted method to obtain power-aware systems is Dynamic Volt-
age Scheduling (DVS). In DVS techniques, the processor voltage supply can
be reduced to save energy, because the power absorption depends on the
third power of the input voltage supply level. However, decreasing the sup-
ply voltage also reduces the processor speed, hence proper strategies must
be adopted to guarantee the timing constraints of real-time activities.

2.2.1.1 System-wide speed computation

The simplest approach to save power while meeting timing constraints is to
reduce the processor speed so that all tasks reach the maximum processor
utilization Umax allowed by the adopted scheduling algorithm. When tasks
are periodic or sporadic, their schedulability is guaranteed if:

U(s) =
n
∑

i=1

Ci(s)

Ti
=

n
∑

i=1

Ci

s · Ti
=

Up

s
≤ Umax(A) (2.9)

where the symbols in the formula represent:

Ci is the worst-case execution time (WCET) of task τi on a processor
with unitary speed;

Ci(s) is the WCET of task τi at the current speed (note that Ci(s) =
Ci/s);

Ti is the period of task τi (or its minimum inter-arrival time between
consecutive jobs);

U(s) is the task set utilization when the processor runs at speed s;

Up is the task set utilization at when running at unitary speed;

Umax(A) is the maximum task set utilization to guarantee the feasibility
under a given scheduling algorithm A.

therefore, the feasibility of a given taskset can be guaranteed if:

s∗ ≥
Up

Umax(A)
; (2.10)

It follows that the lowest speed that guarantees feasibility and saves the
highest energy is:
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s =
Up

Umax(A)
; (2.11)

For instance, if tasks are scheduled by Earliest Deadline First (EDF) [58],
the utilization bound is Umax(EDF) = 1, hence the lowest processor speed
is:

s∗ = Up. (2.12)

This approach works only theoretically, because real processors allow
only a finite number of frequencies and not a continuous range. Then, a
straightforward solution would be to select of the lower allowed frequency
greater that the computed one. However, this solution is suboptimal it
terms of energy consumption and can be improved by alternating between
two frequencies. Such an approach has been investigated in [17], where the
optimal speed s∗ (when not available) is achieved by switching between the
two closest discrete frequencies, in a PWM-mode. Figure 2.6 illustrates the
schedules obtained by EDF without power management (a), against the
two presented algorithms: the one that computes a single speed assuming
a continuous frequency range (b) and the PWM approach for a discrete
frequency range (c). The energy E consumed in a hyperperiod (also shown
beside each diagram) is computed using the approximated power model,
(P = Ks3), assuming each task has the same power cost (K = 1 for all
tasks).

2.2.1.2 Tasks with different power costs

Instead of setting a system-wide speed equal for all tasks, some algorithms
computes a different speed for each task. The main issue that leads to such
an approach is that not all tasks have the same power consumption, since
they may use different devices and have different hardware requirements.
This approach is adopted by Aydin et al. [AYD01A], who proposed an al-
gorithm for computing the optimal speed for each task in a given set of
periodic tasks, aiming at reducing the energy requirements.

Figure 2.7 compares the schedule obtained by EDF on the same task
set by using a single speed computation (a) and using different speeds each
task (b). In both cases, the energy consumption E is computed considering
K1 = 1 and K2 = 2. As clear, power consumption can be further reduced
by the algorithm that computes a different speed for each task.
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Figure 2.6: EDF: no power manag. (a), single speed (b) and PWM (c).

Figure 2.7: system-wide speed selection (a) and per-task speed selection.

2.2.1.3 Variable Computation Time

The solution presented above is optimal if all the jobs of each task always
execute for their WCET. In particular, if the number of cycles required by
each task is known in advance, it has been shown that using a constant speed
during task execution would minimize the energy consumption, assuming a
continuous speed processor. In fact, the convexity of the power/speed curve
implies that maintaining a constant speed s is always better than switching
between two different speeds across s. When the processor offers a limited
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set of speeds, using the two speeds which are immediately neighbors to the
optimal one minimizes the energy consumption.

However, considering that all tasks run for their WCETs is a very pes-
simistic assumption. If the computation time is not always equal to the
WCET, it is not possible to compute the optimal constant speed because
the actual number of cycles required by the current instance is unknown in
advance. In this case, typical solutions [13,69,85] are based upon the idea of
deferring some work, expecting that the current instance will request much
less than its WCET.

The method consists in splitting the task execution into two parts, as
shown in Figure 2.8. In the first part, the processor runs at a lower speed
to reduce the energy consumed in the average case. In the second part,
the processor runs at a higher speed in order to provide enough execution
cycles even in the worst case. The idea is that, if a task tends to use much
less than its WCET, the second part, which consumes more energy, may
never be needed. If the probability density function of tasks execution time
is known, Bini and Scordino [18] proposed a way to compute the optimal
speeds to reduce power consumption.

Figure 2.8: Two-speed energy management strategy. consumption.

Figure 2.9 illustrates the advantage of using the two-speed energy man-
agement scheme (b) with respect to the single speed solution (a). In this
case, tasks execution times are smaller than their WCETs and power costs
are considered to be the same for both tasks (K1 = K2 = 1).
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Figure 2.9: Constant speed schema (a) and a two-speed scheme (b).

2.2.1.4 Reclaiming of unused computation time

When a task instance runs for less than its WCET, the unused computation
time can be reclaimed to further reduce the speed, so saving more energy.
Such a speed reduction can affect either the remaining computations of the
same task (intra-task reclaiming), or the execution of the other tasks (inter-
task reclaiming). An intra-task reclaiming can be performed as proposed by
AbouGhazaleh et al. [8], defining a set of power management points within
the task code, so splitting the task into a number of regions. In this work, the
authors presented an algorithm to position the power management points
in order to minimize the energy consumption with the minimum overhead.

Inter-task reclaiming can be performed by on-line algorithms that use
the residual slack at the end of each instance to further reduce the power
consumption of the tasks waiting in the ready queue. Aydin et al. [12] pro-
posed two algorithms: the Dynamic Reclaiming Algorithm (DRA) and the
Aggressive Speed Adjustment (AGR). The first one attempts to allocate the
maximum amount of unused processor time to the highest priority task in a
greedy way. The second one aggressively reduces the speed of the running
task under certain conditions to a level even lower that the one suggested by
DRA. This speculative move might shift the task WCET completion time
to a point that requires to increase the speed beyond the optimal one later
to guarantee the feasibility of future tasks.

Another possibility to fully exploit inter-task reclaiming with discrete
processor frequencies is to change the task periods whenever the application
allows a certain degree of flexibility. A method based on elastic scheduling
was proposed in [59] for computing the working speed and the tasks periods
in order to reduce power consumption.
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2.2.2 Dynamic Power Management (DPM)

Power dissipation has constrained the performance boosting of modern com-
puter systems in the past decade. Dynamic power management (DPM) has
been implemented in many systems to change the system (or device) state
dynamically to reduce the power consumption. DPM techniques explore
how to efficiently and effectively reduce the energy consumption to han-
dle event streams with hard real-time or quality of service (QoS) require-
ments [11], [14], [78], [77]. Intuitively, the device can be switched to the sleep
mode to reduce the power consumption when it is idle. Such a switching
operation, however, has two concerns. On one hand, the sleep period should
be long enough to compensate for the mode-switch overhead. On the other
hand, to cope with possible bursts of task arrivals, the reserved time for
serving the events must be sufficient to prevent deadline violations of tasks
and overflow of the system backlog when activating the device again later
on.
Device management has been considered first, adopting the so called event-
driven (ED) approach, according to which a device is turned to sleep mode
when there is no event in the ready queue, and is awaken for execution when
an event comes to the system. A next step in ED systems is using the peri-
odic power management scheme (PPM), where power management is done
by statically analyzing the task scheduling streams S. Specifically, the peri-
odic power management schemes first decide the period T = Ton + Toff for
power management, then switch the system to the standby mode for Ton
time units, following by Toff time units in the sleep mode. The periodic
power management schemes are driven by setting timers to turn the system
to (and from) the sleep mode. Examples of such management schemes are
presented in [45], where a comparison between periodic methods and event-
driven ones is carried out.
The last evolution of DPM methods is represented by predictive algorithms.
There exist on-line algorithms [44], [46] that predict future task arrival pat-
terns and apply schedulability analysis to the prediction. Specifically, they
try to be optimistic to handle tasks only when they really arrive. Such al-
gorithms adaptively predict the next time to perform a mode switching by
considering both historical and future task arrivals, and procrastinate the
buffered and future events as late as possible without violating the timing
and backlog constraints for the given task streams.

2.2.3 Achieving predictability and Scheduling Anomalies

The advantage of adapting the system speed to reduce consumption inserts
an extra degree of freedom that needs to be taken into account in the analysis
of the WCETs. Even with the most rigid scheduling algorithm, estimating
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the effects of a frequency change on task execution times is not trivial. The
first issue to be considered is related with the problem that task execution
times do not scale linearly with the processor speed: access times to devices,
waiting times for data from memories, and active waits in the code are not
directly influenced by the frequency. Also, the access time to data inside
the RAM is a function of the bus frequency, which could be different from
the CPU frequency, depending on the specific architecture. Switching be-
tween frequencies is an action that requires a non negligible overhead in real
architectures. Its duration depends on several factors and is a function of
the starting and the finishing frequencies. During such intervals the CPU is
unable to execute code, so introducing delays that could cause some tasks to
miss their deadlines. Also, running at a lower speed increases the execution
time of each task, increasing the probability of preemptions. In turn, this
can increase the number of cache misses and related reloads, leading to bus
accesses with increased execution time and energy cost. Neglecting these
effects could lead to unpredictable deadline misses or to a power reduction
smaller than expected, even in simple scenarios.
Figure 2.10 illustrates the effects of frequency scaling on two tasks sched-
uled by EDF. The first diagram show the schedule at full speed, while the
second one shows the schedule when setting the speed equal to the task set
utilization. In this case, however, the additional preemption increases the
execution time due to the extra context switch overhead and Cache Related
Preemption Delays (CRPDs) [38,56,64], leading to a deadline miss.
Even using DPM techniques, changing the order of task executions affect
the cache misses and hence the real job execution times.
In the following section, a partially preemptive scheduling approach is pro-
posed to limit the effects of the overhead introduced by speed variations and
improve system predictability.

Figure 2.10: Effect of the extra preemption overhead caused by DVS.

This section presents some potential problems that may arise in a voltage-
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controlled real-time system, identifying those mechanisms and situations
that should be avoided when applying speed variations to time critical sys-
tems. Such problems prevent controlling the performance of a real-time
application as a function of the processor speed, since a task could even
increase its response time when executed at a higher speed. Typically, such
scheduling anomalies arise when tasks share mutually exclusive resources or
are handled by non-preemptive scheduling policies [25].

In the following figures, the processor speed is represented on the y-axis,
so the higher the task execution box, the higher its execution speed. Fig-
ure 2.11 illustrates a simple example where two tasks, τ1 and τ2, share a
common resource. Task τ1 has a higher priority, arrives at time t = 2 and
has a relative deadline D1 = 7. Task τ2, having lower priority, arrives at
time t = 0 and has a relative deadline D2 = 23. Suppose that, when the
tasks are executed at a certain speed S1 has a computation time C1 = 6,
(where 2 units of time are spent in the critical section), whereas τ2 has a
computation time C2 = 16 (where 12 units of time are spent in the critical
section). As shown in the first case of Figure 2.11, τ1 arrives just before τ2
enters its critical section, it is able to complete before its deadline, without
experiencing any blocking. However, if the same task set is executed at a
double speed S2 = 2S1, τ1 misses its deadline, as clearly illustrated in the
second case of Figure 2.11. This happens because, when τ1 arrives, τ2 al-
ready granted its resource, causing an extra blocking in the execution of τ1,
due to mutual exclusion.

