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Abstract

From the perspective of an user the differences between desktop, server and

mobile computing systems are less and less noticeable. They all ship multicore or

multiprocessor CPUs and they all run similar applications on top of a General Pur-

pose Operating Systems (GPOS). Moreover, applications runtime requirements

often fall under the domain of Real-Time systems, for which not only the func-

tional correctness of a computation, but also its timeliness is important. One of

the key roles of a GPOS is then to provide, under a common interface, low-level

mechanisms enabling the development of applications that can meet the needs of

end users. At the same time, such an Operating System has to remain backward

compatible with older platform (e.g., small singleprocessors), while being efficient

throughout the whole spectrum of computing systems. On the other side, real-time

academic literature usually abstracts from these requirements, as is constantly an-

ticipating problems of future generation platforms. Unfortunately, the strong focus

on theoretical aspects induces a gap between the two worlds, where knowledge cre-

ated by the latter is usually hard to be applied to the former, as practical issues

often arise.

This thesis wants to make the gap a bit more shallow, by developing strategies

to enable the use of classical multiprocessor real-time scheduling mechanisms on a

modern GPOS. To this end, we focus on the Linux kernel, as its use is nowadays

widespread on all the aforementioned platforms. We first present a sofware addition

to the Linux scheduler implementing Earliest Deadline First (EDF) and Constant

Bandwidth Server (CBS) algorithms, going by the name of SCHED DEADLINE;

indeed, a major outcome of this work is the inclusion of SCHED DEADLINE in the

mainline version of the Linux kernel. We also detail software solutions that allow

efficient real-time scheduling on a big multiprocessor system, and how the devel-

opment of such solutions was eased by means of a user-space scheduler simulator.

Secondly, building on top of our implementation, we report about a comparison

between two classical real-time scheduling algorithms (Rate Monotonic (RM) and

EDF) in order to help software developers choosing the right algorithm to schedule

real-time tasks. In this part we both consider runtime overheads due to implemen-

tation choices and cache-related delays originating from the presence of memory

hierachies. We finally add to the picture problems that arise when concurrent
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ii ABSTRACT

real-time tasks share resources, and detail about theoretical extensions and a prac-

tical evaluation of one resource sharing algorithm called Multiprocessor Bandwidth

Inheritance (M-BWI).
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Introduction

The goal of this thesis is to reduce the gap between real-time literature and

industry, in the context of General Purpose Operating Systems (GPOSes), by devel-

oping real-time scheduling algorithms and verifying their performance on Symmetric

Multiprocessing (SMP) systems.

This work is motivated by the widespread adoption of GPOSes on modern mul-

tiprocessors platforms to perform activities that requires certain degrees of time-

liness (e.g., video processing, audio/video streaming, VoIP, etc.). The GPOS of

reference is Linux, as it is nowadays widely adopted on the whole spectrum of

computing platforms, ranging from small hand-held devices to cloud computing in-

frastructures. Even if Linux is born as a traditional GPOS, in the last years, there

has been a considerable interest in using it also for real-time and control, from

both academy and industry [Edg13]. We believe that this is mainly due to the

free availability of its source code, the support for a great number of architectures

and the existence of countless applications running on it. However, Linux has not

been in origin tought as a Real-Time Operating System (RTOS), thus it lacks of

mechanisms that allow a classical real-time feasibility study of the system under

development; i.e., developers cannot be sure that timing requirements will be met

even correctly knowing the runtime timing behavior of their applications. Indeed,

POSIX-compliant fixed-priority scheduling policies, already offered by Linux, do

not fit real-time users needs, as they are not much sophisticated.

Similarly to our approach, modification to the Linux kernel have been pro-

posed, such as RT-Linux 1, proposed by Yodaiken et al. [YB97], and RTAI 2,

proposed by Dozio et al. [DM03], in order to enable hard real-time computing in a

Linux-like environment. In these solutions, a real-time micro-kernel layer is added

between the real hardware and the Linux OS, which runs as the background/idle

activity whenever there are no hard real-time tasks active in the system. This al-

lows for respecting the very tight timing constraints (microsecond-level) typical of

industrial automation and robotic applications. However, applications that want

1Originally supplied by FSMLabs (http://www.fsmlabs.com/), acquired by Wind

River in 2007 and discontinued in 2011.
2https://www.rtai.org
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2 INTRODUCTION

to use real-time facilities are typically required to be adapted or rewritten. More-

over, we believe that the fact that these solutions remain bounded to the efforts

of some academic entity limit their usage from industry, for which discontinuous

updates to the last Linux version could represent a problem. It must be also noted

the fact that a key feature like the temporal isolation property [BLAC06] is usu-

ally neglected and not implemented in both general purpose and real-time OSes.

In fact, without such mechanism, a high priority task runs undisturbed until it

blocks, indipendently from what considered at analysis/design phase. This can ob-

viously jeopardize guarantees offered to other tasks and activities of the system, till

the point the whole system becomes unusable. With our mechanisms application

developers are guaranteed that the performance that their applications exibit in

isolation (i.e., when run alone on the system) are not affected by other applications

concurrently running on the system (and we give advices on how to cope with cases

when perfect isolation cannot be guaranteed).

Among others, a modification to the Linux kernel purposely targeted for aca-

demic research is the LITMUSRT testbed 3, developed by the Real-Time System

Group at University of North Carolina at Chapel Hill. The primary purpose of the

testbed is to provide a useful experimental platform for applied real-time system

research. Indeed, solutions developed on top of it can serve as a proof of concept

for the engineering of the same solutions on plain Linux, even if a proper implemen-

tation on Linux is usually harder to be realized. As this project is not focused on

industry, there are currently no plans to turn it into a production-quality system.

Moreover, the API (i.e., interface to applications) is not stable and may change

without warning between releases (nor the release schedule is fixed).

We instead targeted the inclusion of our contributions (at least the bigger

part of them) in the mainline (stock) Linux kernel as another goal of this work.

The aim is to transfer back knowledge to the Linux community, from which we

copiously drew both as code base (the Linux kernel itself) and with requests for

advice (through the Linux kernel mailing list). So our intent is different from

LITMUSRT one, as we trade a certain less flexibility on our solutions with strict

adherence to Linux design choices, and we do so because we firmly believe that this

approach could foster a wider usage and understanding of real-time concepts by

industry.

The main contributions of this thesis are:

• an efficient extension of the SCHED DEADLINE patchset for the Linux

scheduler for SMP systems;

• an evalutation of the performance of such a real-time extension for appli-

cations users;

3http://www.litmus-rt.org/
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• the development of a user-space emulator of the Linux scheduler subsys-

tem on a multi-core architecture and an evaluation of different solution to

speed-up scheduling on such kind of systems;

• an experimental comparison of several configurations of two classical real-

time scheduling algorithms on NUMA machines;

• a proof-of-concept implementation of the Multiprocessor Bandwidth In-

heritance protocol on Linux.

An key outcome of the work performed while doing this thesis has also been

the inclusion in the mainline Linux kernel (since Linux version 3.14) of almost all

the code we built upon our research.

The reminder of this thesis is organized as follows. Chapter 1 discusses needed

notation and background on real-time systems. Chapter 2 provides an overview on

the current status of real-time scheduling mechanisms on General Purpose Oper-

ating Systems, and details about our modifications to one of such GPOSes, Linux.

Moreover, it also discuss how a user-space emulator can ease real-time scheduling

algorithms development on a multi-core platform. Chapter 3 builds upon both the

developed mechanisms and the stock Linux scheduler to perform an experimental

study of applicability of classical real-time theory on Non-Uniform Memory Access

systems. Chapter 4 provides a proof-of-concept solution that allows to perform a

feasiblity analysis of a real-time system using Linux even in presence of task ac-

cessing shared resources. Finally, Chapter 5 concludes with a summary of the work

presented in this thesis and with the discussion of how work could extend the results

presented.





CHAPTER 1

Real-Time Systems

In this chapter we provide a general introduction to real-time systems. No-

tation and definition are given that put the basis for the following chapters. We

also detail about differences and peculiarities of Uniprocessor and Multiprocessors

systems. We conclude the chapter with a taxonomy of different approaches in de-

signing Operating Systems, and the predictability issues that may arise when such

Operating Systems have to provide support for real-time applications.

1.1. Real-Time Task Model

Real-Time systems are computing systems that contain concurrent computa-

tional activities for which, not only correctness of results, but also timeliness is

crucial. These computational activities are called tasks and each task may spawn

a (potentially infinite) sequence of jobs during its lifetime. A job is thus a se-

quential unit of work. Timeliness requirements pertain to tasks and are embodied

by deadlines, which represent the time before which a process should complete its

execution.

We assume (unless otherwise specified, like in Chapter 4) that tasks adhere

to the classical sporadic task model [But11]. The system is comprised of n real-

time tasks τ1, τ2, . . . , τn, that constitute a taskset τ = τ1, τ2, . . . , τn. Each task

generates a sequence of jobs τi,1, τi,2, τi,3, /dots. A job τi,j is characterized by

several parameters:

Release/Arrival time (ri,k): is the instant of time at which the job becomes

ready for execution (since it has been activated by some event or condition).

Computation time (ci,k): is the time necessary to the processor to execute the

job without interruption.

Start time (si,k): is the time at which the job starts its execution for the first

time (i.e., the processor is assigned to τi,k for the first time).

Finishing/Completion time (fi,k): is the time at which the job completes its

execution.

Relative deadline (Di,k): is the interval of time within which the job execution

should complete with respect to its release time. We usually have a single value for

5



6 1. REAL-TIME SYSTEMS

every job of a certain task that is still called relative deadline and it is denoted as

Di (as it refers to task τi).

Absolute deadline (di,k): is the absolute instant of time by which job τi,k should

complete, in order to preserve the timeliness properties of the system. The absolute

deadline is computed based on the relative deadline and the release time: di,k =

ri,k +Di,k.

Response time (Ri,k): is the difference between the finishing time and the release

time: Ri,k = fi,k − ri,k.

Lateness (Li,k): is the delay of a job completion with respect to its deadline:

Li,k = fi,k − di,k. Note that, if the job completes before its deadline, its lateness

is negative. Instead, when a job completes after its deadline, its lateness is posive,

and in this case we say that a deadline miss event occurred.

Tardiness or Exceeding time (Ei,k): is the time a job stays active after its

deadline: Ei,k = max(0, Li,k).

Worst case execution time (Ci): shortened with WCET, is the worst (i.e.,

maximum) computation time of all jobs of task τi: Ci = max(ci,k).

Some of the above parameters are illustrated in Figure 1.1. Usually, new arrivals

are represented with upward arrows and deadlines with downward arrows.

ri,k si,k fi,k di,k

ci,k

Figure 1.1. Typical parameters of a real-time task.

Task Periodicity Another timing characteristic that can be associated to a real-

time task is the regularity of its activations. Commonly, tasks are distinguished

between periodic and aperiodic.

Periodic tasks are activated (released) at regular intervals of time. Specifically,

a task τi is said to be periodic if, for every pair of consecutive jobs, ri,k+1 = ri,k+Ti,

where Ti is the task period. The period is also used to calculate the share of system

processor resource a task uses once it is activated. This parameter is called task

utilization and corresponds to Ui = Ci

Ti
. Therefore, a taskset composed by n tasks

will have a total utilization of:

U =

n∑
i=1

Ui.

When activations are not strictly periodic (e.g., a task that is activated only

when an aperiodic event occurs), but still there is some bounded separation among

them, tasks are said to be sporadic. In this case, the parameter Ti denotes the
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minimum separation between successive jobs of the same task, and is also called

minimum interarrival time. We thus have: ri,k+1 ≥ ri,k + Ti (note the greater or

equal relation between release times). The sporadic task model is a generalization

of the periodic task model.

Lastly, real-time tasks for which no constrain on a certain separation between

consecutive activations can be given are called aperiodic. The only obvious ob-

servation that can be made is that jobs activations still follow a sequence, i.e.

ri,k+1 ≥ ri,k.

1.2. Hard and Soft Real-Time Requirements

As already stated, one characteristic of real-time tasks is that for them timeli-

ness is of key importance : a real-time job should complete (and produce a result)

before its absolute deadline, otherwise the produced result, even if correct, may be

too late to be useful. Depending on the criticality of this timing requirement, we

can split real-time tasks in two classes: hard and soft tasks.

A task τi is a hard real-time (HRT) task if no job deadline must be missed

(i.e., Ei,k = 0). HRT systems are comprised of HRT tasks only. A task τi is a

soft real-time task (SRT) if some missed deadline are allowed for it. Systems that

contain one or more SRT tasks are called soft real-time systems.

Hence, for HRT tasks correctness implies both correct results and no deadline

misses. Instead, for SRT tasks, this notion has no single definition, being the extent

of permissible deadline violations (tardiness) very application-dependent. In this

thesis we adopt the notion of bounded tardiness [DA08] (i.e., each job is allowed

to complete within some bounded amount of time after its deadline). It must be

noted that the HRT correctness is a special case of the SRT bounded tardiness. In

fact, for HRT tasks the relation Ei,k = 0 must always hold.

1.3. Real-Time Scheduling

In an Operating System (OS) kernel, the scheduler is responsible for choosing

which task (also called process or thread) executes on each processor at any given

time. In real-time systems this is done by first assigning priorities to tasks, then a

real-time scheduling algorithm, implemented by the scheduler, uses such priorities

to perform scheduling decisions. Furthermore, priorities can be fixed for the whole

lifetime of a task, or change dynamically, according to some logic or external/in-

ternal event.

Fixed priority scheduling. In fixed priority scheduling, once a priority has been

assigned to a task, it remains the same for the task’s lifetime, and it also corresponds

to the priority of every job of the task. The most popular fixed priority scheme is
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the Rate Monotonic (RM) algorithm, for which each task τi gets a priority pi that

is inversely proportional to its period (pi ∝ 1
Ti

).

Dynamic priority scheduling. In dynamic priority scheduling, the priority of a

task can change over time. In this thesis we focus on Job-Level Dynamic Priority

(JLDP) algorithms, for which priority of different jobs of the same task can change,

but once a priority has been assigned to a job, it remains the same till the job com-

pletion. The most widely known JLDP real-time scheduling algorithm is Earliest

Deadline First (EDF), for which the job with the earliest absolute deadline di is

assigned the highest dynamic priority.

Feasibility analysis. A schedule is the assignment (produced by the scheduler) of

all jobs in the system on the available processors. Furthermore, in a valid schedule:

(i) every processor is assigned to at most one job at any time, (ii) every job is

scheduled on at most one processor at any time, and (iii) jobs are not scheduled

before their release time.

A taskset τ is feasible on a given hardware platform if there exists a schedule

(feasible schedule) in which every job of τ meets its deadline. A HRT taskset

τ is said to be (HRT) schedulable on a hardware platform by algorithm A if A

always produces a feasible schedule for τ (i.e., no job of τ misses its deadline under

A). Moreover, A is an optimal scheduling algorithm if A correctly schedules every

feasible task system. Relaxing the correctness notion, a SRT taskset τ is (SRT)

schedulable under the scheduling algorithm A if the maximum tardiness is bounded.

Scheduling algorithms performance are usually compared through the schedu-

lable utilization bound (or simply utilization bound). If Ub(A) is a utilization bound

for the scheduling algorithm A, then A can correctly schedule every task system

with U(τ) ≤ Ub(A). Note that, unless an optimal utilization bound is known for

A (e.g., EDF on UP), the previous condition is only sufficient, but not necessary.

In fact, there may exist a taskset τ with U(τ) > Ub(A) that is schedulable using A

(e.g., RM with few tasks).

1.3.1. Uniprocessor Scheduling

In [LL73], Liu and Layland showed that RM is optimal among fixed-priority

algorithms and they derived an utilization bound for RM for periodic task systems:

Ub = n(21/n−1), that for high values of n tends to Ub = ln 2 ' 0.69. The feasibility

analysis of the RM algorithm can also be performed using a different approach called

Hyperbolic Bound [BBB03]:

n∏
i=1

(Ui + 1) ≤ 2.

The test has the same complexity of the original Liu and Layland bound, but it is

less pessimistic.
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The EDF scheduling algorithm can schedule every feasible task system on a

single-processor (UP) platform (i.e., EDF is optimal on uniprocessor systems). In

fact, a taskset τ is schedulable under EDF on a uniprocessor platform if U(τ) ≤
1 = Ub(EDF ) [LL73].

1.3.2. Multiprocessor Scheduling

Two basic approaches exist for scheduling real-time tasks on multiprocessor

systems. In the partitioned approach, each task is statically assigned to a single

processor and migration between processors is not allowed; in the global approach,

tasks can freely migrate and execute on any processor.

Partitioned scheduling algorithms have the advantage that uniprocessor sched-

uling algorithms, and feasibility tests, can be separately used on each processor.

Contrariwise, they also require to solve a bin-packing-like problem to assign tasks

to processor. Being similar to a bin-packing problem (NP-hard in the strong sense),

the assignment of tasks to processors is usually performed using heuristics on tasks

utilizations (e.g., first-fit, best-fit, next-fit, worst-fit).

Under global approaches, tasks are conceptually selected from a single run-

queue (see how this is implemented in the Linux kernel below) and may migrate

between processors. At any instant of time, at most M (on an platform composed

of M processors) ready jobs with the highest priority execute on the M proces-

sors. Focusing only on the EDF algorithm, we see that, similarly to UP EDF,

in a HRT system the global EDF (G-EDF) scheduling algorithm also requires up

to (2 · U(τ) − 1) processors to feasibly schedule a taskset τ where the maximum

per-task utilization is max(ui) ≤ 1/2. However, in 1978 Dhall and Liu noted that

on multiprocessor platforms there exist task sets with total utilization close to 1.0

that cannot be HRT scheduled by G-EDF or global RM (G-RM) [DL78]. Mainly

because of this fact, global approaches are not usually adopted for HRT systems.

Nonetheless, when SRT systems are considered, G-EDF ensure bounded tardiness

as long as the system is not overutilized [DA08].

As a compromise between the two approaches, clustered scheduling has been

proposed [CAB07], that aims to alleviate limitations of partitioned and global

scheduling on large multicore platforms. Under clustered algorithm, the platform

is partitioned into clusters of cores that share a cache and tasks are statically

assigned to clusters, but are globally scheduled within each cluster.

1.4. Real-Time Operating Systems

This section provides an overview of the most important issues, regarding pre-

dictability and design opportunities, that can be faced when implementing Real-

Time Operating Systems (RTOS). The main focus is (here and in the rest of the
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thesis) on Linux-based RTOS, as Linux is nowadays largely used by both academia

and industry to perform activities that fall in the real-time domain.

1.4.1. Predictability Issues

Linux has been designed as a General Purpose Operating Systems, so it is no

wonder that it can experiment problems with HRT. In particular, the main issues

of predictability under Linux are due to:

• Non-preemptable critical sections. Several execution paths in the kernel

cannot be preempted and interrupts are disabled during the execution

of certain IRQ managements routines. These factors can cause priority

inversions and thus unpredictability for real-time activities.

• Non-predictable duration of IRQ management routines. Even though

Linux adopts a split-interrupt management schema, the duration of IRQ

managements routines is non predictable and can thus affect predictability

of the system.

• Throughput oriented scheduling. Linux has been designed to be through-

put oriented. Scheduling decisions on multiprocessor systems tend to

evenly distribute the load among available processors, without consider-

ing priorities or any effect related to the presence of caches and memories.

This may cause unneeded migrations, high overhead and tasks execution

time variance, impacting system predictability.

In order to solve these problems (in what follows we will explicitly deal with

the last point) several approaches to modify Linux has been proposed, that can be

divided into mono- and dual-kernel variants.

Mono-kernel approach

Under this approach, high predictability is achieved addressing the aforemen-

tioned limitation with modification of the Linux kernel. This approach is in common

between some commercial RTOSs (e.g., MontaVista Linux 1, timesys 2, etc.) and

by the open-source PREEMPT RT patch for the Linux kernel 3. This patch allows

nearly all of the kernel to be preempted, with the exception of a few small region

of code. This is achieved by replacing most kernel spinlocks (a simple single-holder

lock) with mutexes that support priority inheritance, as well as moving all interrupts

and software interrupts to kernel threads. It has to be noted that our contributions

are orthogonal to this first approach (user of the last version of the PREEMPT RT

patch, based on Linux version 3.14, can find our contributions already included)

and can actually address point three above (whereas PREEMPT RT solves point

one and two).

1http://www.mvista.com/solution-real-time.html
2http://www.timesys.com/
3https://rt.wiki.kernel.org/index.php/CONFIG PREEMPT RT Patch
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Dual-kernel approach

Under this approach, a virtualization layer is employed to concurrently execute

two (or more) operating systems on the same hardware. Although this additional

layer may introduce additional overhead and latencies, this second approach allows

to isolate GPOSs like Linux for RTOSs, thus avoiding the predictability issues

detailed above. Linux-derived RTOSs like RTAI 4 and RTLinux 5 employ a dual-

kernel approach to meet the requirements of HRT tasks. Dual-kernel approaches

are also employed by commercial RTOSs like VxWorks 6.

