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Abstract

Nowadays, an ever increasing interest from the industrial world in

real-time scheduling capable operating systems is driving many de-

velopment efforts in the context of general purpose operating systems

towards the introduction of specific mechanisms able to provide the

system user with some real-time capabilities. The recent literature de-

scribes many different approaches and so lutions to this problam and

this leads to a wide variety of mechanisms, each with its drawbacks

and its advantages.

In this work the existing state of the art inherent to the application of

real-time experiences and principles within modern operating systems

is going to be analyzed.

Contributions of this thesis may be listed as follows:

• an implementation of an Earliest Deadline First scheduler along

with an algorithm for resource sharing in the context of a modern

monolithic kernel based operating system;

• an implementation of Resource Reservation algorithms within a

modern microkernel based operating system;

• the design and a possible implementation of a taxonomy to de-

scribe the class of resource reservation algorithms and to help the

researcher to conceive and implement new scheduling algorithms

belonging to this class.

In the author’s opinion the last point is a fundamental contribute to

start enriching the current state of the art with a better and more

unified way to face real-time issues in the context of general purpose

operating systems.
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Chapter 1

Introduction

General purpose operating systems (GPOS) are the piece of software that most

commonly - directly or indirectly - people have to deal with. Many examples

about OSes of very different nature can be brought to the reader attention and,

very likely, many of them have been at least heard about, the result of this being

a very practical knowledge of the environments that we are going to describe and

analyze in deep details.

Nowadays, many actors from the industrial world are investing many devel-

opment efforts towards exploiting these more general and accessible resources in

order to be able to deploy such technologies within their plants.

In the very recent past, many embedded devices used to run very small op-

erating systems or tailored applications (in the form of firmwares) suited to the

specific needs or fields of application. This model has been applied for many

years, since it guaranteed a solid development cycle and performances, although

applicable in a very limited and specific domain.

In contrast to this flow, a more versatile approach is required in order to

speed-up the development cycle. The most suitable way, in this sense, would be

to exploit general purpose operating systems, stripped of unnecessary components

in order to fit the typical embedded devices memory sizes and somewhat enhanced

in order to provide timely guarantees. By doing so, it would be possible to get

the following advantages:

• production cost:since OSes provide the platforms which they run on with

1
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Figure 1.1: Typical embedded-platforms development cycle

all the facilities necessary to access every low-level built-on device, less time

is spent on programming these low-level access routines;

• time-to-market: also the production time benefits from a general OS

ported on the platform, because the developer may focus on the develop-

ment of necessary application components only;

• fault tolerance: a GPOS helps the developer to make use of predefined

services from a dependability point of view. Existing and widely adopted

technologies allow one to spend less time in bug tracking and fixing.

In the industrial world, several Commercial Of The Shelves (COTS) solutions

have been adopted by industrial companies. As such, there are expensive costs for

acquisition, initial settlement and maintenance: these costs might be drastically

reduced by adopting open-source, freeware solutions.

In this thesis we will focus especially on Operating Systems of the latter

nature. Different commercial licences exist for this kind of products: since we are

interested into the possibility of modifying the source code in order to tailor it

according to our needs, this number gets definitely lower.

2
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An important concept in the context of soft real-time systems is that of quality

of service (QoS), whose definition is in tight relationship with the user satisfation

at system and application level. Nowadays, many kinds of applications would

directly benefit from an improved level of service, even though definitely not

hard-guaranteed. Typical examples of such applications include multimedia video

streamers, video games and VoIP communications.

In fact, for this kind of applications, it is often possible to single out a periodic

nature of some processing threads. Hence, once the schedulability requirements of

these threads have been analyzed, it is possible to let a real-time scheduler handle

the taskset in order to provide temporal guarantees. Sometimes, in contrast, this

is not sufficient: there are applications that, due to their intrinsically dynamic

nature, may show a behaviour of wide-ranging nature. In this case, every attempt

to build-up a system with these tasks may lead to dramatic decreases in the QoS

as for temporary overruns or more generic misbehaviours.

In the context of this kind of applications, a more specific and robust class of

real-time scheduling algorithms, namely Resource Reservations, was conceived in

order to keep on providing temporal guarantees and, at the same time, isolating

any task temporal behaviour, thus preventing misbehaving tasks from influencing

all the other tasks’ execution.

This thesis is organized as follows:

• Chapter 2 provides the reader with a detailed survey on the existing operat-

ing systems and how these OSes relate to the real-time scheduling domain;

• Chapter 3 describes the class of Resource Reservation scheduling algorithms

along with the properties that each of these algorithms provides the schedul-

ing system with;

• Chapter 4 gives some hints for implementing real-time scheduling algo-

rithms within real modern operating systems of both monolithic and mi-

crokernel nature. At the same time we will describe a couple of practical

experiences.

3



• Chapter 5 proposes a new taxonomy useful to describe the whole class of

resource reservation algorithms in the most generic way as possible, thus

easing the task to conceive, design and deploy new scheduling models.

In the last chapter some considerations on the topic of resource reservations

and operating systems will be brought to the reader attention. I hope the reader

will find this contribution of some, even small, importance in this huge domain.

4



Chapter 2

Operating Systems and

Real-Time

This chapter will cover some important aspects of modern operating systems,

considering the main alternatives a developer has to choose among, each with its

positive and negative aspects. I will try to show how the architectural design at

kernel and user level may affect the performances each OS offers with respect to

the others.

Furthermore, a brief analysis of every solution will be conducted in terms of:

• inter-process communication (IPC);

• interrupt latency;

• scheduling-related latencies (context switches);

• dependability;

• real-time compliance.

At the end of this chapter, the reader should feel comfortable enough with

the basic notions needed to understand in detail the remainder of this thesis.

Let me now define the basic terminology needed to describe the whole set of

architectures which is going to be presented.

5



2.1 Terminology and general OS concepts

2.1 Terminology and general OS concepts

In this section, general and standard concepts in operating systems theory will

be introduced.

2.1.1 Process, threads and task scheduling

The concept of process (or task - these terms are used interchangeably throughout

the rest of this thesis) is fundamental in OS theory since it defines the basic

schedulable entity within a multiprogramming environment.

It is often referred to as “an instance of a program in execution”, whereas a

program may be defined as an executable file (different environments are char-

acterized by different formats and, possibly, extensions). When a program is

written in a re-entrant way (i.e. it does not modify itself), it is possible to run

multiple independent instances of it at the same time [61].

In many systems a thread is something different from a process, and it is

someway contained into it. Several threads may exist in the context of a process

and all of them share with it many environmental parameters. Several imple-

mentations exist for this concept and each unit is scheduled according to some

thread manager’s policy [35].

The concept of scheduling comes to describe the sequence of the activities

which the kernel puts in action to select an entity, be it a thread or a process

and start running it. It is very common to describe the states which a process

may find itself into, during its existence, by using a state diagram like the one in

Figure 2.1.

By using this diagram we can describe the whole life cycle of a process:

• a new process is created by means of a fork() system call (this holds for

POSIX systems, every other OS has its own equivalent);

• after an initialization phase, it goes into the ready state;

• from this moment on, the process will undergo the scheduler decisions, and

will behave correspondingly by switching its state back and forth among

the possible ones shown in the diagram;

6
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Figure 2.1: Process states diagram

• finally, either with a voluntary program exit statement (through an exit ()

or return instructions) or a possible fault condition, the process will reach

the dying state and the system will take care of cleaning it up.

One of the most important features of a scheduling algorithm is the pre-

emptability. If an algorithm is preemptive, then whenever a task whose priority

is higher than the currently running one’s becomes ready, the scheduler imme-

diately stops the current task execution and starts the new one. This feature

brings forth many problems when it comes to handle resources shared among

different processes. We will briefly describe a general way to solve these issues in

the following sections.

Many more versions of this diagram exist, each one trying to describe finer-

grained processes’ states transitions. For the purpose of this chapter we will limit

our discussion to the described states only.

7
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2.1 Terminology and general OS concepts

2.1.2 Inter-Process Communication

At a certain point during its life, a process may need to interact with other

processes, running alongside it. In this section we will have a brief look to the

most common implemented communication mechanisms within general purpose

operating systems.

Three types of interaction among processes may be identified:

competition , used to describe the case when two or more processes need to access the

very same resource in order to keep on executing;

cooperation , comprising all the situations in which two or more processes need to run

in a coordinated way, possibly exchanging data;

synchronization , when to carry out its own work a process needs to wait for some conditions

to hold true as from other tasks’ execution.

As far as cooperation is concerned, in standard Unix-like monolithic kernels,

the communication may take place by means of:

• pipes;

• shared memory;

• message queues;

• . . .

Task 1
{
     ....
     write_to(a)
     ....
}

{
     ....

     ....
}

Task 2

     read_from(a)

Figure 2.2: Communication through pipes

Pipes are used to implement a two-actors communication. Each process

opens one of two ends, either in read or write mode, and starts filling it with data

or picking the data out of it (see Figure 2.2).

8
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Task 1
{
     ....
     write_to(a)
     ....
}

{
     ....

     ....
}

Task 2

     read_from(a)

0x00000000

0x0BCA0080

0x0BCA0060

0x0BCA0040

0x0BCA0020

0x0BCA00A0

0xFFFFFFD0

Figure 2.3: Communication through shared memory

Shared memory is the only communication facility a group of threads (part

of the same process) may exploit to bring the communication off. It is carried out

by using the very same memory areas, shared by one task’s created threads (see

Figure 2.3). It is also used in the context of standard process communication,

through a system call which maps a memory area on a standard device file by

means of which these processes may communicate.

Message queues are a mechanism resembling pretty much a distributed

messaging facility, but with an asynchrounous nature. A process willing to send

data to another one has to put a message within this queue. When the receiving

process is ready to receive the data, it will issue a read operation on this queue,

getting the message.

As far as synchronization and competition are concerned, semaphores come

to solve this kind of problems. A semaphore is implemented as a primitive data

type (usually an integer) exporting the following interface:

• every wait on it decreases its value by one;

• every signal on it increases its value by one;

9
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2.1 Terminology and general OS concepts

Whenever its value reaches 0 a wait operation becomes a blocking primitive: the

issuing process will be unblocked by another task’s signal operation [34].

In systems of different nature, processes interaction may happen thanks to

different mechanisms.

As an example, in microkernel based OSes this communication is typically

based on message passing, which is a synchronous facility. As such, many classic

synchronization problems are automatically solved by the explicit rendez-vous

the involved processes have to run against, for the communication to take place.

2.1.3 Resources Sharing

A modern system is comprised of many peripherals and devices whose role is

to provide the end user with a vast amount of important services. A brief and

definitely not exhaustive list of them might include:

• CPU;

• volatile memory;

• permanent storage;

• network device(s);

• screens and printers;

• . . .

In a multiprogrammed environment, several processes might need to access each of

these devices at the very same time, giving birth to many hardware and software

conflicts. Due to the nature of common devices, an arbitrated access protocol is

needed in order to provide the needing tasks with a dedicated service.

Semaphores, mutexes and monitors are among the most common mechanisms

an operating system puts in place to control this shared access. These concepts

are of paramount importance for interactions to be correctly carried out.