Figure 2.11: Scheduling anomaly in the presence of resource constraints.

Figure 2.12 illustrates another anomalous behavior occurring in a set of
three real-time tasks, τ1 τ2 and τ3, running in a non-preemptive fashion.
Tasks are assigned a fixed priority proportional to their relative deadline,
thus τ1 is the task with the highest priority and τ3 is the task with the lowest
priority. As shown in the first case of Figure 2.12, when tasks are executed
at speed S1, τ1 has a computation time C1 = 2 and completes at time t = 6.
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However, if the same task set is executed with double speed S2 = 2S1, τ1
misses its deadline, as clearly illustrated in the second case of Figure 2.12.
This happens because, when τ1 arrives, τ3 already started its execution and
cannot be preempted (due to the non-preemptive mode).

Figure 2.12: Scheduling anomaly in the presence of non-preemptive tasks.

It is worth observing that a set of non preemptive tasks can be considered
as a special case of a set of tasks sharing a single resource (the processor)
for their entire execution. According to this view, each task executes as if it
were inside a big critical section with a length equal to the task computation
time. Once a task starts executing, it behaves as it were locking a common
semaphore, thus preventing all the other tasks from taking the processor.

Figure 2.13: Effects of a permanent overload due to a speed reduction.

The example illustrated in Figure 2.13 shows the negative effects of a
overload condition, caused by a speed reduction, in a set of periodic tasks.
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The first case of Figure 2.13 shows the feasible schedule produced by the
Rate Monotonic (RM) algorithm [58] when the processor runs at a given
speed S1, where the tasks have computation times C1 = 2, C2 = 2, and
C3 = 4, respectively.

The second case of Figure 2.13 shows the schedule obtained by RM when
the processor speed is reduced by half, S2 = S1/2, so that all computation
times are doubled. In this case, a speed reduction generates a permanent
overload that causes τ2 to miss its deadline and prevents τ3 to execute.
Note that a scheduler based on absolute deadlines, as Earliest Deadline First
(EDF) [58], would not prevent τ3 to execute and would react to overloads by
delaying all tasks executions more evenly. A exhaustive comparison between
RM and EDF for different scenarios can be found in [24].
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Chapter 3

Power management in
large-scale interconnected
systems

Embedded systems cover a wide spectrum of application domains, such as
consumer electronics, biomedical systems, surveillance, industrial automa-
tion, automotive, and avionics systems. In particular, the technology evolu-
tion of sensor and networking devices paved the way for plenty of new appli-
cations involving distributed computing systems, many of them deployed in
wireless environments and exploiting the mobility and the ubiquity of com-
ponents. In most cases, devices are battery operated, making energy-aware
algorithms of paramount importance to prolong the system lifetime.

In each node of the system, at the processor level, two main mechanisms
can be exploited to save energy: the Dynamic Voltage and Frequency Scaling
(DVFS) and the Dynamic Power Management (DPM).

For DVFS processors, a higher supply voltage generally leads to both a
higher execution speed/frequency and to a higher power consumption. On
the other hand, DPM techniques are used to switch the processor off during
long idle intervals, hence they tend to postpone tasks execution as long as
possible still preserving the schedulability of the task set. At the network
level, the energy consumption due to communication is usually managed
by DPM techniques, although other mechanisms have been proposed in the
literature, as the Dynamic Modulation Scaling (DMS) [73].

In micrometer CMOS technology, the dynamic power dissipation due to
switching activities prevails against the static power dissipation caused by
the leakage current. However, in most modern processors developed with
sub-micron technology, the static power is comparable or even greater than
the dynamic power [50, 51]. When the dynamic power is dominant, DVFS
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techniques are used to execute an application at the minimum processor
speed that guarantees meeting real-time constraints. Conversely, when static
power is dominant, there exists a critical processor speed below which the
energy wasted is greater than that consumed at the critical speed [30]. For
this reason, some authors recently proposed energy-aware algorithms that
combine DVFS and DPM techniques to improve energy saving [35,84].

In distributed systems there is the need of taking into account processor
and network bandwidth to guarantee performance requirements. In particu-
lar, in wireless distributed embedded systems, energy consumption and qual-
ity of service represent two crucial design objectives. Messages have to be
transmitted within a deadline to guarantee the desired quality [54,66], and
the transmission itself represents an energy cost to be minimized. Although
a lot of research has been done to reduce power consumption while guaran-
teeing real-time requirements, most papers focus either on task scheduling
or network communication. However, a co-scheduling of task and messages
would allow exploring more degrees of freedom and could lead to higher
energy saving.

Finally, an effective approach has to be platform independent and easily
portable to new hardware just by changing a small set of parameters, such
as the energy consumption of the CPU in different working modes.

3.1 Related works

A lot of research papers presenting DVS algorithms for energy-aware real-
time task scheduling have been published in the past years, such as [13,52,
74]. Conversely, some other papers focuses on DPM techniques, see for in-
stance [48], [47] and the related works therein. DVS scheduling algorithms,
e.g., [12, 81, 83], tend to execute events as slowly as possible, without any
violation of timing constraints: they trade processor speed with energy con-
sumption. DPM algorithms are used to switch the processor off during long
idle intervals [31,48,50].

Not many papers in the literature deal with tasks and packets energy-
aware co-scheduling. Moreover, they focus on combining CPU DVS tech-
niques for tasks and DPM approaches at the network level. To the best of
our knowledge, no one considered DPM techniques for task scheduling.

In [65], the authors addressed energy saving issues for a system composed
by a DVS capable CPU and a network interface supporting the DPM. They
proposed two DVS based algorithms: one, Limited Look-Ahead EDF (LLE),
favors energy saving at the CPU level and the other, Timeout Aware Sched-
uler (TAS) that favors energy saving at the network level. LLE tries to
minimize the average power wasted by all tasks using a modified version of
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the LaEDF algorithm [70]. Instead, TAS tries to maximize the sleep time of
the network card by gathering the packet transmissions into bursts, exploit-
ing LaEDF. The choice of which algorithm is better to use depends on the
task set parameters and on the difference between the CPU and the network
device, in terms of power consumption. Hence, the authors propose both
off-line and on-line methods to select the best performing algorithm.

Poellabauer et al. [82] proposed an integrated resource management al-
gorithm that considers both CPU and a bandwidth reservation protocol for
the network interface, in wireless real-time systems. The aim of the proposed
method is to guarantee task and message deadlines while reducing the power
consumption. The resource management system is composed by two parts:
a Task and Speed Scheduler (TSS) and a Packet Scheduler (PS). TTS is in
charge of producing task scheduling and DVS selection. Instead, PS is in
charge of producing packets queuing and delivering to the network interface.
The input parameter of TTS is the next time-slot available for packet trans-
missions, which is provided by the PS. TSS uses a DVS scheduling technique,
named Network Aware EDF (naEDF), based on LaEDF. The PS is based
on a modified work-conserving EDF algorithm. The authors evaluate the
performance of the algorithms by simulation. Moreover, the effectiveness of
the algorithm is shown through a real implementation for the Linux kernel.

Sudha et al. [55] presented two slack allocation algorithms for energy sav-
ing based on both DVS and DMS techniques. The authors consider a single-
hop wireless real-time embedded system, where each task node is composed
by precedence constrained message passing sub-tasks. Furthermore, sub-
tasks and messages are considered non-preemptable. Energy consumptions
for both computation and communication are analyzed by a new metric,
called normalized energy gain. The authors proposed two algorithms: the
Gain based Static Scheduling (GSS) and the Distributed Slack Propagation
(DSP). While the former is used off-line and computes the slack consider-
ing worst-case execution for each schedule entity (sub-task or message), the
latter is used on-line to exploit the additional slack, available when tasks
execute for less than the predicted worst-case computations. Notice that,
while GSS is a centralized policy that consider all task and messages of the
system, DSP is a distributed policy, independently executed at each node.
This allows reducing both time overhead and energy waste due to message
passing for global dynamic slack allocation. In this way, a dynamic slack
generated in a node is only utilized for local tasks and messages.

3.1.1 Problem description

We consider a distributed real-time embedded system consisting of a set of
wireless nodes. Each node executes a set of independent tasks that need

47



to exchange information with tasks running in other nodes. A node is
modeled as a component c = (Γ, S,M,B) that takes as input a task set
Γ = {τ1, . . . , τn}, a scheduling algorithm S, a message set M = {s1, . . . sm}
and a transmission bandwidth B.

Tasks are scheduled by the node processor according to the given schedul-
ing policy S, while messages are transmitted during the intervals in which
the bandwidth B is made available by the adopted protocol. Notice that
a node is not required to work during the remaining intervals, so it can be
turned off to save energy.

The proposed analysis focuses on a bandwidth allocation protocol that
provides a slotted bandwidth according to a Time Division Multiple Ac-
cess (TDMA) scheme. To decouple task execution from the communication
activity, all tasks in a node build packets and move them to a shared com-
munication buffer in the processor memory. When the channel is available,
packets are transferred from the communication buffer to the transceiver for
the actual transmission.

As outputs, each component could provide a set of performance indexes,
such as message delays, task response times, and the energy consumption.
At the moment, only energy consumption is provided as output. The com-
ponent interface is schematically illustrated in Figure 3.1.

Γ

B

S

M

delay(messages)

R(tasks)

Figure 3.1: Node interface.

t1Bs
t1Be

t2Bs
t2Be

t3Bs
t3Be

Figure 3.2: Bandwidth assignment.

48



3.1.2 Workload and Resource Models

An application Γ consists of a set of periodic tasks, where each task τi =
(Ci, Ti,Di) is characterized by a worst-case execution time Ci, a period
Ti, and a relative deadline Di. Each task τi produces a message stream
si = (mi,Mi) characterized by a payload mi and a deadline (relative to the
task activation) Mi for the message transmission or reception.

In order to decouple the message production from the job execution
we suppose that messages are generated at the job deadline. The produced
messages are enqueued in a buffer and then transmitted as soon as the band-
width becomes available. Assuming that packets ready to be transmitted
are stored as soon as they are created and that the time for moving them is
negligible, then message transmission does not affect task scheduling.

In each node, the computational resource (i.e., the processor) is assumed
to be always available at any time t, hence it is modeled as a straight line
f(t) = t. On the other hand, the communication bandwidth B is assigned
by a bandwidth manager (running in a master node) in a slotted fashion.
In general, the transmission bandwidth is modeled as set of disjointed slots
B = {b1, . . . br}, where each slot is described by a start time tiBs

and an end

time tiBe
. An example of slotted bandwidth assigned to a node is shown in

Figure 3.2.

3.1.3 Power Model

Each node consists of a CPU (processing element) and a Transceiver (trans-
mitting and receiving element). Each device can be in one of the following
states:

• active. In this state, a device performs its job, executing tasks or
handling messages. The power consumed in this state is denoted as
Pa.

• standby. In this state, the device does not provide any service, but
consumes a small amount of power Ps to be ready to become active
within a short period of time.