1.4.2. Design Opportunities

Free availability of the Linux kernel source code gives the impression that the

desing space for modifications of its internal meachanisms is boundless. And this

is almost true, unless one doesn’t plan to propose such modifications to the Linux

kernel development community. The community is responsible, through the work

of subsystems maintainers, for guaranteeing that Linux remains efficient on a vast

set of hardware platform. This is accomplished via a thorough review process of

patches proposed to the community, and, understandably, big changes and complete

rewrites of core subsystems are generally frowned upon. The Linux scheduler makes

no exception; being one of the most important subsystems, it is actually very

refractory to modifications.

The main design characteristic that constrain design space for new modifica-

tions are:

• Low overhead. The scheduler must be extremely fast in deciding which

process to run next. No heavy operations are thus allowed. Purpose built

data structures are usually employed to speed up scheduling decisions.

• Seamless integration in the scheduler framework. The Linux scheduler

has a modular design (see Section 2.1.2. New scheduling policies must fit

in this desing.

• Distributed design. As we will describe in more details in Section 2.1.2,

the Linux scheduler performs scheduling decision in a distributed manner.

In particular, each CPU has its own runqueue and global scheduling is

achieved through tasks migrations among runqueues. There is flexibility

in deciding how migration decisions happen.

• Fast acceptance/refusal of new tasks entering the system. The scheduler

is also responsible for deciding if a new task can enter the system (e.g., if

the user has enough permissions for choosing a scheduling policy). Such

4https://www.rtai.org
5Originally supplied by FSMLabs (http://www.fsmlabs.com/), acquired by Wind

River in 2007 and discontinued in 2011.
6http://www.windriver.com/products/vxworks/index.html
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decisions must be quickly perfomed. A heavy machinery, even if more

accurate, is usually not allowed.

We decided to adhere to these constraints as we planned inclusion of our mod-

ifications in the mainline Linux kernel right from the beginning.



CHAPTER 2

Real-Time Scheduling on General Purpose

Operating Systems

2.1. Introduction

In this and in the following chapter, we argue that real-time scheduling is

indeed possible also on top of General Purpose Operating Systems (GPOS). We

will focus on the Linux kernel, given its widespread adoption and the availability

of its source code, but the obtained results can be generalized to other GPOS

having the same structure of Linux and running on top of nowadays multi-core

and multiprocessor machines. We specifically address issues detailed in Section 1.4

giving an overview of the design choices we made considering the design constraints

of Section 1.4.2. Furthermore, we keep our focus close to the point of view of an

application developer. In effect, we advise the use of the following technologies

as a way to improve efficiency and predictability of a vast number of classes of

applications.

2.1.1. Contributions

In this chapter, we first present the implementation of a global EDF sched-

uler in Linux, called SCHED DEADLINE [FCTS09]. We also show how we optimized

global scheduling on SMP systems using a heap data structure. After describing the

base real-time scheduler of Linux (Section 2.1.2), and our implementation (Section

2.2), we compare its performance against the global POSIX-compliant fixed pri-

ority scheduler of Linux and with a previous version of SCHED DEADLINE (Section

2.2.7). The results show that using appropriate data structures it is in-

deed possible to build efficient and scalable global real-time schedulers.

SCHED DEADLINE is part of the mainline Linux kernel since version 3.14.

We then propose PRAcTISE (PeRformance Analysis and TestIng of real-time

multicore SchEdulers) for the Linux kernel: it is a framework for developing,

testing and debugging scheduling algorithms in user space before imple-

menting them in the Linux kernel. In addition, PRAcTISE allows to compare

different implementations by providing early estimations of their relative perfor-

mance. In this way, the most appropriate data structures and scheduler structure

can be chosen and evaluated in user-space. Compared to other similar tools, like

13
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LinSched, the proposed framework allows true parallelism thus permitting a

full test in a realistic scenario.

2.1.2. The Linux Scheduler

Since release 2.6.23, the Linux scheduler is implemented as a modular frame-

work that can be easily extended. The current structure has been implemented by

Ingo Molnar as a replacement of the previous O(1) scheduler. The structure consists

of a core block, providing basic funtionalities, and a set of scheduling classes, each

encapsulating one or more specific scheduling policy. Scheduling policies determine

when and how tasks are selected to run. Figure 2.1 shows the set of scheduling

policies traditionally available in Linux (i.e., until version 3.13).

Figure 2.1. Linux modular scheduling frameworki (until version 3.13).

Each scheduling policy of Figure 2.1 belongs to one of the two scheduling

classes Linux had before version 3.13. First scheduling class, implemented in

kernel/sched/fair.c, is intended for fair scheduling of non-real-time activities

(SCHED NORMAL, SCHED BATCH and SCHED IDLE policies). Second scheduling class

is providing fixed priority real-time scheduling (SCHED FIFO or SCHED RR policies),

following the POSIX 1001.3b [IEE04] specification and is implemented in kernel

/sched/rt.c. For what concern tasks priorities, scheduling classes are stacked

upon each other, where lower classes have also lower priorities. As it is indicated in

the picture, real-time scheduling policies have higher priority than fair scheduling

policies, i.e., tasks belonging to the latter are always preempted by tasks sched-

uled by the former. In this thesis we will focus specifically on real-time scheduling

policies.
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Run-queues, masks and locks

To keep track of active tasks, the scheduler uses a data structure called run-

queue. There is one runqueue for each CPU and they are managed separately in

a distributed manner. Every runqueue is protected by a spin-lock to guarantee

correctness on concurrent updates. Runqueues are modular, in the sense that there

is a separate sub-runqueue for each scheduling class. Tasks are enqueued on some

runqueue when they wake up and are dequeued when they are suspended.

Key components of the fixed priority sub-runqueue are:

• a priority array on which tasks are actually queued;

• fields used for load balancing;

• fields to speed up decisions on a multiprocessor environment.

The fixed priority scheduling class already supports global scheduling. Tasks are

migrated across CPUs (runqueues) following an active load balancing approach that

is realized through push and pull operations, see below.

An additional data structure, called cpupri, is used to reduce the amount of

work needed for a push operation. This structure tracks the priority of the highest

priority task in each runqueue. The system maintains the state of each CPU with

a 2 dimensional bitmap: the first dimension is for priority class and the second for

CPUs in that class. Therefore a push operation can find a suitable CPU where to

send a task in O(1) time, since it has to perform a two bits search only (if we don’t

consider affinity restriction).

Push and pull operations

When a task is activated on CPU k, first the scheduler checks the local run-

queue to see if the task has higher priority than the executing one. In this case, a

preemption happens, and the preempted task is inserted at the head of the queue;

otherwise the waken-up task is inserted in the proper runqueue, depending on the

state of the system. In case the head of the queue is modified, a push operation is

executed to see if some task can be moved to another queue. When a task suspends

itself (due to blocking or sleeping) or lowers its priority on CPU k, the scheduler

performs a pull operation: it looks at the other run-queues to see if some other

higher priority tasks need to be migrated to the current CPU. Pushing or pulling a

task entails modifying the state of the source and destination runqueues: the sched-

uler has to dequeue the task from the source and then enqueue it on the destination

runqueues.
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2.2. SCHED DEADLINE

At the time of writing, a new scheduling class/policy has been merged in the

Linux kernel, called SCHED DEADLINE [FCTS09]. It implements partitioned, clus-

tered and global EDF scheduling with hard and soft reservations 1. SCHED DEADLINE

is seamless integrated in the Linux scheduler modular framework. The scheduling

policy is implemented in kernel/sched/deadline.c and extends the set of tradi-

tionally available scheduling policies as can be seen in Figure 2.2.

Figure 2.2. Linux modular scheduling framework, since Linux 3.14.

In this section 2, we describe the implementation of SCHED DEADLINE and

we evaluate its properties running synthetic benchmarks and real applications on a

Linux systems. We then detail about a heap data structure we designed and devel-

oped to optimize access to the earliest deadline tasks (the implementation is now

part of SCHED DEADLINE [FCTS09]). After describing the base real-time scheduler

of Linux (Section 2.1.2), and our implementation (Section 2.2), we compare its per-

formance against the global POSIX-compliant fixed priority scheduler of Linux and

with a previous version of SCHED DEADLINE (Section 2.2.7). The results show that

using appropriate data structures it is indeed possible to build efficient

and scalable global real-time schedulers.

The code developed during the experimental evaluation phase of this part can

be downloaded by following the instructions on this page: http://retis.sssup.

it/~jlelli/sched-deadline.php.

1Full source code merged in mainline since Linux 3.14.
2Claudio Scordino contributed to Section 2.2.2 and Luca Abeni performed experi-

ments of Sections 2.2.3, the content of these Sections has been submitted for publication.

http://retis.sssup.it/~jlelli/sched-deadline.php
http://retis.sssup.it/~jlelli/sched-deadline.php
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struct dl_rq {

struct rb_root rb_root;

struct rb_node *rb_leftmost;

unsigned long dl_nr_running;

#ifdef CONFIG_SMP

struct {

/* two earliest tasks in queue */

u64 curr;

u64 next; /* next earliest */

} earliest_dl;

int overloaded;

unsigned long dl_nr_migratory;

unsigned long dl_nr_total;

struct rb_root pushable_tasks_root;

struct rb_node *pushable_tasks_leftmost;

#endif /* CONFIG_SMP */

};

Figure 2.3. struct dl rq extended

2.2.1. Implementation Details

The approach used for the implementation is the same used in the Linux ker-

nel for the fixed-priority scheduler. This is usually called distributed run-queue,

meaning that each CPU maintains a private data structure implementing its own

ready queue and, if global scheduling is to be achieved, tasks are migrated among

processors when needed.

In more details:

• the tasks of each CPU are kept into a CPU-specific run-queue, imple-

mented as a red-black tree ordered by absolute deadlines;

• tasks are migrated among run-queues of different CPUs for the purpose

of fulfilling the following constraints:

– on m CPUs, the m earliest deadline ready tasks run;

– the CPU affinity settings of all the tasks is respected.

Migration points are the same as in the fixed priority scheduling class. Decisions

related to push and pull logic are taken considering deadlines (instead of priorities)

and according to tasks affinity and system topology. The data structure used to

represent the EDF ready queue of each processor has been modified, as shown in

Figure 2.3 (new fields are the one inside the #ifdef CONFIG SMP block).
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• earliest dl is a per-runqueue data structure used for “caching” the dead-

lines of the first two ready tasks, so to facilitate migration-related deci-

sions;

• dl nr migratory and dl nr total represent the number of queued tasks

that can migrate and the total number of queued tasks, respectively;

• overloaded serves as a flag, and it is set when the queue contains more

than one task;

• pushable tasks root is the root of the red-black tree of tasks that can

be migrated, since they are queued but not running, and it is ordered by

increasing deadline;

• pushable tasks leftmost is a pointer to the node of pushable tasks root

containing the task with the earliest deadline.

A push operation tries to move the first ready and not running task of an

overloaded queue to a CPU where it can execute. The best CPU where to push

a task is the one which is running the task with the latest deadline among the m

executing tasks, considering also the constraints due to the CPU affinity settings.

A pull operation tries to move the most urgent ready and not running tasks among

all tasks on all overloaded queues in the current CPU.

2.2.2. User-level API

The existing system calls sched setscheduler() and sched getscheduler()

have not been extended, due to the binary compatibility issues that modifying the

sched param data structure would have raised for existing applications. Therefore,

two new system calls called sched setattr() and sched getattr() have been

introduced. These syscalls also support the other existing scheduling policies —

i.e., the interpretation of the arguments depends on the selected policy. Therefore,

they are expected to replace the previous system calls (which will be left to not

break existing applications). The prototype of these new system calls is shown in

Figure 2.4.

2.2.3. Experiments

Greedy tasks

As a first experiment, we have used SCHED DEADLINE to schedule one peri-

odic task (that executes for 1ms every 4ms) and two greedy tasks (tasks which never

blocks, and try to consume all the CPU time) scheduled by two CBSs (1ms, 6ms)

and (1ms, 10ms). Figure 2.5 shows a segment of the schedule. As periodic task

is the one with most strict timing requirements (relative deadline is 4ms) it gets

always scheduled when it wakes up. Greedy 1 is also higher priority than Greedy 2,

and it preempts the latter during the first activation (remember that priorities are

dynamic, the behavior is thus relative to this particular timing window). Another

thing to notice is that greedy tasks are throttled once they try to execute for more
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#include <sched.h>

struct sched_attr {

u32 size;

u32 sched_policy;

u64 sched_flags;

/* SCHED_OTHER , SCHED_BATCH */

s32 sched_nice;

/* SCHED_FIFO , SCHED_RR */

u32 sched_priority;

/* SCHED_DEADLINE */

u64 sched_runtime;

u64 sched_deadline;

u64 sched_period;

};

int sched_setattr(pid_t pid ,

const struct sched_attr *attr);

int sched_getattr(pid_t pid ,

const struct sched_attr *attr ,

unsigned int size);

Figure 2.4. SCHED DEADLINE API

than the allowed budget (red lines in the figure), while the periodic task always

goes to sleep before exausting its budget, and it is never throttled.

This experiment shows that SCHED DEADLINE is capable of creating an

effective isolation between the running tasks, so that greedy, buggy or misbehaving

tasks cannot affect the execution of the other running tasks.

Synthetic Real-Time Workloads

In order to show how SCHED DEADLINE allows to properly schedule real-time

applications, some sets of periodic real-time tasks have been randomly generated

with taskgen [ESD10] and executed by a user-level application (named rt-app)

either under the SCHED DEADLINE or the SCHED OTHER (i.e., CFS) scheduling
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Figure 2.5. SCHED DEADLINE serving a periodic task and two

CPU hungry (greedy) tasks.

Table 2.1. Percentage of missed deadline for partitioned schedul-

ing, as a function of the load U =
∑ Ci

Pi
expressed as a percentage.

U(%) SCHED DEADLINE SCHED OTHER

60% 0% 0.58%

70% 0% 0.9%

80% 0% 2.61%

90% 0% 5.88%

policies. When using SCHED DEADLINE , each task τi has been assigned a run-

time Qi slightly larger than its execution time Ci, and a server period Ti equal to

the task period Pi.

This experiment has been performed considering both partitioned scheduling

and global scheduling. In the partitioned scheduling case, tasks were statically

bound to a CPU core (using the Linux cpuset mechanism), and the load on each

core increased from 0.6 (60%) to 0.9 (90%). Notice that the U = 1 case (100% CPU

utilization) has been avoided in order to leave some spare time for the other tasks

running in the system, so that the OS is not starved by SCHED DEADLINE tasks.

For each CPU load, 50 tasksets were randomly generated.

Table 2.1 shows the percentage of missed deadlines when using SCHED DEADLINE or

CFS to schedule the tasksets. As it can be noticed from the table, SCHED DEADLINE is

able to avoid any missed deadline (because the load on each core is smaller than

1, and because the CBS parameters have been assigned in order to exploit the so-

called hard schedulability property of the CBS). On the other hand, CFS performs

pretty well, but is not able to avoid missing deadlines.

After testing partitioned scheduling, the experiment has been repeated by con-

figuring SCHED DEADLINE to do global EDF scheduling. In this case, the Linux

cpuset mechanism is not used and tasks are able to migrate between all of the

available CPU cores. Since these experiments have been performed using 4 of the

6 cores provided by the Xeon CPU, the tasksets have been generated with a total
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Table 2.2. Percentage of missed deadline for global scheduling,

as a function of the load U =
∑ Ci

Pi
.

U(%) SCHED DEADLINE SCHED OTHER

340% 0.77% 3.75%

350% 0.78% 6.17%

360% 1.29% 6.92%

370% 1.69% 8.52%

380% 2.38% 10.62%

390% 3.54% 14.15%

utilization ranging from U = 3.4 (340%) to U = 3.9 (390%). Again, the U = 4 case

has not been considered in order to avoid starving the system. As for the previous

experiment, 50 taskset per CPU load have been randomly generated.

Table 2.2 shows the percentage of missed deadlines when using SCHED DEAD

LINE or CFS to schedule the tasksets: in case of global scheduling, EDF is not able

to guarantee that no deadline will be missed, so SCHED DEADLINE experiences

some missed deadlines. The standard CFS scheduler, however, exhibits a percentage

of missed deadlines that is more than 4 times the percentage experienced by the

CBS.

These sets of experiments show two things:

• On uni-processor systems or when the tasksets can be statically parti-

tioned between multiple CPUs / CPU cores, SCHED DEADLINE is suit-

able to schedule hard real-time tasks (no missed deadlines);

• On multi-processor (or multi-core) systems where the taskset cannot be

statically partitioned between CPUs / cores and global scheduling must be

used, SCHED DEADLINE allows to reduce the number of missed dead-

lines (respect to other CPU schedulers) improving the performance of soft

real-time tasks.

SCHED DEADLINE on a Real Application

After showing how SCHED DEADLINE helps in respecting the timing con-

straints of real-time tasks using some randomly generated synthetic workloads, the

effectiveness of the new scheduling policy is now shown on a real application. In

particular, we have performed a set of tests using MPlayer3, a simple yet widely

used and powerful video player. Being single-threaded, it can be easily scheduled

through a single reservation.

3http://www.mplayerhq.hu

http://www.mplayerhq.hu
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MPlayer has been modified to measure some important quality of service met-

rics when reproducing a video: the Inter-Frame Time (IFT) — defined as the

difference between the display time of the current and the previous frame — and

the Audio / Video desynchronisation (A/V Desynch) — defined as the difference

between the Presentation TimeStamp (PTS) of the currently reproduced audio

sample and the PTS of the currently reproduced video frame. Variations in the

IFT can have a bad impact of the perceived video quality, because the video does

not play smoothly, while large values of the A/V Desynch affect the quality of

the reproduced media because audio and video do not appear synchronised (think

about lip synch).
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Figure 2.6. Inter-Frame Times for MPlayer scheduled with dif-

ferent SCHED DEADLINE parameters.

MPlayer has then been used to play a HD movie (with H.264 video and AAC+

audio), and scheduled by using SCHED DEADLINE with a period equal to the ex-

pected IFT (1 / fps) and a runtime (maximum budged) ranging from 5ms to 20ms.

Since the video frame rate is 23.976fps, the expected IFT is 1000000/23.976 =

41708µs. As expected, if the runtime was large enough, the IFT was stable around

the expected value of 41708µs. Decreasing the maximum budged, some jitter

started to be visible in the IFT. Finally, for small values of Qi, the IFT was out

of control. Figure 2.6 shows the IFT measured for the first 600 frames with a

value of the maximum runtime near to the one needed to decode without issues

(Qi = 10ms) and a smaller value, which created issues and a non fluid playback

(Qi = 7ms).
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Figure 2.7. Cumulative Distribution Function of the

MPlayer’s Inter-Frame Times for different values of the

SCHED DEADLINE maximum runtime.

Figure 2.7 shows the impact of different Qi values on the IFTs by plotting

their Cumulative Distribution Function (CDF). Notice how increasing Qi allows

to make the CDF more similar to a step function (indicating that MPlayer has

a probability near to 1 to play the video always at the correct rate), at the cost

of dedicating more CPU time to MPlayer’s execution. This experiment shows how

SCHED DEADLINE allows to respect the temporal constraints of real applications

(and not only synthetic benchmarks), and to find proper trade-offs between QoS

and CPU usage.

Finally, Figure 2.8 displays the A/V Desynch experienced for different values

of Qi, showing again how SCHED DEADLINE can be used to control the qual-

ity perceived by a user and to guarantee the proper behaviour of time-sensitive

applications.

Summing up, SCHED DEADLINE provides a good amount of control over the

real-time performance of real applications, because it allows to better specify the

applications’ parameters and requirements: since the user can communicate to the

scheduler some temporal constraints to be respected (in the form of a period Ti

and a runtime Qi), the scheduler can do a better work in trying to respect these

constraints.

Using SCHED DEADLINE to Control the Application Throughput

The previous experiments showed how SCHED DEADLINE allows to respect

the deadlines of real-time applications and to properly serve “legacy” time-sensitive
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Figure 2.8. A/V Desynch for MPlayer’s scheduled by

SCHED DEADLINE with different values of the maximum

runtime.

applications that are not specifically been designed to be used with SCHED DEAD

LINE (controlling the trade-off between their quality and CPU usage). However,

the temporal isolation property provided by SCHED DEADLINE also allows to

control the throughput of non real-time (or time-sensitive) applications. Hence, a

last set of experiments has been performed to test this possibility.

The application used in these experiments is KVM [KKL+07] used to run a

Virtual Router (VR) [AKLB13]. This VR is implemented by executing a soft-

ware router (a Linux-based OS running Quagga4 as a routing daemon and using

the Linux kernel as a data plane) in a KVM virtual machine. KVM creates a

user-space thread (the vCPU thread) for executing the software router and uses

a kernel thread (the vhost-net kernel thread) to move packets between the virtu-

alised software router and the physical network cards. Since both of these threads

are particularly CPU-hungry (when the rate of packets to be routed is too high),

SCHED DEADLINE can be used their CPU usage, seeing how the fraction of CPU

reserved to these threads can affect the router performance.