10



2.1 Terminology and general OS concepts

Mutexes are a special kind of semaphores, with initial value set to 1 (and for this

reason, called binary semaphores as well). They are used to protect the

access to a shared resource in the context of which only one process at a

time may operate.

Monitors are a higher level synchronization and protection facility which automati-

cally takes care of locking and unlocking operations while a process accesses

its protected resource.

We will see how to deal with these synchronization issues when the system

has to provide real-time guarantees.

2.1.4 Interrupts and system calls

Since a system is “a set of interacting or interdependent entities, real or abstract,

forming an integrated whole” [24], we need a way for this whole to interact with

the external environment. These interactions may be correctly carried out thanks

to the mechanisms of interrupts.

In Figure 2.4 we see how the interrupt system is usually implemented at hard-

ware level. Each device has a control and data bus in common (i.e. the system

bus). When a process asks for service from a device, it does it asynchronously.

Then the device starts working on behalf of it and, whenever it is ready to give

the result back to the requiring process, it signals the interrupt control on its

dedicated IRQ line. At this point the interrupt controller notifies the CPU of

data being ready and of the source IRQ number. The CPU will address directly

the source of interrupt to transfer the data towards memory or to immediately

utilize it [61].

Whenever a process requires a service from the underlying operating system,

it issues a system call. A syscall is a special istruction issued by a task which

makes the execution switch from user to kernel context (we are not going into

details about how this switch occurs, since it is architecture-dependent and out

of the scope of this dissertation). Thus, the CPU starts executing code at the

highest privilege level on behalf of the calling process, in order to serve its needs.

Eventually, the original process context will be restored and the process will start

its execution over.

11
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DEVICE 1

DEVICE 2

DEVICE N

INTERRUPT
CPU

CONTROLLER

IRQ 1

IRQ 2

IRQ N

IRQ EN

IRQ#

DATA BUS

Figure 2.4: Interrupts system implementation

12

Chapter1/Chapter1Figs/EPS/irqs.eps


2.2 Standard programming and communication interfaces

2.2 Standard programming and communication

interfaces

When a kernel programmer wants to implement new features within the system

kernel, he has to make use of a specific Application Programming Interface (API),

exported by the operating system.

Although the original kernel designer has the complete freedom to conceive

and design the operating system as he prefers, if he decides to make its interface

attain to a recognized and official programming standard, he will favour the

application portability between his and other operating systems.

We will look at some of these standards in the following sections. At the end

of this chapter the reader will be presented a brief survey of existing operating

systems and an analysis of their conformance to these standards.

2.2.1 The Portable Operating System Interface

POSIX [23] is a collective name of a family of standards conceived by the IEEE

to define the Application Programming Interface for all the software compatible

with the Unix operating systems family. In particular, the user and software

interfaces to an operating systems are defined in 17 different documents.

Currently POSIX documentation is divided in three parts:

• kernel APIs (which include real-time services, threads interfaces, real-time

extensions, security interfaces and network access and communication);

• commands and utilities;

• conformance testing.

2.2.2 Osek/VDX

Osek/VDX [14] is a group of standards that produced specifications for an embed-

ded operating system, a communication stack and a network management pro-

tocol for embedded devices in the automotive field. The two initially separated

projects have been conceived by two groups of german and french automotive

13
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industrial groups and eventually merged into a unique specification which is the

de-facto standard for all the electronics and communication within a car.

2.2.3 ARINC

The Aeronautical Radio, Incorporated (ARINC) [4] association is one of the lead-

ing providers of transport communications and system engineering solutions for

eight major industries: aviation, airports, defense, government, healthcare, net-

works, security, and transportation.

It provided the engineering community with many different standards: as far

as our analysis is concerned their most important contribution is contained in the

ARINC-653 standard [5], which describes the partitioning of computer resources

in the time and space domains. This standard also specifies APIs for abstraction

of the application from the underlying hardware and software.

2.2.4 ITRON

Conceived in Japan in 1984, The Real-time Operating system Nucleus (TRON)

is a set of interfaces and os design guidelines. Most japanese embedded devices

currently adhere to this standard.

Several subprojects forked from the main line, with slightly different goals

and market customers. Its first and most important derivative, Industrial-TRON

(ITRON), is an open-source specification for real-time operating systems archi-

tectures targeted at embedded systems.

In 2003, Montavista got a partnership with the T-Engine forum with the

goal to create a universal standard for embedded platforms real-time operating

systems. To the best of the author’s knowledge this effort is still undergoing.

2.3 Real-Time Scheduling

This section will briefly introduce some key aspects of real-time theory.

In first place, let me introduce the basic terminology and model that are going

to be utilized throughout the following sections.

14
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A task Ti (or process) is comprised of a sequence of jobs Ji,j, each of which is

described by at least an arrival time ai,j (or release time ri,j), an execution time

ci,j and an absolute deadline di,j, that is the time by which the execution of the

current job must be carried out (often we will speak of a relative deadline, that

is Di,j time units after the corresponding release time ri,j) (see Figure 2.5).

Figure 2.5: A graphical representation of the important task parameters.

This very generic model may be specialized according to the tasks’ nature:

periodic: each job has ri,j+1 = ri,j + Ti where Ti is the task period and in case

of implicit deadlines, di,j = ri,j + Ti;

sporadic: each job has a variable execution time and arrival time so that in

place of them we introduce the concepts of Worst-case Execution Time and

Minimum Inter-arrival Time which all the guarantees must be built upon;

aperiodic: typical of one-shot job executions, when a task appears and soon

after dies.

Some important concepts may be now defined:

Lemma 2.3.1. A taskset is schedulable according to an algorithm Γ if and only

if there exists a placement of every tasks’ job such that every one completes its

execution within its own deadline.

Lemma 2.3.2. A taskset is feasible if there exists at least an algorithm Γ accord-

ing to which the taskset is schedulable

In 1973 Liu and Layland published a paper [45] which has become the base

for the real-time scheduling theory. Their key contributions were manyfold:

• a first standardization for modelling real-time tasks was proposed;
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• both the standard uni-processor fixed and dynamic priorities scheduling

algorithms were introduced and analyzed.

Rate Monotonic and Earliest Deadline First are still the most adopted

scheduling policies in real-time systems due to their reliability and deep under-

standing and we will go through their definitions and some examples in the fol-

lowing section.

Task C D

A 2 6
B 1 4
C 2 8

Figure 2.6: Sample task set used in this section

2.3.1 Classic Theory

The algorithms considered in the following paragraphs belong to the class of full-

preemptive ones. Non-preemptive variants do exist but they are out of the scope

of this brief presentation and they will not be presented.

Rate Monotonic Let us start with the de-facto standard for fixed priority

scheduling algorithms, Rate Monotonic. It assigns a priority to the tasks it sched-

ules according to the following rule:

the shorter the period of a task, the higher its priority.

This very simple rule makes possible to implement the priority assignments as

a static off-line procedure. This has the advantage of easing the scheduler activity

when it comes to select the new task to run, since it is sufficient to maintain a

statically allocated table in memory.

The RM algorithm has an inconvenience, though. Since there is no necessary

and sufficient condition to test the schedulability of a taskset, but there is only

a sufficient condition, the risk to reject a possibly schedulable taskset is not null.

Liu and Layland determined the following sufficient condition to declare a taskset

as schedulable:
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Theorem 2.3.3. A taskset is schedulable according to the Rate Monotonic algo-

rithm if
n∑

i=1

Ui ≤ n(21/n − 1) (2.1)

which, in the worst case of n going to ∞ becomes:

lim
n→∞

n(21/n − 1) = ln 2 � 0.69 (2.2)

Theorem 2.3.3 means that, for the admission test to accept a taskset in the

system, the total CPU load must not get higher than the value of Equation 2.2.

Figure 2.7 represents the resulting schedule from the sample taskset of Ta-

ble 2.6.

0 2 4 6 8 10 12 14 16 18 20 22 24

τA

τB

τC

Figure 2.7: The scheduling sequence obtained from a Rate Monotonic scheduler

Earliest Deadline First To overcome the drawbacks of Rate Monotonic, Liu

and Layland proposed the EDF algorithm. The scheduler selects the next process

to schedule according to the following rule:

the earlier the current absolute deadline of a task, the higher its priority.

The EDF schedulability condition, in contrast with RM, is a necessary and

sufficient one.

17
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Theorem 2.3.4. A taskset is schedulable according to the Rate Monotonic algo-

rithm if
∞∑

n=1

Ui ≤ 1 (2.3)

This means that, for a taskset to be schedulable, it may be worth all the CPU

utilization. With EDF no CPU bandwidth gets wasted, so a higher number of

taskset may be accepted by the admission test.

On the other hand, a higher complexity is required when the scheduler comes

to select the new process to run, because it has to maintain a dynamically updated

list of increasing absolute deadlines and pick always the first from it.

In Figure 2.8 we may observe how the resulting schedule of the same taskset

as before, differs from the RM case.

0 2 4 6 8 10 12 14 16 18 20 22 24

τA

τB

τC

Figure 2.8: The scheduling sequence obtained from an Earliest Deadline First

scheduler

For a deeper comparison between RM and EDF we refer the interested reader

to more specific publications ([32]).

2.3.2 Quality of Service

An important concept, somewhat orthogonal to the classic real-time theory, is

tightly related to the user perception of the system behaviour, and it is usually

referred to as Quality of Service.
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QoS is an important property of a system, especially when it comes to deal

with multimedia applications, like movies or videogames. This kind of applica-

tions may be placed in the soft real-time domain, getting benefit from temporal

guarantees but not jeopardizing the whole system integrity in case of deadline

misses.

A lot of theory has been developed behind this concept, starting from syntaxes

to describe quality requirements, up to several metrics to represent the service

quality provided. For the purpose of this discussion, we will limit to a qualitative

approach, coping with QoS metrics from a real-time stanpoint only.

In particular, an important measure of this parameter is tightly bound to the

concept of lateness, defined as follows:

Li,j = fi,j − di,j (2.4)

where fi,j is the finishing time of the j-th job of the i-th task. When this

parameter is positive, the job completed its computation with a certain delay

with respect to its current deadline and this concept, within a soft real-time

system, leads directly to a degradation of the perceived quality from the user

perspective.

Once the lateness has been defined, we may define the tardiness of the j-th

job of the i-th task:

Ei,j = max{0, Li,j} (2.5)

It is sometimes convenient to relate the tardiness of a job to the task period,

thus obtaining the normalized tardiness, defined as follows:

Ei,j =
max{0, Li,j}

Ti
(2.6)

By keeping track of these parameters, it is even possible to infer how well a

system is behaving during its working, possibly deploying the necessary counter-

measures to face any possible misbehaviours.

19



2.4 Brief analysis of existing Operating Systems

2.4 Brief analysis of existing Operating Systems

In this section, a selection of the most important and widely adopted Operating

Systems, in authors’ opinion, will be analyzed.

We will propose a partitioning of these systems according to three important

macro areas:

• General Purpose Operating Systems;

• Operating systems for embedded devices;

• Real-Time operating systems.