• sleep. In this state, the device is completely turned off and consumes
the least amount of power Pσ; however, it takes more time to switch
to the active state.

For a processor that supports DVS management, the power consumed in
active mode depends on the frequency at which the processor can execute.
Such a frequency is assumed to vary in a range [fmin, fmax], while the
processor execution speed s is defined as the normalized frequency s =
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f/fmax and varies within [smin, smax]. In particular, for the processor in
active mode the power consumption model adopted is derived by Martin et
al. [61], which can be expressed as

Pa(f) = a3f
3 + a2f

2 + a1f + a0 (3.1)

where

• a3 is the third order coefficient related to the consumption of the core
sub-elements that vary both voltage and frequency;

• a2 is the second order coefficient describing the non linearities of DC-
DC regulators in the range of the output voltage;

• a1 is the coefficient related to the hardware components that can only
vary the clock frequency;

• a0 represents the power consumed by the components that are not
affected by the processor speed (like the leakage).

Switching from two operating modes takes a different amount of time
and consumes a different amount of energy which depends on the specific
modes, as shown in Figure 3.3. In particular, the following notation is used
throughout the paper: ta−σ and Ea−σ are the time and the energy required
for active-sleep transition, while the active-standby transition is described by
ta−s and Ea−s. For all devices we have that Pσ < Ps < Pa and ts−a < tσ−a.

In this paper, we assume also that switching between the standby mode
and the active mode has negligible overhead, compared to the other switches,
which is the same assumption made by other authors [80,86].

A simplified power consumption model is adopted for the transceiver to
concentrate on the interplay between DVS and DPM for the processor. The
communication bandwidth is then considered as a constraint for serving the
schedule that minimizes power consumption while guaranteeing a desired
level of performance. In particular, a transceiver is assumed to be either in
on (equivalent to the active state) or off (equivalent to the sleep state) mode
only (not in standby). Whenever the transmission bandwidth is available
the transceiver is considered in on mode; the power used to transmit and
receive messages is assumed to be equal to Pon, that is: Ptx = Prx = Pon.
Whenever the transmission bandwidth is not available, the transceiver is
assumed to be in off mode with a power consumption equal to Poff .

Table 3.1 summarizes all the allowed modes with their characteristics,
while Figure 3.3 illustrates the mode transition diagram and the transition
costs in terms of time and energy.
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Radio On Radio Off

CPU Sleep / Pσ + Poff

CPU Standby / Ps + Poff

CPU On Pa(f) + Pon Pa(f) + Poff

Table 3.1: Power model: allowed power modes.
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Figure 3.3: Power model: transition costs.

3.1.4 Energy Aware Scheduling (EAS)

Let consider the example shown in Figure 3.4, where three tasks are acti-
vated at time 3, 8 and 10 sec (Activations on the figure) with deadlines at
40, 50 and 55, respectively. There is also a pre-defined transmission slot
in which the system is forced to transmit. Without such a constraint on
transmission, tasks would have started as soon as they became active, run-
ning at the maximum allowed speed (dashed line). Using only DPM, task
executions would be postponed as much as possible up to their deadlines,
leading to the continuous line starting at t = 25, with slope equal to the
maximum allowed execution speed. Notice however, that tasks could start
earlier, at time t = 15, and run at a reduced speed to better exploit the
transmission bandwidth (continuous line starting at t = 15sec).

Such an example motivates the need for combining DVS and DPM tech-
niques to select the most appropriate delay and speed that reduces energy
consumption, while coping with the available transmission bandwidth and
guaranteeing the application timing constraints. The proposed algorithm is
referred to as the Energy Aware Scheduler (EAS) [72].

The EAS algorithm is applied at a generic time instant t. First, it com-
putes the interval [tmin, tmax] for the next activation point ta that satisfies
DPM requirements and timing constraints. Second, the DPM is applied
to compute the maximum tfeas at which the processor can start executing
at its maximum speed smax, keeping the task set schedulable. Third, task
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Figure 3.4: DVS and DPM: transmission bandwidth awareness.

executions are postponed as much as possible assuming execution at the
maximum speed smax, to approach the starting point tBs of the transmis-
sion bandwidth. The final step is to select the minimum processor speed s
needed to keep the task set schedulable. To take message communication
into account, the schedule is arranged to overlap with the bandwidth allo-
cated slot. In this way, message transmission corresponds to task execution,
allowing saving more energy.

The objective of the EAS algorithm is to compute the activation time ta
that minimizes energy consumption in the next task scheduling and message
transmission slot. Any valid activation point ta must take into account the
feasibility bound tfeas, the start time of the bandwidth slot tBs , and the next
activation time tact

1. Such dependencies define the interval [tmin, tmax] for
ta. The value tmax is the minimum between tfeas and tBs . If the processor
has no pending jobs, the value of tmin is set to the next activation time tact,
otherwise tmin = t. By the definition of the interval [tmin, tmax], the actual
selection of ta is done by computing the time that minimizes the energy
consumption from the current time t to the end of the evaluation period
tF . Algorithm 1 reports the sequence of steps of the EAS algorithm, while
Figure 3.5 depicts the EAS application sequence and the result. Assumed

1
tact is the first task activation time after the actual time t.
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task sets feasible under EDF, the feasibility of those task sets scheduled
according the EAS is guaranteed by construction because at each step the
feasibility is kept. In other words, the EAS applies the available slack to put
in sleep the processor and it tries to reduce the CPU execution speed.

Due to the assumptions on the system model, the bandwidth is a con-
straints only for the energy saving problem and it does not affect the schedu-
lability of the task sets.

Algorithm 1 Energy Aware Scheduling - EAS

procedure t | t /∈ B
Compute the dbf(t);
Compute sbf l∗(t) = sbf l(t, fmax) and obtain tfeas;
Calculate tmax = min{tfeas, tBs};
if No pending jobs at t then

tmin = tact;
else

tmin = t;
end if
Find ta ∈ [tmin, tmax] | mintaE(ta);
if ta ≥ t+ 2ta−σ then

Put the processor in sleep state in [t, ta];
else

Put the processor in standby in [t, ta];
end if
Compute the min frequency fa or slope sa guaranteeing feasibility.

end procedure

The system energy consumption E(ta) is computed as

E(ta) = (ta − t)Pσ/s + (tF − ta)Pa(s(ta)fmax) +

+2Ea−σ + Eradio(t, tF ), (3.2)

which is done according to the consumption models detailed in the previous
section. In particular Eradio(t, tF ) is the energy the transceiver consumes in
[t, tF ] as a function of the available bandwidth and Pσ/s is the not-working
power consumption, which is equal to Pσ if ta− t ≥ 2ta−σ, and Ps otherwise.

As already said, the problem to be solved is to find ta in the interval
[tmin, tmax] that minimizes energy consumption. That is,

ta | minta∈[tmin,tmax]{E(ta)}. (3.3)

In the next section, such a relationship will be deeply exploited by comparing
the energy saving contributions from DVS and DPM.
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Figure 3.5: EAS: three possible processor executions speeds.

3.1.4.1 Experimental Results

This section presents some simulation results achieved on the proposed EAS
method. An event-driven scheduler and an energy controller simulator has
been implemented in C language and interfaced to Gnuplot. The simulator
receives a task set and a bandwidth assignment as inputs. The task set is
executed with a chosen scheduling policy. The energy consumed to sched-
ule tasks and to transmit messages is computed at each simulation run. A
simulation run consists of scheduling one task set with the assigned band-
width until the task set hyperperiod hyp. The power consumption E

hyp in
the hyperperiod is then considered.

The scheduling policies applied are:

• EDF with no energy considerations, meaning that the processor is
assumed always active at the maximum frequency, even if tasks are
not ready to execute.

• pureDVS on top of an EDF scheduling algorithm. Only speed scaling
is applied off-line to guarantee feasibility and the processor speed is
set to that value. On-line changes are not allowed.

• pureDPM where the task execution is postponed as much as possi-
ble and then scheduled by EDF. The execution is at the maximum
processor speed.
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• DVS and DPM are combined with EDF through the EAS algorithm.

A simulator infrastructure automatically generates a stream of tuples
(U, nt, B, nB), where U denotes the utilization of the generic task set Γ,
nt the number of tasks, B the communication bandwidth (expressed as a
percentage of the hyperperiod), and nB the number of slots in which the
bandwidth has been split. Both the task set utilization and the number
of tasks are controlled by the task set assignment (U, nt). The bandwidth
assignment (B,nB) allows to control both the total bandwidth and its dis-
tribution within the hyperperiod.

Given the total utilization factor U , individual task utilizations are gen-
erated according to a uniform distribution [21]. Each bandwidth slot is set
in the hyperperiod with a randomly generated offset. To reduce the bias
effect of both random generation procedures, 1000 different experiments are
performed for each tuples (U, nt, B, nB) and the average is computed among
the results obtained at each run.

Two different CPUs have been considered: the Microchip DsPic (DSPIC)2

and the Texas Instruments (TI)3, both using the CC2420 transceiver as
communication device. Table 3.2 and Table 3.3 report the parameters that
characterize the power model of the processors and the transceiver used in
these tests, according to the models described in the system model section.
Minimum and maximum frequencies of the CPUs are taken from the device
data-sheets, whereas the coefficients [a0, a1, a2, a3] comes form Equation 3.1.

CPU Ps f Pa(s) Pσ tsw
[fmin, fmax] [a0, a1, a2, a3]

[mWatt] [Mhz] [mWatt] [mWatt] [sec]
TI − [25, 200] [7.7489, 17.5, 168.0, 0.0] 0.12 0.00125

DSPIC 9.9 [10, 40] [25.93, 246.12, 5.6, 0.0] 1.49 0.020

Table 3.2: Power profiles for processing devices.

Transceiver Ps [mWatt] Pa [mWatt]

CC2420 0.066 62.04

Table 3.3: CC2420 Transceiver power profile.

In a first simulation, we tested the power consumption of the CPUs as
a function of the activation time. Figure 3.6 shows a general dependency
of the power consumption from the model adopted for the processor. The

2DSPIC33FJ256MC710 microprocessor
3TMS320VC5509 Fixed-Point Digital Signal Processor
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figure shows also that both CPUs are DVS sensitive, in the sense that both
privilege DVS solutions than the pure DPM ones. Indeed, the DSPIC and
the TI exhibit a lower energy at tmin than at tmax (respectively 160 and
195 in this case as one of the interval of analysis along the whole execution
interval). This means that a pure DVS solution costs less than a pure DPM
one. Moreover, the DSPIC shows a global minimum inside the interval,
meaning that a combined policy is able to reduce energy consumption. The
time value corresponding to the minimum is the ta that has to be found.
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Figure 3.6: Power consumption: TI and DSPIC.

Figure 3.7 compares the two architectures, showing a higher energy con-
sumption for the DSPIC. The power consumption has been averaged to the
hyperperiod of each task set. Note that both the CPUs have a dependency
on the utilization.
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Figure 3.7: CPU comparison: nt = 4, B = 0.3 and nB = 3.