In this experiment, performed by using VRKit [AK13], the VR has been fed

with small (64 bytes) UDP packets, while scheduling the vCPU thread and the

vhost-net kernel thread with SCHED DEADLINE and reserving different percent-

ages of CPU time to them (remember that the percentage of CPU time reserved to

4http://www.nongnu.org/quagga

http://www.nongnu.org/quagga
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a task scheduled by SCHED DEADLINE with runtime Qi and period Ti is equal

to Qi

Ti
in percentage).
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Figure 2.9. Throughput of a KVM-based virtual router as a func-

tion of the percentage of CPU time reserved to the vCPU thread.

Figures 2.9 and 2.10 plot the rate of routed packets as a function of Qi/Ti

(in percentage) when SCHED DEADLINE is used to schedule the vCPU thread

and the vhost-net kernel thread. The experiment has been performed for various

input packet rates, but only some “interesting” lines are reported in the figures:

a line corresponding to an underloaded VR (increasing Qi/Ti, the routed packets

rate reaches the input rate, and the the line becomes flat - reserving more CPU

time to KVM cannot improve the performance), a line near to the overload, and a

line corresponding to an overloaded VR (maximum possible input packet rate - in

this case, even when the KVM thread is reserved 95% of the CPU time the routed

packets rate cannot reach the input rate). The interesting thing to be noticed is

that the VR performance (the routed packets rate) increases almost linearly with

the ration Qi/Ti (fraction of CPU time reserved to the vCPU or vhost-net thread).

This shows that SCHED DEADLINE allows to easily control the performance (even

non real-time performance) of applications by allowing them to execute for a well-

specified fraction of the CPU time.

2.2.4. Data Structures for Efficient Global Scheduling

Following sections are an extract from a paper by Lelli et al. [LLFC11]. As the

paper focuses on different alternatives in implementing efficient global scheduling,

we decided to keep here its incremental approach. The reader could be confused by
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Figure 2.10. Throughput of a KVM-based virtual router as a

function of the percentage of CPU time reserved to the vhost-net

kernel thread.

the name we give to each incremental modification, though. Section 2.2.7 clarifies

the naming, but we anticipate it for cleariness. In the following we name:

• original: an old SCHED DEADLINE implementation (before Linux 3.14),

that didn’t provide efficient global scheduling;

• fmask: original plus changes described in Section 2.2.5;

• heap: original plus the heap described in Section 2.2.6 (this corresponds

almost completely to what we have today);

• the reference Linux scheduler is denoted with SCHED FIFO.

Moreover, the reader should refer back to Section 2.2.2 for an introduction on

the topic (basic data structures and mechanisms).

2.2.5. Idle processor improvement

The push mechanism core is realized in a small function that finds a suitable

CPU for a to-be-pushed task. The operation can be easily accomplished on a

small multi-core machine (for example a quad-core) just by looking at all queues in

sequence. The original SCHED DEADLINE implementation realizes a complete loop

through all cores for every push decision (pseudo-code on Figure 2.11). The execu-

tion time of such function increases linearly with the number of cores, therefore it

does not scale well to systems with large number of cores.

A simple observation is that on systems with large number of processors and

relatively light load, many CPUs are idle most of the time. Therefore, when a

task wakes up, there is a high probability of finding an idle CPU. To improve the
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cpu_mask push_find_cpu(task) {

for_each_cpu(cpu , avail_cores) {

mask = 0;

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 2.11. Find CPU eligible for push.

cpu_mask push_find_cpu(task) {

if (dlf_mask & affinity)

return (dlf_mask & affinity);

mask = 0;

for_each_cpu(cpu , avail_cores) {

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 2.12. Using idle CPU mask.

execution time of the push function, we can use a bitmask that stores the idle CPUs

with a bit equal to 1. On a 64-bit architecture, we can represent the status of up

to 64 processors by using a single word. Therefore, the code of Figure 2.11 can be

rewritten as in Figure 2.12, where dlf mask is the mask that represents idle CPUs,

and the loop is skipped (returning all suitable CPUs to the caller) if is it possible

to push the task on a free CPU.

This simple data structure introduces little or no overhead for the scheduler

and significantly improves performance figures in large multi-core systems (more

on this later). Updates on dlf mask are performed in a thread-safe way: we use a

low level set bit() provided in Linux which performs an atomic update of a single

bit of the mask.

2.2.6. Heap Data structure

When the system load is relatively high, idle CPUs tend to be scarce. There-

fore, we introduce a new data structure to speed-up the search for a destination
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CPU inside a push operation. The requirements for the data structure are: O(1)

complexity for searching the best CPU; and less-than-linear complexity for updat-

ing the structure. The classical heap data structure fulfils such requirements as it

presents O(1) complexity for accessing to the first element, and O(log n) complexity

for updating (if contention is not considered). Also, it can be implemented using a

simple array. We developed a max heap to keep track of deadlines of the earliest

deadline tasks currently executing on each runqueue. Deadlines are used as keys

and the heap-property is: if B is a child node of A, then deadline(A) ≥ deadline(B).

Therefore, the node in the root directly represent the CPU where the task need to

be pushed.

1 2 3 4 5 6 7 N - 1 N0

Figure 2.13. Heap implementation with a simple array.

A node of the heap is a simple structure that contains two fields: a deadline as

key and an int field representing the associated CPU (we will call it item). The

whole heap is then self-contained in another structure as described in Figure 2.14:

• elements contains the heap; elements[0] contains the root and the node

in elements[i] has its left child in elements[2*i], its right child in

elements[2*i+1] and its parent in elements[i/2] (see Figure 2.13);

• size is the current heap size (number of non idle CPUs);

• cpu to idx is used to efficiently update the heap when runqueues state

changes, since with this array we keep track of where a CPU resides in

the heap;

• free cpus accounts for idle CPUs in the system.

struct dl_heap {

spinlock lock;

int size;

int cpu_to_idx[NR_CPUS ];

item elements[NR_CPUS ];

bitmask free_cpus;

};

Figure 2.14. Heap structure.
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Special attention must be given to the lock field. Consistency of the heap must

be ensured on concurrent updates: every time an update operation is performed, we

force the updating task to spin, waiting for other tasks to complete their work on

the heap. This kind of coarse-grained lock mechanism simplifies the implementation

but it increases contention and overhead. In the future, we will look for alternative

lock-free implementation strategies.

Potential points of update for the heap are enqueue and dequeue functions. If

something changes at the top of a runqueue, a new task starts executing becoming

the so-called curr, or the CPU becomes idle, the heap must be updated accordingly.

We argued, and then experimented, an increase in overhead for the aforementioned

operations, but we will show in Section ?? data that suggest this price is worth

paying in comparison with push mechanism performance improvements.

With the introduction of the heap, code in Figure 2.12 can be changed as in

Figure 2.15, where maximum(...) returns the heap root. As we can see from the

pseudo-code we first try to push a task to idle CPUs, then we try to push it on the

latest deadline CPU; if both operations fail, the task is not pushed away.

This kind of functioning is compliant with classical global scheduling, as it

performs continuous load balancing across cores: rather than compacting all tasks

on few cores we prefer every core share an (as much as possible) equal amount of

real-time activities.

2.2.7. Evaluation

Experimental setup. The aim of the evaluation is to measure the performance

of the new data structures compared with the reference Linux implementation

cpu_mask push_find_cpu(task) {

if (dl_heap ->free_cpus & affinity)

return (dl_heap ->free_cpus & affinity);

if (maximum(dl_heap) & affinity)

return maximum(dl_heap);

mask = 0;

for_each_cpu(cpu , avail_cores) {

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 2.15. Find eligile CPU using a heap.



30 2. REAL-TIME SCHEDULING ON GENERAL PURPOSE OPERATING SYSTEMS

(SCHED FIFO) and the original SCHED DEADLINE implementation. Since all mech-

anisms described so far share the same structure (i.e. distributed runqueues, and

push and pull operations for migrating tasks), we measures the average number of

cycles of the main operations of the scheduler: to enqueue and dequeue a task from

one of the runqueues; the push and pull operations.

We conducted our experiments on a Dell PowerEdge R815 server equipped with

64GB of RAM, and 4 AMDR OpteronTM 6168 12-core processors (running at 1.9

GHz), for a total of 48 cores. The memory is globally shared among all the cores,

and the cache hierarchy is on 3 levels (see Figure 2.16), private per-core 64 KB

L1D and 512 KB L2 caches, and a global 10240 KB L3 cache. The R815 server was

configured with a Debian Sid distribution running a patched 2.6.36 Linux kernel.

L3

Core 1

L1

L2

Core 2

L1

L2

Core 6

L1

L2

......

Chip # 1

L3

Core 1

L1

L2

Core 2

L1

L2

Core 6

L1

L2

......
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Figure 2.16. Architecture of a single processor (Multi Chip Mod-

ule) of the Dell PowerEdge R815.

In the following we will refer the three patches we developed as:

• original, the original SCHED DEADLINE implementation;

• fmask, SCHED DEADLINE plus changes described in Section ??;

• heap, SCHED DEADLINE plus the heap described in Section ??.

The reference Linux scheduler is denoted with SCHED FIFO.

Task set generation. The algorithm for generating task sets used in the experi-

ments works as follows. We generate a number of tasks N = x ·m, where m is the

number of processors (see below), and x is set equal to 3. Similar overhead figures

have been obtained with a higher number of tasks (results omitted for the sake of

brevity).

The overall utilisation U of the task set is set equal to U = R ·m where R is 0.6,

0.7 and 0.8. To generate the individual utilisation of each task, the randfixedsum

algorithm [ESD10] has been used, by means of the implementation publicly made

available by Paul Emberson5. The algorithm generates N randomly distributed

numbers in (0, 1), whose sum is equal to the chosen U . Then, the periods are

randomly generated according to a log-uniform distribution in [10ms, 100ms]. The

5More information is available at: http://retis.sssup.it/waters2010/tools.php.

http://retis.sssup.it/waters2010/tools.php
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(worst-case) execution times are set equal to the task utilisation multiplied by the

task period.

We generated 20 random task sets considering 2, 4, 8, 16, 24, 32, 40 and 48

processors. Than we ran each task set for 10 seconds using a synthetic benchmark

(that lets each task execute for its WCET every period). We varied the number of

active CPUs using Linux CPU hotplug feature.

Results. In Figures 2.17 and 2.18 we show the number of clock cycles required by

a push operation in average, depending on the number of active cores. In Figure

2.17, we considered an average load per processor equal to U = 0.6, while in Figure

2.18 the load was increased to U = 0.8. We measured the 95% confidence interval

of each average point, and it is always very low (in the order of a few tens of cycles),

so we did not report it in the graphs for clarity.
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Figure 2.17. Number of push cycles for average loads of 0.6.

From the graphs it is clear that the overhead of the original implementation

of SCHED DEADLINE increases linearly with the number of processors, as expected,

both for light load and for heavier load.

In fmask, we added the check for idle processors. Surprisingly, this simple

modification substantially decreases the overhead for both types of loads, and it

becomes almost constant in the number of processors. For light load, fmask is

actually the one with lowest average number of cycles; this confirms our observation

that for light loads the probability of finding an idle processor is high. For heavier

loads, the probability of finding an idle processor decreases, so the SCHED FIFO
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Figure 2.18. Number of push cycles for average loads of 0.8.

and the heap implementations are now the ones with lowest average overhead.

Notice also that the latter two show very similar performance. This means that the

overhead of implementing global EDF is comparable (and sometimes even lower)

than implementing global Fixed Priority.

To gain a better understanding of these performance figures, it is also useful to

analyse the overhead of two basic operations, enqueue and dequeue. Please remind

that push and pull operations must perform at least one dequeue and one enqueue

to migrate a task.

The number of cycles for enqueue operations for the four implementations is

shown in Figure 2.19 for light load, and in Figure 2.20 for higher loads. The

implementation with the lower enqueue overhead is original, because it is the one

that requires the least locking and contention on shared data structures: it only

requires to lock the runqueue of the CPU where the task is being moved to. fmask

has a slightly higher overhead, as it also require to update the idle CPU mask with

an atomic operation. Heap and SCHED FIFO require the higher overhead as they

must lock and update also global data structures (heap in the first case and priority

mask in the second case). Updating the heap takes less time probably because it is

a small data structure guarded by one single coarse-grain lock, whereas the prioriy

mask is a complex and larger data structure with fine-grained locks. Dequeue

operations have very similar performance figures and are not shown here for lack

of space.
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Figure 2.19. Number of enqueue cycles for average loads of 0.6.
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Figure 2.20. Number of enqueue cycles for average loads of 0.8.
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Pull operations do not take advantage of any dedicated data structure. In all

four schedulers, the pull operation always looks at all runqueues in sequence to find

the tasks that are eligible for migration. Therefore, the execution cycles are very

similar to each other. As a future work, we plan to optimize pull operations using

dedicated data structures.

2.3. PRAcTISE

In this section, we propose PRAcTISE (PeRformance Analysis and TestIng

of real-time multicore SchEdulers) for the Linux kernel: it is a framework for

developing, testing and debugging scheduling algorithms in user space

before implementing them in the Linux kernel, that alleviates at least part of the

problems discussed above. In addition, PRAcTISE allows to compare different

implementations by providing early estimations of their relative performance. In

this way, the most appropriate data structures and scheduler structure can be

chosen and evaluated in user-space. Compared to other similar tools, like LinSched,

the proposed framework allows true parallelism thus permitting a full test

in a realistic scenario.

The main features of PRAcTISE are:

• Rapid prototyping of scheduling data structures in user space;

• Effective, quick and extensive testing of the data structures though con-

sistency tests;

• Real multi-core parallelism using multi-threading;

• Relative performance estimation between different algorithms and data

structures in user space;

• Possibility to specify application load though probabilistic distributions

of events, and statistical analysis;

• Ease of porting to the kernel or to other scheduling simulators.

PRAcTISE is available as open source software and a development version is

available for download6.

2.3.1. Developing Kernel-level code in User-Space

The wide diffusion of multi-core architectures in personal computing, servers

and embedded systems, has revived the interest in multiprocessor scheduling, espe-

cially in the field of real-time applications. In fact, real-time scheduling on multi-

core and multiprocessor systems is still an open research field both from the point

of view of the theory and for the technical difficulties in implementing an efficient

scheduling algorithm in the kernel.

6At the time of submission (April 29 2012, the software can be downloaded cloning

the repository available at https://github.com/Pippolo84/PRAcTISE

https://github.com/Pippolo84/PRAcTISE
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Regarding the second problem, let us discuss a (non exhaustive) list of problems

that the prospective developer of a new scheduler must be faced with. The task

scheduler is a fundamental part of the operating system kernel: a bugged scheduler

will soon crash the system, usually at random and at unexpected points. The major

difficulty in testing and debugging a new scheduling algorithm derives from the fact

that, when the system crashes, it is difficult to reconstruct the situation (i.e. the

sequence of events and states) that led to the crash. The developer has to carefully

analyse system logs and traces (for example using one of the tools described in

Section 2.3.2), and reconstruct the state to understand what went wrong. More

importantly, it is often impossible to impose a precise sequence of events: crashes

can rarely be reproduced deterministically. Hence, it is practically impossible to

run a sequence of test-cases.

This problem is exacerbated in multi-core architectures where the scheduler

service routines run in parallel on the different processors, and make use of shared

data structures that are accessed in parallel. In these cases, it is necessary to ensure

that the data structures remain consistent under every possible interleaving of the

service functions. A simple solution is to protect the shared data structure with

locks. However, a single big lock reduces parallelism and performance does not scale;

fine-grain locks may cause deadlock situations, without improving scalability; and

lock-free algorithms are difficult to implement and prove correct. As a consequence,

many important and interesting scheduling algorithms proposed in the research

literature fail to be implemented on popular operating systems like Linux due to

the difficulty of the task.

One reasonable approach would be to develop, debug, test and analyse the

algorithms in user space. Once the main algorithm is sufficiently tested using user-

space debugging and testing techniques, the same algorithm can be ported in the

kernel. However, if no specific methodology is followed, the code must be written

twice, increasing the possibility of introducing bugs in one of the two versions.

Also, if one is unsure of which algorithm, data structure or locking strategy is

more appropriate, the number of versions to implement, test, analyse by hand may

become very large.

Hence, we decided to tackle the “user-space approach” by proposing a simple

framework to facilitate the development, testing and performance evaluation of

scheduling algorithms in user space, and minimise the effort of porting the same

algorithms in kernel spaces.

2.3.2. State Of Art

Several tools exist, as open-source software, that are geared towards, or can

be used as effective means to implement, debug and analyse real-time scheduling

algorithms for multiprocessor systems. Each one tackles the intrinsic toughness
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of this field from different angles, generally focusing on one single aspect of the

problem.

A valuable tool during the development process of a scheduling algorithm would

be the one that allows fast prototyping and easy debugging. Originally developed

by the Real Time Systems Group at University of North Carolina at Chapel Hill,

and currently maintained by P. Turner from Google, LinSched [CBL+08]7 lets

developers modify the behaviour of the Linux scheduler and test these changes in

user-space. One of the major strength points of this tool is that it introduces very

few modifications in the kernel sources. The developer can thus write kernel code

and, once satisfied by tests, it has kernel ready patches at hand. Furthermore,

debugging is facilitated by the fact that LinSched runs as a single thread user-

space program, that can hence be debugged with common user-space tools like

GDB8. Even if single-threading is useful for debugging purposes, it can be a notable

drawback when focusing on the analysis of behaviour assuming a high degree of

concurrency. LinSched can indeed verify locking, but it cannot precisely model

multi-core contention.

LITMUSRT [LIT] has a completely different focus. The LITMUSRT patch,

developed by the Real Time Systems Group at University of North Carolina at

Chapel Hill, is a (soft) real-time extension of the Linux kernel that allows fast pro-

totyping and evaluation of real-time (multiprocessor) scheduling algorithms on real

hardware. The LITMUSRT testbed provides an experimental platform that real-

time system researchers can use to simplify the development process of scheduling

and synchronisation algorithms (compared to modifying a stock Linux kernel). An-

other nice feature of this testbed is an integrated tracing infrastructure (Feather-

Trace [BA07]) with which performance and overhead data can be collected for

off-line processing. Being a research tool rather than a production-quality system,

LITMUSRT does not target Linux mainline inclusion nor POSIX-compliance: in

other words code patches created with it cannot be seamless applied to a “vanilla”

Linux kernel.

Lots of other tools exist that make kernel developers lives easier during debug-

ging, some of them can also be used to collect performance data or even extract

execution traces from a running system. Among others, these are probably part of

every kernel developer arsenal:

• KVM 9 + GDB: the very first step after having modified the kernel is

usually to run it on a vitalised environment. The KVM virtual machine

can here be useful as it can be attached, and controlled, by the GNU

Project Debugger (GDB). However, this solution can hardly be used in

7v3.3-rc7 release announce: http://bit.ly/IJsyV3.
8http://sources.redhat.com/gdb/
9Kernel Based Virtual Machine: http://bit.ly/IdlzXi
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presence of high concurrency; moreover, it can occasionally affect the

repeatability of certain bugs.

• perf [Mel10]: the performance counter subsystem in Linux can be used

to collect scheduling events and performance data from a real execution.

It can also be used in conjunction with LinSched, as it can record an

application behaviour that can later be played back in the simulator.

• Ftrace [Ros09]: a tracing utility built directly into the Linux kernel.

Ftrace is a valuable debugging tool as it brings to Linux the ability to see

what is happening inside the kernel. With the ability of synchronise a user-

space testing application with kernel execution, one can track function

calls up to the point where a bug may happen.

• LTTng [DD06, Des09]: the Linux Trace Toolkit is an highly efficient

tracing tool for Linux that can help tracking down performance issues

and debugging problems involving concurrent execution.

2.3.3. Architecture

In this section, we describe the basic structure of PRAcTISE. PRAcTISE emu-

lates the behaviour of the LINUX scheduler subsystem on a multi-core architecture

with M parallel cores. The tool can be executed on a machine with N cores, with

N that can be less, equal to or greater than M . The tool can be executed in one

of the following modes:

• testing;

• performance analysis.

Each processor in the simulated system is modelled by a software thread that

performs a cycle in which:

• scheduling events are generated at random;

• the corresponding scheduling functions are invoked;

• statistics are collected.

In testing mode, a special “testing” thread is executed periodically that per-

forms consistency checks on the shared data structures. In the performance analysis

mode, instead, each thread is pinned on a processor, and the memory is locked to

avoid spurious page faults; for this reason, to obtain realistic performances it is

necessary to set M ≤ N .

2.3.4. Ready queues

The Linux kernel scheduler uses one separate ready queue per each processor.

A ready task is always en-queued in one (and only one) of these queues, even when

it is not executing. This organisation is tailored for partitioned schedulers and

when the frequency of task migration is very low. For example, in the case of non

real-time best effort scheduling, a task usually stays on the same processor, and



38 2. REAL-TIME SCHEDULING ON GENERAL PURPOSE OPERATING SYSTEMS

periodically a load-balancing algorithm is called to distribute the load across all

processors.

This organisation may or may not be the best one for global scheduling policies.

For example the SCHED FIFO and SCHED RR policies, as dictated by the POSIX

standard, requires that the m highest priority tasks are scheduled at every instant.

Therefore, a task can migrate several times, even during the same periodic instance.

The current multi-queue structure is certainly not mandatory: a new and dif-

ferent scheduler could use a totally different data structure (for example a single

global ready queue); however, the current structure is intertwined with the rest of

the kernel and we believe that it would be difficult to change it without requiring

major changes in the rest of the scheduler. Therefore, in the current version of

PRAcTISE we maintained the structure of distributed queues as it is in the kernel.