2.4.1 General purpose operating systems

This area covers, by far, the broadest range of possible alternatives in terms

of architectures supported and features offered to the end user. Nowadays, the

choice has to be made among three possible big groups of candidates:

• MS Windows series;

• Unix-like operating systems (*BSD, Linux, Minix, . . . );

• Mac OS X.

One way to further partition these candidates is according to the nature of

the underlying kernel.

Monolithic typical of all modern Windows and Unix systems, it usually features

two privilege levels only, kernel and user level. At the highest level, all the

typical kernel components run on behalf of the user-level applications that

made request of service. All system services and device drivers run in the

very same context, thus offering the highest performances together with a

high risk level as far as the overall system dependability is concerned (see

Figure 2.9).
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Figure 2.9: Monolithic kernel structure

Microkernel found in older OS and, under certain circumstances, in modern

versions of old operating systems (e.g. Minix 3). All the ring levels (i.e. the

privilege levels) are used and the kernel in the former sense does not exist

any more. At the highest level, only the basic mechanisms can be found:

IPC, process scheduling, system timing and kernel calls handling. Then,

moving towards lower privilege levels we find the device drivers section, the

servers section providing typical, higher level system services, as network

and filesystem and, finally, the user space level (see Figure 2.10).

The main difference among these operating systems concerns their availability,

being the second group free of charge and often, but not always, open source, thus

allowing everyone to develope new features and tailor the system according to his

own needs.

Another important point is the adherence to the standard POSIX (see Sec-

tion 2.2.1). This standard defines the interface (or API) the developer has to use

to ask for system services and to develop new features at kernel level. Unix-like
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Figure 2.10: Minix 3 architecture (microkernel-like)

22

Chapter1/Chapter1Figs/EPS/microkernel.eps


2.4 Brief analysis of existing Operating Systems

OSes are more likely fully or almost fully compliant to the standard, whereas

Windows systems need a software layer interposed in between, like Cygwin [6].

Windows Vista [12] is the current release of the famous operating system from

Microsoft. As far as its kernel is concerned, a hybrid nature (mixed monolithic

and microkernel aspects) is the better way to describe it. Since Windows oper-

ating systems are closed source, though, it is not obvious as to what extent the

microkernel nature operates (windows systems have tradionally been monolithic-

shaped).

In the current release many new features have been introduced, most notably

a new process model, which includes the protected mode. When a normal process

wants to access a protected process space, it must have special privileges to do

that (i.e. a debugger willing to take control over another process).

Mac OS X Leopard [3] is the last version of the succesful operating system

from Apple. It features the XNU kernel, a special architecture originating from

a combination of the Mach kernel plus some FreeBSD-4.3 components. Mach is a

micro-kernel based operating system and, as such, it provides the system with all

the pros and cons of such an architecture. In particular, its augmented depend-

ability with respect to entirely monolithic kernels allows one to utilize Leopard

within multimedia domains achieving a very stable production environment.

2.4.2 OS for embedded platforms

In the embedded platforms domain, it is difficult to state the supremacy of one

system over the others, since the choice depends primarily on the hardware sup-

port provided by the system, and the performance it offers in terms of memory

footprint (embedded hardware resources are usually many orders of magnitude

smaller then ordinary personal computers) and exported services.

One such example is TinyOS [22], which should be recognized as a de-facto

standard for Wireless Sensors Networks devices. It features an easily extensible,

component-based architecture and the development is based on a module-based

C-dialect, called NesC. It does not offer real-time support and as such it is not

suited to domains in which temporal guarantees may be required.
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QNX [16] is a real-time system, tailored for embedded devices. It is a closed-

source project (even if parts of it are getting released open source, as of now)

and, as such, it does not allow for modifications.

LynxOS [10] is another embedded real-time system and it is very famous for is

Arinc-653 [5] standard compliance (a few other OSes may offer the same benefits).

Thanks to this aspect, it has been widely adopted in the medical and military

fields.

For a well-written and extensive list of embedded Operating Systems, see [11].

2.4.3 Real-time operating systems

As it may result clear from the previous section, due to the intrinsic parallelism

between embedded platforms and real-time applications, it often happens that an

operating system designed for embedded platforms offers even real-time support.

This is obvious if we think that in most real-time domains (military, med-

ical, industrial, . . . ) embedded architectures are exceptionally suited to them,

since they offer superior performances in terms of mobility, weigth and dedicated

hardware.

Hence, besides the previously discussed operating systems, here we will briefly

list some general purpose operating systems together with another few embedded

examples.

VxWorks [21] is undoubtfully the most widely adopted RTOS in the embedded

domain. It features POSIX support, so UNIX programmers feel confortable with

its interface. As in the case of LynxOS, VxWorks is conformant to the Arinc-653

standard, as well. Along with a suite of complete and powerful development tools

(IDE and toolchains), this makes it a complete and highly mature platform for

RT development.

In the Unix-like domain, a succesful approach consists of providing the system

with an additional layer, with the same role as of an hypervisor, between the

hardware and the OS. Probably, the three most important projects in this area

are RT-Linux [18], RTAI [17] and Xenomai [25].

All of them share a common approach, that is to introduce a layer between

the OS and the hardware, with the aim to totally separate the non-real time
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processes execution environment from the real-time one. This idea is enforced by

intercepting all the interrupts: interrupts needed for deterministic computation

are rerouted towards the real-time core, while other interrupts are forwarded

to the non-real time operating system which runs at a higher level (and lower

priority) than during working on real hardware.

RTLinux consists of a small real-time kernel running alongside an unmodified version

of the linux kernel which runs at the lowest priority. By using this small

virtualization layer, the rt-kernel makes Linux a fully preemptable system.

RTAI adopts a similar approach to RTLinux, introducing, by means of the Adeos

patch [2], an hardware abstraction layer on top of which a slightly modified

version of Linux runs. IRQs are intercepted at lowest level by the HAL so

that it can be seen as an interrupt dispatcher. RTAI considers Linux as a

background task running when no real time activity occurs.

Xenomai overtook RTAI under many point of views; in particular it provides a much

cleaner and more elegant code structure and interface. It suffers from a

slightly higher worst-case latency when comparing IRQ dispatching and

syscalls, but this is negligible with respect to the advantages that come as far

as tracking problems and enriching the code with ports to new architectures

are concerned.

All of these approaches are affected by the same drawback, that is a highly

invasive approach with respect to the original OS. This may lead to higher diffi-

culties in bugs scouting and fixing, as well as to more complex software platforms

to maintain. In facts, the operating system core not running directly on the hard-

ware may lead to the necessity of rewriting device drivers in order to make them

aware of one more level of indirection (see, for example, the Real-Time Drivers

Model [20]).

Another important approach to provide Unix-like systems (Linux, in partic-

ular) with Real-Time properties has been carried out by Red Hat and Timesys

staff (Ingo Molnar, Thomas Gleixner et al.) since 2004, providing the commu-

nity with the RT-Tree [8], consisting of about 1.5 MByte of patches against the
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vanilla kernel (the latest release is for the 2.6.24 version) with the goal to make

the Linux kernel behave according to hard real-time requirements. The patch-set

consists of several improvements over the previous kernel versions, in particular

in the following areas:

• in-kernel locking primitives become preemptive through the use of rt-mutexes

which are also priority inheritance (we will see what it means) compliant;

• standard kernel spinlocks (another synchronization primitive, highly used

in operating systems’ context) are now implemented through sleeping tech-

niques making their protected critical sections preemptible;

• a far higher precise timer infrastructure, based on hr-timers, with support

for dynamic ticks has been introduced, that make the system more respon-

sive;

• the former interrupt context is converted into preemptible kernel threads,

giving the possibility to move the bottom half part of the handler code into

the kernel thread;

• a high number of rescheduling points has been introduced in order to further

reduce non-preemptible kernel code sections.

All of these modifications have added a better timing support and finer-

grained temporal resolution, but the kernel has no notion of time, when it comes

to describe task properties, but the concept of time slice, that is the dynamically

updated amount of time which a task may run for before the scheduler deallocates

the CPU from it.

Furthermore, with the current state of the source code, only a fixed priority

(exactly like the Rate Monotonic) scheduling policy may be taken advantage of.

As previously said, this can result in the CPU not being fully exploited, thus

wasting system resources.

In [53] a different approach has been taken in the context of Linux. A patch

introduced at kernel level exports some hooks based on which a software layer,

built immediately upon it, offers to the user several real-time mechanisms and al-

gorithms. The whole architecture has several innovative features thanks to which
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AQuOSA is one of the most complete and advanced real-time platforms available

to the user. Currently, the possibility of scheduling and assigning resources differ-

ent from the CPU to the requesting processes is under investigation, as described

in [54].

2.5 Conclusions

In this chapter we have had a brief survey on the main operating systems concepts

and we have seen how these OSes relate to the classic real-time theory. By the

end of the chapter we have realized that the fixed priority policy is the only

choice commonly made in most notable contexts. As said, this leads, above all,

to wasted CPU cycles.

We will see in the following chapters how to prevent this wasting from hap-

pening through the use of EDF-based Resource Reservations.
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Chapter 3

Resource Reservations

In this chapter we are going to introduce and analyze an important class of real-

time scheduling algorithms, namely Resource Reservations (RRES).

3.1 A brief introduction to Resource Reserva-

tions

Firstly introduced in 1994 [50], resource reservations are a framework of schedul-

ing algorithms useful in real-time scheduling environments. It is based on the

concept of isolating a scheduling resource (i.e. the CPU) when coping with a

process with respect to the other ones in order to prevent a misbehaving task

from affecting other tasks’ execution.

This isolation (also known as temporal protection) is a very important property

in a real-time operating system. Since on uniprocessor system only a task at a

time can be in the running state, a taskset schedulability can easily be jeopardized

if the system does not enforce any proper safety procedures to be deployed in case

of emergency conditions.

Several experiments have been conducted in this field, especially in case of

overloaded systems: these are systems which currently have a total utilization

greater than the CPU full capacity. The way these systems cope with overrunning

tasks make them more or less suitable to mission-critical environments in which

a single failure compromises the whole system.
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One important step through this problem has been made by Buttazzo and

Abeni, with their elastic scheduling approach [31]: overrunning situations are

solved with a task model which mimics the behaviour of a spring. In case of an

overrun the system modifies the other tasks’ parameters in order to allow for the

overrunning condition to be properly handled.

Other strategies can be based of some feedback loop-based solutions, installed

in the system: whenever a task is trying to overcome the amount of computation

it declared during the admission test, the system deschedules it and permanently

changes the parameters of the task. Possibly, the task gets discarded by the

system from that point on.

All these solutions present the very same problem: they are highly invasive

with respect to the original taskset specifications. Resouce Reservations are a far

smoother solution to deal with these emergency conditions.

3.1.1 The need for temporal protection

As previously said, the concept of temporal protection comes to solve sudden and

unexpected problems in the context of real-time scheduling. If a process does not

honour its requirements in terms of execution time, it may compromise the whole

taskset schedulability.

Task C D

A 2 3
B 1 4
C 1 12

Figure 3.1: Sample task set used in this section

In Figure 3.2 there is an EDF schedule of the taskset in Table 3.1 in which one

of the tasks, due to some abrupt conditions, monopolizes the CPU for a longer

time than expected, causing the so-called domino effect: this is a typical problem

of the EDF scheduler which, trying to recover from the overrun by keeping on

enforcing its policy, makes all the other tasks miss their deadlines, in sequence.