We also investigated the effects of the transmission bandwidth to the
energy consumption of the system. The results are reported in Figure 3.8,
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which illustrates the power consumption as a function of the bandwidth
assignment. Note how the dependency is stronger with respect to the band-
width amount, because the transmission cost increases when there is more
bandwidth available; in fact, we assumed the CPU remains active while the
bandwidth is available. Moreover we assumed to have messages available to
be transmitted, so that the bandwidth is fully used for transmission with an
increasing cost when the assigned bandwidth increases. On the other hand,
the dependency with respect to the bandwidth allocation slots (how much
B is split) is quite weak. This is because message deadlines were assumed
to be large enough not to create a scheduling constraint.
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Figure 3.8: Average power consumption: U = 0.3, nt = 4.

Figure 3.9 shows how the EAS policy is affected by the task set, in terms
of U and n. Notice that the power consumption is significantly affected by
the utilization but not much by the number of tasks.

Figure 3.10 compares the EAS policy with respect to the pureDVS. The
results are quite similar, since the considered CPUs are both sensitive to
DVS. Nevertheless, the EAS is able to exploit the DPM capabilities and
the available bandwidth to reduce the power consumption in all the task set
assignments, mainly when the processor is not heavily loaded (low utilization
cases).

Finally, Figure 3.11 and Figure 3.12 compare the four scheduling policies
(for TI and DSPIC, respectively), under the same B, nB, and nt conditions,
but for different task set utilizations. Notice how the EAS policy outper-
forms the other policies, especially for low utilizations. For high utilization,
EAS and pureDVS exhibit the same performance (but lower power con-
sumption with respect to the pureDPM and EDF). This happens because,
for high utilization there is no room for DPM improvements and only DVS
is effective. Also note that, for very low utilizations, pureDPM provides
better results than pureDVS. This is due to the fact that U = 0.1 would
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require a speed lower than the TI minimal speed, hence pureDVS forces the
CPU to have a speed greater than the utilization, providing more service
than required.

To conclude, the EAS algorithm is proved to be effective with respect to
the other policies because it looks for the minimum energy consumption in
[tmin, tmax] and in any possible condition. If the minimum is found in tmin

or tmax, the combined method is equivalent to the pure DVS or the pure
DPM, respectively. Most of the time, however, the minimum is found inside
the [tmin, tmax] interval, so that the EAS is able to further reduce energy
consumption with respect to the pure versions.
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Figure 3.9: EAS with B = 0.5 and nB = 3 and the TI processor.
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58



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 P
ow

er
 C

on
su

pt
io

n 
[W

at
t]

Utilization

EDF

DPM

DVS

EAS

Figure 3.11: Comparison: B = 0.5, nB = 3 and nt = 4 (TI processor).
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Figure 3.12: Comparison: B = 0.5, nB = 3 and nt = 4 (DSPIC processor).

3.1.5 Discrete Energy Aware Scheduling (DEAS)

This section illustrates the second solution namely Discrete Energy Aware
Scheduling (DEAS) [60]. The proposed approach mixes at run-time DVFS
and DPM techniques to reduce energy consumption while meeting all task
deadlines, if there exists a feasible schedule. The combination of DVFS and
DPM is done by forcing a CPU sleep interval followed by an active interval
executed at a fixed frequency. Such a frequency is selected to minimize the
energy (per unit of computation) between the current and the next invoca-
tion of the analysis. The j-th instance of the analysis is performed either at
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the end of an active interval or at the end of a communication slot. The for-
mer instant represents the beginning of an idle period that can be prolonged
further by the analysis, while the latter is selected to exploit the slack, if
any, collected during the forced activity inside the slot.

The following terminology is used to identify particular timing instants.

• t denotes the current time.

• next act(t) denotes the next activation time after t.

• taj denotes the time at which the j-th instance of the analysis is in-
voked. If there are pending jobs at time t, taj is set at the current
time t, otherwise taj is postponed at next act(t):

taj =

{

next act(t), if no pending jobs at t;

t, otherwise.
(3.4)

The index j referring to a particular instance will be omitted whenever
not necessary.

• twi
denotes the latest time after taj at which the processor can return

active with frequency fi and still guarantee the schedulability of the
task set.

• tidlei denotes the first idle time after twi
assuming the processor is

executing at frequency fi.

• tei denotes the effective time at which the processor can become idle
considering the activity constraint inside bandwidth slots. Hence, if
tidlei falls before bsk, tei is set at tidlei ; otherwise tei is forced to occur
at the end of the bandwidth slot, that is, tei = bek.

When the analysis is invoked at time ta, the following actions are per-
formed:

1. For each frequency fi, the analysis derives the longest inactive interval
δi exploitable in sleep state from ta, such that the task set is still
feasible when the CPU is turned active at ta + δi. A negative value of
δi implies that the task set can not be schedulable at that frequency.

δi is determined as the minimum among the inactive intervals com-
puted for each deadline, that is

δi(t) = min
dj∈[t,t+L∗(fi))

{

dj −
dbf(t, dj)

fi
− t

}

. (3.5)
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2. To ensure that the CPU is active during the assigned bandwidth slots,
the wake up time twi

is set equal to the minimum between ta + δi and
the beginning of the next slot bsk

twi
= min{ta + δi(ta), b

s
k}. (3.6)

3. For each frequency fi, the analysis also computes the next idle time
tidlei from twi

assuming worst-case executions. In particular, tidlei
is computed as the minimum value satisfying the following recurrent
relation:

ts+1
idlei

(ta) =
∑

τj active

cj(ta)

fi
+

∑

j∈Γ

(⌊

tsidlei
Tj

⌋

−

⌊

ta
Tj

⌋)

Cj

fi
.

(3.7)

initialized with value t0idlei(ta) = ta +
∑

τj active
cj(ta)
fi

.

The analysis then computes the effective idle time tei taking into ac-
count the bandwidth constraint.

tei =

{

tidlei , tidlei < bsk;

bek, otherwise.

4. Under a frequency fi, the energy consumption Ei in the interval [ta, tei ]
is computed as the sum of the energy spent in sleep mode in [ta, twi

]
and in active mode in [twi

, tei ], that is

Ei(ta, twi
, tei) = (twi

− ta)Pσ + (tei − twi
)Pai . (3.8)

Since each frequency fi causes a different amount of computation in
the interval [ta, tei ], denoted as Wi(ta, tei), the normalized parameter
Energy Per Cycle (EPCi) is introduced, representing the energy cost
per instruction cycle. It is computed as

EPCi(t) =
Ei(ta, twi

, tei)

Wi(ta, tei)
. (3.9)

A detailed analysis about the computation of Wi is carried out in
section 3.1.6.
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5. Among the possible frequencies that guarantee feasibility, the ap-
proach selects f∗ featuring the minimum EPCi. t

∗
w and t∗e denote the

wake up time and the effective idle time resulting from the selected
frequency f∗, respectively.

6. If the interval [t, t∗w) is shorter than taσ+tσa, it is not possible to adopt
the sleep state to wake up within t∗w, so the standby state is chosen;
otherwise, the sleep state is selected.

7. The instant of the next occurrence of the analysis taj+1 is set equal to
t∗e; however, if the next idle time is advanced due to early completions,
the analysis is triggered as soon as the idle occurs and taj+1 is updated
accordingly.

Figure 3.13 illustrates an example that clarifies the steps of the proposed
approach. In the example, the CPU supports three different frequencies
sorted in ascending order: f1, f2 and f3.
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Figure 3.13: Example of the analysis’ behaviour.

In the example, frequency f1 leads to an unfeasible schedule, since δ1 is
negative, whereas f2 and f3 produce feasible solutions, since both δ2 and δ3
are positive.

Notice that, when considering frequency f2, ta+ δ2 falls before bsk, hence
tw2 = ta+ δ2, whereas for f3, tw3 is set equal to the beginning of the slot bsk,
as ta + δ3 ≥ bsk.
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For both frequencies f2 and f3, te2 and te3 takes the value of bek, as both
tidle2 and tidle3 occur after bsk.

To choose between the two feasible frequencies (f2 and f3), the normal-
ized energy consumption is computed. Such a value is intrinsically derived
from the platform power model.

Algorithm 2 Discrete Energy Aware Scheduling - DEAS

procedure (t)
1: Input: t : ∀k, t /∈ [bsk, b

e
k)

2: compute ta according to Equation (3.4);
3: for all fi do
4: compute δi(ta) as in Equation (3.5);
5: if δi(ta) < 0 then
6: set fi not feasible and continue;
7: end if
8: compute twi

according to Equation (3.6);
9: compute tei ,Wi as shown in section 3.1.6;

10: compute EPCi according to Equation (3.9);
11: end for
12: compute f∗ feasible that minimizes EPCi;
13: set wake up time at t∗w;
14: set CPU frequency to f∗;
15: if t∗w − t ≥ taσ + tσa then
16: put the processor in sleep state;
17: else
18: put the processor in standby state;
19: end if

Equation 3.4, executed at line 2, has the complexity of an extraction
from an ordered list of task activation times; that is, O(1). On the other
hand, the insertion complexity is O(log2(n)), where n is the number of
tasks. Given n and the maximum number of deadlines a single task can
produce in the analysis interval, p, the maximum number of analysis points
of the dbf is np. The upper bound of p is computed as the number of
occurrences of the task with the shortest period in the analysis interval:
⌈

maxiL
∗(fi)

mini{Ti}

⌉

. Supposing to arrange the active deadlines in a sorted list,

with complexity O(log2(n)) (as the active deadlines are always n) to keep
the ordering, the computation of dbf , executed every time the algorithm is
invoked, has a total complexity of O(log2(n)np). The computation of the δi,
at line 4, involves a complexity O(np). The computation performed at line
9 has a complexity of O(nq), where q is defined as the maximum number of
activations a task can generate in [taj , taj +maxiL

∗(fi) +maxk{b
e
k − bsk}].

The reason is that the algorithm analyzes all the activations, computing the
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actual workload and any idle gap, as shown in section 3.1.6. The q upper

bound is computed as
⌈

maxiL∗(fi)+maxk{b
e
k
−bs

k
}

mini{Ti}

⌉

. The computation of the

EPCi has complexity O(1). Hence, the for loop, executed at line 3, has
a complexity of O(nF (p + q)), where F is the total number of available
frequencies.

Globally, the proposed algorithm has a complexity of O((log2(n)+F )qn),
being q ≥ p.
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Figure 3.14: DEAS example.

The behavior of the DEAS algorithm is now illustrated using the example
in Figure 3.14. The assigned bandwidth is composed by one slot in the
interval [bs1, b

e
1] equal to [12,15]. The CPU allows 2 frequencies equal to

f1 = 5 and f2 = 10, and schedules a task set of 2 synchronous implicit
periodic tasks with periods T1 = D1 = 5 and T2 = D2 = 7, and worst-case
execution cycles C1 = 10 e C2 = 10. For the task set under analysis, we
have L∗(f1) = 4 and L∗(f2) = 2. The result of the off-line computation for
Lmax is 7. The power consumptions in the active state are Pa1 = 3 and
Pa2 = 6, while Pσ = 1 and taσ + tσa is considered negligible for the sake of
simplicity.

The algorithm has its first invocation at ta1 = 0 because two jobs are
already pending. Both frequencies guarantee the task set feasibility with
wake up times tw1 = 3 and tw2 = 4, respectively.

Executing at frequency f1, the first idle time tidle1 occurs at t = 13
because, from time tw1 = 3, the busy period consists of three instances of
τ1 and two instances of τ2, for a total execution of 10 units of time. Due
to the bandwidth activity constraint, te1 is set to 15. Instead, running at
frequency f2, the next idle time tidle2 , from time tw2 = 4, occurs at time
t = 8 and, since it falls before bs1, we have te2 = 8. Once the interval [twi

, tei ]
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is determined, the algorithm computes EPC1 = 0.71 and EPC2 = 0.70,
and therefore sets f∗ = f2.