We plan to extend and generalise this structure in future versions of the tool.

Migration between queues is done using two basic functions: push and pull.

The first one tries to migrate a task from the local queue of the processor that calls

the function to a remote processor queue. In order to do this, it may use additional

global data structures to select the most appropriate queue. For example: the

current implementation of the fixed priority scheduler in Linux uses a priority map

(implemented in cpupri.c) that records for each processor the priority of the highest

priority tasks; SCHED DEADLINE, see Section 2.2.6, uses a max heap to store the

deadlines of the tasks executing on the processors.

The pull does the reverse operation: it searches for a task to “pull” from a

remote processor queue to the local queue of the processor that calls the function.

In the current implementation of SCHED {FIFO,RR} and SCHED DEADLINE,

no special data structure is used to speed up this operation. We developed and

tested in PRAcTISE a min-heap for reducing the duration of the pull operation,

but we have not tried it yet in the kernel.

Tasks are inserted into (removed from) the ready queues using the enqueue()

(dequeue()) function, respectively. In Linux, the queues are implemented as red-

black trees. In PRAcTISE, instead, we have implemented them as priority heaps,

using the data structure proposed by B. Brandenburg 10. However, it is possible to

implement different algorithms for queue management as part of the framework: as

a future work, we plan to implement alternative data structures that use lock-free

algorithms.

2.3.5. Locking and synchronisation

PRAcTISE uses a range of locking and synchronisation mechanisms that mimic

the corresponding mechanisms in the Linux kernel. An exhaustive list is given in

10Code available here: http://bit.ly/IozLxM.

http://bit.ly/IozLxM
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Table 2.3. These differences are major culprits for the slight changes needed to port

code developed on the tool in the kernel 2.3.9.

It has to be noted that wmb and rmb kernel memory barriers have no corre-

sponding operations in user-space; therefore we have to issue a full memory barrier

( sync synchronize) for every occurrence of them.

Linux PRAcTISE Action

raw spin lock pthread spin lock lock a structure

raw spin unlock pthread spin unlock unlock a structure

atomic inc sync fetch and add add a value in memory atomically

atomic dec sync fetch and sub subtract a value in memory atomically

atomic read simple read read a value from memory

wmb sync synchronize issue a memory barrier

rmb sync synchronize issue a read memory barrier

mb sync synchronize issue a full memory barrier

Table 2.3. Locking and synchronisation mechanisms (Linux vs.

PRAcTISE).

2.3.6. Event generation and processing

PRAcTISE cannot execute or simulate a real application. Instead, each threads

(that emulates a processor) periodically generates random scheduling events accord-

ing to a certain distribution, and calls the scheduler functions. Our goals are to

debug, test, compare and evaluate real-time scheduling algorithms for multi-core

processors. Therefore, we identified two main events: task activation and blocking.

When a task is activated, it must be inserted in one of the kernel ready queues;

since such an event can cause a preemption, the scheduler is invoked, data struc-

tures are updated, etc. Something similar happens when a task self-suspends (for

example because it blocks on a semaphore, or it suspends on a timer).

The pseudo-code for the task activation is function on activation() described

in Figure 2.21. The code mimics the sequence of events that are performed in the

Linux code:

• First, the task is inserted in the local queue.

• Then, the scheduler performs a pre-schedule, corresponding to pull(),

which looks at the global data structure pull struct to find the task to

be pulled; if it finds it, does a sequence of dequeue() and enqueue().
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• Then, the Linux scheduler performs the real schedule function; this corre-

sponds to setting the curr pointer to the executing task. In PRAcTISE

this step is skipped, as there is no real context switch to be performed.

• Finally, a post-schedule is performed, consisting of a push() operation,

which looks at the global data structure push struct to see if some task

need to be migrated, and in case the response is positive, performs a

dequeue() followed by an enqueue(). A similar thing happens when a

task blocks (see function on block()).

The pseudo code shown in Figure 2.21 is an overly simplified, schematic version

of the code in the tool; the interested reader can refer to the original source code11

for additional details.

As anticipated, every processor is simulated by a periodic thread. The thread

period can be selected from the command line and represents the average frequency

of events arriving at the processor. At every cycle, the thread randomly select

one between the following events: activation, early finish and idle. In the

first case, a task is generated with a random value of the deadline and function

on activation() is called. In the second case, the task currently executing on

the processor blocks: therefore function on block() is called. In the last case,

nothing happens. Additionally, in all cases, the deadline of the executing task is

checked against the current time: if the deadline has passed, then the current task

is blocked, and function on block() is called.

Currently, it is possible to specify the period of the thread cycle; the probability

of an activation event; and the probability of an early finish.

2.3.7. Data structures in PRAcTISE

PRAcTISE has a modular structure, tailored to provide flexibility in developing

new algorithms. The interface exposed to the user consists of hooks to functions

that each global structure must provide. The most important hooks:

• data init: initialises the structure, e.g., spin-lock init, dynamic memory

allocation, etc.

• data cleanup: performs clean up tasks at the end of a simulation.

• data preempt: called each time an enqueue() causes a preemption (the

arriving tasks has higher priority that the currently executing one); mod-

ifies the global structure to reflect the new local queue status.

• data finish: data preempt dual (triggered by a dequeue()).

• data find: used by a scheduling policy to find the best CPU to (from)

which push (pull) a task.

• data check: implements the checker mechanism (described below).

11https://github.com/Pippolo84/PRAcTISE

https://github.com/Pippolo84/PRAcTISE
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pull() {

bool found = find(pull_struct , &queue);

if (found) {

dequeue (&task , queue);

enqueue(task , local_queue);

}

}

push() {

bool found = find(push_struct , &queue);

if (found) {

dequeue (&task , local_queue);

enqueue(task , queue);

}

}

on_activation(task) {

enqueue(task , local_queue);

pull(); /* pre -schedule */

push(); /* post -schedule */

}

on_block(task) {

dequeue (&task , local_queue);

pull(); /* pre -schedule */

push(); /* post -schedule */

}

Figure 2.21. Main scheduling functions in PRAcTISE
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PRAcTISE has already been used to slightly modify and validate the global

structure we have previously implemented in SCHED DEADLINE [?] to speed-up

push() operations (called cpudl from here on). We also implemented a correspond-

ing structure for pull() operations (and used the tool to gather performance data

from both). Furthermore, we back-ported in PRAcTISE the mechanism used by

SCHED FIFO to improve push() operations performance (called cpupri from here

on).

We plan to exploit PRAcTISE to investigate the use of different data structures

to improve the efficiency of the aforementioned operations even further. However,

we leave this task as future work, since this paper is focused on describing the tool

itself.

One of the major features provided by PRAcTISE is the checking infrastruc-

ture. Since each data structure has to obey different rules to preserve consistency

among successive updates, the user has to equip the implemented algorithm with a

proper checking function. When the tool is used in testing mode, the data check

function is called at regular intervals. Therefore, an on-line validation is performed

in presence of real concurrency, thus increasing the probability of discovering bugs

at an early stage of the development process. User-space debugging techniques can

then be used to fix design or developing flaws.

To give the reader an example, the checking function for SCHED DEADLINE

cpudl structure ensures the max-heap property: if B is a child node of A, then

deadline(A) ≥ deadline(B); it also check consistency between the heap and the

array used to perform updates on intermediate nodes (see [?] for further details). We

also implemented a checking function for cpupri : periodically, all ready queues are

locked, and the content of the data structure is compared against the corresponding

highest priority task in each queue, and the consistency of the flag overloaded in

the struct root domain is checked. We found that the data structure is always

perfectly consistent to an external observer.

2.3.8. Statistics

To collect the measurements we use the TSC (Time Stamp Counter) of IA-32

and IA-64 Instruction Set Architectures. The TSC is a special 64-bit per-CPU

register that is incremented every clock cycle. This register can be read with two

different instructions: RDTSC and RDTSCP. The latter reads the TSC and other

information about the CPUs that issues the instruction itself. However, there are

a number of possible issues that needs to be addressed in order to have a reliable

measure:

• CPU frequency scaling and power management. Modern CPUs can dy-

namically vary frequency to reduce energy consumption. Recently, CPUs

manufacturer have introduced a special version of TSC inside their CPUS:
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constant TSC. This kind of register is always incremented at CPU maxi-

mum frequency, regardless of CPU actual frequency. Every CPU that sup-

ports that feature has the flag constant tsc in /proc/cpuinfo proc file of

Linux. Unfortunately, even if the update rate of TSC is constant in these

conditions, the CPU frequency scaling can heavily alter measurements by

slowing down the code unpredictably; hence, we have conducted every ex-

periment with all CPUs at fixed maximum frequency and no power-saving

features enabled.

• TSC synchronisation between different cores. Since every core has its own

TSC, it is possible that a misalignment between different TSCs may occur.

Even if the kernel runs a synchronisation routine at start up (as we can see

in the kernel log message), the synchronisation accuracy is typically in the

range of several hundred clock cycles. To avoid this problem, we have set

CPU affinity of every thread with a specific CPU index. In other words

we have a 1:1 association between threads and CPUs, fixed for the entire

simulation time. In this way we also prevent thread migration during an

operation, which may introduce unexpected delays.

• CPU instruction reordering. To avoid instruction reordering, we use two

instructions that guarantees serialisation: RDTSCP and CPUID. The lat-

ter guarantees that no instructions can be moved over or beyond it, but

has a non-negligible and variable calling overhead. The former, in con-

trast, only guarantees that no previous instructions will be moved over.

In conclusion, as suggested in [Pao10], we used the sequence as in Fig-

ure 2.22 to measure a given code snippet.

CPUID

RDTSC

code

RDTSCP

CPUID

Figure 2.22. Instruction that guarantee serialization.

• Compiler instruction reordering. Even the compiler can reorder instruc-

tions; so we marked the inline asm code that reads and saves the TSC

current value with the keyword volatile .

• Page faults. To avoid page fault time accounting we locked every page of

the process in memory with a call to mlockall.

PRAcTISE collects every measurement sample in a global multidimensional

array, where we keep samples coming from different CPUs separated. After all

simulation cycles are terminated, we print all of the samples to an output file.
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By default, PRAcTISE measures the following statistics:

• duration and number of pull and push operations;

• duration and number of enqueue and dequeue operations;

• duration and number of data preempt, data finish and data find.

Of course, it is possible to add different measures in the code of a specific algorithm

by using PRAcTISE’s functions. In the next section we report some experiment

with the data structures currently implemented in PRAcTISE.

2.3.9. Evaluation

In this section, we present our experience in implementing new data structures

and algorithms for the Linux scheduler using PRAcTISE. First, we show how dif-

ficult is to port a scheduler developed with the help of PRAcTISE into the Linux

kernel; then, we report performance analysis figures and discuss the different results

obtained in user space with PRAcTISE and inside the kernel.

Porting to Linux. The effort in porting an algorithm developed with PRAcTISE

in Linux can be estimated by counting the number of different lines of code in the

two implementations. We have two global data structures implemented both in

PRAcTISE and in the Linux kernel: cpudl and cpupri.

We used the diff utility to compare differences between user-space and kernel

code of each data structure. Results are summarised in Table 2.4. Less than 10%

of changes were required to port cpudl to Linux, these differences mainly due to the

framework interface (pointers conversions). Slightly higher changes ratio for cpupri,

due to the quite heavy use of atomic operations (see Section 2.3.5). An example of

such changes is given in Figure 2.23 (lines with a - correspond to user-space code,

while those with a + to kernel code).

Structure Modifications Ratio

cpudl 12+ 14- 8.2%

cpupri 17+ 21- 14%

Table 2.4. Differences between user-space and kernel code.

The difference on the synchronisation code can be reduced by using appropriate

macros. For example, we could introduce a macro that translates to sync fetch and add

when compiled inside PRAcTISE, and to the corresponding Linux code otherwise.

However, we decided for the moment to maintain the different code to highlight the

differences between the two frameworks. In fact, debugging, testing and analyse

the synchronisation code is the main difficulty, and the main goal of PRAcTISE;
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[...]

-void cpupri_set(void *s, int cpu , int newpri)

+void cpupri_set(struct cpupri *cp , int cpu ,

+ int newpri)

{

- struct cpupri *cp = (struct cpupri *) s;

int *currpri = &cp ->cpu_to_pri[cpu];

int oldpri = *currpri;

int do_mb = 0;

@@ -63,57 +61 ,55 @@

if (newpri == oldpri)

return;

- if (newpri != CPUPRI_INVALID) {

+ if (likely(newpri != CPUPRI_INVALID)) {

struct cpupri_vec *vec =

&cp->pri_to_cpu[newpri ];

cpumask_set_cpu(cpu , vec ->mask);

- __sync_fetch_and_add (&vec ->count , 1);

+ smp_mb__before_atomic_inc ();

+ atomic_inc (&(vec)->count);

do_mb = 1;

}

[...]

Figure 2.23. Comparison using diff.

therefore, we thought that it is worth to show such differences rather than hide

them.

However, the amount of work shouldered on the developer to transfer the imple-

mented algorithm to the kernel, after testing, is quite low reducing the probability

of introducing bugs during the porting. Moreover, this residual amount of hand-

work could be eliminated using simple translation scripts (e.g., sed). Additional

macros will be introduced in future version of PRAcTISE to minimise such effort

even further.

Experimental setup. The aim of the experimental evaluation is to compare

performance measures obtained with PRAcTISE with what can be extracted from

the execution on a real machine.
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Of course, we cannot expect the measures obtained with PRAcTISE to com-

pare directly with the measure obtained within the kernel; there are too many

differences between the two execution environments to make the comparison pos-

sible: for example, the completely different synchronisation mechanisms. However,

comparing the performance of two alternative algorithms within PRAcTISE can

give us an idea of their relative performance within the kernel.

Results. In Linux, we rerun experiments from our previous work [LLFC11]

on a Dell PowerEdge R815 server equipped with 64GB of RAM, and 4 AMDR

OpteronTM 6168 12-core processors (running at 1.9 GHz), for a total of 48 cores.

This was necessary since the cpupri kernel data structure has been modified in the

meanwhile 12 and the PRAcTISE implementation is aligned with this last cpupri

version. We generated 20 random task sets (using the randfixedsum [ESD10] algo-

rithm) with periods log-uniform distributed in [10ms, 100ms], per CPU utilisation

of 0.6, 0.7 and 0.8 and considering 2, 4, 8, 16, 24, 32, 40 and 48 processors. Then,

we ran each task set for 10 seconds using a synthetic benchmark 13 that lets each

task execute for its WCET every period. We varied the number of active CPUs

using the Linux CPU hot plug feature and we collected scheduler statistics through

sched debug. The results for the Linux kernel are reported in Figures 2.24a and

2.24b, for modifying and querying the data structures, respectively. The figures

show the number of cycles (y axis) measured for different number of processors

ranging from 2 to 48 (x axis). The measures are shown in boxplot format: a box

indicates all data comprised between the 25% and the 75% percentiles, whereas an

horizontal lines indicates the median value; also, the vertical lines extend from the

minimum to the maximum value.

In PRAcTISE we run the same experiments. As depicted in Section 2.3.6,

random scheduling events generation is instead part of PRAcTISE . We varied the

number of active processors from 2 to 48 as in the former case.

We set the following parameters: 10 milliseconds of thread cycle; 20% prob-

ability of new arrival; 10% probability of finish earlier than deadline (cpudl) or

run-time (cpupri); 70% probability of doing nothing. These probability values lead

to rates of about 20 task activations / (core * s), and about 20 task blocking / (core

* s).

The results are shown in Figures 2.27a and 2.26a for modifying the cpupri and

cpudl data structures, respectively; and in Figures 2.27b and 2.26b for querying

the cpupri and cpudl data structures, respectively.

Insightful observations can be made comparing performance figures for the same

operation obtained from the kernel and from simulations. Looking at Figure 2.24a

12More info here: http://bit.ly/KjoePl
13rt-app: https://github.com/gbagnoli/rt-app.

http://bit.ly/KjoePl
https://github.com/gbagnoli/rt-app
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(a) modify (b) query

Figure 2.24. Number of cycles (mean) to a) modify and b) query

the global data structure (cpudl vs. cpupri), kernel implementa-

tion.

(cpupri)

(a) modify

(cpupri)

(b) query

Figure 2.25. Number of cycles (mean) to a) modify and b) query

the global data structure (cpupri), on PRAcTISE.

we see that modifying the cpupri data structure is generally faster than modifying

cpudl : every measure corresponding to the former structure falls below 1000 cycles

while the same operation on cpudl takes about 2000 cycles. Same trend can be

noticed in Figure 2.27a and 2.26a. Points dispersion is generally a bit higher than

in the previous cases; however median values for cpupri are strictly below 2000

cycles while cpudl never goes under that threshold. We can see that PRAcTISE

overestimates this measures: in Figure 2.27a we see that the estimation for the find

operation on cpupri are about twice the ones measured in the kernel; however, the

same happens for cpudl (in Figure 2.26a); therefore, the relative performance of

both does not change.
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(cpudl)

(a) modify

(cpudl)

(b) query

Figure 2.26. Number of cycles (mean) to a) modify and b) query

the global data structure (cpudl), on PRAcTISE.

(a) modify (b) query

Figure 2.27. Number of cycles (mean) to a) modify and b) query

the global data structure for speed-up SCHED DEADLINE pull

operations, on PRAcTISE.

Regarding query operations the ability of PRAcTISE to provide an estimation

of actual trends is even more evident. Figure 2.24b shows that a find on cpudl is

generally more efficient than the same operation on cpupri ; this was expected, be-

cause the former simple reads the top element of the heap. Comparing Figure 2.27b

with Figure 2.26b we can state that latter operations are the most efficient also in

the simulated environment.

Moreover, we used PRAcTISE to compare the time needed to modify and

query the two global data structure for push and pull operations for cpudl. As

we can see in Figure 2.26a and Figure 2.26b compared against Figure 2.27a and

Figure 2.27b, the results are the same, as the data structures used are the same.
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We haven’t compared cpudl pull operation against cpupri pull operation since the

latter doesn’t have a global data structure that hold the status of all run queues

where we can issue find and set operations.

2.4. Conclusions

In this chapter, we first introduced a new scheduling policy for the Linux kernel

that allows partitioned, clustered and global EDF scheduling with hard and soft

reservations. This scheduling policy, called SCHED DEADLINE, has been recently

merged in the mainline Linux kernel.

We then reported on several enhancements we did on an old version of SCHED

DEADLINE, in order to make scheduling decisions more efficient. In particular,

we detailed about an heap data structure that speeds up push decisions (where to

migrate a task that has not been selected for execution by the local scheduler).

Lastly, PRAcTISE is presented. While working on further enhancing SCHED

DEADLINE performance, we felt the need to be able to fast prototype and debug

quite complex mechanisms in user-space; PRAcTISE allows just to do this. Fur-

thermore, it is possible to use the tool to perform preliminary runtime comparisons

between different implementations. The tool has been used also as a validator of

both SCHED DEADLINE and SCHED FIFO scheduling policies.





CHAPTER 3

When Theory comes to Hardware

In this chapter we build upon mechanisms described in previous sections to per-

form an experimental evaluation of different real-time algorithms on a real system.

The experiments are run on the Linux OS and the focus is on the metrics typically

of interest for developers and other people who investigate on performance issues,

and not purely on schedulability analysis.

This chapter is organized as follows. Section 3.1 introduces basic concepts

about memory levels and how programs execution is influenced by their presence;

Section 3.2 defines this chapter contributions; Section 3.3 gives an overview of the

literature on the chapter subjects; Section 3.4 describes the experimental setup

on which the experimental comparison of Section 3.5 is performed; Section 3.6

concludes the chapter highlighting general considerations than can guide real-time

applications developers working on modern multiprocessor machines.

3.1. Setting the Ground

Working Sets. Back in 1968 Peter J. Denning proposed the working set model

as a mean to describe the behavior of programs in general purpose computing

systems [Den68]. Reference system has a two-level memory structure, represented

in Figure 3.1, based on the notion of pages. Each process in the system can only

access its own private, segmented address space 1; each segment is sliced in equal-

size units, called pages. Pages can either reside in main and auxiliary memory,

the two levels being connected through a bridge allowing the transfer of pages.

However, a process can only work (read or write) with pages that are present in

main memory; trying to access a page not currently residing there generates a page

fault (the page is loaded from auxiliary memory, and usually some other page has

to be swapped out to make room for the former). Roughly speaking, a working set

of pages is the minimum collection of pages that has to be present in main memory

for a process to work efficiently, without experiencing “unnecessary” page faults.

The working set of information W (t, τ) of a process at time t is formally defined

to be the collection of information referenced by the process during the process time

1We assume here that the reader is already familiar with classical operating systems

concepts, refer to Capter 7 of William Stalling’s book [Sta14] for a thorough description.

51
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Figure 3.1. Two level memory system.

interval (t − τ, t). Put simply, the information a process has accessed during the

last τ seconds consitutes its working set, where τ is named working set parameter.

As specifically stated in Denning’s original paper, the model is so general that

can be used for different type of information. Insted of pages, we will consider bytes

as our unit of information. The working set size ω(t, τ) is then

ω(t, τ) = number of bytes in W (t, τ).