In the following section we will see how resource reservations are able to solve

this problem.
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0 2 4 6 8 10 12 14

τA

τB

τC

Figure 3.2: The so-called domino effect may happen in case of task overruns

3.1.2 A general definition

Resource reservations can be thought of as system virtual resources: as such, they

represent a fraction of a system resource (for the purpose of this dissertation we

will refer to the processor only, even though this approach is general and may be

used to deal with other resource types).

A virtual resource is generally described through the concept of Server. A

server is identified through a budget Q and a period P with the following meaning:

budget : this is the amount of resource units the server may grant to a task

which is in need of service;

period : this is the server granularity, that is the period of time which the budget

makes sense within.

As far as the CPU is concerned, a server budget represents the CPU time

allotted to a task in every period. The CPU scheduling domain has been deeply

studied and many RRES algorithms have been conceived, with features of very

different nature.

30



3.1 A brief introduction to Resource Reservations

3.1.2.1 General properties

Temporal isolation By enforcing the golden rule of no more than Q every P ,

a server may be seen as a container for its served task. As such, it works ensuring

the minimum allocated bandwidth to the task’s execution. At the same time, it

protects the external world from possible misbehaviours from its task.

This property is of paramount importance within platforms that are sensitive

to QoS degradations like video or audio applications: in such systems, the rest of

the applications keep on working in the way the user expects them to, whereas

the misbehaving task is the only application which would suffer from an even

more delayed completion time or positive tardiness.

Real-Time guarantees Another interesting point in using resource reserva-

tions algorithms is that, by correctly tailoring the virtual resources, it is possible

to maintain the very same guarantees the original task had to meet, in the con-

text of an EDF-based schedule. In particular, the CBS behaves as a plain EDF

if its parameters are chosen as follows:

• the budget Q greater or equal to the task execution time;

• the period P equal the task period.

In this way the scheduling properties are preserved.

3.1.3 Other Models

The resource reservation model, as said before, consists of allocating a share

of a system resource to a requiring process. This allocation mimics a virtual

private less powerful resource servicing the process. In this sense, it is possible to

describe this service in different ways with respect to the budget/period metrics

just presented.
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3.1.3.1 The α/Δ model

In 2003, Lipari-Bini presented an alternative model [44] to describe the service

provisioning in a Resource Reservation scheduling environment. In this model,

given a task Tk, we define α and Δ as follows:

αk is the computing capacity of the virtual resource which the task Tk is assigned

to;

Δk is the maximum release delay that all the jobs of task Tk may experience

without missing any deadline (represented in Figure 3.3).

Figure 3.3: A graphical representation of the Δk parameter

These definitions may be exploited to represent the allocated share by means

of a service curve (in Figure 3.4), as it is often done in the computer networks

domain. A service curve is drawn on the X-Y plane. The angle it has with the

X axis represents the bandwidth α, while the point d on the X axis after which

the curve starts climbing is equal to Δ.

This model may be led back to the Q/P model as follows.

Theorem 1. The α-Δ model is equivalent to a Q-P model in which Q = αP and

P = Δ
2(1−α)

.
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Figure 3.4: The Alpha-Delta service curve

Proof. Equivalently to the definition previously given, Δ is the maximum interval

during which a task does not receive any service from its virtual resource in the

context of twice the period of the task itself (see Figure 3.3). Then the following

relationship holds:

2P = 2αP + Δ (3.1)

Then, Δ = 2P (1 − α) =⇒ P = Δ
2(1−α)

.

3.1.3.2 The Virtual Time model

In 2000, Lipari proposed a new server-based algorithm [43], in order to improve

the reclaiming properties of previously conceived algorithms. In this work, the

idea of a server virtual time was presented for the first time. In this model, each

server maintains an additional parameter Vt which gets updated in different ways

according to the current system conditions.

In particular, every algorithm event and/or decision happens in correspon-

dence to special virtual time values: whenever Vt increases faster, the corre-

sponding server has less time to execute.

We will see in the following chapter how these models may be used inter-

changeably.
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3.2 RRES algorithms survey

In this section we will briefly introduce and analyze several RRES algorithms. We

will try to follow both a chronological and a logical order trying to explain what

reasons reside behind the design of a new algorithm and why that one should be

employed in place of another one.

3.2.1 The Constant Bandwidth Server

Conceived by Abeni and Buttazzo in 1998 [26], the CBS is the progenitor of

many EDF-based resource reservations algorithms. As previously said a CBS is

characterized by:

• a maximum budget Q;

• a period P ;

• a current budget c;

• a deadline d;

• an associated task τ .

It works in the following way:

• each served job τi,j is assigned a dynamic deadline di,j equal to the current

server deadline d;

• whenever a served job ti,j executes, the budget q of the server S serving τi

is decreased by the same amount;

• when q = 0, the server budget is recharged at its maximum value Q and a

new server deadline is generated as dk+1 = dk + P ;

• a CBS is active at time t if there are pending jobs, otherwise it is idle;

• when a job τi,j arrives and the server is idle, if q ≥ (dk − ri,j)U the server

generates a new deadline dk+1 = ri,j +P and q is recharged to its maximum

value Q; otherwise the job is served with the the current parameters;

34



3.2 RRES algorithms survey

In Figure 3.2.1 we see how the CBS scheduler solves the problem highlighted

in Figure 3.2. The misbehaving task is isolated and it cannot affect other tasks’

execution: its finishing time fB,3 is delayed with respect to the original case, but

the other tasks run unaffected and are still able to meet their deadlines.

0 2 4 6 8 10 12 14 16 18 20

τA

τB

τC

SA

SB

SC

Figure 3.5: A misbehaving task is made harmless within a CBS scheduling envi-

ronment

3.2.2 Greedy Reclamation of Unused Bandwidth

An important evolution of the CBS scheduling policy has been proposed in 2000

by Lipari and Baruah and is called GRUB [43]. In GRUB the virtual time model

is employed. A GRUB server Si is described by the following parameters:

• a virtual time Vti ;

• a period Pi;

• an utilization Ui;

• a current deadline di.
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The algorithms keeps track of two global parameters:

• real time t;

• the current active utilization Uact.

Finally, GRUB works as follows:

• when a new job Ji,j is released, di,j = t + Pi;

• during Ji,j execution,
dVti

dt
= Uact

Ui

• if and when Vti = di,j a budget exhaustion event is thrown.

GRUB introduces a stateful description of the algorithm evolution. The states

which a server may enter into are:

IDLE when there is no job released;

ACTIVE-CONTENDING when a job has been released and waits for service;

RUNNING when a job is executing;

ACTIVE-NON-CONTENDING when a job has terminated its run, but Vt �=
dt. From this state, a server goes into the IDLE state later on, at a time

t̄ = Vt.

All GRUB reclaiming features reside in the way the virtual time is updated.

As previously described, if the system has only one server ready to run, Uact = Ui

and then Vt increases at the real time rate. This means that all the CPU is fully

allocated to the only backlogged(i.e. which has at least a job released) server in

the system. In contrast, if
n∑

i=1

Ui = 1, that is the system is fully loaded, Vt will

increase at a rate equal to the inverse of its bandwidth, thus possibly at a much

faster rate than the real time, so no reclaiming is carried out.

It is easy (and out of the scope of this thesis) to show that this reclaiming

policy leads to fewer preemptions and to a fairer allocation scheme of unused

bandwidth (even though it can be shown that under specific circumstances this

algorithm does not perform well and ends up making some processes starve).
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3.2.3 The Idle-time Reclaiming Improved Server

One of the most severe problems of CBS is depicted in Figure 3.2.3. Suppose that

τA and τB are two computationally intensive processes and that at the beginning

only τA exists. Since the CBS scheduler is work-conserving, no idle time can

occur, so τA gets its budget (the budget of its server) immediately recharged and

its deadline postponed by one period. At time t = 7, τb is ready and, since

τA’s deadline has been postponed in the future several times, τB will have many

occasions to run, actually preventing τA from running for a long time. This

problem is known as deadline aging.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

τA

τB

Figure 3.6: The deadline aging problem

Another more subtle problem of the CBS algorithm is highlighted in Fig-

ure 3.2.3. This simple taskset, as in the previous case, is comprised of two acyclic

tasks. τA is the only task ready to run at t = 0. After a certain number of consec-

utive running frames from τA, τB enters the ready state and gets scheduled. The

very special nature and parameters of the two tasks make the first server behave

as if it had both its budget and period equal to four times the original values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

τA

τB

Figure 3.7: The CBS might provide a different service then what expected

This is obviously not a desirable feature, since it has a great impact on the

user perception of multimedia and, more in general, delay-sensitive applications.
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The IRIS algorithm [48] was conceived to solve these problems with the intro-

duction of better reclaiming properties. It is based on the CBS scheduling policy,

with the addition of two more rules:

• a hard reservation mode is enforced, so when a task is ready to run, but its

server has exhausted its budget, it must wait for its current deadline before

getting recharged;

• whenever there is no task ready to run, if the recharging queue is not empty

all the servers’ recharging times are decreased of an amount equal to di,j−t,

where di,j is the first server recharging time; this has the immediate effect

to switch the first server in the recharging queue back to the ready one.

Thanks to the second rule (also known as time warping), the IRIS server is

still work conserving, but avoiding the deadline postponing event, it ensures at

the same time that in case of full CPU load no more than Q units each P are

granted to the served task.

In Figure 3.2.3 we see how IRIS solves the deadline aging problem:

• each arrow represents a backward deadline postponement (it is a normal

deadline moved backwards according to the second IRIS special rule);

• this is the typical behaviour of the IRIS algorithm which mimics the CBS

work conserving feature;

• since the hard reservation mode is in place, whenever it tries to prevent a

task from running continuosly, it triggers the time warping rule, thus not

allowing deadlines to get far in the future.

In Figure 3.2.3 we see how IRIS always provides the actual service the pro-

cesses requested for. The shown schedule is a direct consequence of the hard-

reservation mode which, as already explained, prevents more than Q units from

being allocated for each P . Here, no time warping occurs, since the CPU works

at full rate.
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

τA

τB

Figure 3.8: This is how IRIS solves the deadline aging problem

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

τA

τB

Figure 3.9: IRIS provides exactly the service requested

3.2.4 The CApacity SHaring Server

Both CBS (in soft reservation mode) and IRIS (thanks to the time warping rule)

have a certain level of resource reclaiming capabilities.

Through the resource reclaiming property, the system grants no share of the

reserved resource can get wasted. Altering the features of this property it is pos-

sible to award or penalize certain processes with respect to other ones according

to their behaviour. As an example, the CBS reclaiming property is such that

the processes with a small deadline get many more chance to reclaim for spare

bandwidth than ones with long-placed deadlines. As far as IRIS is concerned a

similar reasoning may be carried out.