Using f2, the second invocation of the algorithm occurs at t = 8, causing
the postponement of ta2 to t = 10. Running at frequency f2, the CPU
can wake up at 13, but, for the activity constraint, tw2 is set to bs1 = 12.
Consequently, tidle2 = 13 and te2 = be1 = 15. Instead, using frequency f1,
the algorithm obtains tw1 = 12, tidle1 = 18, and te1 = be1 = 15.

In such a scenario, the energy consumptions are EPC1 = 0.73 and
ECP2 = 1, and therefore the chosen frequency is f∗ = f1.

3.1.6 Workload Computation

This section presents the procedure compute te W , formally defined in Algo-
rithm 3, that computes the effective idle time tei and the effective workload
Wi, concepts already introduced in Section 3.1.5. The algorithm, based on
the current workload, computes next idle times tidlei till tei is found, taking
into account bandwidth constraints.
However, note that the procedure output is composed by tei andWi only. To
reduce the DEAS algorithm complexity, such computations are integrated
into a single routine. Figure 3.15 shows the effective workload of three key
scenarios.

For each case, the effective workload is represented by the sum of the
slashed areas. Such a value is expressed as number of machine cycles, so the
working frequency must be considered.
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Figure 3.15: Examples of effective workload.

First, to determine tidlei the iterative approach is initialized as described
in Section 3.1.5. Whenever tsidlei , at a generic step s, crosses the end of the

current bandwidth slot ts−1
idlei

< bek ≤ tsidlei (cases a and c), the procedure stops
setting tei = bek and accounting in Wi the workload between the beginning of
the current Busy Period and the end of the bandwidth slot bek. Note that, if
the recurrent relation converges (ts−1

idlei
= tsidlei) outside the bandwidth slot,

no slot occurs during the analyzed Busy Period, hence tei = tsidlei and Wi

65



is increased by (tsidlei − twi
)fi. If tsidlei converges inside the bandwidth slot

(cases b and c), Wi is incremented by (tsidlei − twi
)fi.

Algorithm 3 Procedure to compute tei and Wi

procedure compute te W
1: input: fi, twi

2: output: tei , Wi

3: Wi = 0; tstart = twi
;

4: loop

5: t0idlei = tstart +
∑

τj active
cj(tstart)

fi
;

6: do
7: compute tsidlei according to Equation (3.7);

8: if ts−1
idlei

< bek ≤ tsidlei then
9: tei = bek;

10: Wi += (tei − tstart)fi;
11: return;
12: end if
13: while ts−1

idlei
6= tsidlei ;

14: Wi += (tsidlei − tstart)fi;
15: if tsidlei /∈ [bsk, b

e
k] then

16: tei = tsidlei ;
17: return;
18: else
19: if next act(tsidlei) ≥ bek then
20: tei = bek;
21: return;
22: end if
23: tstart = next act(tsidlei );
24: end if
25: end loop

Then, the routine checks whether a new task activation occurs after the
end of the current bandwidth slot, i.e. next act(tsidlei) ≥ bek. In such a
case (case b), the effective idle time tei is set to bek and Wi is increased by
(tsidlei − twi

)fi; otherwise (case c), the contribution of the next Busy Period
must be taken into account considering next act(tsidlei) as a starting instant.

3.1.6.1 Experimental Results

This section presents a set of experimental results that show the effective-
ness of our approach with respect to other classical solutions. The results
are obtained by simulation using a synthetic workload under three power
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consumption profiles derived from real platforms according to the power
consumption model described in power model section.
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Figure 3.16: Speed-Power characterization for different platforms.

To test the behavior of our algorithm, three CPU consumption profiles
(power models), shown in Figure 3.16, are introduced. Each profile is de-
scribed by the power consumption coefficients [a3, a2, a1, a0]:

• Fully-DPM [0.0, 5.6, 246.12, 25.93];

• Fully-DVFS [0.0, 0.0, 330.62,−53.32];

• Mixed [0.0, 150.55, 24.5, 100.78].

The fully-DPM model has been extracted from the Microchip dsPIC 4

datasheet, interpolating the typical consumptions. The other two models
have been synthetically derived from the first one to achieve different but
comparable behaviors, at the same time, with respect to the original. Fully-
DPM and fully-DVFS represent opposite cases: in a fully-DVFS scenario,
halving the speed (doubling the execution time) always implies a reduction
of the energy consumption, while in fully-DPM cases, the consumption in-
creases. A model is defined as DPM or DVFS according to its position with
respect to the straight line.
Such a line represents a theoretical situation in which slowing down has
the same energy consumption of executing at a different speed. The mixed
model has a threshold frequency fth at speed 0.65 meaning that its behavior
is DVFS-like above fth and DPM-like below.

The frequency range of the CPU used in the simulation is [12.5, 40] MHz.
The sleep state consumption Pσ is 1.49 mW and the wake up time takes

4DSPIC33FJ256MC710 microcontroller
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about 20 ms. The standby state has a higher consumption Ps of 9.9 mW,
but a shorter wake up time within 8 cycles. As for the fully-DPM model
consumptions, such values were extracted from the dsPIC datasheet. All
the simulations have been executed using a set of 8 evenly distributed fre-
quencies.

For comparison purposes, four scheduling policies have been implemented
in the simulator:

• EDF with no energy considerations, where the processor is assumed
always active at the maximum frequency, even during idle intervals.

• pureDVFS on top of EDF, where the CPU runs with the minimal
speed, computed off-line, that guarantees feasibility according to the
task set. The actual speed is the lowest frequency greater than the
minimal one.

• pureDPM, where, as soon as there is an idle time and no assigned
bandwidth, the task execution is postponed as much as possible and
then scheduled by EDF at the maximum speed.

• DEAS, the algorithm introduced in this paper.

An execution scenario is characterized by the tuple (U, nt, B, nB), where
U denotes the utilization of the task set, nt the number of tasks, B the
communication bandwidth (expressed as a percentage of the hyperperiod),
and nB the number of chunks in which the bandwidth is split. All the slots
are generated with the same length, whereas slot positions are randomly
generated with a uniform distribution.

Given the total utilization factor U , individual task utilizations are gen-
erated according to a uniform distribution [21].

Payload and message deadlines are generated to meet the hypothesis on
messages guarantee. The computed values are not described here because
they have no effect on the task scheduling algorithm.

Trying to find a trade-off between the simulation accuracy and the simu-
lation time (it increases exponentially with the number of tasks), each result
was computed as the average consumption of 30 executions. To simplify
comparisons, the results are normalized against the value obtained applying
the EDF policy to the same tuple (U, nt, B, nB).
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In the first experiment, the energy consumption is evaluated as a func-
tion of the utilization U and the number of tasks nt. All the three algorithms
have been tested with Bandwidth B = 0.3, nB = 5 chunks and three differ-
ent utilization factors. The results show that both U and nt do not affect
energy consumption significantly, therefore the graph is not reported.

The next experiments evaluate the energy consumption, under different
power models, as a function of the utilization factor U with nt = 7, B = 0.3
and nB = 10.
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Figure 3.17: Consumptions with a fully-DPM power model.

Results show that DEAS always outperforms the other algorithms for
all power models and for any utilization.

As shown in Figure 3.17, due to the activity constraint posed by the
bandwidth slots, DEAS outperforms pureDPM even in fully-DPM power
models.

Instead, Figure 3.18 shows that in fully-DVFS power models such a con-
straint has no effect on pureDVFS: keeping the system active represents the
default behavior and, with respect to the analyzed power model, the best
solution. For this reason, DEAS and pureDVFS have similar performances.

Under a fully-DPM and in a mixed context, Figure 3.17 and Figure 3.19
shows that pureDVFS acts better than pureDPM for low U values, because
the CPU can not be switched off inside bandwidth slots. Instead, for higher
utilization values, the consumptions are similar.
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Figure 3.18: Consumptions with a fully-DVFS power model.
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Figure 3.19: Consumptions with a Mixed power model.

Note that all the graphs show that DEAS is always able to select the right
balance between DVFS and DPM depending on the specific characteristics
of the architecture.
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Chapter 4

Power management of
multiprocessor systems

4.1 Introduction

The presence of multiprocessor systems is becoming relevant in recent com-
puting architecture. Until now this trend has characterized big mainframes,
servers and computer farms but recently even desktops and notebooks have
been equipped with such hardware solutions. It is not far from truth believ-
ing that this family of computers represents the most widespread solution
to support productive activities in our everyday lives.

Much more recently we are seeing how multiprocessor systems are mi-
grating into embedded environment. In this domain power saving capabili-
ties represents a key feature for such systems. For instance, if we consider a
typical automotive power-train computing unit, operating very tightly with
the car engine, it is easy to figure out that such systems usually works in
a overheating environment. For these kind of systems, a policy that reduce
power consumption of the CPU, and therefore working temperature, copes
with the twice problem of improving system lifetime on one hand, an im-
portant aspect for battery-driven systems, and limiting system overheating
on the other.

The automotive domain recently formalized the use and development of
multiprocessor systems in new generation cars, most of these requirements
are detailed in the AUTOSAR [68] standard and similar solution have been
adopted by avionics industry, defense and consumer electronics.
Multiprocessor systems are also classified in different ways, in general they
refer to Processor symmetry and Processor coupling concepts.
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• Processor symmetry CPUs belonging to a multiprocessor system
may be used for the same scope or may have be reserved for special
purpose or even dedicated sub-activities. Furthermore they can have a
different configuration of the Operating System, or in same case it lack.
According with this description, multiprocessor systems that treat all
CPUs in the same ways are commonly recognized to be symmetric
multiprocessor systems (SMP), system characterized by the use of dif-
ferent CPUs configuration are considered asymmetric multiprocessor
systems (ASMP).

• Processor couplingMultiprocessor systems that contain several CPUs
connected together at chip level by the use of a shared communication
bus is called Tightly-coupled multiprocessor systems. Multiprocessor
systems whose CPUs are connected together by a high speed commu-
nication systems (often Gigabit Ethernet) are called Loosely-coupled
multiprocessor systems and often refer to as cluster systems.

4.2 The case of Multiprocessor System-on-Chip

(MPSoC)

Wayne Wolf and Grant Martin in [79] argue that MPSoCs constitute a
unique branch of evolution in computer architecture, particularly multipro-
cessors, that is justified by the requirements on these systems: real-time,
low-power, and multitasking applications. They present a short history of
the MPSoCs as well as an analysis of the driving forces that motivate the
design of these systems. They also argue that MPSoCs represent an im-
portant and distinct branch of multiprocessor, in fact they are not simply
traditional multiprocessors shrunk to a single chip, but have been designed
to fulfill the unique requirements of embedded applications. Furthermore
the authors claim that MPSoCs form two important and distinct branches
in the taxonomy of multiprocessors: homogeneous and heterogeneous mul-
tiprocessors. The importance and historical independence of these lines of
multiprocessor development are not always appreciated in the microproces-
sor community.
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4.2.1 History of MPSoCs

Wolf at All in [79] argues that MPSoCs represents a particular branch in the
domain of multiprocessor systems, in fact the authors claim that they are
not simply traditional multiprocessors shrunk to a single chip but have been
designed to fulfill the unique requirements of embedded applications. The
authors also claim that MPSoCs form two important and distinct branches
in the taxonomy of multiprocessors: homogeneous and heterogeneous mul-
tiprocessors.