This turns to be handy, since we will deal with another level of memory, residing

between main and auxiliary, called cache memories (see Figure 3.2).

Figure 3.2. Three level memory system.

Cache memories. Cache memories are employed on modern processors systems

to reduce latencies on accessing data that reside in main memory; they are fast and

contains recently-accessed instructions and operands. Caches are organized in levels

(or layers), see again Figure 3.2, where the fastest, and smallest, that is called level-

1 (L1), is usually complemented by deeper levels (L2, L3, etc.) being successively

larger and slower. High-performance processors commonly have two separate L1

caches (split cache), the instruction cache and the data cache (I-cache and D-cache).

On the contrary, deeper levels are usually unified. In multiprocessors, shared caches

serve multiple processors (e.g., L3 in the figure), whereas private caches serve only

one (e.g., L1 and L2 in the figure). In what follows, we use the word cache to

indicate data cache for level L1 and unified cache for subsequent levels.
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Caches deal with blocks of consecutive addresses called cache lines, where block

sizes commonly range from 8 to 128 bytes. Caches are direct mapped if each cache

line can only reside in one specific location, fully associative if each cache line can

reside at any location or set associative if each line can reside at a fixed number of

location. In common systems, most caches are of the last type.

Data can be read or write by processes only if residing in the first level of cache.

A cache line is useful if is going to be referenced again. If a process references a

cache line that is already present in the first level, a cache hit occurs. Instead, if a

process references a cache line that cannot be found in a level-X cache, then it suffers

a level-X cache miss. This can be caused by several reasons. Compulsory misses

happen when a cache line is referenced for the first time (cache lines are loaded from

main memory on-demand). Moreover, in direct mapped and set associative caches,

conflict misses result if useful cache lines were evicted to accomodate the need of

some other process (this is the major component of preemption and migration cost,

as detailed below). Capacity misses are due to the fact that the WSS of a process

can exceed the size of the cache (useful cache line are evicted to make room for the

process own needs).

Cache effects. To better illustrate above concepts, we perform some experiments

that demonstrate how the presence of cache memories can influence a process per-

formance (what are commonly called cache effects). A micro-benchmark has been

executed on an IntelR CoreTM2 Q6600 quad-core machine. Main memory is shared

among all the cores, and the cache hierarchy is on 2 levels: a private per-core 64

KB L1D (plus 64 KB L1C that we don’t consider) and a global 4096 KB L2 cache.

The micro-benchmark lays out an array of consecutive elements of size 64B (equal

to a cache line); it then accesses them sequentially for an high number of times (to

filter out eventual spikes due to external events). During this second part several

quantities are measured: total access time, total L1D and L2 cache misses. These

values are finally averaged on the number of time array elements were referenced.

Figure 3.3 shows average number of L1D and L2 cache misses and average

time required to access an element of the array versus size of the array. The array

total size is varied between 1 and 65536 KB and doubled at each step; with each

element being of 64B (size of a cache line). At the beginning of each step the array

is initialized and then referenced again, this time collecting measurements. Doing

so, compulsory misses are ruled out. From the figure, we can see that time per

step (green continuous line) remains below 5ns until array size becomes 4096KB,

corresponing to L2 cache level size. From this point on every memory reference

causes a level-L2 capacity miss (red dotted line), as L2 size for this machine is

4096KB. This is further confirmed by the steep step of L2 misses at the same

point. Moreover, it is interesting to notice that L1D capacity misses (blue dashed

line), that start to happen from 64KB on, seem not to influence time per step.
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On modern multiprocessor machine the described behavior is common, as main

memory references (last level cache misses) are much more expensive than higher

levels cache misses. Considering this behavior, it is possible to argue that a process

execution time shouldn’t vary much, if the process only works on data that fit the

highest levels of cache. We confirm this statement on the following sections.
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Figure 3.3. Cache effects on a quad-core machine.

3.2. An experimental comparison

In the following sections the performance of partitioned, clustered and global

variants of Rate Monotonic (RM) and Earliest Deadline First (EDF) scheduling

algorithms in the Linux OS are compared. The experimental comparison is con-

ducted on the Linux OS due to its wide applicability (with various kernel-level

patches) in the domain of real-time systems. The material has been extrapolated

from the original paper by Lelli et al. [LFCL12].

We compare our own implementation of Global EDF (G-EDF) in the Linux

kernel with respect to the fixed priority Linux scheduler (configured so as to realise

RM). The goal is not to demonstrate the effectiveness of our scheduler, but rather to

make a thorough performance comparison, and establish which scheduler performs

better in different contexts. In order to precisely control the experiments, our

methodology consists in generating sets of synthetic real-time tasks with various

characteristics in terms of execution time and memory requirements and usage. The

task set is then executed on a multi-core platform and the tasks’ performance is
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measured. The focus is on the metrics typically of interest for developers and other

people who investigate on performance issues, and not purely on schedulability

analysis. Indeed, we consider the laxity (tasks should not complete too close to their

deadlines), the number of migrations and context switches (they may potentially

affect negatively the performance), and the number and type of cache misses (they

have a direct impact on the application execution times and performance). Since we

focus on the comparison among different CPU scheduling policies, in this paper we

only consider independent tasks. The hardware platform is a AMDR OpteronTM

6168 with 48 cores (4 sockets with 12 cores for each processor).

Our implementation of G-EDF has been made available as open-source code.

This, together with the details about the configuration of the experiments, allows

to reproduce and verify all the results that are presented (see the Section 3.5). Also,

this allows other researchers to perform independent investigations on partitioned,

clustered and global EDF scheduling on Linux, as well as to develop new schedulers

and concretely compare their performance with these policies. Last, but not least,

this gives to any developer the possibility to try these policies for their real-time

applications.

3.3. State of Art

The comparisons available in the literature between different real-time mul-

tiprocessor scheduling solutions are almost always conducted by measuring the

percentage of schedulable task sets among a number of randomly-generated ones.

For example, this has been done in [Bak06, BB11, MCF10]. These approaches

often rely on schedulability tests or simulations, and they do not involve real tasks

running on a real system, thus they cannot collect such run-time metrics as the ac-

tually experienced laxity/tardiness, cache misses, context switches and migrations.

For example, the possibility for these approaches to properly account for overheads

due to scheduling and migration are limited. Often, these overheads are assumed

to have already been considered in the Worst Case Execution Time (WCET) of the

tasks. However, the scheduling policy itself may impact the WCET figures (as due

to how many times a task is preempted or migrated).

Some of the main theoretical properties of EDF and RM are analysed in [But05],

but the study refers only to uni-processor systems.

In the field of WCET analysis, in [HP09] a method is proposed to bound the

cache-related migration delay in multi-cores, while in [CGKS05,YZ08] the focus

is on devising proper task interference models. On a slightly more practical basis,

memory access traces of actual program executions have been used to feed cache

architectural simulators in [MB91,SA04], while in [DCC07,LDS07,Tsa07] some

micro-benchmarks have been run on a Linux system in order to quantify the cache-

related context switch delay in some specific situation (e.g., because of interrupt
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processing). Although being related to our investigation, these studies concentrate

on the effects that either migrations or preemptions have on task execution due

to interference on shared caches in particular conditions. Instead, this study aims

at a more holistic and high-level comparison of some of the available solutions for

multiprocessor scheduling.

In the domain of distributed real-time scheduling on heterogeneous Grids, vari-

ous schedulers have been compared by considering applications comprising of direct

acyclic graphs (DAG) of computations [TLL+11,SK11] with end-to-end deadlines.

Similarly, the present investigation might be expanded by comparing the perfor-

mance of the schedulers under DAG-based workloads. However, due to space rea-

sons, we do not consider DAGs, but we defer such further investigations to future

research.

The line of research closer to the approach of the following sections is the one

carried out by the Real-Time Systems Group at University of North Carolina at

Chapel Hill. By means of their LITMUSRT testbed [CLB+06], they conducted

investigations on how real overheads affect the results coming out of theoretical

analysis techniques. There are several works by such group going in this direction:

in [CLB+06] Calandrino et al. studied the behaviour of some variants of global

EDF and Pfair, but did not consider fixed-priority; in [BCA08], Brandenburg

et al. explored the scalability of a similar set of algorithms, while in [BA09] the

impact of the implementation details on the performance of global EDF is analysed;

finally, in [BBA10b,BBA10a,A. 11] Bastoni et al. showed intents similar to the

ones of our comparison, concentrating on partitioned, clustered and global EDF

on a large multi-core system. In all these works, samples of the various forms of

overhead that show up during execution on real hardware are gathered and are then

plugged in schedulability analysis tests, making them more accurate. However, the

final conclusions about the performance of the various scheduling algorithms are

actually influenced by the accuracy of the best known schedulability tests, which

are often quite conservative.

Instead, in this study the tasks have just been deployed under various scheduler

configurations, and their obtained performance has been systematically measured.

Therefore, the conclusions drawn are simply derived from the intrinsic timing be-

haviour of the tasks as exhibited during the performed experiments. Further consid-

erations regarding specifically the comparison with [BBA10a] follow in Section 3.6.

3.4. Experimental Setup

3.4.1. Hardware Platform

Experiments have been conducted on a Dell PowerEdge R815 server equipped

with 64GB of RAM and 4 AMDR OpteronTM 6168 12-core processors (running at

1.9 GHz), for a total of 48 cores. From a NUMA viewpoint, each processor contains
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two 6-core NUMA nodes and is attached to two memory controllers. The memory

is globally shared among all the cores, and the cache hierarchy is on 3 levels, private

per-core 64 KB L1D and 512 KB L2 caches, and a global 10240 KB L3 cache.

The hardware platform runs the Linux OS modified with the patch described

in Section 2.2.

3.4.2. Task Structure

In order to compare the performance of the different scheduling strategies, it

is important to precisely control the parameters of each experiment. To this end,

a configurable program was developed to simulate the behaviour of a periodic real-

time task. An experiment consists in running many concurrent instances of this

program with different parameters.

The program parameters are the period, the expected execution time, the Work-

ing Set Size (WSS)2, the CPU affinity3 and the scheduler type and parameters

(computation-time and period). In each periodic instance, the task accesses an

array of 64 Bytes elements — i.e., equal to the size of a cache line (at all levels).

Following the methodology in [BBA10b], the read-to-write ratio has been set equal

to 4. The elements in the array are allocated contiguously and they have been ac-

cessed both sequentially and randomly, i.e. in the worst possible case with respect

to data locality. In the following, we show results only for the sequential access case,

however the ones for the random access case are similar in trends, but they exhibit

higher numbers of cache misses. The number of elements in the array depends on

the WSS of the specific round of experiments. In order to achieve actual execution

times for the jobs that stay below the WCET figures (as computed by the task

set generator described below), the time to access the elements of the array has

been benchmarked. To impose worst-case conditions, this benchmarking phase was

done with a number of tasks from 2 to 20 concurrently executing on the same CPU

under SCHED FIFO real-time scheduling, all of them accessing their entire WSS. In

fact, each time a job is interrupted, it may resume on a different processor (due to

migration); or it may resume after a long interval of time. In these cases, especially

when the cumulative WSS of all the tasks exceeds the level-X cache size, it is likely

that its data is not present in the cache and must be reloaded from the next level

in the memory hierarchy.

3.4.3. Task Set Generation

The algorithm for generating task sets used in this paper works as follows. We

generate a number of tasks N = x ·m, where m is the number of processors, and

x is set equal to 2, 3 and 4. The overall utilisation U of the task set is set equal

2Our program activates periodically and accesses a fixed set of memory locations,

which constitute the Working Set.
3This is the set of CPUs over which the task is allowed to run.
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to U = R ·m where R is 0.6, 0.7 and 0.8. To generate the individual utilisation

of each task, the randfixedsum algorithm [ESD10] has been used, by means of

the implementation publicly made available by Paul Emberson4. The algorithm

generates N randomly distributed numbers in (0, 1), whose sum is equal to the

chosen U . Then, the periods are randomly generated according to a log-uniform

distribution in [10ms, 100ms]. The (worst-case) execution times are set equal to

the task utilisation multiplied by the task period. The WSS size w has been set

equal to 16KB and 256KB.

The original randfixedsum algorithm has been used in such a way that the

generated tasks resulted in a computation time higher than Cmin = 50µs, per-task

utilisation lower than U (see above) and whole task set utilisation of U itself. In fact,

in the partitioned cases, we aimed at task sets able to be partitioned in a reasonably

balanced way (e.g., avoiding too heavy tasks which would have forced some cores

to be much more loaded than others). This was done by using the unmodified

algorithm for generating tasks with a whole utilisation of m, then rescaling the

resulting tasks to a whole utilisation of U − Cmin/Tmin (with Tmin = 10ms being

the minimum possible period), and in the end summing up Cmin to all the obtained

computation times.

For all the possible combinations of parameters x, R and w specified above,

3 task sets have been generated. For each task set and considered scheduling and

allocation policy, an experiment of 60 seconds has been run.

3.4.4. Scheduling and Allocation

We compared two different classes of scheduling algorithms: fixed priority

scheduling, with priorities assigned according to Rate Monotonic (RM, i.e. in-

versely proportional to the tasks’ periods); Earliest Deadline First (EDF), where

the priority of a task’s instance is inversely proportional to its absolute deadline.

Using the SCHED DEADLINE scheduler, thanks to the CBS algorithm [AB98], the

absolute deadline of each task is automatically updated by the kernel at every

re-activation of the task, and set forward in time of one task period.

We also compared 3 different scheduling solutions: partitioned, clustered and

global scheduling.

The reason for considering a clustered allocation is related to the underlying

hardware architecture, in which different cores have non uniform access times to the

system memory hierarchy. For instance, if cores that share some level of cache are

placed in the same cluster, tasks running on them will likely find their working-set

warmer than when migrated on some other completely unrelated core. Moreover,

the interconnections between the various CPUs and the main memory banks of the

4More information is available at: http://retis.sssup.it/waters2010/tools.php.

http://retis.sssup.it/waters2010/tools.php
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system might entail different access latencies from a specific core to a specific set

of RAM addresses.

Therefore, on the AMDR 6168 eight clusters are considered, each containing

the cores that are physically placed on the same node, i.e., that share their L3

cache. This configuration is instantiated on Linux by means of cpusets, a feature

that makes it possible to create groups of processors and to confine tasks that

belong to the set to only migrate among those CPUs (i.e., the scheduling domain

with Linux terminology). Also, in the case of partitioned and clustered allocations,

the memory allocated by tasks is pinned to the memory banks associated with the

corresponding socket by using the same mechanism. Finally, partitioned scheduling

is achieved by setting the CPU affinity of the tasks.

When constraining the migration capability of the tasks, i.e., in clustering and

partitioning, tasks are assigned to cores so as to minimise the maximum total load

on each core or group of cores. The optimum configuration has been computed

off-line by solving an integer linear programming optimisation problem using the

GNU Linear Programming Toolkit (GLPK)5. This results in a load which is spread

as evenly as possible across the cores. However, for the partitioned scheduling

cases, due to the high number of tasks, it was not possible to solve such problem

optimally, but rather a maximum solving time of 960 seconds has been used, and

the best solution found in that time was used.

For each allocation algorithm, both EDF and RM scheduling strategies have

been considered, for a total of 6 different configurations (see Table 3.1 for easy

reference).

algo/type part. clust. glob.

EDF P-EDF C-EDF G-EDF

RM P-RM C-RM G-RM

Table 3.1. Algorithms vs. scheduling solutions: possible configurations.

3.4.5. Performance and Overhead Evaluation

The metrics against which the listed scheduling solutions are evaluated in this

work are the following (further summarized in Table 3.2):

• task migration rate, defined as the total number of migrations occurred

during a test divided by the number of tasks, provides an estimation of

how frequently a task migrated;

• task context switch rate, defined as the total number of context switches

occurred among all tasks during a test, divided by the number of tasks;

provides an estimate of how frequently a task was preempted;

5More information is available at: http://www.gnu.org/software/glpk/.

http://www.gnu.org/software/glpk/
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• normalised laxity, an estimation of how big the laxity of the various

tasks is, compared to the task period. For each job of each task, this is

given by the actual laxity (relative deadline minus response-time) divided

by the task period. The average of all the per-job values gives the nor-

malised laxity of the task, while the average among the laxity of all the

tasks in a task-set provides the normalised laxity for the task set;

• measured utilization, an estimation of the utilization as experimented

by running each task set. For each job of each task, this is given by

the actual execution time divided by the task period. The average of all

the per-job values gives the utilization of the task, while the sum of the

averages provides the measured utilization for the task set;

• L1 miss rate and L2 miss rate, defined as the total number of (L1 resp.

L2) cache misses experienced by a job divided by the overall execution time

of the job; similarly to the other metrics, per-task and per-set figures are

obtained as well.

The migration and context switch rates provide insightful information about

the overhead imposed by a scheduling algorithm on the system. The laxity is

representative of how precisely the actual behaviour of the tasks adheres with the

one that could have been expected, since it provides direct information about the

exhibited response-time of the tasks. We normalise the laxity to the period in order

to put it in relationship with the timing periodicity (and deadline) of the task.

Metric Abbreviation Definition

task migration rate Migr. Rate
migrations during a test

number of tasks

task context switch rate Cont. Switch Rate
context switches during a test

number of tasks

normalized laxity Norm. Laxity
relative deadline− resp. time

task period

measured utilization Exp. U
experimented exec. time

task period

L1 & L2 miss rate L1D(L2) Miss Rate
L1(L2) cache misses per job

job exec. time

Table 3.2. Evaluation metrics.

In addition to this, the duration (in clock cycles) of the main scheduling and

migration related functions is recorded, in order to compare the complexity of these

operations for the two algorithms in the various situations. These functions are the

following:

• enqueue task, which inserts a task that just activated (e.g., wake-up) in

the ready queue of a CPU;
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• dequeue task, which removes a task that just deactivated (e.g. sleep)

from the ready queue of a CPU;

• pull tasks, which picks ready but not running tasks from remote run-

queues if they could run on the calling CPU;

• push tasks, which tries to send ready tasks that are not running on the

calling CPU to some other CPU where they would execute.

The performance metrics are gathered by using standard time and timer-related

of the GNU C Library6, by the Hardware Performance Counters and related tools

and libraries7 Functions durations in cycles are obtained by directly instrumenting

the functions inside the kernel.

3.5. Experimental Results

Running all the tests took several days, and yielded to an extensive set of

experimental data. In this section, an excerpt of such data is reported. The full

obtained data set (4.3GB in compressed form) is available for download from: http:

//retis.sssup.it/people/jlelli/papers/JSS2012. Statistics come from the

results of running 3 different randomly generated task sets for each configuration

in terms of scheduler, allocation policy, number of tasks and their WSS.

For example, one of the 3 task sets generated in the case of U=0.6 and 96

tasks is reported in Figure 3.4. Each point corresponds to a task with period and

utilisation as read from the X and Y coordinates of the point. The higher density of

points for lower periods is due to the logarithmic generation of the random periods.
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Figure 3.4. One of the used task-sets with U=0.6 and 96 tasks.
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U L1D L2 L1D L2

WSS 16KB WSS 256KB

0.6 0.086 0.138 4.238 0.145

0.7 0.082 0.126 4.244 0.131

0.8 0.081 0.120 4.233 0.124

Table 3.3. Cache behaviour with tasks from the task-sets exe-

cuted in isolation.

3.5.1. Running Each Task Alone

First, each task of each set has been executed in isolation at real-time priority

(the exact real-time scheduling policy has no impact) in order to get its “reference”

behaviour in terms of execution time and minimum cache misses. The obtained

cache miss figures, averaged for all of the task sets, are reported in Table 3.3. The

experimental variation of all the parameters is practically null due to the execution

in isolation of each individual task, thus it has not been shown. As it can be seen,

the cache-miss rates decrease when increasing the utilisation. In fact, longer jobs

exhibit a better chance to access hot-cache data in their activations. The trends

are similar for both cases of 16KB and 256KB WSS values.

3.5.2. Impact of Scheduling

Now for each configuration all the tasks in the task-set have been deployed

concurrently on the platform. In the following, the focus is on the configurations

with a WSS of 16KB. In all the shown results, the performance of EDF based and

RM based policies are numerically and visually compared.

Table 3.4 reports the obtained normalised laxity, measured U , context switch

rate, and migration rate for the various configurations: global (top table), clustered

(middle table) and partitioned (bottom table) scheduling, both with EDF and RM

policies. Each row corresponds to a different configuration with a total utilisation

and number of tasks as indicated in the first two columns. The reported numbers

constitute the average and standard deviation of the obtained metrics of interest

averaged across all the tasks and the 3 task sets corresponding to each configuration.

First, we focus on how the computation times changed in the various cases,

then the performance of the various scheduling algorithms from the application

viewpoint.