In 2000, Caccamo et al. proposed the CASH [33] algorithm, a CBS-based

RRES server with better reclaiming properties. The reasoning behind this kind

of reclaiming is based on the assumption that, when jobs finish their computation

leaving a current budget greater than 0, that budget may be exploited in the

context of other servers (i.e. it is still valid). Whenever a budget ci is used from a

server Sj, this budget gets consummed exactly as though it were Sj’s own budget,

with just one difference: whenever t > di, ci vanishes. That is, a borrowed budget
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may be used until the current deadline of the server which the borrowed budget

belongs to. If there is no server to exploit this budget (the processor is idle) the

queued budget with the earliest deadline gets consummed exactly as though it

were used by a real server.

By doing so, it can be proven that the admission test results are not compro-

mised.

For an example to make sense it is fundamental not to exactly allocate the

virtual resource parameters with respect to the original task ones, in order to let

the reclaiming mechanism work. Let us consider the taskset in Table 3.10.

Task C D

A 5 9
B 1 4
C 1 12

Figure 3.10: The modified taskset for the CASH example

Then let us choose a set of virtual resource like the one in Table 3.11: the

resulting CASH schedule is the one shown in Figure 3.12.

Server C D

SA 2 3

SB 1 4

SC 1 12

Figure 3.11: The set of Virtual Resources serving the previous taskset

In the example of Figure 3.12 there is an additional timeline representing

the bandwidth deposit. As an example, at time instant t = 7 the first server

has a residual budget c = 1 and its task stops running. This means that one

more budget unit may be saved for later use: this is represented in the CASH

timeline with the vertical line. At the same time the second server is ready and

its task starts executing. Since the CASH algorithms mandates to first utilize

the saved bandwidth and then the server own one, this task executes using the

CASH bandwidth (the diagonal decreasing line). But, again, it stops executing

and the server unit of budget is saved (vertical again).

40



3.3 Picking up the right algorithm

Figure 3.12: The resulting CASH schedule

Another important time instant is in t = 15 when the first server saves two

budget units: since at that time there is no task ready to exploit it, this budget

is decreased exactly as though there were a task executing.

It is interesting to notice that this mechanism may be also adopted to avoid

or to better handle possible tasks’ overruns: whenever there is still budget left in

the CASH reserve and a task wants to execute more than declared, it may do so

exploiting the additional global budget without compromising the global system

schedulability (remember that the global CASH budget decreases even though

there is no one to exploit it).

3.3 Picking up the right algorithm

In the previous section we had a survey on some of the main RRES algorithms

employed in the context of real-time systems. The list is far from being complete,

but it is useful to understand that there is a huge number of these servers out

there and it is not clear on the basis of which criteria one should choose an

algorithm rather than another.

In this section we will try to propose a critical comparison among several

algorithms belonging to the class of Resource Reservations, through a list of
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independent parameters according to which these algorithms can be partitioned:

scheduling policy, that is the underlying classic real-time scheduling policy,

according to which the virtual resource takes its decisions;

reservation mode, where a hard mode means that, no matters what algorithm

is chosen, no more than Q resource units will be granted every P , while

a soft mode means that Q units is the minimum amount of resource units

allocated every P ;

reclaiming, that is the possibility for the existing servers to have their param-

eters stretched until the system is fully exploited; another subpartitioning

concerns the way this spare bandwidth is allocated to the requiring pro-

cesses (i.e. fair vs greedy).

In Figure 3.13 we propose a classification based on the set of parameters we

wrote about so far. This list is far from being complete: many more algorithms

exist and behave in even more complex ways, but as this dissertation has a

different focus we will not go into further details.

As it is clear from the table, CBS, GRUB and CASH belong to the class of

the Soft Reservation based algorithms, while CBS-HR, IRIS and BEBS provide

an hard reservation based approach.

Finally, among the dynamic priorities algorithms, as far as the reclaiming

properties are concerned, the only non-work conserving server is CBS-HR. All

the other algorithms allocate all the spare bandwidth to the running or ready-

to-run servers. A more detailed analysis must be carried out about the nature of

this spare bandwidth.

3.3.1 Spare bandwidth

In a real system, it is really hard to reach the full CPU utilization through a static

allocation of the available resources at design time: many other system activities

must be taken into account. Unallocated bandwidth may be of different types:

1. unallocated bandwidth at admission test time;
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Scheduling policy Reservation Mode Reclaiming Caps

FP DP HR SR Yes No

PS X X X

SS X X X

TBS X X X

CBS X X X

CBS-HR X X X

IRIS X X X

CASH X X X

GRUB X X X

BEBS X X X

SLASH X X X

BACKSLASH X X X

Figure 3.13: Main features of some important RRES algorithms.

2. non-backlogged admitted servers;

3. terminated servers’ windows with a non-null remaining budget.

Spare bandwidth of the first kind is the most useful and the less dangerous to

use. This is bandwidth that would be allocated in case of requests for new servers

creation and, as such, may be redistributed with no risks for system schedulability.

The second type of free bandwidth concerns servers which got considered

at admission time in the system, so that they hold a share of the total CPU

bandwidth busy. But since they are actually not exploiting it, it may be shared

among ready-to-run and running servers, with no further tests.

Finally, those servers whose bandwidth had been overestimated in first place

may experience an early end of their served task instances and thus weight over

the system for more than necessary. In these cases, the intuition would suggest

to use the remaining budget of these servers in the context of other servers (and

this is what CASH does), but this can not be done without further verifications.

In fact, the algorithms seen so far consider as their threshold the instant t̄ s.t.

c = (d − t̄)Q
P

as the one which to base their assumptions on: in particular,
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when a server is idled and has still part of its budget, this budget is valid under

some specific circumstances. In the context of CASH this budget is always valid,

because if no one is using it, the scheduler consummes it with no real allocation.

In such a way, the CBS test of Equation 3.2 is always negative. As far as GRUB

is concerned, the parameter Uact does not get immediately decreased, but rather

at a time t such that the test of Equation 3.3 is positive.

3.3.2 Applying the models

We think it is important now to briefly reason on the way these algorithms work.

Many of these servers use the very same condition used by the CBS whenever a

new task instance becomes ready to run in order to decide whether the old server

parameters may be exploited or not. This test is often written as follows:

c ≥ (d − t)
Q

P
(3.2)

If we explicit the time in Equation 3.2 we obtain:

t̄ = d − c

U
(3.3)

which represents the last time instant, depending on c, by which the cur-

rent server parameters may be exploited. Once this threshold is passed by, new

parameters have to be generated.

The CBS algorithm does not totally exploit the current parameters. In fact,

whenever the test of Equation 3.2 is positive this does not mean that the current

parameters must absolutely be discarded. Let us define:

c̄ = �(d − t)
Q

P
	 (3.4)

then, whenever the result of Equation 3.2 is positive, it would be sufficient

to switch to c̄ and keep the current deadline untouched. By doing so, we are

realigning the current service curve to the ideal service modelled by the initial

reservation parameters.

Another way to interpret the CBS test is by means of the virtual time. Let us

further analyze this parameter and its meaning in this context. We already said
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that in place of the budget Qi and the period Pi, a server Si can be described

through an utilization Ui and a virtual time Vti. In this case the original CBS

test can be reworked as follows:

c < (d − t)
Q

P
=⇒ Vti > t (3.5)

as the normal working condition, and as:

c > (d − t)
Q

P
=⇒ Vti < t (3.6)

as the condition at which new parameters must be generated.

So, at each instant, there are two time flows, the virtual and the real time

ones. In standard working conditions the virtual time increasing speed stands

between the real time one and the inverse of its own bandwidth; when the job

stops executing, the virtual time stops and the real time may reach and overcome

it. As in the previous case, though, it is possible to come up to a trade-off and

partially utilize the old parameters even in case Equation 3.6 is true. It would

be simply sufficient to let Vti = t and let it execute unless the budget exhaustion

condition, that is Vti = d.

As a sidenote, it is important to notice that this partial exploitation of the

residual budget is not the standard policy enforced by most of the previously

described algorithms, since it imposes a pretty much higher overhead on the

scheduling system, due to additional context switches (reusing the current budget,

whereas it would be necessary to generate new parameters, might mean two

additional context switches, according to the requirements of the starting job).

3.3.3 Drawing conclusions

As a matter of fact, picking up the right algorithm in every situation is a really

hard problem. Nonetheless, we deem that a good choice can be made on the basis

of simple reasonings.

• Whenever a few, perfectly periodical activities exist, a well calibrated hard-

reservation based server may often be more suitable than a complex re-

claiming algorithm;
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• when, in contrast, it is not easy to deduct the correct parameters for the

reservation, it is more reasonable to exploit the reclaiming capabilities of

some algorithms, in order to avoid wasting resources;

• when the processes are computationally intensive, it may make more sense

to limit their possibility to monopolize the CPU by continuosly triggering

an immediate budget recharging event: again, a hard-reservation mode may

be more suitable;

• when the user starts highly interactive processes, it is of paramount im-

portance that they always have a non-null current budget in order to have

more chances to execute and result highly responsive.

The previous ones are very simple guidelines which may be followed when the

system designer has to choose the most proper algorithm. Many other aspects

can be taken into account, which could better address this choice.

3.4 Final remarks

In this chapter we have proposed a survey on the main resource reservations

alternative algorithms and some criteria to take into consideration when it comes

for the system designer to choose the right one.

We will see in the following chapters how to integrate this special class of

algorithms within existing general purpose operating systems without imposing

an excessive overhead over the system scheduler.
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Chapter 4

Implementing Resource

Reservations in modern

Operating Systems

This chapter describes the most important practical and programming aspects of

introducing real-time paradigms within general purpose operating systems. We

will first analyze some important features, then we will see how to introduce a

real-time scheduler inside the system. Finally we will study the possibility of

introducing a resource reservations framework within these environments.

4.1 OS Real-Time compliance

In this section we are going to analyze the status of modern operating systems

with respect to the possibility of providing an effective real-time support.

4.1.1 Operating systems concept of time

In the previous chapter we illustrated the class of Resource Reservation real-time

scheduling algorithm. As such, it makes sense in a deadline-aware operating

system only: most operating systems do not have such a notion. Being usually

able to provide a time-sharing service, the concept of time flowing is mainly

inherent to the time-quanta each process may exploit to execute. The problem of
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how to assign these quanta to the processes is generally solved through the use of

some heuristics based on the nature of the process being examined (i.e. typically

cpu-bound VS interactive).

Furthermore, the concept of time flow is actually represented through the pe-

riodic increasing of a system-wide parameter whose value is updated on system

timer interrupts occurrence. This is evidently a strong limitation, for it causes

a continuos variable to be discretized, with all the consequent rounding errors

that come from this approximation. We are not proposing anything new in this

domain (new tickless operating systems implementations are currently under in-

vestigation [9]).

4.1.2 Real-time priorities

Since Unix and Unix-like systems birth, the most widely adopted solution for

the process scheduler has always been to pick up a task according to its priority

(statically fixed or dinamically updated). This policy has soon been extended

towards the idea of a fixed priority real-time scheduler.

In modern Linux kernels, there are 100 priorities devoted to real-time schedul-

ing according to the SCHED FIFO or SCHED RR policies, with the first one

leaving up to the tasks to relinquish the CPU when they are done, while the sec-

ond puts in action a real round-robin among the ready tasks at the same priority,

exploting the very same concept of time-slice valid for non-real-time priorities.