According with [79] this section shows a short brief about the story of
MPSoCs, and then some examples of these architecture will be described
with the purpose to provide how they are developed in the last years. The
first MPSoC introduced in this section is the Lucent Daytona [9]. Daytona
was designed for wireless base stations, in which identical signal process-
ing is performed on a number of data channels. Daytona is a symmetric
architecture with four CPUs connected together through a high-speed bus.
The system was based on a enhanced SPARC V8 technology. where each
CPU has an 8-KB 16-bank cache, each bank can be configured as instruc-
tion cache, data cache, or scratch pad. The chip was 200 mm2 and ran at
100 MHz at 3.3 V in a 0.25-m based CMOS technology. The C-5 Network
Processor [4] was designed for packet processing in networks. Packets are
handled by processors grouped into four clusters of four units each. Three
buses handle different types of traffic in the processor. The C-5 uses sev-
eral additional processors, some of which dedicated. The main processor
was a reduced instruction set computer (RISC). A third important class of
MPSoC applications is multimedia processing. An early example of a mul-
timedia processor is the Philips Viper Nexperia [36]. The Viper includes
two CPUs: a MIPS and a Trimedia VLIW processor. A fourth important
class of MPSoC applications is the cell phone processor. Early cell phone
processors performed base- band operations, including both communication
and multime- dia operations. The Texas Instruments (TI) OMAP architec-
ture [5] has several implementations. The OMAP 5912 has two CPUs: an
ARM9 and a TMS320C55x digital signal processor (DSP). The ARM is the
master, and the DSP the slave. Another example of this category of system
is the STMicroelectronics Nomadik [10], another MPSoC for cell phones. It
uses an ARM926EJ as its host processor. The system also have two addi-
tional DSPs: one for video and one for audio. The ARM MPCore [42] is
a homogeneous multiprocessor that also allows some heterogeneous config-
urations. The architecture can accommodate up to four CPUs. The Intel
IXP2855 [6] is a network processor. Sixteen microengines are organized into
two clusters. An XScale CPU serves as host processor. Two cryptography
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accelerators perform cryptography functions. The Cell processor [53] has a
PowerPC host and a set of eight processing elements known as synergistic
processing elements. The Freescale MC8126 was designed for mobile base
station processing. It is characterized by four Starcore SC140 VLIW pro-
cessors and a shared memory.The Sandbridge Sandblaster processor [40,41]
can process four threads with full inter-locking for resource constraints. It
also uses an ARM as a host processor. The Infineon Music processor is
another example of a cell phone processor. It has an ARM9 host and a set
of single- instruction multiple-data (SIMD) processors. The Cisco Silicon
Packet Processor [37] is a example of the same category, it includes 192
configured extended Tensilica Xtensa cores. A Seiko-Epson inkjet printer
Realoid SoC [67] incorporates seven heterogeneous processors: a NEC V850
control processor and six Tensilica Xtensa LX processors.
Finally, it is fundamental to cite that most of the recent platforms are based
on programmable gate array (FPGA): Xilinx, Altera, and Actel. Some of
these solution provide soft-based cores.

4.3 Simulation Infrastructure

Next generation Real-Time and Embedded devices is going to became multi-
processor systems, especially Multiprocessor System-on-Chip MPSoCs. Among
these kind of systems there exist a particular class characterized by the fol-
lowing features and taken as system model for the next analysis:

• Several CPUs implementing very simple hardware architectures with
no branch prediction, single issue and in-order pipeline but dedicated
data and instruction caches;

• A highly predictable interconnection, such as a TDMA-based shared
bus or NoC, which is able to provide the performance required by
Real-Time applications.

Concerning software support for this class of architecture, the main so-
lution adopted is partitioned. This means that each CPU has its own
Operating System instance locally running. This paradigm is adopted in
automotive and avionics domains, and it is defined by the corresponding
AUTOSAR [68] and IMA [39] standards previously mentioned.

In [22] a functional model of the target architecture was developed to
enable in-depth architectural exploration. Such architecture provide a mul-
ticore platform where all cores are 32-bit ARM-based with an associated
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Figure 4.1: Hardware architecture

L1 cache. They are connected to a shared L2 memory via the shared bus.
The L2 memory is segmented, it is characterized by a private portion asso-
ciated to each core and a shared portion useful for communication or data
exchange. An interrupt device is provided as well as a semaphore memory,
a special memory device capable of test-and-set read operations. The latter
is used for synchronizing concurrent accesses to shared resources, while the
former provides the capability of efficiently propagating notifications and
events in the system. The full architecture is shown in Figure4.1.

The communication bus is modeled at transactional level (TLM) and
takes into account features of modern high-performance communication
buses (such as [57] or ST StBus Protocol [32] [63], namely the capabil-
ity of supporting burst interleaving, multiple outstanding transactions and
split transfers. The bus model is packet-based, i.e. a ”transaction” on the
interconnect is composed by several packets. A functional TDMA arbiter
is implemented. It loads the so-called Time Wheel (in literature it is also
referred to as Slot Table) from a text file. The Time Wheel contains all
the information on a single TDMA Round and unrolls over the time line,
repeating infinitely during the entire simulation.

Concerning the software running on the simulated hardware platform,
it is possible to run stand alone (i.e. without the support of an OS) or
ERIKA [1] OS-based applications. ERIKA is an open-source (GPL2) multi-
processor real-time operating system (RTOS) kernel, implementing a collec-
tion of Application Programming Interfaces similar to those of OSEK/VDX
standard [33] for automotive embedded controllers.
ERIKA is available for several hardware platforms and introduces innovative
concepts, real-time mechanisms and programming features to support and
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exploit the microcontrollers and multicore systems-on-a-chip. With multi-
processor hiding, it is possible to seamlessly migrate application code from
a single processor to multiprocessors without changing the source code. Re-
targeting an application from single to multiprocessor architectures only
requires minor modifications at the configuration files level, but allows re-
taining the source code. This requirement is covered by the OSEK standard
by the OIL configuration file). The main ERIKA features related to this
work are: task scheduling according to fixed and dynamic priorities; inter-
rupt handling for urgent peripherals operation (interrupts always preempt
task execution); resource sharing with Immediate Priority Ceiling protocol.

4.3.1 Software support to dynamic bus assignment

To cope with overload conditions ERIKA scheduling support has been ex-
tended by adding an implementation of the Elastic scheduling algorithm [28]
where each task is considered as flexible as a spring, whose utilization can
be modified by changing its period within a specified range. This software
layer operates between the OS and user defined code. More specifically,
each task is characterized by four parameters: a worst-case computation
time Ci, a minimum period Timin

(considered as a nominal period), a max-
imum period Timax , and an elastic coefficient Ei. The elastic coefficient
specifies the flexibility of the task to vary its utilization for adapting the
system to a new feasible rate configuration: the greater Ei, the more elastic
the task. In the following, Ti denotes the actual period of task τi, which is
constrained to be in the range [Timin

, Timax ]. Moreover, Uimax = Ci/Timin

and Uimin
= Ci/Timax denote the maximum and minimum utilization of τi,

whereas Umax =
∑n

i=1 Uimax and Umin =
∑n

i=1 Uimin
denote the maximum

and minimum utilization of the task set. The algorithm works on top of
different scheduling algorithms with both static and dynamic priorities. For
simplicity, tasks are scheduled by the Earliest Deadline First algorithm [58].
Hence, if Umax <= Ud <= 1, all tasks can be created at the minimum period
Timin

, otherwise the elastic algorithm is used to adapt the tasks periods to
Ti such that

∑ Ci

Ti
= Ud ≤ 1, where Ud is some desired utilization factor. It

can easily be shown (see [28] for details) that a solution can always be found
if Umin ≤ Ud. If Γf is the set of tasks that reached their maximum period
(i.e., minimum utilization) and Γv is the set of tasks whose utilization can
still be compressed, then to achieve a desired utilization Ud < Umax each
task has to be compressed up to the following utilization:

∀τi ∈ Γv Ui = Uimax − (Uvmax − Ud + Uf )
Ei

Ev
(4.1)
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where
Uvmax =

∑

τi∈Γv

Uimax (4.2)

Uf =
∑

τi∈Γf

Uimin
(4.3)

Ev =
∑

τi∈Γv

Ei. (4.4)

If there exist tasks for which Ui < Uimin
, then the period of those tasks has

to be fixed at its maximum value Timax (so that Ui = Uimin
), sets Γf and

Γv must be updated (hence, Uf and Ev recomputed), and equation (4.1)
applied again to the tasks in Γv. If there exists a feasible solution, that is, if
the desired utilization Ud is greater than or equal to the minimum possible
utilization Umin =

∑n
i=1

Ci

Timax
, the iterative process ends when each value

computed by equation (4.1) is greater than or equal to its corresponding
minimum Uimin

.

4.4 Adaptive TDMA bus allocation

The proposed algorithm [23] works as a bridge between hardware and soft-
ware layers in order to allow an assignment of the bus which is aware of
the core QoS requirements. The communication structure is presented in
Figure 4.2. Due to its boundary position, the assigner could be implemented
both in hardware or in software. Let’s consider the latter situation.

The details of the algorithm are show in Figure 4.2. During system exe-
cution, a core may face a need for extra bus bandwidth, due for example to
workload changes or to activation of sporadic tasks. Consequently the slave
core make a request to the Master Core of the system for a certain (typically
higher than the current) service level (Ri) for communication. The algorithm
supports a discrete number of service levels (they are shown in Table 4.1),
each service level corresponds a certain bus bandwidth percentage. Clearly,
the relation between service levels and bus bandwidth depends on to the
number of cores in the platform and it is calculated off-line. At predefined

0 ZERO 4 HIGH

1 MINIMUM 5 MAXIMUM

2 LOW 6 EXTREME

3 MIDDLE

Table 4.1: Service Levels
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Figure 4.2: Algorithm diagram

instants, the Master fetches all new bus bandwidth requests coming from
the other cores, mediates between them and recomputes the percentage (Si)
of the bus assigned to each core as

Si =
Ri
∑

RI
(4.5)

and then generates a new Time Wheel. Clearly, the TDMA slots are set
in order to assign the computed bus bandwidth to the cores. Our algo-
rithm is not guaranteed to find the optimal solution but rather a fair trade-
off betweeen all requests, being at the same time extremely efficient and
lightweights. The actual service level may be different (i.e. lower) than
the one requested if multiple requests happen at the same size since the
algorithm mediates between all of them. Moreover, a core performing no
request may see its service level changing as an effect of a new scheduling
due to other cores requests. Then, the new Time Wheel is loaded in the Bus
Arbiter and the new service levels are notified to the cores.

Since this change implies a variation in tasks execution times, task pe-
riods have to be recomputed according to the Elastic Scheduling algorithm
previously described, using the WCETs of the task-set as input. It is im-
portant to remark that TDMA-wheel switching does not compromise the
feasibility of a task-set running in a core characterized by a short TDMA
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slot assignment. In fact the actual task parameters (i.e. elastic constants,
Tmin, Tmax and the deadline equal to the period) are defined off-line, in
such a way to guarantee a feasible solution to the algorithm in all possible
scenarios.