Comparing the same configurations under EDF and RM, the obtained context

switches under EDF are lower than under RM, with a tendency to have slightly

lower average context switches at high overall utilisation (0.8). On the other hand,

6More information is available at: http://www.gnu.org/software/libc.
7More information at: http://en.wikipedia.org/wiki/Hardware_performance_

counter, http://icl.cs.utk.edu/papi/index.html and https://perf.wiki.kernel.

org.

http://www.gnu.org/software/libc
http://en.wikipedia.org/wiki/Hardware_performance_counter
http://en.wikipedia.org/wiki/Hardware_performance_counter
http://icl.cs.utk.edu/papi/index.html
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
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U # Norm. Laxity Exp. U Cont. Switch Rate Migr. Rate

0.6

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 0.637 ± 0.00 0.637 ± 0.00 0.714 ± 0.00 0.714 ± 0.00 7177.260 ± 204.66 7116.566 ± 320.55 1859.906 ± 43.87 1558.247 ± 62.43

144 0.742 ± 0.00 0.741 ± 0.01 0.755 ± 0.01 0.755 ± 0.01 6952.722 ± 351.99 6989.104 ± 205.90 2296.683 ± 182.73 1981.012 ± 225.60

192 0.790 ± 0.01 0.786 ± 0.01 0.806 ± 0.01 0.809 ± 0.01 7056.780 ± 297.99 7268.071 ± 297.61 3129.241 ± 132.60 2825.498 ± 289.64

0.7

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 0.586 ± 0.01 0.585 ± 0.01 0.813 ± 0.00 0.814 ± 0.00 6942.156 ± 207.28 7099.365 ± 220.57 2062.438 ± 136.11 1988.503 ± 136.62

144 0.703 ± 0.01 0.700 ± 0.01 0.856 ± 0.00 0.859 ± 0.00 6956.086 ± 82.72 7159.338 ± 97.04 3158.907 ± 83.59 2865.542 ± 154.45

192 0.756 ± 0.01 0.560 ± 0.12 0.903 ± 0.01 0.909 ± 0.01 6689.106 ± 103.68 7112.031 ± 205.73 4365.604 ± 604.26 4201.139 ± 384.19

0.8

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 0.408 ± 0.08 0.057 ± 0.27 0.919 ± 0.00 0.921 ± 0.00 7212.948 ± 78.86 7549.163 ± 79.46 3329.632 ± 37.64 3471.920 ± 42.39

144 0.246 ± 0.25 −1.277 ± 1.09 0.960 ± 0.01 0.964 ± 0.01 6447.051 ± 376.24 7209.424 ± 571.82 5261.287 ± 993.66 4944.606 ± 792.15

192 −17.268 ± 9.15 −10.330 ± 6.02 1.014 ± 0.01 1.016 ± 0.01 5879.139 ± 226.55 7146.064 ± 206.88 8088.148 ± 671.48 6886.774 ± 506.12

U # Norm. Laxity Exp. U Cont. Switch Rate Migr. Rate

0.6

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 0.658 ± 0.01 0.659 ± 0.01 0.656 ± 0.00 0.656 ± 0.00 6772.528 ± 131.22 6838.740 ± 194.84 1612.500 ± 57.60 1499.889 ± 61.64

144 0.752 ± 0.02 0.749 ± 0.02 0.695 ± 0.01 0.695 ± 0.01 6500.192 ± 356.20 6698.641 ± 374.65 2038.775 ± 108.98 2029.683 ± 218.87

192 0.791 ± 0.02 0.787 ± 0.02 0.744 ± 0.01 0.746 ± 0.01 6550.771 ± 339.06 6979.425 ± 331.32 2600.418 ± 242.83 2571.901 ± 275.62

0.7

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 0.604 ± 0.02 0.603 ± 0.02 0.750 ± 0.00 0.749 ± 0.00 6478.545 ± 254.34 6684.986 ± 213.21 1844.708 ± 129.20 1860.281 ± 116.97

144 0.706 ± 0.03 0.705 ± 0.02 0.792 ± 0.00 0.793 ± 0.00 6489.877 ± 302.18 6771.567 ± 248.40 2486.000 ± 98.06 2426.850 ± 86.98

192 0.750 ± 0.03 0.745 ± 0.03 0.838 ± 0.01 0.838 ± 0.01 6247.576 ± 86.31 6957.189 ± 127.15 2977.594 ± 160.47 3106.653 ± 148.02

0.8

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 0.427 ± 0.09 0.367 ± 0.11 0.850 ± 0.00 0.849 ± 0.00 6472.833 ± 156.42 7016.882 ± 119.31 2259.243 ± 40.09 2475.653 ± 14.71

144 0.642 ± 0.05 0.220 ± 0.27 0.889 ± 0.01 0.890 ± 0.01 6045.720 ± 473.54 6751.257 ± 585.09 2995.255 ± 330.74 3135.801 ± 364.48

192 −0.017 ± 0.45 −0.470 ± 0.69 0.935 ± 0.01 0.935 ± 0.01 5834.167 ± 187.69 6868.012 ± 336.15 3766.528 ± 319.98 4011.521 ± 371.34

U # Norm. Laxity Exp. U Cont. Switch Rate Migr. Rate

0.6

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 0.599 ± 0.04 0.598 ± 0.04 0.656 ± 0.00 0.656 ± 0.00 5895.493 ± 238.37 6246.983 ± 259.01 0.000 ± 0.00 0.000 ± 0.00

144 0.686 ± 0.05 0.684 ± 0.05 0.692 ± 0.01 0.693 ± 0.01 5575.343 ± 276.93 6006.002 ± 302.92 0.000 ± 0.00 0.000 ± 0.00

192 0.709 ± 0.06 0.707 ± 0.07 0.741 ± 0.01 0.741 ± 0.01 5560.694 ± 216.06 6132.670 ± 232.04 0.000 ± 0.00 0.000 ± 0.00

0.7

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 0.526 ± 0.05 0.525 ± 0.04 0.748 ± 0.00 0.748 ± 0.00 5464.538 ± 254.98 5882.622 ± 226.24 0.000 ± 0.00 0.000 ± 0.00

144 0.617 ± 0.07 0.613 ± 0.06 0.789 ± 0.00 0.789 ± 0.00 5373.111 ± 154.76 5943.572 ± 42.84 0.000 ± 0.00 0.000 ± 0.00

192 0.633 ± 0.08 0.476 ± 0.21 0.834 ± 0.01 0.834 ± 0.00 5319.613 ± 122.86 6023.090 ± 219.59 0.000 ± 0.00 0.000 ± 0.00

0.8

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 0.226 ± 0.19 −0.254 ± 0.42 0.847 ± 0.00 0.849 ± 0.00 5519.233 ± 167.03 6252.608 ± 67.19 0.000 ± 0.00 0.000 ± 0.00

144 0.537 ± 0.08 0.530 ± 0.07 0.885 ± 0.01 0.887 ± 0.01 5318.801 ± 417.72 5860.312 ± 431.40 0.000 ± 0.00 0.000 ± 0.00

192 −15.216 ± 8.93 −12.471 ± 6.76 0.929 ± 0.01 0.908 ± 0.03 4791.134 ± 184.04 5837.344 ± 170.43 0.000 ± 0.00 0.000 ± 0.00

Table 3.4. Statistics for the metrics of interest when

WSS=16KB, under various configurations: global (top table), clus-

tered (middle table) and partitioned (bottom table) scheduling,

both with EDF and RM policies.

the migration rates of EDF based policies are significantly higher than the ones of

RM based ones. However, the actual impact on the execution times of the tasks is

quite limited, as it can be observed by the experimental U measured (and averaged

over the 3 task sets available for each configuration) for EDF and RM based policies,

which are basically equivalent.

Comparing different configurations, the context switch rate decreases with the

load while, on the contrary, the migration rate increases (but decreases with the

WSS, not shown). Also, note that the average experimental utilisation increases
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when switching from partitioned to clustered and then to global policies, as expected

due to the presence of migrations. This is also confirmed when looking at the

average execution times obtained for the individual tasks. For example, Figure 3.5

shows the ratio among the execution times obtained with global, clustered and

partitioned EDF scheduling, for the task set with U = 0.6 and 96 tasks shown also

in Figure 3.4, in the two cases of 16KB and 256KB WSS. As it can be seen, in the

cases of small WSS, clustered policies succeed in keeping the workload inflation at

contained and negligible amounts, as compared to global strategies. However, as the

WSS increases, the differences among the cache-related overheads of clustered and

global scheduling tend to vanish. Working very close to the L2 cache boundary, it

is very likely that each task has to reload a large part of its WSS when it is released,

independently from the processor it starts running on.
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Figure 3.5. Execution times obtained for the various tasks (av-

eraged over the task activations) under C-EDF (plus signs) and

G-EDF (multiply signs) relative to the figures obtained under P-

EDF, in the cases of 16KB (top) and 256KB (bottom) WSS.

Now, let us observe how the various scheduler configurations impact the per-

formance as observable from within the applications themselves, i.e., let us focus

on the normalised laxity figures. The average figures obtained under EDF and RM

based policies are basically equivalent when the system load is low. This is due to

the fact that, when a task is favoured over another by the scheduler, then the former

will finish earlier and the latter will finish later, but when averaging figures this
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difference is lost. The situation is different reaching the top edge with respect to

utilisation (i.e., U = 0.8) and number of tasks. Both EDF and RM policies exhibit

negative average laxity (tardiness) with 192 tasks, but only RM policies see this be-

haviour with also 92 and 144 tasks. It is furthermore evident that clustered policies

come out to be better from this viewpoint, as slight negative values appear with

192 tasks only; moreover, C-EDF outperforms C-RM with higher average laxity

figures.

In addition, let us look at the whole set of obtained laxity values, under various

scheduling policies, looking at their cumulative distribution functions (CDF), first

for the whole task set, then focusing on a few specific ones. Figure 3.6 shows the

obtained curves when the laxity of all the tasks is considered. It is evident that

(top sub-figure) global and clustered strategies (both for EDF and RM, first and

second curves) differ in a negligible way from each other, and that they tend to

lead to generally higher laxity values (better performance) than partitioned ones

(last two curves). Also, no difference can be appreciated between EDF and RM

from this viewpoint. However, zooming the figure in the critical area near a null

laxity (when the tasks are close to miss their deadlines), the differences between

the three policy types are more evident, with still global policies better than the

others. However, partitioned EDF from this viewpoint performs much better than

partitioned RM, and it achieves a similar performance to both clustered policies.

This difference is due to the particular task set and the way it has been partitioned

(nearly optimally – see Section 3.4.4) across CPUs. Also, it can be observed that

there is a certain amount of jobs missing their deadlines. However, these are below

1% of the total jobs that have been executed, with the exception of P-RM that

stands slightly above this value.

Now let us focus on the tasks with minimum period (there were 2 such tasks in

the experiment with a 10ms period), which have the most critical timing require-

ments, and the ones with maximum periods (there was 1 single task with a 98ms

period), which most often are preempted by lower period tasks. Figure 3.7 shows

the obtained CDF curves when only considering the normalised laxity of these two

subsets of tasks. It can be seen that global and clustered policies perform better

than the partitioned ones, with RM-based policies providing an exceptionally good

performance to the minimum-period tasks (Figure 3.7 top) at the expense of the

maximum-period ones (Figure 3.7 bottom). These are served very badly by G-

RM, while G-EDF achieves a borderline acceptable performance with nearly 18%

of deadline misses. However, the reduced overheads of clustered policies (see also

Section 4.4.3) show up clearly in this case, where both C-EDF and C-RM manage

to perform quite well.
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Figure 3.6. CDF of the normalised laxity for all the tasks as ob-

tained under various scheduling policies, with U=0.8 and 96 tasks.

3.5.3. Working Set Size and Cache Behaviour

The impact of the WSS on the performance of the applications may be visually

compared by looking at Figure 3.8. It shows the laxity CDF curves achieved on

all the tasks for a WSS of 16KB (first two curves) and 256KB (last two curves),

zoomed in the critical area close to the deadline miss (null laxity), obtained in the

case of clustered EDF and RM scheduling, with U=0.8 and 96 tasks. Due to the

higher computation times experienced by tasks with a greater WSS, the achieved

laxity figures are correspondingly lower. In this plot, the difference between EDF

and RM policies cannot be appreciated (see comment on Figures 3.6 and 3.7 above).

In Table 3.5 (top), the number of cache misses for L1 and L2 caches are shown,

in the cases of global scheduling. They are higher than the case when tasks are run

in isolation (see Table 3.3), however still not so high. Also, the difference between

EDF and RM is negligible. In the middle sub-table, the figures for the cache misses

of the clustered policies are reported. The numbers are slightly greater than the case

of running the tasks in isolation, and very similar to the case of global scheduling

(top sub-table). In the bottom sub-table partitioned policies are shown. This time

the numbers are smaller than the global and clustered cases. This is due to the

absence of migrations.

As expected, the cache miss rate only marginally depends on the scheduling

algorithm. Rather, it has a strong dependency on the WSS, raising of one order of
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Figure 3.7. CDF of the normalised laxity for the minimum-

period (top) and maximum-period (bottom) tasks, under various

scheduling policies, with U=0.8 and 96 tasks.
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Figure 3.8. CDF of the obtained normalised laxity for clustered

EDF and RM policies with WSS of 16KB and 256KB, with U=0.8

and 96 tasks.

magnitude when switching from a WSS of 16KB to one of 256KB. From the 16KB

WSS tables, it might seem that clustering policies lead to higher cache miss rates

than global scheduling, which is counter-intuitive. However, the differences are

really small and sometimes within the variability range attested by the measured

standard deviation. Also, for the 256KB WSS cases, partitioned policies seem to

experience fewer cache misses than the others, but this is true for L1D cache miss
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U Algo. L1D Miss Rate L2 Miss Rate L1D Miss Rate L2 Miss Rate

WSS 16KB WSS 256KB

0.6
G-EDF 0.100 ± 0.02 0.085 ± 0.05 4.405 ± 0.04 0.163 ± 0.07

G-RM 0.099 ± 0.03 0.091 ± 0.05 4.392 ± 0.04 0.171 ± 0.07

0.7
G-EDF 0.101 ± 0.03 0.069 ± 0.04 4.421 ± 0.05 0.154 ± 0.06

G-RM 0.098 ± 0.03 0.072 ± 0.04 4.352 ± 0.04 0.157 ± 0.06

0.8
G-EDF 0.119 ± 0.05 0.056 ± 0.03 4.808 ± 0.07 0.169 ± 0.07

G-RM 0.103 ± 0.03 0.050 ± 0.02 4.344 ± 0.05 0.156 ± 0.05

U Algo. L1D Miss Rate L2 Miss Rate L1D Miss Rate L2 Miss Rate

WSS 16KB WSS 256KB

0.6
C-EDF 0.107 ± 0.03 0.101 ± 0.06 4.475 ± 0.04 0.173 ± 0.07

C-RM 0.107 ± 0.03 0.096 ± 0.05 4.467 ± 0.04 0.178 ± 0.07

0.7
C-EDF 0.104 ± 0.02 0.083 ± 0.05 4.479 ± 0.04 0.159 ± 0.06

C-RM 0.102 ± 0.02 0.079 ± 0.05 4.472 ± 0.04 0.165 ± 0.06

0.8
C-EDF 0.108 ± 0.03 0.064 ± 0.04 4.493 ± 0.05 0.153 ± 0.06

C-RM 0.105 ± 0.02 0.061 ± 0.03 4.464 ± 0.04 0.163 ± 0.05

U Algo. L1D Miss Rate L2 Miss Rate L1D Miss Rate L2 Miss Rate

WSS 16KB WSS 256KB

0.6
P-EDF 0.095 ± 0.02 0.060 ± 0.03 4.504 ± 0.03 0.125 ± 0.03

P-RM 0.093 ± 0.02 0.059 ± 0.03 4.505 ± 0.03 0.127 ± 0.03

0.7
P-EDF 0.090 ± 0.01 0.048 ± 0.02 4.529 ± 0.03 0.109 ± 0.02

P-RM 0.088 ± 0.01 0.048 ± 0.02 4.506 ± 0.03 0.116 ± 0.03

0.8
P-EDF 0.087 ± 0.01 0.038 ± 0.02 4.787 ± 0.03 0.104 ± 0.02

P-RM 0.088 ± 0.01 0.040 ± 0.02 4.502 ± 0.03 0.119 ± 0.03

Table 3.5. Cache related behaviour of global (top sub-table),

clustered (middle sub-table) and partitioned (bottom sub-table)

EDF and RM policies for various configurations (values are averages

of all the runs for each configuration) and WSS.

rates only. Since the WSS exceeds the L1D border, little can be said about the L1D

behaviour. Instead, partitioning policies lead to the lowest L2 cache miss rates as

expected.

3.5.4. Scheduling Overheads Comparison

In this paragraph, the scheduling overheads obtained under various policies are

compared, using the metrics described in Section 3.4.5

In Table 3.6, the overheads obtained in various configurations with a WSS of

16KB are reported. All numbers are expressed in clock cycles.

EDF based policies consistently present lower number of cycles than RM ones

for enqueue operations, while, on the contrary, this is true for the partitioned case

only for dequeue operations. The difference in performance is due to the completely

different data structures used in the two cases. Concerning the pull operations, in

the global and clustered scheduling cases the overheads of EDF are about twice or

three times the ones of RM, whilst in the partitioned cases they are both null. Note

that the small numbers shown as overheads of pull operations in the partitioned case

are due to the few migrations at the beginning of the experiment needed to deploy

the tasks over the assigned cores. Looking at the push operations, the overheads of
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U # Enqueue mean time Dequeue mean time Push mean time Pull mean time

0.6

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 4099 ± 104.1 4867 ± 72.3 4672 ± 370.0 4518 ± 32.6 13444 ± 952.6 13895 ± 192.8 13689 ± 3772 4905 ± 124.6

144 4147 ± 148.4 5298 ± 377.4 5158 ± 266.6 4719 ± 114.0 12637 ± 603.0 12310 ± 1018 30775 ± 4081 9143 ± 954.0

192 4078 ± 185.1 5304 ± 248.7 5803 ± 57.2 4740 ± 135.8 11938 ± 320.9 10705 ± 913.9 54308 ± 1236 15379 ± 1063

0.7

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 3977 ± 297.0 4810 ± 146.2 4304 ± 22.2 4183 ± 68.3 11836 ± 832.9 11743 ± 425.0 11299 ± 1398 6635 ± 859.9

144 3840 ± 56.2 5006 ± 356.1 5288 ± 39.3 4309 ± 56.1 9674 ± 495.2 9144 ± 460.1 35216 ± 3847 13480 ± 534.9

192 3740 ± 132.8 4985 ± 220.0 5833 ± 333.4 4239 ± 83.0 8469 ± 497.5 7610 ± 478.0 64636 ± 13444 23708 ± 2175

0.8

G-EDF G-RM G-EDF G-RM G-EDF G-RM G-EDF G-RM

96 3516 ± 108.6 4295 ± 174.1 4338 ± 221.8 3796 ± 16.8 7056 ± 299.3 7250 ± 175.5 15072 ± 2540 13278 ± 131.7

144 3367 ± 23.0 4391 ± 49.1 5317 ± 66.9 3896 ± 75.9 5428 ± 390.6 5917 ± 362.3 42396 ± 5308 24977 ± 2114

192 3420 ± 136.3 4531 ± 80.2 6172 ± 266.2 3965 ± 34.8 5830 ± 514.9 5872 ± 131.8 102436 ± 14741 40633 ± 2124

U # Enqueue mean time Dequeue mean time Push mean time Pull mean time

0.6

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 3857 ± 207.8 4961 ± 86.2 4531 ± 34.4 4552 ± 59.7 7388 ± 295.0 8840 ± 593.0 15726 ± 1143 11367 ± 1316

144 3742 ± 98.7 5006 ± 268.1 4920 ± 75.0 4523 ± 53.6 6154 ± 195.5 7442 ± 88.4 33045 ± 2679 19974 ± 2637

192 3864 ± 164.6 5056 ± 178.3 5465 ± 147.2 4533 ± 97.6 5271 ± 408.8 6631 ± 160.8 71980 ± 12418 31313 ± 6240

0.7

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 3519 ± 125.7 4568 ± 192.2 4388 ± 108.2 4292 ± 23.1 6074 ± 683.1 7356 ± 152.9 17161 ± 2258 15319 ± 1646

144 3592 ± 164.7 4487 ± 246.4 5102 ± 219.6 4185 ± 62.4 4837 ± 278.9 6712 ± 357.4 44885 ± 2780 24738 ± 1861

192 3658 ± 97.2 4925 ± 210.3 5576 ± 172.9 4377 ± 48.7 4022 ± 345.6 6144 ± 657.8 81507 ± 14115 40518 ± 2069

0.8

C-EDF C-RM C-EDF C-RM C-EDF C-RM C-EDF C-RM

96 3295 ± 34.1 4326 ± 99.5 4348 ± 127.6 3874 ± 70.8 4139 ± 217.4 6108 ± 149.2 20888 ± 1987 18963 ± 105.9

144 3310 ± 155.6 4375 ± 309.3 5001 ± 171.6 3981 ± 121.8 3066 ± 319.7 5667 ± 236.2 50546 ± 5266 33437 ± 2427

192 3384 ± 30.2 4616 ± 105.0 5563 ± 108.3 4095 ± 81.2 2382 ± 152.2 4821 ± 138.2 90440 ± 7631 52870 ± 3211

U # Enqueue mean time Dequeue mean time Push mean time Pull mean time

0.6

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 3159 ± 225.0 4347 ± 213.3 4089 ± 57.9 5309 ± 85.7 0.0 ± 0.0 0.0 ± 0.0 131.0 ± 2.5 168.6 ± 6.2

144 2956 ± 172.8 4106 ± 174.2 4094 ± 42.9 5397 ± 142.5 0.0 ± 0.0 0.0 ± 0.0 132.1 ± 3.2 124.2 ± 34.6

192 2751 ± 145.6 3997 ± 259.5 4014 ± 82.1 5375 ± 81.9 0.0 ± 0.0 0.0 ± 0.0 130.2 ± 7.9 121.1 ± 14.4

0.7

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 3471 ± 530.6 4025 ± 375.5 3990 ± 25.8 5251 ± 159.3 0.0 ± 0.0 0.0 ± 0.0 127.5 ± 4.5 151.1 ± 12.0

144 2541 ± 171.3 3898 ± 516.0 3962 ± 157.9 5372 ± 128.4 0.0 ± 0.0 0.0 ± 0.0 126.2 ± 9.6 124.8 ± 1.2

192 2363 ± 121.5 3375 ± 152.5 3879 ± 37.9 5352 ± 106.1 0.0 ± 0.0 0.0 ± 0.0 119.0 ± 3.7 103.6 ± 10.2

0.8

P-EDF P-RM P-EDF P-RM P-EDF P-RM P-EDF P-RM

96 2754 ± 143.4 3884 ± 140.8 3847 ± 84.3 5087 ± 63.3 0.0 ± 0.0 0.0 ± 0.0 126.9 ± 5.2 96.8 ± 8.4

144 2530 ± 29.6 3471 ± 143.4 3886 ± 44.9 5231 ± 115.4 0.0 ± 0.0 0.0 ± 0.0 115.9 ± 2.0 91.4 ± 11.1

192 2156 ± 112.6 3796 ± 536.2 3598 ± 43.5 4995 ± 88.0 0.0 ± 0.0 0.0 ± 0.0 109.1 ± 0.9 82.5 ± 2.7

Table 3.6. Scheduling and migration related function durations

(on average, in clock cycles) for global (top sub-table), clustered

(middle sub-table) and partitioned (bottom sub-table) EDF and RM

policies, in the case of WSS=16KB.