Needless to say, even though these priorities are defined as real-time ones, the

Linux vanilla kernel is far from being suitable for real-time environments, since

it is not free from typical problems of general purpose operating systems that

prevent them from correctly enforcing a correct scheduling sequence.

We will see in the following sections how to solve this kind of problems.

4.2 Linux

In the last few Linux kernel releases, the scheduling subsystem has undergone a

rather important re-engineering process, resulting in a completely modular struc-

ture giving the possibility to write new scheduling algorithms and plug them in
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the kernel as scheduling classes. Furthermore, a new standard scheduler, the

Completely Fair Scheduler [13], has been proposed and implemented as one of

the core scheduling modules. By using this module, the system is able to allocate

the CPU to the requesting processes according to a fair share criterion. A fair

allocation scheme, though, is usually not able to provide any kind of temporal

guarantees, unless the weights are properly assigned at design time in order to

meet the specific application requirements: this is not a viable approach, since

the necessary computational effort increases dramatically.

4.2.1 Linux scheduling framework

Linux runs, except for SCHED SPORADIC, a POSIX conforming scheduler with

support for real-time and non real-time policies. Since Linux is a general purpose

OS, the non real-time policy SCHED OTHER is by far the most used. The code has

quite recently been reworked, and turned into the so-called Modular Scheduler

Framework, as well as provided with the group scheduling capability. Both these

features are briefly described in the following subsections.

4.2.1.1 Modular Scheduler Framework

Since kernel release 2.6.23 “an extensible hierarchy of scheduler modules” is in

place. Each scheduling module (scheduling class) is implemented in a different

source file. Currently, there are only two modules: the fair scheduler module in

sched fair.c, for SCHED OTHER tasks, and the real-time module (sched rt.c),

for SCHED FIFO and SCHED RR tasks.

The module hierarchy is made up by a linked list of available classes and the

scheduler picks a ready task from the run-queue of the first module that has one.

The interface each class has to implement is relatively small, i.e.:

• enqueue task()

• dequeue task()

• requeue task()

• task tick()
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• check preempt curr()

• pick next task()

• put prev task()

Function names are self-explanatory, so we are not going into further details due

to space reasons.

Both sched fair.c and sched rt.c provide the core scheduler (sched.c)

with their own implementations of each of these functions. When the core sched-

uler calls them, the specific implementation of the scheduling class the current

task belongs to gets invoked.

4.2.1.2 Linux and Group Scheduling

Group scheduling support has been recently introduced in the Linux kernel. This

means that both tasks and tasks groups exist: they are considered as scheduling

entities. Group scheduling entities have their own run-queues.

4.2.2 Algorithm Description

Our primary goal is to implement the standard EDF scheduling policy within

the Linux Kernel, so that a real-time task may specify a minimum inter-arrival

time and a worst case execution time. We assume implicit deadlines (equal to the

periods). However, since Linux is a general purpose operating system, running

also non real-time tasks, it is of paramount importance to correctly deal with

overload conditions, as well as to face the problems of task blocking and critical

sections accesses.

In case of overloads, i.e., a task trying to execute more than the WCET it

specified, we force the task deactivation till the beginning of its next period,

with a postponed deadline. As for critical section access arbitration the following

sections will give details about the protocol we are proposing.
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4.2.2.1 Critical Sections

One of the main problems in designing an efficient shared resource protocol is

given by the difficulties in deriving tight upper bounds on the time spent in a

critical section by a task. Since we do not want to charge the user with the

task of providing such upper bounds, we developed an alternative strategy that

is able to efficiently solve this problem. We chose to define a task parameter hi

specifying the maximal length for which a task τi can execute non-preemptively

without missing any deadline. Inspired by the work developed by Baruah in [30],

we provide here a simple way to compute a safe upper bound on the length of

such non-preemptive chunks.

Assume tasks τ1, τ2, . . . , τn are indexed in increasing deadline order, with Ti ≤
Ti+1. Every task τk = (Ck, Tk) ∈ τ is characterized by a worst-case computation

time Ck, a period or minimum inter-arrival time Tk, and a relative deadline equal

to the task period. The utilization of a task is defined as Uk = Ck

Tk
. Let Tmin be

the minimum period among all tasks, and Utot be the sum of the utilizations of

all tasks.

Theorem 2 (O(n)). A task set that is schedulable with preemptive edf remains

schedulable if every task τk executes non-preemptively for at most hk time units,

where hk is defined as follows1, with with h0 = ∞

hk = min

{
hk−1,

(
1 −

k∑
i=1

Ui

)
Tk

}
. (4.1)

Proof. The proof is by contradiction. Assume a task set τ misses a deadline

when scheduled with edf, executing every task τk non-preemptively for at most

hk time-units, with hk as defined by Equation (4.1). Let t2 be the first missed

deadline. Let t1 be the latest time before t2 in which there is no pending task

with deadline ≤ t2. Consider interval [t1, t2]: since at start time no task is active,

the interval is correctly defined, and the processor is never idled in [t1, t2]. Due to

adopted policy, at most one job with deadline > t2 can execute in the considered

interval: this happens if such job is executing in non-preemptive mode at time

1The task with smallest relative deadline can execute non-preemptively during its whole
WCET. The expression (T1 − C1) is used to simplify the recursive formulation.
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t1. Let τnp be the task which such job, if any, belongs to. The demand of τnp in

[t1, t2] is bounded by hnp. Moreover, Tnp > t2 − t1. Every other task executing in

[t1, t2] has instead Ti ≤ (t2 − t1). Let τk be the task with largest period among

these tasks. Then, Tk ≤ t2 − t1 < Tnp, and hk ≥ hnp.

Since there is a deadline miss, the total demand in interval [t1, t2] must exceed

the interval length:

hnp +
k∑

i=1

⌊
t2 − t1

Ti

⌋
Ci > t2 − t1.

Using x ≥ �x	 and hk ≥ hnp, we get

hk + (t2 − t1)

k∑
i=1

Ui > t2 − t1, (4.2)

hk > (1 −
k∑

i=1

Ui)(t2 − t1). (4.3)

And, since t2 − t1 ≥ Tk,

hk > (1 −
k∑

i=1

Ui)Tk,

reaching a contradiction.

In order to avoid complex protocols to arbitrate the access to shared re-

sources, a good programming practice is to keep the length of every critical section

short [65]. If this is the case, preemptions can be disabled while a task is holding

a lock, without incurring in significant schedulability penalties. Using Theorem 2,

it is possible to derive upper bounds on the time for which each task may safely

execute a critical section disabling preemptions. In Section 4.2.2.2 we will explain

how to efficiently use such bounds.

An efficient implementation of the test of Theorem 2 has linear complexity in

the number of tasks. We hereafter present a simpler corollary that can be used

to derive weaker values for the available non-preemptive chunk length, with a

reduced complexity.

Corollary 1 (O(1)). A task set that is schedulable with preemptive edf remains

schedulable if every task executes non-preemptively for at most

h = (1 − Utot)Tmin
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time units.

The above theorem allows computing one single system-wide value h for the

allowed maximum non-preemptive chunk length of all tasks, in a constant time.

This lighter tests is a valid option whenever it is important to limit the overhead

imposed on the system.

In the following sections, we will compare the solutions given by Theorem 2

and Corollary 1, in terms of schedulability performances and system overhead.

Other more complex methods may be used to derive tighter values for the allowed

lengths of non-preemptive chunks (see, for instance, [30]); nevertheless, we chose

not to use such methods due to their larger (pseudo-polynomial) complexity.

Having a fast method to calculate a global value for h is, in our opinion, really

important, as in a highly dynamical system, with thousands of tasks, as Linux

can be, it allows our method to be used without significant overhead.

Using a global value for h simplifies the implementation and reduces the run-

time overhead of the enforcing mechanism, that has not to keep track of the

per-task values.

It is worth noting that more sophisticate shared resource protocols like the

Stack Resource Policy (srp) [29] are not so suitable for the target architecture,

since they are based on the concept of ceiling of a resource. To properly compute

such parameter, it would be necessary to know a priori which task will lock each

resource and, in a real operating system, this is definitely not a viable approach

from a system design point of view.

4.2.2.2 Admission Control

One of the key points of our approach is that there is no need for the user

to specify a safe upper bound on the worst-case length of each critical section,

something that is very problematic in non-trivial architectures. The system will

use all the available bandwidth left by the admitted tasks to serve critical sections,

automatically detecting the length of each executed critical section, by means of

a dedicated timer. If some task holds a lock for more than the allowed non-

preemptive chunk length, it means that some deadline may be missed, and the

system is overloaded. In this case, some decision should be taken to reduce the
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system load. There are many possible heuristics that can be used to remove

some task from the system to solve the overload condition, the choice of which

depends on the particular application. For instance, the system may reject the

most recently admitted tasks; or it can reject tasks with heavier utilizations or

longer critical sections, leaving enough bandwidth for the admission of lighter

tasks; it can penalize less critical tasks, if such information is available; or it can

simply ask the user what to do. We chose to reject the task with the largest

critical section length, which is the one that triggered such scheduling decision

executing for more than the allowed non-preemptive chunk length.

The system keeps track of the largest critical section Ri for each task τi,

triggering a timer at the beginning and at the end of each critical section. Since

every task will execute non-preemptively while holding a lock, one single timer is

sufficient.

The admission control algorithm changes depending on the complexity of the

adopted method to compute the time for which a task may execute with pre-

emptions disabled. We distinguish into two cases: (i) using for all tasks a single

system-wide value h given by Corollary 1; or (ii)using for each task τi a different

value hi given by Theorem 2.

In the first case the system keeps track of the largest critical section among all

tasks: Rmax = maxn
i=1{Ri}. For all deadlines to be met, this value should always

be lower than the current non-preemptive chunk length:

Rmax ≤ h. (4.4)

When a task τk would like to be admitted into the system, the following

operations are performed:

• The allowed non-preemptive chunk length h′ after the insertion of the new

task is computed using Corollary 1.

• If such value h′ is lower than the maximum critical section length among the

already admitted tasks Rmax, the candidate task is rejected, since it means

that there would not be enough space available to allocate the blocking time

of some task.
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• Otherwise, task τk is admitted into the system, updating h to h′. Note that

Rmax does not need to be updated, since there is no available estimation of

the maximum critical section length of τk (initially, Rk = 0).

When a task τk leaves the system, the new (larger) value of h is computed and

accordingly updated. Moreover, if Rk = Rmax, Rmax may as well be updated

(decreased).

In a certain sense, we can say that a task is conditionally admitted into the

system, and it will remain so as long as it does not show any critical section that

is longer than the maximum non-preemptive chunk length allowed, in which case

the task is rejected from the system. Alternative strategies may instead trigger

different scheduling decision when Rmax exceeds h, for instance creating room for

a task with a long critical section by rejecting different tasks.

The slightly more complex case in which different non-preemptive chunk val-

ues hi are used for each task τi, we will instead proceed as follows. In order

to guarantee that all deadlines be met, we will check that every task τi has a

non-preemptive chunk length hi sufficiently large to accommodate the maximum

critical section of that task:

∀i, Ri ≤ hi. (4.5)

When a task τk would like to be admitted into the system, the following

operations are performed:

• Using Theorem 2, we compute the allowed non-preemptive chunk length h′
i

after the insertion of the new task, for all tasks τi having a period at least

as large as τk’s: Ti ≥ Tk.