The WCETs depend on the bus bandwidth assigned to the core, so they
also have to be recomputed. The complexity of WCET analysis techniques
makes unfeasible to do this at run-time, so they are computed offline and
stored inside a lookup table (LUT) to make them available to the cores.
This storage area has to fill the smallest possible space. This is obtained
providing only WCETs for the limited number of service levels and imposing
a quantization to the values obtained with Equation 4.5.
The LUT size is a tradeoff between the memory space used and the ob-
tained bandwidth granularity. Increasing the number of levels allows the
algorithm to better fit cores requests and leads to a solution with an higher
quality of service. On the other hand, each extra level means an increas-
ing in the algorithm overhead, more space for storing information and a
higher computational effort for execution times calculation. A fair tradeoff
already happens with a small number of levels. With the hardware used
in the experiments that will be presented, A preliminar set of experiments,
empirically demonstrates as 7 reppresents an adeguate value for the number
of levels. After chosing the number of allowed bandwidth assignments (that
is, the number of rows in the table), there are several options for dimension-
ing their values. The simplest is based on homogenousity: divide the valid
bandwidth range by the number of elements. More sophisticated approaches
minimize a defined metric: an example could be the aggregated bandwidth
waste, i.e. is the sum of all quantization losses. In this work, a homoge-
neous bandwidth division has been adopted. Each row is composed by the
WCETs of all tasks working with the selected bus bandwidth assignment.
The WCET values can be obtained using a static code profiler and analysis
tool such the one [43] developed by AbsInt.

Once the WCETs have been loaded, tasks periods can be accordingly
adjusted to meet real-time requirements and tasks can be now scheduled.
The overall approach gives two main benefits: first the bus TDMA allocation
is QoS-aware and secondly the OS scheduler can take more accurate decisions
based on the bounds given by the dynamic TDMA arbitration policy.

4.4.1 Task computation benefits

For the experimental setup let’s consider a task-set composed by avionics
tasks, automotive tasks and memory intensive access tasks. For the avion-
ics case the Matlab U.S. Navy’s F-14 Tomcat aircraft control task [62] has
been adopted, it guarantee the aircraft to operate at a high angle of attack
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Figure 4.3: Task computation time variation

with minimal pilot workload; as automotive task the coremark [7] has been
chosen, a well known and widely used benchmark in the domain of embed-
ded systems; finally a task that performs mathematic operations such as
summation and characterized by intensive memory access. Each task-set
is composed by a combination of these tasks, EDF is chosen as scheduling
policy and no precedence constraints nor critical section has been considered
between tasks.

Figure 4.3 show the behavior of a system composed by 2 cores: CPU0
is the master core and CPU1 is the slave one. Three tasks run on each
core. The y-axis reports the computation time of each task while the x-axis
reports the current time. Approximatively between 100 and 200 millisecond
a request of additional TDMA slot bandwidth is requested by CPU1. This
request is equal to the HIGH level among the service levels available; CPU0
does not request for additional bandwidth. Such a request lead to a rebal-
ancing of TDMA bus slots by the master core. Starting from this moment
the computation time of each task running on CPU1 improves while the
corresponding one on CPU0 get worse. The request, triggered by the third
job of the avionics task running on CPU1, is made between 100 and 200
millisecond and the advantages for the CPU1 can be already appreciated in
the fourth job for avionics and automotive tasks, and from the third job in
case of the mathematical task.

Under these conditions, the task-set experiences a variable range of com-
putation times: from 2 milliseconds for the avionic task up to 15 millisecond
for the mathematical task. In order to catch the overhead introduced by the
algorithm, a set of measurements have been performed on the avionic task.
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Figure 4.4: Task periods and service levels

The average overhead introduced is less than 5% of the computation time
of the task itself. This overhead can be divided in a negligible (less than
5 microseconds) part spent for the OS context-switch, while the majority
of it is equally spent by the elastic manager to collect cores requests and
accomplish task period variations, and to update the TDMA-wheel reallo-
cation, i.e writing of the new values in arbiter registers and triggering the
table switch. Moreover, the code to accomplish these tasks could be further
optimized: for instance, the calculation of the new task periods has no FPU
support which could instead provide a further improvement of the overall
performance. However, even this not optimized version of the code has an
execution time which is less than 100 times the basic context switch.

4.4.2 Bus Access Time and Periods

In Figure 4.4 the variation of task periods has been show. This is the case
for three cores and three tasks for each core. As usual, CPU0 represents the
master core while CPU1 and CPU2 are the remaining slaves that compose
the systems. The amplitude of the histogram bars indicates the periods of
the tasks and they are collected in three clusters, one for each CPU. Inside
each cluster it is possible to appreciate the value of each task period cor-
responding with the old (on the left), requested (on the right) and actual
(in red) service level. The system starts with a fairly distributed level of
service equal to LOW, the corresponding TDMA slot assignment is 33%
for each CPUs. This scenario is represented by the first set of bars inside
each cluster. The second set of bars inside each cluster shows that CPU1
and CPU2 ask for additional bus bandwidth, respectively an EXTREME
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and a HIGH level of service, while CPU0 (master core) makes no requests.
According with this set of requests, the master core assigns the Time Wheel
the following way: MINIMUM (11%) for itself, HIGH (55%) for CPU1 that
ask for the highest level of service and LOW (33%) for the CPU2. Note that
with this particular combination of requests CPU2 is not able to improve
its bandwidth and, despite of its request, it holds the initial percentage of
TDMA bandwidth. This case has been deliberately chosen to highlight that
requests for additional bandwidth must be considered as part of the whole
set of demands coming from all CPUs.

Figure 4.5 provides an exhaustive representation of the system response
in terms of bus access time as a function of the number of CPUs and service
level requested. For each measure, the values are normalized over the case
with the same number of CPUs and the service level equal to MIDDLE. As
usual let evaluate a system characterized by a composite task-set and let
collect the response of a single measured CPU, that ask for different service
level, in a multiprocessor context with variable number of CPUs. The service
level of the analyzed CPU starts from MIDDLE up to EXTREME, while
the whole number of cores that compose the system varies from two up to
five. The system starts with a fair bus assignment (MIDDLE service level)
to the CPUs. The only CPU licensed to ask for different service level is the
measured CPU, the remaining ones hold the initial service level (MIDDLE).
The figure shows the improvements experienced by the measured CPU: the
access time decrease if the number of CPUs or the service level requested
increase. This trivial result is shown with the purpose of quantifying the
advantage in terms of latency for the each bus access from the single CPU
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point of view, compared to the case of a static and fair assignment: same
bandwidth for each CPU.

4.4.3 Quality of Control index

In control applications the performance of a periodic control task is a func-
tion of the activation period. Increasing the task activation period leads to
a performance degradation, which is typically measured through a Perfor-
mance Index J(T ) [27, 75]. Often, instead of using the performance index,
many algorithms use the difference ∆J(T ) between the index and the value
of the performance index J∗ of the optimal control. Many control systems
belong to a class in which the function expressing the degradation is mono-
tonically decreasing, convex and can be approximated as

∆J(Ti) = αie
−

βi
Ti

where the magnitude αi and the decay rate βi characterize the single task.
The evaluation of the whole task set is computed as

∆J =
n
∑

i=1

wi∆J(Ti) =
n
∑

i=1

wiαie
−

βi
Ti

where the wi are used to characterize the relative importance of the tasks.
To have a common scale for all task sets, the Quality of Control index

paper is expressed as

QoC =
∆Jnom
∆J

. (4.6)

where ∆Jnom is the value of the index calculated when tasks run at their
nominal periods. A value of 1 means that all tasks are running with nominal
periods.

All coefficients αi and wi are set to 1 for simplicity, while βis are set
to 20 in order to use the whole range [0,1] of the QoC index. Taking the
previous example (shown also in Figure 4.4), the values of ∆J for CPU0
changes from 2.4 to 2.6 due to the Time Wheel variation. In Table 4.2 are
presented the value of QoC for different approaches computed for the same
example and normalized over the difference betweenJtmax and Jtmin

. where
QoCtmin

is the best possible QoC (∆Jnom) obtained with a set of CPUs
each with a dedicated bus. This case represents the virtual upper bound,
but it is not really experienced, because we are working in a multiprocessor
environment with shared communication bus; QoCdyn is obtained adopting
our run-time algorithm; QoCfair is the result of a fair TDMA scheduling,
where all the slots have the same size. This is also the starting point in our
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∆QoCtmin
1.0000

∆QoCdyn 0.7067

∆QoCfair 0.6947

∆QoCminbwd
0.6357

∆QoCtmax 0.5925

Table 4.2: QoC Indexes.

experiments, before the slot and task periods are modified. QoCminbwd
is a

virtual QoC in case each core is assigned a low bandwidth (10% of the TDMA
Round). This situation is typical of systems where each CPUmust guarantee
the timing constrains even with a small static slot assignment. Finally,
QoCtmax is the QoC provided by the system if the longest allowed period
is chosen for each task on every CPU. Table 4.2 shows that a system with
the capability to dynamically adjust TDMA slots is able, starting by a fixed
TDMA allocation, to have an improvement from 27% up to 31% of the QoC
index. Moreover, the introduced overhead has negligible effect on the QoS
(as prevoiusly said, in the average case it is around 5% of the computational
time for the fastest task). On the contrary, a system characterized by a
standard TDMA slot assignment is forced to operate with QoCminbwd

, due
to a lower bus-access-time.

This solution introduces an algorithm able to resize TDMA slots of com-
munication bus accessed concurrently accordingly with the actual taskset re-
quirements. The target architectures are RT MPSoCs where running tasks
face unpredictable situations (external interrupts, interaction with users)
and thus the standard off-line WCET analysis techniques are no longer ef-
ficient. This results in a loss of accuracy and consequently a loss of per-
formance both of the TDMA bus scheduling and Elastic Scheduling, which
cannot work at their best.

The novelty of the proposed architecture consists of a tight integration
between the bus arbiter, that is in charge of managing shared bus allocation,
and the elastic scheduling running on top of the OS system. TDMA Time
Wheel and task periods are adjusted at run-time to meet the performance
constraints. The algorithm is aware of QoS requirements of the given taskset,
and it has been validate by adopting a real RT benchmarks platform able
to run a typical embedded taskset.

4.4.4 Power management considerations

The hybrid solution described in this chapter was initially developed to man-
age overload in multiprocessor systems by combining hardware/software
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strategies, but under certain conditions a similiar approach can be easily
adapted to cope with different objectives.
For instance in some applications where MPSoCs are commonly used, power
managment capabilities reppresent the first requirement and often there are
some scenario where a subset of CPUs composing the MPSoC is not needed
to be fully operative.
In this cases the usual power management strategies, such as DVS or DPM
may be adopted together with a dinamic TDMA bus assignement. The pre-
vious chapter demonstrates how a correct TDMA bandwidth assignement
aims to reduce computation time, the time saved (idle time) can be exploited
to perform power saving strategies rather then incresing the sample rate (e.g.
decresing the period T ) like in the application previously described in the
this chapter.

Let’s consider a MPSoC where at a certain moment some CPUs are idle
or are characterized by a small utilization factor U , while another CPUs
belonging to the same MPSoC is experiencing an overload but it also need
to reduce its power absorption. Under these conditions it is very difficult ap-
plying power management strategies since one of the systems is overloaded.
For this case a static TDMA bandwidth assignement is not optimal, and a
better solution can be found because the other CPUs are not overloaded.