G-EDF and G-RM are comparable, while C-EDF exhibits less overhead numbers

than C-RM. These kind of results were expected, since in [?] only push operations

were addressed, making them efficient.

3.6. Conclusions

In this chapter, an experimental comparison of various multi-processor schedul-

ing algorithms has been performed by running synthetic workloads of real tasks on
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a Linux system. The performance of the various solutions has been evaluated under

diverse metrics and under multiple combinations of CPU utilisation and number of

tasks.

The experimental results lead to some interesting considerations. It appears

clear that global and clustered algorithms are a viable solution for multi-core plat-

forms with a high degree of cache sharing, mainly because the overhead caused

by migrations is not more costly than a “traditional” context switch. Partitioned

scheduling requires a potentially costly operation of allocation of tasks to cores,

and it may not manage to make use of the whole computing power available on a

system. On the other hand, global scheduling has the ability to perform automatic

load balancing dynamically at run-time, achieving better normalised laxity figures.

However, with a large number of cores, true global scheduling may lead to a growth

in overheads that needs to be kept under control, whilst clustered scheduling ap-

proaches may perform better thanks to their reduced overheads, especially when

the tasks have been properly/optimally partitioned across the clusters. Indeed, at

reduced sizes of the tasks WSS, clustered algorithms manage to keep applications

data in the cache shared among the cores in a cluster (if present), thus achieving

very little migration costs, as compared to what happens with global strategies.

However, the difference tends to vanish when the WSS grows.

It is important to compare our results with the ones in [BBA10a], where the

authors concluded that “G-EDF is never a suitable policy for hard RT systems”.

This may seem in conflict with our conclusions about the viability of global schedul-

ing for RT systems. First, the reader will notice that the former conclusions concern

hard real-time systems, where a formal assessment on the obtainable performance

(and existence of deadline misses) can only be obtained via proper schedulability

analysis techniques. On the other hand, our conclusions derive from observations

of the actual behaviour of the tasks as scheduled on a real OS over a certain time

horizon. In this regard, it is useful to observe that all of the task sets used in the

experiments shown in our comparison have been found as non-schedulable accord-

ing to one [BC07] of the tests for G-EDF which is known to be among the best

known [BB10]. Second, it was not possible to set-up an experiment exactly identi-

cal to the one(s) in [BBA10a], due to the unavailability of the whole used data set

(task WCETs, periods and clusters/partitions). Third, the analysis in [BBA10a]

relies on the weighted schedulability, computed over task-sets with heterogeneous

overall utilisation, obtained as a weighted average of the percentages of schedulable

task-sets, obtained using the utilisation itself as weight. This metric was not mean-

ingful in our context, because we were not interested in schedulability as assessed

by a conservative analysis technique, but rather in the soft real-time performance as

observed from the running system. On a related note, all of the task sets we consid-

ered were not schedulable by G-EDF, as stated above. Finally, another difficulty in
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comparing the two approaches is due to the differences in the actual task body and

in the underlying physical platform, which cause differences in the cache behaviour

of the tasks when deployed on the various cores under the various configurations.

As a further remark, in both cases the conclusions cannot be considered abso-

lutely generic, because they derive from the use of a limited number of randomly

generated task sets.

In view of complete transparency, we have to state it clear that it was not pos-

sible (for practical reasons) to run the task sets till the hyper-period (even though

the experiments duration was tuned so as to allow for a number of activations of

each task between 600 and 6000, depending on their periods). Therefore, the re-

ported measurements are referred to a limited observation horizon over each task-set

schedule, and cannot be considered to be completely exhaustive of each and every

possible foreseeable behaviour under the considered scheduling algorithms. Still,

we believe the results reported in this chapter are very useful for soft real-time sys-

tems, where the main focus in on how applications may behave most of the times,

and the actual worst-case that may show up once in a while may merely lead to

temporary degradations of the provided service that can be easily tolerated by the

system (and final users).

The implementation of G-EDF used to perform the evaluation presents accept-

able overhead figures in terms of durations of the scheduling functions, being com-

parable with the corresponding ones present in the standard fixed priority scheduler

of the Linux kernel. The performed evaluation highlights that such overheads grow

anyway with the number of cores over which one is globally scheduling. Clustered

policies lead to most of the benefits of global ones, and they can actually perform

better thanks to the reduced overhead figures, posing the foundations for scalability

of the technique to a high number of cores. The cost to pay is again the need for

allocating tasks to clusters. However, such problem comes in a much more reduced

form than the one of allocating to cores.





CHAPTER 4

Resource Reservation & Shared Resources on

SMP

4.1. Introduction

In the previous chapters we detailed about our implementation of a resource

reservation mechamism that can be used to provide timeliness guarantees to non-

interacting real-time activities. In this chapter we start deadling with problems

that arise when concurrent real-time task interacts using shared data. In this case,

priority inheritance mechanims permit the donation of priorities between inter-

acting tasks, thus allowing runtime guarantees to be provided to groups of tasks

sharing data in mutual exclusion. Unfortunately, resource reservation mechanisms

are incompatible with classical resource access protocols like priority inheritance.

This has been shown in [LLA04]: if the budget is exhausted while the thread is

executing inside a critical section, the priority inversion of blocked tasks can grow

arbitrarily large. The authors proposed an extension of the priority inheritance

protocol, called Bandwidth Inheritance BWI [LLA04], in which the thread that

holds the lock inherits not only the priority but also the budget of the blocked tasks.

The protocol has recently been extended to multi-processor systems, thus becoming

the Multi-processor Bandwidth Inheritance (M-BWI) protocol [FLC12], and it has

been implemented in LITMUS-RT [LIT], a research-oriented OS designed to make

it easy to implement and evaluate new scheduling policies. However, LITMUS-RT

is not particularly optimized for use in production systems, and it is not up-to-date

with respect to current Linux OS releases.

In this Chapter we detail about an implementation of the M-BWI protocol

in Linux patched with SCHED DEADLINE. We explain the architecture and the

practical aspects of our implementation. Also, we present the problems that we

encountered, and a few solutions to them. Finally, we present the evaluation of the

overhead introduced by the protocol.

4.2. State of the art

4.2.1. Model of a critical section

Tasks can access shared memory using mutually exclusive semaphores, often

referred to as mutexes. The portion of code in a task between a lock and an unlock

73
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operation on a mutex is called critical section. If a task needs to enter a critical

section, it may be blocked by the fact that another task has already locked the

corresponding mutex: this latter task is called lock owner, or lock holder. In real-

time systems it is important to compute for how long, in the worst case, a task may

remain blocked on a lock.

A priority inversion happens when a task is blocked by a low priority task.

Without a proper protocol to control access to critical sections, the duration of the

priority inversion may become too long, or even unbounded; for this reason, the

priority inheritance protocol (PIP) [SRL90] has been proposed as a simple and

effective way to reduce priority inversion. According to the PIP, when a task is

blocked on a lock, the lock owner inherits the highest between its priority and the

priorities of the blocked tasks. In this way, it cannot be preempted by medium

priority tasks, thus reducing the blocking time.

Other protocols have been proposed as improvements over the PIP, notably the

priority ceiling protocol [GS88], and the stack resource policy [Bak91]. However,

as we will briefly discuss in the following, such protocols are not adequate for use

in open systems.

4.2.2. Admission Control

We recall from Section 1.3.1 that one example of admission control test for

the EDF+CBS algorithm on single processor systems consists in checking that the

total required bandwidth does not exceed the available bandwidth: in formula,∑
i
Qi

Pi
≤ 1.

When considering also mutex semaphores and critical sections, the analysis

becomes more complex, as it is now necessary to compute the maximum blocking

time for each task. To compute the maximum blocking time, it is necessary to

know the duration of the critical sections of all the tasks in the system. Once the

blocking time has been computed, an example of admission control test for EDF is

the following

∀i,
∑

Dj≤Di

Qj
Pj

+
Bi
Pi
≤ 1.

In an open system like Linux, however, it is not possible to ask the user to

specify too many detailed information on every task, otherwise the system becomes

too difficult to use and manage. In fact, typically in a open system tasks with

different levels of criticality may coexist, and asking detailed and precise information

on non-critical task may make the job of the developer/user too difficult. Also,

notice that an error in the specification of the blocking times may compromise the

schedulability of the whole system (i.e., any task can miss its deadline).
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Figure 4.1. A task exhaust its budget while in a critical section,

thus increasing the blocking time of another task.

4.2.3. Combining resource reservations and critical sections

When trying to combine resource reservations with a resource access protocol,

we need to solve two problems. The first problem is concerned with how to take

into account blocking time in the admission control formula, as described in the

previous section.

The second problem is concerned with handling the situation that occurs when a

task is in a critical section and its budget is exhausted. In that case, the scheduler

algorithm throttles the task (i.e., suspends it) until the next period, when the

budget is recharged to its maximum value. However, another task blocked on the

semaphore must also wait for the budget to recharge. Therefore, the worst case

blocking time may become very large.

An example of such situation is depicted in Figure 4.1, where task τ1 suffers

a long blocking time from τ3 whose budget is exhausted at time t = 4 while in a

critical section on mutex M.

We want to avoid this problem. At the same time, we would like to avoid

the necessity to compute the blocking time of non critical tasks, and maintain the

useful property of temporal isolation. So, the goals for our resource access protocol

are the following

(1) We shall not require the user to specify any parameter to run the task,

other that the desired budget and period (Q,P );

(2) Temporal protection: the performance of a task (i.e., its ability to meet

its deadline) shall depend only on its parameters (Q,P ), on its worst-case

execution time and period, and on the duration of the critical sections of

the tasks with which it interacts;

(3) If we do know the worst-case execution times (and duration of critical

sections) of the task and of all interacting tasks, it must be possible to

compute (Q,P ) such that the task will meet its deadline;
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(4) We want to do this on multi-core systems as well.

4.2.4. Interacting tasks

What do we mean with interacting tasks? In the simplest case, we say that two

tasks interact when they access a critical section with the same mutex. However,

since critical sections can be nested within each other, the general case is a little

more complex.

A blocking chain from a task τi to a task τj is a sequence of alternating tasks

and semaphores:

Hi,j = {τi → Ri,1 → τi,1 → Ri,2 → . . .→ Ri,ν → τj}

such that τj is the lock owner on semaphore Ri,ν and τi is blocked on Ri,1. As an

example, consider the blocking chain H1,3 = {τ1 → R1 → τ2 → R2 → τ3}, in which

τ3 accesses R2, τ2 accesses R2 with a cs nested inside cs on R1, τ1 accesses R1.

We say that a task τj interferes with task τi only if a blocking chain from τi

to τj exists. We say that task τi is independent of, or temporally isolated from τj

when there exist no blocking chain from τi to τj . We would like to maintain the

temporal isolation property:

The ability of a task to meet its deadlines depends only on its

worst-case computation time and arrival pattern, its assigned

budget and period, and the duration of the critical sections in

the blocking chains starting from τi.

4.2.5. The M-BWI protocol

We informally describe here the rules of the algorithm. A more complete and

detailed description can be found in [FLC12].

• When a task is blocked on a mutex we have several cases:

– if the lock-owner is itself blocked, the blocking chain is followed until

a non-blocked lock-owner is found;

– if the lock-owner is executing on another processor, the blocking task

actively waits for the lock owner to release the mutex;

– if the lock-owner is not executing, then it inherits the budget and

scheduling deadline of the blocked task.

• Therefore, when holding the lock on a mutex, a task can have a list of

pairs (budget,deadline) that it can use; it will always execute consuming

the budget of the earliest deadline pair.

• When a task releases the mutex, it will discard the pairs of (budget,deadline)

of the blocked tasks from its list.

Rather than going through a formal analysis of the protocol, we will present

here one example that demonstrate how the protocol works. In Figure 4.2 we show

the schedule produced by three tasks scheduled on 2 processors with migration. All
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Figure 4.2. Example of M-BWI: τA, τB , τC , executed on 2 pro-

cessors, that access only mutex M1.

of them access the same mutex M1. At time t = 5 tasks τA and τB are executing on

the two processors, and task τC is the lock-owner but it is not executing. At time

t = 6 τB attempts to lock the mutex, so τC is woken up and inherits the budget

and the deadline of τB , while this is blocked. At time t = 9 also τA attempts to

lock the mutex, and since the lock owner is already executing on another processor,

it starts a spin loop actively waiting for the mutex to be unlocked. At time t = 14

τC releases the lock, and the protocol uses a FIFO policy to wake up blocked tasks,

so it wakes up τB . Finally, when at time t = 18 τB also releases the lock, τA stops

its active waiting and starts to execute its critical section.

Given a task τi, the total amount of time that other tasks execute consuming

the budget Qi and that τi must actively wait for a lock release, is called interference

time Ii. It is possible to compute an upper bound to the interference Ii by analyzing

all blocking chains starting from τi. In the general case of nested critical sections,

the algorithm is rather complex; we remand the interested reader to [FLC12] for

more information.

The algorithm has two important properties:

• It guarantees temporal isolation: a task cannot receive interference

from independent tasks;

• It is possible to compute an upper bound on interference, therefore it is

possible to assign the budget Qi to a task such that it will meets all its

deadlines.

4.3. Implementation

Our implementation consists of about 300 lines of codes applied on top of

Linux 3.10-rc1, with SCHED DEADLINE Version 8. Besides SCHED DEADLINE,

the work presented here is strongly based on Linux’s current implementation of

the Priority Inheritance (PI) algorithm. For this reason, we first proceed with a
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(incomplete) review of Linux’s PI design and implementation 1, and then with the

detailed description of our contribution. The reader which already knows about

Linux’s PI infrastructure may want to skip the next subsection.

The terms task and process are used interchangeably in the rest of the docu-

ment.

4.3.1. Priority Inheritance in Linux

Basic structures

In the following discussion, we will be adopting the following terminology:

Mutex.: A mutex semaphore which is shared by the processes and by which

processes may interact and synchronize. The mutex structure contains a

pointer to the owner of the mutex. If the mutex is not owned, this pointer

is set to NULL.2

PI chain.: It is the same as the blocking chain defined in Section 4.2.4, i.e.

an alternating series of mutexes and processes such that each process in

the chain is blocked on the next mutex in the chain (if any), and it is

the owner the previous one in the chain (if any). The PI chain causes

processes to inherit priorities from a previous process that is blocked on

some of its mutexes.

Lock.: A spin-lock that is used to protect parts of the PI algorithm. These

locks disable preemption on uni-processors and prevent multiple CPUs

from entering critical sections simultaneously on SMPs.

Waiter.: A structure, stored on the stack of a blocked task, that holds a

pointer to the process, as well as the mutex that the task is blocked on.

It also contains the node structures to place the task in the right place

within the PI chains. More on this below.

Top waiter: The highest priority process waiting on a mutex.

Top PI waiter: The highest priority process waiting on one of the mutexes

that a specific process owns.

Since a process may own more than one mutex, but can never be blocked on more

than one, PI chains can merge at processes. Also, since a mutex may have more

than one process blocked on it, but never be owned by more than one, we can have

multiple chains merge on mutexes.3

In order to store the PI chains, Linux adopts two priority-sorted linked lists:

1Documentation/rt-mutex-design.txt
2Linux actually implements a more involved mechanism that considers “Pending Own-

ership” and “Lock Stealing”.
3The maximum depth of the PI chain is not dynamic and can actually be defined by

an static analysis of the code.
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Waiter list.: Every mutex keeps track of all the waiters that are blocked on

it by storing them in its waiter list. This list is protected by a lock called

wait lock. Since no modification of the waiter list is done in an interrupt

context, the wait lock can be taken without disabling interrupts.

PI list: Each process stores the top waiters of the mutexes that are owned

by the process in its PI list. Note that, in general, this list does not hold

all the waiters that are blocked on these mutexes. The list is protected by

a lock called PI lock. This lock may also be taken in interrupt context, so

when locking the PI lock, interrupts must be disabled.

The top of the task’s PI list is always the highest priority task that is waiting on

a mutex that is owned by the task. So if the task has inherited a priority, it will

always be the priority of the task that is at the top of this list.

Priority adjustments

In the implementation of the priority inheritance protocol, there are several

different locations in the code where a process must adjust its priority. With the

help of the PI list it is rather easy to know what need to be adjusted; we now

describe in more detail the main functions involved in this process.

The function that is responsible for adjusting the priority of a given task is

__rt_mutex_ adjust_prio. The function first obtains the priority that the task

should have, that is either the task’s own normal priority, or the priority of a

higher priority process that is waiting on a mutex owned by the task. By the above

discussion, this is simply a matter of comparing the priority of the top PI waiter’s

with the task’s normal priority. The function then examines the result, and if this

does not match the task’s current priority, the task’s scheduling class methods are

called to implement the actual change in priority.

Note that __rt_mutex_adjust_prio can either increase or decrease the priority

of the task. In the case that a higher priority process has just blocked on a mutex

owned by the task, the function would increase (or boost) the task’s priority. But

if a higher priority task were for some reason to leave the mutex (e.g., timeout or

signal), this same function would decrease (or unboost) the priority of the task.

This is because the PI list always contains the highest priority task that is waiting

on a mutex owned by the task.

When the function __rt_mutex_adjust_prio is performed on a task, the nodes

of the task’s waiter are not updated with the new priority, therefore this task may

not be in the proper locations in the waiter list of the mutex the task is blocked on

and in the PI list of the corresponding owner. The function rt mutex adjust prio

chain solves all this: it walks along the PI chain originating from the task, and

updates nodes and priorities of each process it finds.

The PI chain walk can be a time-consuming operation; for this reason, rt mutex

adjust prio chain not only defines a maximum lock depth, but it also only holds
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at most two different locks at a time, as it walks the PI chain (this means that the

state of the PI chain can change while in rt_mutex_adjust_prio_chain). When

the function is called no locks is held. Then, roughly, a loop is entered where:

(1) the PI lock of the task is taken to prevent more changes to its PI list;

(2) if the task is not blocked on a mutex, the loop is exited (we are at the top

of the PI chain); otherwise the wait lock of the mutex is taken to update

the task’s node location in the wait list;

(3) the PI lock of the task is released, and the PI lock of the mutex’s owner is

taken to update the task’s node location in the PI list of the new process;

(4) the PI lock of the previous owner and the wait lock of the mutex are

released; a new iteration of the loop is started where the previous owner

will be the next task to be processed.

4.3.2. The implementation of M-BWI

The majority of our modifications (and of the difficulties we found, see be-

low) consists in the integration of the SCHED DEADLINE patch described in Sec-

tion 2.2, with Linux’s PI infrastructure described in Section 4.3.1. Indeed, at this

time SCHED DEADLINE only implements an approximated version of deadline-

inheritance, in which the relative deadlines of the tasks are inherited but without

control on the corresponding bandwidths; on the other hand, the implementation

of PI was designed and optimized for fixed-priority tasks, hypothesis which can not

be assumed for tasks scheduled with SCHED DEADLINE policy.

In the course of our work, we have tried to keep at the minimum the modi-

fications to original data structures in Linux and in SCHED DEADLINE, and to

maintain the original functions’ semantics. For these reasons, our implementation

deviates from the original M-BWI protocol as described in section 4.2.5, in that it

does not consider tasks busy-waiting: like for PI, a lock-holding task inherits the

scheduling parameters of a blocked task, either if the lock-holding task is executing

or not.