• If there is at least one value h′
i that is lower than the maximum critical

section length of the corresponding task τi — i.e., hi < Ri — the candidate

task τk is rejected.

• Otherwise, τk is admitted into the system, updating each hi to h′
i.

When a task τk leaves the system, we simply recompute the hi values of the tasks

with period greater than Tk.
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Independently from the adopted strategy, the system will check if an invariant

condition (given by Equation (4.4) or Equation (4.5) is maintained. When it is

not, some decision should be taken to solve the overload condition.

4.2.2.3 Exported Interface

One of the largest issues we faced at design time was deciding what interface our

scheduling algorithm should export.

We strive for something not too different from the existing Linux scheduler

interfaces. Moreover, we want the user to be able to code both periodic and

sporadic tasks, as well as both hard and soft real-time applications. Finally, we

think it would be useful to implement an already existing and widely adopted

interface, so to make real-time programmers as comfortable as possible with it.

For all these reasons, we looked at the Ada 2005 [1] programming language

specification, since EDF dispatching is included, as briefly shown below.

Ada 2005 EDF Dispatching Interface Ada 2005 EDF dispatching pack-

age [15]:

with Ada . Real Time ;

with Ada . Ta s k I d en t i f i c a t i o n ;

package Ada . Dispatching .EDF i s

subtype Deadl ine i s Ada . Real Time . Time ;

Defau l t Dead l ine : constant Deadl ine :=

Ada . Real Time . Time Last ;

procedure Set Dead l ine (D : in Deadl ine ;

T : in ADA. Ta s k I d en t i f i c a t i o n :=

Ada . Ta s k I d en t i f i c a t i o n . Current Task ) ;

procedure Delay Unt i l And Set Dead l ine (

Delay Unti l Time : in Ada . Real Time . Time ;

Dead l i n e O f f s e t :

in Ada . Real Time . Time Span ) ;

function Get Deadl ine (

T: Ada . Ta s k I d en t i f i c a t i o n . Task ID :=

Ada . Ta s k I d en t i f i c a t i o n . Current Task )

return Deadl ine ;

end Ada . Dispatching .EDF

It is obvious how to exploit this interface to program either periodic or sporadic

task. In particular, a call to Delay Until And Set Deadline() delays the calling

task until time Delay Until Time. When the task becomes runnable again it will

have
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deadline = Delay Until T ime + Deadline Offset

Linux EDF Interface The Linux scheduler interface is based on sched {set,
get}scheduler and sched {set, get}param system calls, and on the

sched setscheduler data structure. Since we definitely want to avoid binary

compatibility problems with legacy applications, we did not change neither the

behaviour of these functions nor the size of the data structures involved.

Moreover, as stated before, we want something similar to the Ada 2005 inter-

face, provided that some adaptation to the specific context(i.e., the Linux kernel)

is unavoidable.

Hence, we used a new data structure for EDF scheduling parameters,

sched param2 and we added four new system calls:

• sched {set, get}scheduler2;

• sched {set,get}param2.

The new sched param2 has room to accommodate the period and the maxi-

mum possible runtime. It also contains a deadline field, useful for reading the

current (absolute) deadline of a task.

In particular, the new sched setscheduler2 system call, which takes a

sched param2 as an argument, behaves as follows:

1. it sets the parameters passed as the new current ones for the calling task;

2. it makes the task sleep until the relative time specified in the sched param2

argument passed, as the period;

3. on task wake-up, it sets its deadline to the current time plus the time value

specified in the sched param2 argument that is passed, as the deadline.

Like in Ada 2005, both the sporadic and the truly periodic task models may

be described through this interface.
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4.2.2.4 Implementation details

Implementation has been carried out with efficiency in mind. The queue ac-

commodating ready-to-run tasks is kept deadline-ordered, for O(1) extraction.

Furthermore, we implemented it as a red-black binary tree (RB-Tree) to keep

also insertion and deletion efficient with a O(logn) time complexity and because

the kernel exports an highly optimized RB-Tree implementation, being it used in

several other subsystems.

EDF Scheduling Class Implementation Exploiting the modularity pro-

vided by the new scheduling framework, we implemented the EDF algorithm

inside a new scheduling class. This means we added the file sched edf.c and

placed it as the head of the scheduling classes linked list, so that a ready EDF

task will always have the highest priority in the system.

4.3 Experimental evaluations

To evaluate the effectiveness of our solution, we performed a series of experiments

with randomly generated task sets.

We generated a great number of task sets, varying the total utilization Umax

the task parameters Tk, Ck, and the length of the critical sections shared among

the tasks. We used values of the total utilization Umax ranging from 0.4 to 0.9,

and for each value, we evaluated different task behaviors.

We first considered values of Uk generated from an exponential distribution

with λ = 0.1, with periods Tk uniformly distributed in the interval [1, 1000]; then

we varied both λ and the range used for Tk generation. The acceptance rates for

tasksets with λ = 0.01 and Tk generated from [1, 10000] are shown in Figure 4.1;

as expected, increasing the total utilization, the O(1) test becomes less effective,

while the O(n) test shows a graceful degradation.

From the experiments, with the generated tasksets, we have observed that

the values for hk given by the O(n) test were pretty uniform, indicating that the

component given by the highest priority task often dominates the others. This

is obviously positive, as it means that tasks are allowed longer non-preemptive
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regions, and can be seen as the increase of Tk dominating the decrease in Uk in

the O(n) formulation. The hk values’ span observed in this first test is shown in

Figure 4.2. The figure shows max
(

maxk hk−mink hk

Tmax

)
over all the generated tasksets

of a given utilization.
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Figure 4.1: Light Tasks, Big Period Span.

4.4 MINIX 3

We now focus on a completely different operating system architecture, that is

a microkernel-based operating system like MINIX 3. The need for such an ar-

chitecture has recently increased, since modern computer users are always more

concerned about system dependability.

While end-user requirements used to represent a trade-off between perfor-

mance and costs, developers nowadays have to meet the demand for hard safety

guarantees. This includes security and privacy, robustness against failures, time-
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liness of operation, quality of service, and so on. The dependability axis we refer

to concerns the temporal domain.

A recent study [64] showed that common process scheduling mechanisms can

be subverted in a practical manner without superuser privileges in order to mo-

nopolize the CPU. This is a threat to not only timesharing systems, but also

embedded systems such as cell phones, PDAs, etc. The cheating process effec-

tively gains the maximum priority, performing a denial of service (DoS) attack

on other tasks. It was shown that almost all current operating systems, including

MINIX 3 according to our analysis, are affected by this problem.

Furthermore, timeliness of operation is important in many application do-

mains, including multimedia, VOIP, peer-to-peer services, interactive computer

games and so on. Each of these domains has its own peculiarities, but all of

them share an equal need of a minimum guaranteed service level. A best-effort

service based on heuristic algorithms is usually adopted in order to improve the
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end-user perception of the overall quality, but this approach fails to provide mini-

mum service guarantees. For example, in an attempt to keep the highest possible

throughput, the performance of certain critical services may be heavily degraded

under high-load conditions, which may lead to a low quality of service as perceived

by the end user.

In order to improve the every-day user experience for such time-sensitive appli-

cations, a real-time operating system (RTOS) adapts the computational resources

granted to each application based on its quality-of-service requirements. To date

much development has focused on adding real-time features to commodity, mono-

lithic, PC operating systems, such as Linux [27, 40, 56]. In contrast, the work

in this paper provides real-time support on MINIX 3, a novel microkernel-based,

multiserver operating system. This focus allowed for a highly modular design

and implementation of a reservation framework with only modest modifications

to the base system.

4.4.1 OS general description

MINIX 3 is a microkernel-based multiserver operating system for uniprocessors

that is designed to be extremely fault-tolerant. All system services run as highly

restricted user-mode processes in order to isolate faults occurring in one compo-

nent and prevent the damage from spreading, so that the rest of the system can

continue to function normally. In contrast, a bug in a kernel module in a classic

monolithic operating system could easily hang or crash the entire system due to

the lack of isolation. In addition, the extension manager can detect certain error

conditions, including failures relating to CPU or MMU exceptions, internal pan-

ics or infinite loops, and restart faulty processes. These features greatly improve

the system’s dependability [38, 39].

In addition to dependability, MINIX 3’s highly modular structure makes it

a good candidate as a real-time operating system for embedded platforms. Its

code base is several orders of magnitude smaller than Linux, it is easy to remove

unwanted components in order to get a minimal configuration, and the simple

structure results in a small memory footprint. Moreover, MINIX 3 already has

good response times due to the following design choices:

• the user-mode operating system servers and drivers have short servicing
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times and are fully preemptible by higher-priority processes,

• the kernel has very short interrupt latencies because its generic interrupt

handler only masks the IRQ line and sends a notification message, whereas

the actual interrupt handling is done by a user-mode driver, and

• finally, the kernel has short atomic kernel calls, which results in low stuck-

in-kernel latencies.

However, MINIX 3 did not yet explicitly address other real-time application

requirements. Realizing real-time behavior is not straightforward, since standard

MINIX 3 versions lack important real-time properties, including:

• a way to describe a task’s real-time constraints and schedule it accordingly,

• a temporal profile of each component in the system in order to achieve a

complete system predictability, and

• typical resource access protocols, such as Priority Inheritance [59] or Stack-

Based Resource Protocol [28], in order to avoid priority inversion phenom-

ena.

4.4.2 Resource Reservations

In order to provide temporal protection on MINIX 3, we have made several mod-

ifications to the scheduler and designed and implemented a RRES framework.

To the best of our knowledge, we are the first to implement resource reser-

vations in MINIX 3. In particular, we have provided a complete implementation

of CBS [27], CBS-HR and IRIS [48], which are among the first and most effec-

tive ones. The new resource reservation framework improves MINIX 3 in three

important ways:

1. RRES brings soft real-time support, so that benefits can be gained in many

application domains, like the ones mentioned above. Correct accounting

is achieved under the assumption of MINIX 3’s low-latency response times

discussed above. Moreover, infrequent deadline misses are tolerable due to

the nature of soft real-time applications; the end user will perceive a missed

deadline as a quality-of-service degradation rather than a fatal error.
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2. Although our primary focus is soft real-time support, the RRES framework

also provides limited hard real-time support for applications that do not rely

on the standard system servers and drivers, such as sensoring applications

using memory-mapped I/O. The only critical code is the kernel’s generic

interrupt handler, which has a short, strictly bounded execution time.

3. Our work improves dependability by enabling temporally isolated execution

in order to prevent denial of service attacks [64]. Reliable accounting is re-

alized by using the TSC cycle counter independent from the programmable

interrupt timer (PIT), as detailed in Sec. 4.4.4.4.

4.4.3 Related Work

We distinguish different operating system structures, since each structure leads

to different real-time properties.

4.4.3.1 Monolithic Operating System Structure

In spite of significant research efforts, introducing real-time support in monolithic

systems, such as Linux, is still considered an open problem. Real-time schedul-

ing turned out to be difficult, mainly due to the presence of many other highly

unpredictable system activities, such as interrupt handling, paging and process

management.