According with this idea a set of experiments have shown that proving
additional bandwidth to a CPU in overload condition can significantly pro-
vide a growing of the idle time for that specific CPU, therefore such idle
time can be exploited as a chance to apply power management strategies,
whose effects is as more effective as the idle time increses.
In order to cope with this new requirement, the algorithm described in [23]
has been sligtly modified according with the schema depicted in Figure4.6

The algorithm is always the same except for the last step, in this case
if the i-th CPU that requires additional bandwidth needs to apply power
management strategies, the elastic scheduling step has to be skipped and
the consequent idle time can be used to apply DVS or DPM. Therefore,
according with Figure 4.6 and focusing on the final step, there exists two
possibilities: in case of CPU needing to save energy the path chosen is the
one denoted in red with label 1, otherwise the path is the usual that trig-
gers the elastic scheduling algorithm and depicted in black wih label 2. The
schedulability is always guaranteed for both paths, in fact if the schedula-
bility of the CPU that obtains additional bandwidth was guaranteed before
the new bandwidth allocation, it is still guaranteed after new bandwidth
assigment, because the new utilization factor meet the inequality 4.7 under
EDF, that is the scheduling policy adopted in this scenario.
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Figure 4.6: Power-aware TDMA bus allocation schema

Unew ≤ Uold ≤ 1 (4.7)

The 4.7 is always verified since the computation time of each job de-
creases after the new TDMA bandwidth allocation.

For the remaining CPUs the schedulability is guaranteed anyway by
the elastic scheduling manager. Since the bandwidth assigment for these
CPUs is not advantageous, and therefore the computation time of the jobs
increse, the elastic scheduling adapts the periods of the tasks to meet the
new timing constraints caused by the increse of the computation time of
each tasks. In order to compensate this effect, the period of each tasks is
accordingly relaxed.

In order to appreciate the advantages achiveded in term of idle time by a
system able to assign TDMA communication bandwidth according with this
strategy, a set of tables describing different experiments is reported next.
Each table reppresents a scenario where a single CPU (always the CPU1)
experiences a need of additional bandwidth to reduce computation time and
consequently having the chance to apply power saving stategiese, while the
remaining CPUs reduce their activities, or goes into fully idle state.
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Figure 4.7: idle time caused by dynamic TDMA bandwidth assignement

The chosen task-set is always composed by the following three tasks: the
F14 Tomcat control task, the Coremark and a numerical task performing a
lot of bus transactions and mathematical computation. The hardware is al-
ways the emulated ARM7TDMA (MPARM), the operating system is Erika
and the scheduler is EDF.

The Figure 4.7 shows three couples of bars that represent three different
cases, each case describes a system whose feature change at run-time. The
green bars of the histogram represents the idle time experienced by the
CPU1 by applying this method, while the blue bars reppresents the idle
time of the same CPU with the standard TDMA bandwidth assignement.
For each case, a corresponding table 4.3, 4.4, 4.5 reports the initial and final
status of the system in term of workload because we are interested in the
system response corresponding to the modified conditions. Both final and
initial status describe the system in two different instants, each case may
be featured by a different number of CPUs, and different number of tasks
may run or may be suppressed passing from the initial to the final status,
it is also possible figure out the percentage of bandwidth assigned by the
bus arbiter in both initial and final states. For each case in tables, the
gap between the green bar and the blue one of the Figure 4.7, represents
the amount of time this strategy is able to save (in term of idle time) with
respect to the standard static approach. According with this description the
three experiments analyzed are summarized in the following three tables.
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Initial Status Final Status

Bandwidth (%) 50% 50% 20% 80%

– CPU0 CPU1 CPU0 CPU1

F14 Tomcat × × suppressed ×

Coremark × × suppressed ×

math × × × ×

Table 4.3: case 1: two CPUs

Initial Status Final Status

Bandwidth (%) 25% 25% 25% 25% 10% 70% 10% 10%

– CPU0 CPU1 CPU2 CPU3 CPU0 CPU1 CPU2 CPU3

F14 Tomcat × × × × suppressed × suppressed suppressed
Coremark × × × × suppressed × suppressed suppressed

math × × × × × × × suppressed

Table 4.4: case 2: four CPUs

Initial Status

Bandwidth (%) 20% 20% 20% 20% 20%

– CPU0 CPU1 CPU2 CPU3 CPU4

F14 Tomcat suppressed × suppressed suppressed suppressed
Coremark suppressed × suppressed × suppressed

math × × × suppressed suppressed

Final Status

Bandwidth (%) 10% 70% 10% 10% 10%

– CPU0 CPU1 CPU2 CPU3 CPU4

F14 Tomcat suppressed × suppressed suppressed suppressed
Coremark suppressed × suppressed × suppressed

math × × × suppressed suppressed

Table 4.5: case 3: five CPUs

For instance, focusing on case number one, the system is composed by
two CPUs, in the inital status the whole task-set runs on both CPUs, and
the bus assignement is equal to 50% for both CPUs. In the final status the
system reaches a new configuration where the CPU1 holds the initial con-
figuration in term of running tasks, but it is also get an improved bandwidth
assignement, since it passes from 50% to 80% of available bandwidth. The
CPU0 insted, experiences a reduction in the number of running tasks, in
particular in the final status the F14 Tomcat task and the Coremark have
been suppressed in the CPU1. The bandwidth assigned is also changed, in
fact it passes from 50% to 20%.
This example shows as a reduction of the activities for the CPU0 can be
exploited as a chance to improve the performances of the CPU1. In fact the
CPU1 is now able reduce computation time of its tasks since it can count on
a improved bandwidth allocation. As consequence, the idle time intervals
generated can be reclaimed to apply power management strategies and save
energy.
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Chapter 5

Conclusions

This work addresses the problem of reducing energy consumption in in-
terconnected embedded systems with time and communication constraints.
Based on system typologies this thesis tackled with two categories of prob-
lems.
The first one concerns with these systems that have to be power aware on
one hand but they also have to guarantee communication services, because
they are part of a larger interconnected and distributed system, where the
communication bandwidth is a shared and limited resource.
The second typology of system is a interconnected system once again, but it
operates on different scale as it is a MPSoC. Since these kind of micropro-
cessor is going to become one of the mostly adopted solution in the domain
of embedded systems too, the requirements are the same of the previous
case but they have been addressed according with a different strategies.

For the first problem, the proposed solutions exploits both DPM and
DVS techniques to reduce the energy consumption within each computa-
tional node. This goal is achieved by balancing the two main strategy
previously mentioned and currently supported by modern hardware archi-
tecture, that depend on the specific CPU characteristics, actual workload,
and bandwidth allocation. The method has been developed under realistic
assumptions, such as discrete frequency levels, mode switch overhead, and
communication constraints. Experimental results showed that the combined
DPM/DVFS approach dominates each individual technique (pureDPM and
pureDVFS) for all power models and any task set utilization for the radio
interconnected system.

For the second problem, a new solution operating at two levels have been
proposed. At the first level a flexible bus arbiter mediates among CPUs to
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assign communication bandwidth according with the current needs of each
CPU. At the second level the elastic scheduler reconfigures the task-set to
meet real time constraints. This approach demonstrates as a dynamic com-
munication bandwidth allocation provided at hardware level, combined with
software solution for workload management like elastic scheduling, provides
advantages for MPSoCs systems both in term of quality of control and power
saving.
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Appendix A

Erika

Erika Enterprise [1] is an open-source and Real Time Kernel implementing
the OSEK/VDX API. ERIKA Enterprise is based on RT-Druid, which is a
development environment distributed as a set of Eclipse plug-ins.

Erika Enterprise implements the standard OSEK/VDX conformance classes
BCC1, BCC2, ECC1 and ECC2. Moreover, ERIKA provides other custom
conformance classes named FP (Fixed priority), EDF (Earliest deadline first
scheduling), and FRSH (an implementation of resource reservation proto-
cols).

Erika Enterprise supports multicore the partitioning of tasks in a mul-
ticore system, this feature is available for several hardware architectures.
Erika support the automatic code generation. This feature is provided by
Scilab.

The main features of Erika Enterprise are:

• Real-time kernel, priority based, with stack sharing for RAM opti-
mization.

• Minimal multithreading RTOS interface

• Scheduling parameters assigned at task activation and they will never
change at run-time;

• Interface similar to the one proposed by the OSEK/VDX consortium
for the OS, OIL, ORTI standards (the kernel has not been certified
yet by the OSEK/VDX consortium)

• RTOS API for: Tasks, Events, Alarms, Resources, Application modes,
Semaphores, Error handling.
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• Support for conformance classes (FP, BCC1, BCC2, ECC1, ECC2,
EDF) to match different application requirements;

• Support for preemptive and non-preemptive multitasking;

• Support for fixed priority scheduling and Preemption Thresholds;

• Support for Earliest Deadline First (EDF) scheduling;

• Support for stack sharing techniques, and one-shot task model to re-
duce the overall stack usage;

• Support for shared resources;

• Support for periodic activations using Alarms;

• Support for centralized Error Handling;

• Support for hook functions before and after each context switch.

• Crosstool License (GPL with Linking Exception)

The main features of RT-Druid are:

• Development environment based on the Eclipse IDE;

• Support for the OIL language for the specification of the RTOS con-
figuration;

• Graphical configuration plugin to easily generate the OIL configuration
file and to easily configure the RTOS parameters;

• Full integration with the Cygwin development environment to provide
a Unix-style scripting environment;

• Apache ANT scripting support for code generation;

• RT-Druid graphical editor

• RT-Druid code generator per Erika Enterprise, including the code gen-
erator for Erika Enterprise Basic

• Support the ORTI standard for application debugging and tracing
with lauterbach debuggers
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Appendix B

MPARM

MPARM [2] is a multi-processor cycle-accurate architectural simulator. Its
purpose is the system-level analysis of design tradeoffs in the usage of differ-
ent processors, interconnects, memory hierarchies and other devices. MPARM
output includes accurate profiling of system performance, execution traces,
signal waveforms, and, for many modules, power estimation.

The processor model used for the applications described in this work
is a ARM7TDMI processor. The processor features are provided by the
SWARM engine, a Software ARM, that is a software simulation of a ARM7
processor written in C++. SWARM [3] represents the core of the MPARM.
It supports several memory models:

• Memories;

• scratchpad memories (as cache replacements, as local buffers and as
point-to-point interprocessor queues);

• Snoop devices (to provide cacheability in multiprocessor shared-memory
environments);

• Synchronization devices (semaphores, inter-processor interrupt devices);

• DMA controllers;

• ”Smart memories” (memories with built-in DMA engines);

• Frequency scaling devices (to provide runtime frequency and voltage
scaling; includes dual-frequency FIFOs to attach components to each
other);

• FFT engine.
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At the interconnection level, MPARM provides:

• AMBA AHB. Various models are available, written both in pure Sys-
temC and (under STMicroelectronics NDA) developed with the OCCN
libraries. AHB to

• AHB bridges are available. Multilayer (crossbar) components are
available;

• STBus (under STMicroelectronics NDA) interconnect. Type 3 nodes
are supported, in various topologies;

• AMBA AXI;

• xpipes NoC. This NoC was developed in-house. Porting is almost
done, with final debugging and statistics collection going on.

There are several ports available for MPARM:

• RTEMS;

• Linux;

• Erika.

MPARM has been adopted by several Universities and Industrial play-
ers.
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