Structures

As mentioned in section 4.3.1, Linux implements the waiter and the PI lists

using priority-sorted linked lists. These are linked lists suitable to sort processes

with fixed priorities; unlike ordinary lists, the head of this list is a different element

than the nodes of the list. On the other hand, the version of deadline-inheritance

which comes with SCHED DEADLINE replaces these priority-sorted linked lists

with red-black trees ordered by (absolute) deadline.

Our implementation adopts these structures to store chains of tasks and mu-

texes (that we will continue to call PI chains) so that it can keep the list of servers

that a task can inherit sorted accordingly. By caching the left-most node of the
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tree, it takes O(1) to retrieve the highest priority (earliest deadline) task in the list,

as for Linux’s priority-sorted linked-lists.

A pointer of type sched_dl_entity (the scheduling entity for SCHED DEAD-

LINE task) has been added to each sched_dl_entity structure. This pointer,

named bwi, is required to store the effective scheduling parameters (deadline and

capacity) of a SCHED DEADLINE task, and it will point either to the task’s de-

fault scheduling entity or, if a waiter with earlier deadline exists in the task’s PI

list, to the scheduling entity of the task’s top PI waiter. In either cases, we will

called the scheduling entity pointed by bwi the inherited scheduling entity or the

inherited server.

We note that this terminology is not completely consistent with the one in

[LLA01], even if the net result is the same. In the original presentation, each

process “inherits” all the servers in its PI list, and it can execute in any of them;

the CBS algorithm will then select the server (and the only runnable task within

the server) with the earliest deadline. For the scope of this document, the inherited

server, or the inherited scheduling parameters, will be this last. The difference in the

terminology is mainly due to the fact that nor Linux neither SCHED DEADLINE

provide us with a server structure, and to the fact that SCHED DEADLINE stores

the server parameters in the scheduling entity of the task.

Functions

Linux resorts to the PI’s logic (priority adjustments and chain walks) each

time an event occurs that can possibly result in a PI chain modification. Common

examples are the blocking of a task on a mutex, the release of a mutex, or the

explicit call to a system call that can modify the priority and the scheduling class

of a task (sched_setscheduler, sched_setparam). This remains true in the case

of M-BWI for SCHED DEADLINE tasks: priority adjustments and chain walks

are necessary when the CBS algorithm modifies the deadline of a server (i.e., at

capacity replenishments and and deadline updates).

For this reason, our implementation modifies the method enqueue_task of the

SCHED DEADLINE scheduling class, where updates and replenishments can hap-

pen, in order to fire those adjustments. Even if the logic of the chain walks and the

priority adjustments remains similar to the one in Linux’s PI, these modifications

presented a few challenges.

IRQ safety. As mentioned in section 4.3.1, Linux does not disable interrupts before

taking wait locks, because it never modifies the waiter lists in interrupt context.

This is not true for SCHED DEADLINE tasks under M-BWI, since replenishments

do happen in timers interrupt context.

To solve this issue, our implementation disable interrupts before entering the

corresponding critical section and re-enable them after after leaving that. Since not
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all the critical section are within the scope of a functions, it was necessary to add

a field in the mutex structure, in order to store the status of the interrupts.

Wake-ups in chain walks. Consider the chain Ri → τi and the arrival of a new

task τj that blocks on Ri:

τj → Ri → τi.

Linux begins updating this chain starting from τj . As described in section 4.3.1,

τj ’s PI lock is taken to prevent additional modification to its PI list. Due to the

fine-grained locking mechanism, nothing prevents τi from releasing the mutex a this

time; suppose this is the case. Then, in the previous chain walk, Ri’s wait lock is

taken to insert τj ’s waiter structure in Ri’s wait list, and τj ’s PI lock is released.

Since Ri has no owners at this time, the chain walk needs to be interrupted and τj ,

Ri’s top waiter, woken up (i.e., enqueue back to its run-queue). Finally, after the

updating of τj scheduling parameters, the enqueue could fire a second chain walk

starting from τj , generating a deadlock on Ri’s wait lock.

Our implementation detects this situation from the status of the task to be

enqueued: if the task is waking up, the enqueue will only pursue the updating on

the task’s deadline and capacity (if needed), without firing a (useless) chain walk.

Concurrent chain walks. The triggering of chain walks and of the corresponding

priority adjustments during the enqueuing of a task, may generate other deadlock

situations, in case of concurrent chain walks. This is due to the fact that the method

enqueue_task of any Linux’s scheduling class must hold the PI lock of the task that

it is to be enqueued, and the run-queue’s lock (the run-queue in which we are going

to enqueue the task, nested inside the task’s PI lock). Our implementation does

not break these rules, because releasing any of these locks would have inevitably

changed the semantics of the method.

To see the problem, consider a situation similar to the one above, in which

a task τi is executing in the server inherited from τj (that is, τj has an earlier

deadline than τi and τj is blocked on a mutex Ri owned by τi). In this situation,

τi consumes τj ’s capacity and a replenishment is required when τi depletes it: in

the enqueue_task (of task τi) the chain from τj is walked (τi had its scheduling

parameters modified). In this case, the arrival of a new task τk blocking on Ri will

fire a second chain walk:

τj → Ri → τi

↗
τk

that can deadlock with the first:

• (in the chain from τj) τi and τj ’s PI locks held, take Ri’s wait lock;

• (in the chain from τk) Ri’s wait lock held, take τi’s PI lock.

There are several solutions to this problem. The simplest, even if not the most

rigorous one, is probably to detect the contention on one of these locks, and to just
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give up after a certain number of retries. This is the solution that we adopted in our

implementation, where we allow the chain walk in the enqueue to fail, eventually.

Clearly, any correct solution will need to modify either the locking order (e.g., by

releasing τi’s PI lock, and so the run-queue’s lock) or the locking granularity in the

chain walk (e.g., by using a single lock per chain).

As already mentioned, our implementation modifies all the methods of the

SCHED DEADLINE class to use the effective scheduling parameters of the task.

In particular, the method update_curr_task, where the execution of the current

server is accounted to its capacity, now acts on the inherited server (if any). Also,

the functions push_dl_task, pull_dl_task, and the methods of the cpudl heap

structure have been modified to act on the inherited server (if any), so that global

scheduling for SCHED DEADLINE is available in SMPs ( [LLFC11], see section

4.3.3).

4.3.3. Issues with clustered scheduling

In order to improve schedulability in multi-core systems, the Linux kernel pro-

vides a mechanism to set an affinity mask defining on which CPUs each task could

execute. This approach improves performances by using application-specific infor-

mation like the pattern of cache accesses or the use of specific devices. Recently,

in [GCB13] has been demonstrated that job-level scheduling algorithms based on

arbitrary processor affinity (APA) outperforms global, clustered, and partitioned

approaches. However, integrate affinities inside the M-BWI protocol is not straight-

forward because is not yet clear what happens when a lock owner inherits the

affinities of a blocked task.

Inheriting only the bandwidth and not the affinity from a blocked task could

jeopardize the temporal isolation, as shown in Figure 4.3. In this case, tasks τ1 and

τ3 can execute only on CPU0 while τ2 is assigned exclusively to CPU1. At time

t = 2, task τ2 blocks on the mutex owned by τ1, which inherits the bandwidth and

the deadline continuing its execution on CPU0. When task τ3 arrives at time t = 3

it cannot preempt τ1 because of job priorities (d2 < d3 < d1), but τ2 has not been

considered in the schedulability analysis of CPU0 thus leading to a deadline miss

in t = 11.

Inheriting the affinity mask together with deadline and buffer is not enough to

solve the problem, as shown by the example described in Figure 4.4 where tasks

τ1 can execute only on CPU0 while τ2 and τ3 are assigned exclusively to CPU1.

At time t = 2, task τ2 tries to acquire the lock owned by τ1 which consequently

migrates from CPU0 to CPU1. When the task τ3 is activates at time t = 3 it

preempts τ1 which cannot execute till t = 7 even if its originally assigned CPU is

idle, generating a deadmiss for task τ2.

The above examples show that our implementation of M-BWI (and similarly,

Linux’s implementation of PI) does not extend to the case of clustered scheduling.
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Figure 4.3. Deadline miss caused by a task inheriting bandwidth

and deadline but not affinity from a blocked task.

Figure 4.4. Deadline miss caused by a task inheriting both band-

width and affinity from a blocked task.
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Brandenburg [Bra13], proposed the Migratory Priority Inheritance protocol for

clustered scheduling, and proved results of its optimality in terms of maximum PI-

blocking for Job-Level-Fixed-Priority scheduling (JLFP). Under migratory priority

inheritance, whenever a job J is not scheduled (but ready) and there exists a job

Ji waiting for J to release a resource such that Ji is eligible to be scheduled in its

assigned cluster, J migrates to Ji’s cluster (if necessary) and assumes Ji’s priority.

The idea is that jobs should inherit (both the priority and the affinity mask) only

when they “have to”. However it is not yet clear how to extend this idea to the

not-JLFP context, and how to implement it within the Linux kernel.

4.4. Evaluation

4.4.1. Experimental setup

We ran experiments on an Intel®Core2™ quad-core machine (Q6600) with

4GB of RAM and running at 2.4GHz.

Runtime validation consisted of executing two synthetic benchmarks. The first

implements a simple situation in which two tasks share a resource protected by

a mutex, and a third one, independent from the other two, is periodically acti-

vated to check if the inheritance mechanism works. The second executes a similar

configuration on an SMP system.

Runtime overheads were instead measured running another benchmark, called

(rt-app4). Using this application we simulated a real-time periodic load consisting

of multiple SCHED DEADLINE threads sharing resources protected by mutexes.

4.4.2. Runtime validation

We performed simple tests to validate the implementation. In the first test two

threads are run that operate on the same mutex (denoted as A). A third thread has

nothing to do with the first two, its only intent is to demonstrate that the M-BWI

mechanism (when enabled) works properly. All threads are restricted to execute

on the same CPU.

Figure 4.5 shows a visual representation5 of a run when M-BWI mechanism is

disabled. Threads τ1 and τ3 share a resource for which mutual exclusion is achieved

through the use of a mutex. Both threads are periodic with periods of 24ms and

72ms respectively (deadline are set equal to periods). τ1 executes entirely inside

the critical section for 8ms every period, τ3 has an execution time of 24ms of which

20ms are spent inside the critical section. τ2 has no critical section and executes for

8ms every 24ms. Thread τ3 is the first to be activated, after a while it acquires the

4https://github.com/gbagnoli/rt-app
5Execution diagrams in this section are created through the KernelShark

(https://lwn.net/Articles/425583/) utility from execution traces extracted from the kernel

via ftrace (Documentation/trace/ftrace.txt).
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Figure 4.5. Two task (τ1 and τ3) sharing one resource (protected

by a normal mutex). A third independent task (τ2) arrives and

preempts τ3 even if τ1’s server has higher priority than τ2’s.
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Rep(S1)

Figure 4.6. Two task (τ1 and τ3) sharing one resource (protected

by a M-BWI-enabled mutex). A third independent task (τ2) has

to wait τ1’s server replenishment event to start executing.

mutex (L(A) in the figure). Then τ1 is woken up, it tries to lock the same mutex

and blocks on A queue, waiting for τ3 to release it. Since it has a shorter deadline

than τ3, when τ2 is activated it preempts τ3 causing unexpected delay inside the

critical section. τ3 can only resume its execution once τ2’s job has finished. When

τ3 releases the mutex (U(A)) τ1 executes inside the critical section and then both

threads’ jobs complete.

The same configuration is executed with M-BWI mechanism enabled, as de-

picted in Figure 4.6. In this case, when τ1 is activated and blocks on mutex A,

τ3 can start executing in τ1’s server (highest priority server among τ3 waiters),

as highlighted with a darker blue shade in the figure. Since τ3 has inherited also

τ1’s deadline, when τ2 arrives it doesn’t immediately preempt τ3. Mutex owner

is actually preempted only when τ1’s server budget is exhausted and its deadline

postponed (τ2’s deadline becoming the earliest), event Rep(S1) in the figure. After

that the execution proceeds like in the previous situation.

The second test is performed on a 2 CPUs system. Two tasks (τ1 and τ3)

share a resource protected by a M-BWI-enabled mutex A (we omit the standard

case for brevity) and are free to execute on every CPU. Other two tasks (τ2 and τ4)

are pinned each one on a different CPU and are independent from the others and

between themselves (they are thought to create interference). Figure 4.7 zooms

in a particular execution window. A job of task τ3 arrives on CPU1 and gets

scheduled, τ3 acquires mutex A and enters the critical section. A few instants after

a job of τ1 arrives, τ1 tries to acquire mutex A and blocks, donating its server to τ3.

The interesting part comes when τ4 is activated. Having an earliest deadline than

τ3’s original one, τ4 should have preempted it, but its execution is delayed until τ3
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Figure 4.7. System with two CPUs. Two task (τ1 and τ3) sharing

one resource (protected by a M-BWI-enabled mutex). Other two

independent tasks (τ2 and τ4) are pinned each one on a different

CPU.

releases mutex A and is consequently deboosted. After this instant of time execution

continues with original parameters. Without the M-BWI mechanism working τ3

would have been preempted inside the critical section by τ4, delaying τ1 execution.

4.4.3. Overheads measurements

We measured runtime overheads comparing execution of the same benchmark

with the M-BWI mechanism activated, with simple deadline inheritance, and against

the stock fixed priority Linux scheduler. Similarly to Brandenburg’s evaluation

[Bra13] evaluation, we launched on each core four tasks with periods 1ms, 25ms,

100ms, 1000ms and execution times of 0.1ms, 2ms, 15ms, 600ms. The one-

millisecond tasks did not access any shared resources. All other tasks shared the

same lock (one lock for each core) with an associated maximum critical section

length of 1ms, and each of their jobs acquired the lock once.

We ran the task set once using the stock Linux scheduler (SCHED FIFO with

priority inheritance enabled, called pi in what follows), once using the original

SCHED DEADLINE implementation (deadline inheritance, dl) and once with the

M-BWI mechanism enabled (bwi), for 60 seconds each. Although the same task

sets can be run with priority inheritance mechanisms turned off, we don’t report

results coming from that configurations here as they are hardy comparable to cases

when priority inheritance (or M-BWI) is enabled. In fact, execution paths inside

the kernel are completely different, and unrelated functions get called, thus making

the comparison of little interest for the present discussion.

Figure 4.8 shows the measurements of kernel functions, obtained using ftrace,

that could be ill-affected by the mechanism implementation:

a) schedule(), scheduler core, it decides which task to run next and per-

forms the context switch;

b) do futex(), sys futex() system call entry point;

c) enqueue task dl()/enqueue task rt(), enqueue a task, respectively, on

the dl or the rt runqueues;

d) rt mutex slowlock(), work required to acquire a mutex;
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Figure 4.8. Kernel functions durations (in µs) from a run on a

real machine.

e) rt mutex slowunlock(), work required to release a mutex.

Results show that overheads of dl (yellow, oblique lines, boxes) and bwi (red boxes)

are comparable. Differences between bwi and pi (blue, small circles, boxes) mea-

surements remain in the same order of magnitude (even if bwi doubles pi in some

case). These differences can be ascribed to the slightly higher complexity of bwi

implementation, but also to the fact that tasks interactions can be modified by

scheduling the same task set using different scheduling policies (in this can have an

impact on runtime overheads).

We have then modified the previous example in order to create longer PI chains:

a new task with period 2000ms and execution time 700ms, and two more mutexes

were added to the above task set. Like in the previous example, there is a task

that does not use any resource; no task accesses more than two mutexes, but the

resulting PI chain can reach a depth of 4:

τ1 → R1 → τ2 → R2 → τ3 → R3 → τ4

We replicated this task set 3 times for a total of 15 tasks, due to bandwidth

constraint. The results displayed in Figure 4.9 show that the effect of the chain’s

depth contributes in an equivalent amount for the three implementations.
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Figure 4.9. Kernel functions durations (in µs) with nested criti-

cal sections, from a run on a real machine.

4.5. Conclusions

In this Chapter we presented an implementation of the M-BWI protocol in

the Linux kernel with the SCHED DEADLINE patch. We tried to be as adherent

as possible to the original implementation of the priority inheritance protocol in

Linux and to the SCHED DEADLINE patch by minimizing the number of mod-

ifications. The overhead of our implementation are comparable with the typical

overhead of SCHED DEADLINE and slightly larger than the overhead of the PI

with SCHED FIFO.

As future work, we are investigating the problems that we encountered when

trying to inherit the affinity mask of the lock-owner task. We believe that to

overcome such difficulties it is necessary to rethink the current implementation of

the SCHED DEADLINE patch, by introducing the concept of server as a separate

scheduling entity in the implementation.





CHAPTER 5

Conclusions

In this last chapter we briefly review the results achieved while working at this

thesis, suggesting possible directions for future work.

5.1. Summary of Results

The proposed goal of this thesis was to reduce the gap between real-time litera-

ture and industry, applying and implementing real-time scheduling mechanisms on

General Purpose Operating Systems. The focus has been on the Linux Operating

System in the context of modern Symmetric Multiprocessing computing platforms.

We started providing a general introduction, notation and definitions concern-

ing real-time systems in Chapter 1. We also detailed about differences and pecu-

liarities of Uniprocessor and Multiprocessors real-time sytems. We then concluded

the first Chapter with a taxonomy of different approaches in designign Operating

Systems and the predictability issues that may arise when such systems are not

originally thought for real-time system (as Linux is).

In Chapter 2, we described the structure of the Linux scheduler, and detailed

about our implementation of the global Earliest Deadline First scheduling algo-

rithm with hard and soft resource reservations (Constant Bandwidth Server). Such

implementation is now part of the Linux scheduler as a scheduling policy, and goes

under the name of SCHED DEADLINE. We also described several improvements

we achieved, over the original version of the scheduling policy, in performing ef-

ficient global scheduling decisions. Chapter 2 contains also a detailed description

PRAcTISE (Performance Analysis and Testing of real-time multicore Schedulers).

PRAcTISE is a framework we created that can be used to ease developing, testing

and debugging scheduling algorithms in user space, before implementing them in

the kernel.

We then used the work of Chapter 2 to perform, in Chapter 3, an experimen-

tal comparison of the performance of partitioned, clustered and global variants of

Rate Monotonic (RM) and Earliest Deadline First (EDF) scheduling algorithms

in the Linux Operating System. The purpose was to highlight where each of the

two algorithms excels or what are instead the problems that real-time application

developers may encounter in using such scheduling algorithms.
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We then open the analysis to set of tasks that share resources. Given the fact

that resource reservation mechanisms are incompatible with classical resource access

protocols, we detailed about our implementation of the Multiprocessor Bandwidth

Inheritance protocol within SCHED DEADLINE. The protocol levers on the basic

idea of classical priority inheritance and extends it to work when interacting tasks

are scheduled using the Constant Bandwidth Server mechanism. It basically enables

donation of computing capacity between tasks accessing resources protected by

mutexes. We detail about technicalities of the implementation and we perform an

experimental evaluation of performance.

5.2. Future Work

There are several directions for future work and for refining and extending the

results presented in this thesis, as we detail next.

Hierarchical Scheduling

Hierarchical scheduling is an interesting methodology for design and deploying

real-time application, since it enables component-based design and analysis, and

supports temporal isolation among competing components. In this thesis we only

detailed about configurations where each task is assigned a single reservation (we

can also say that there is a 1-to-1 relashionship between tasks and reservations).

While this approach gives an high level of granularity in specifying real-time appli-

cation requirements, it can be not easy to translate requirements of an application

composed by several concurrent activities in single reservations for each of the com-

posing elements (or actually impossible, e.g., legacy applications of which we could

not know the internal design). It is therefore interesting to extend the presented

mechasims to provide hierarchical scheduling.

Resource Sharing

The meachanisms described in Chapter 4 are a basic extension of classical pri-

ority inheritance to systems that implement resource reservation mechanisms. As

we already stated, what we implemented is a first attemp in having the Multi-

processor Bandwidth Inheritance protocol working on top of our implementation

of Global EDF scheduling. While providing good runtime performace, our first

attemp is however quite far from a proper solution to the problem, both from a

theoretical and practical point of view (for example, as discussed in Section 4.3.2,

our implementation doesn’t consider busy-waiting of task that blocks on a mutex).

We are currently studying how to extend that implementation to actually remove

the need of busy-waiting, thus simplyfing practical implementation.

Reclaiming Mechanisms

The common practise in using resource reservation mechanisms, while guaran-

teeing applications performance, is to over-reserve resources based on worst-case
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resource usage estimates. This may lead to unnecessary wasting of system re-

sources, given that, especially for soft real-time systems, application requirements

are usually way below worst-case scenarios, and nothing terrible happens if some

deadlines are missed from time to time. Resource Reclaiming mechanisms allow

sharing of the over-allocation of resources. We are currently working on modify-

ing the SCHED DEADLINE scheduling policy to implement the GRUB (Greedy

Reclamation of Unused Bandwidth) scheduling algorithm. As the required modifi-

cations are quite simple and minimal, the benefits given by such an effort are likely

to be really promising.
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