Two approaches have been adopted in order to minimize latencies and improve

response times. First, shortening non-preemptible kernel code sections. This

changes local code sections, but keeps the same monolithic kernel structure. As

an example, Red Hat staff has contributed a series of kernel low-latency patches

to the Linux community [8]. The patches have proven to be effective and are a

substantial step towards a real-time Linux.

Second, introducing an additional real-time layer between the operating sys-

tem and the real hardware in order to actively handle real hardware interrupts

and mask them to the operating system when needed. This results in an hybrid

architecture with a monolithic kernel running on top of a microkernel layer. The

most important projects are RTAI [17], RT-Linux [18] and Xenomai [25]. All

these projects adopt a similar approach to the problem: a new interrupt dis-
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patcher is added below the standard kernel which traps the peripheral interrupts

and reroutes them to Linux whenever it is necessary. However, this approach

means that real-time tasks cannot directly access standard Linux services and

existing device drivers due to potentially high and unpredictable delays. For this

reason, developers often have to (re)write their own real-time drivers.

4.4.3.2 Multiserver Operating System Structure

Real-time work also has been done in the context of multiserver systems. Here,

low interrupt latencies and good response times are easier to achieve than in a

monolithic system, since all services are already scheduled independently. Below,

we discuss related work in three systems.

Resource reservations and temporal protection have been tested before on

Real-Time Mach (RT-Mach) [49, 51, 62]. RT-Mach enforced the concept of re-

source reservation using a fixed-priority schemes like RM [46], or, at most, a

dynamic-priority scheme based on old algorithms like TBS [60], which cannot

achieve full CPU utilization. In contrast, MINIX 3 implements the newer CBS,

CBS-HR and IRIS algorithms. Furthermore, RT-Mach seems to have fixed the

scheduling policy in the kernel, whereas we promote a minimally invasive, mod-

ular design.

Real-time support in L4 [42] is based on the statistical approaches Quality-

Assuring Scheduling (QAS) [36] and Quality-Rate-Monotonic Scheduling (QRMS)

[37]. By extracting task properties, the system can guarantee that the deadlines

of the mandatory part are met, while deadline misses in the optional part are

tolerated. However, in order to enforce the mandatory-optional splitting prin-

ciple, DROPS’ real-time applications require modifications at source code level,

whereas our framework can directly serve any existing applications in a real-time

fashion. Furthermore, QAS and QRMS can provide guarantees for only peri-

odic tasks, whereas CBS, CBS-HR and IRIS also support aperiodic tasks with

real-time requirements. We also believe that our implementation can be simpler,

since no complexity is introduced at admission and reservation level, whereas

QAS performs these tasks using the distribution of execution times.

Finally, two projects based on earlier versions of MINIX should be mentioned.

First, Minix4RT [55] aims to mimic the low-latency RT-Linux architecture in

MINIX 2. Second, RT-Minix [57, 58] consists of a set of system calls added to
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MINIX 2 in order to explicitly invoke real-time services provided by the kernel

level. The former project has been made obsolete by MINIX 3, since its generic

interrupt handler achieves low interrupt latencies in a much simpler way. Fur-

thermore, these approaches are too invasive with respect to the base system and

cannot be easily ported to MINIX 3. Moreover, our work provides the first-ever

implementation of resource reservations and temporal protection based on CBS,

CBS-HR and IRIS in the context of MINIX 3.

4.4.4 Design and implementation

This section describes how we implemented a resource reservation (RRES) frame-

work in MINIX 3 with support for the CBS, CBS-HR and IRIS resource reser-

vation algorithms. Three important design guidelines for the implementation of

the RRES framework were:

1. pluggable real-time support next to best effort;

2. minimizing the amount of intrusive kernel code;

3. maximizing the policy-mechanism separation.

First, we did not want to break the standard MINIX 3 distribution for reasons

of acceptance and backward compatibility. Therefore, we designed the RRES

framework as an optional component that can be started at run-time to enhance

the system with real-time support when needed. Second, a general dependability

strategy in MINIX 3 is to move as much code as possible out of the kernel into user

space. Since kernel-mode code runs with all privileges of the machine it must be

fully trusted, whereas user-mode bugs may be confined to the process in which

they occurred. Third, separating the scheduling policies from mechanisms leads

to a flexible, easily adaptable system. Fortunately, these guidelines go hand in

hand, as discussed below.

4.4.4.1 High-level Design Overview

Based on the above design criteria we decided to introduce a separate user-space

scheduler, called the RRES manager or RRES for short, which is logically located

at the MINIX 3 server level. RRES can be started through the MINIX 3 extension

manager at run-time like all other extensions [39]. The basic idea then is to let
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the kernel execute user-space scheduling requests for real-time applications on

behalf of RRES. In particular, the kernel’s built-in best-effort scheduling policies

should be temporarily suspended, so that the real-time task is not affected by

the heuristics of the standard scheduler. In other words, the scheduling policy

is enforced in user-space, but the kernel provides mechanisms for starting and

stopping a task and for accounting its execution. Logically, this leads to a separate

RRES scheduler next to the MINIX 3 scheduler.

As an aside, we provided three different implementations of the RRES man-

ager, one for each resource reservation algorithm supported: CBS, CBS-HR, and

IRIS. The algorithm used is statically chosen with a compiler flag. It is currently

not possible to let different VRESes serve their task using different algorithms,

since the theoretical analysis to make this possible is still in progress. The reason

for supporting CBS and CBS-HR next to IRIS is a matter of usability. With

IRIS’ time warping rule, all CPU cycles would be used for real-time task and

non-real-time applications would not get a chance to execute. In such a scenario,

every application should be enclosed in a reservation, resulting in a system that

is harder to analyze and maintain.

In addition to the RRES manager, three helper utilities were created in order

to manage real-time applications. First, rres create can be used to start a new

real-time application by passing the binary’s name its period P and budget Q.

Second, rres change can be used to change the scheduling parameters at run-

time. Third, the rres destroy utility can be used to stop a running real-time task.

Fig. 4.3 gives a high-level overview of the RRES framework.

4.4.4.2 Implementation of the RRES Manager

The RRES manager has the same code structure as other MINIX 3 servers. After

the initialization of its data structures, RRES starts a never-ending loop in which

it accepts new requests, processes them and sends back an answer.

RRES Data Structures The main RRES data structure has three scheduling

queues for the virtual resources that are uniquely associated with the real-time

tasks. The queues are ordered by increasing current VRES deadline, so that

RRES can quickly decide which task to schedule based on the underlying EDF

policy.
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Figure 4.3: High-level architecture over the resource reservation framework. Mes-

sages exchanged between the RRES helper utilities, RRES manager and kernel

are shown.

• The ACTIVE queue keeps track of ready-to-run VRESes. The first VRES

on this queue is the currently scheduled one, that is, the associated task is

the running process in the system.

• The RECHARGING queue comprises all the VRESes which exhausted

their budget and need it to be replenished. This queue is only used for CBS-

HR and IRIS. With plain CBS it is always empty since hard-reservation

mode is not used. Conceptually, all VRESes in this queue are recharging,

but RRES only sets a single alarm for the first recharging event.

• The BLOCKED queue, finally, contains the VRESes that blocked during

their execution, for example, because they have to wait for some event to

happen.

RRES Interactions As shown in Fig. 4.3, the RRES manager has several in-

teractions with both the RRES help utilities and the kernel tasks. The exact

messages that are exchanged are shown in Fig. 4.4. First, the RRES helper util-

ities can request RRES to CREATE, CHANGE or DESTROY virtual resources.

In order to prevent random tasks from changing their scheduling policy only the
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system administrator is allowed to send RRES requests. RRES verifies this by

asking the MINIX 3 process manager for the requester’s user ID.

3. START/STOP_SCHEDULE
4. START/STOP_RECHARGE

2. START/STOP_RT_TASK

RRES Manager−>
Kernel task

1. RRES_EVENT

RRES Manager
Kernel task −>

− budget exhausted
− recharge time
− task blocked
− task unblocked
− task exited

RRES Manager

3. DESTROY

Helper Utility −>

2. CHANGE
1. CREATE

5. GET_MESSAGES

1. CALIBRATE_TCS

Figure 4.4: Messages exchanged within the RRES framework.

Second, although RRES is responsible for the scheduling policy, it relies on

kernel mechanisms to perform the actual RRES scheduling. In particular, the

following messages are exchanged with the kernel’s system task:

• CALIBRATE TSC: used at RRES initialization time to determine the num-

ber of CPU cycles per microsecond; the kernel programs the timer to a

known frequency, reads the TSC cycle counter start value, waits 1000 timer

ticks, and reads the TSC end value.

• START RT TASK: tell that a process now is a real-time task and needs to

be treated in a special manner.

• STOP RT TASK: inform the kernel that a real-time task has been destroyed

so that special events related to this task are no longer forwarded to RRES.

• START SCHEDULE: tell the kernel to start scheduling a real-time task

using the RRES scheduler rather than the standard scheduler.

• STOP SCHEDULE: issued whenever RRES needs to stop the currently

scheduled real-time task.

• START RECHARGE: if a VRES becomes the head of the RECHARGING

queue, RRES schedules an alarm to be notified when the recharging time

is reached.
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• STOP RECHARGE: used to handle a time warping event in IRIS and if

the scheduling parameters of a currently recharging task are changed.

• GET MESSAGES: whenever the kernel’s mechanisms encounter a special

event, as shown in Fig. 4.4, the RRES manager is notified with an RRES EVENT

message; the RRES manager then makes a callback to find out which event

triggered the notification.

While this modularity brings many benefits with respect to flexibility, the

message passing interactions between RRES and the kernel introduces a small

latency. Experiments on a prototype implementation have shown, however, that

the incurred context-switching overhead is not at all prohibitive, as discussed in

Sec. 4.4.6.

4.4.4.3 Kernel and Scheduler Modifications

Scheduling in the standard MINIX 3 kernel is done on best-effort basis using

a multilevel-feedback-queue scheduler (MLFQ) [63]. Processes with the same

priority reside in the same queue and are scheduled round-robin. When a process

is scheduled, its quantum is decreased every clock tick until it reaches zero and

the scheduler gets to run again. To prevent starvation of low-priority processes,

a process’ priority is degraded whenever it consumes a full quantum. Since CPU-

bound processes are penalized more often, interactive applications have good

response times. Periodically, all process priorities are increased if not at their

initial value.

As mentioned above, the kernel should bypass the standard scheduler for real-

time tasks managed by RRES. Therefore, the MINIX 3 kernel and scheduler were

changed in two ways. First, we added rres f flag to the process structure in order

to tell whether a task should be scheduled in the context of MLFQ or RRES. This

flag is set when RRES sends a START SERVE request to the kernel. Second,

the scheduler data structure was extended with two new scheduling queues at the

highest priorities, as shown in Fig. 4.5.

• RRES PRIO: the highest priority in the system is now used for the RRES

manager, so that it can always immediately react to the various kinds of

events, such as budget exhaustion and budget recharged events. Depending
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New RRES
Scheduling

Queues

LOW_PRIO idle

Original
MLFQ

Queues

Head Pointer

HIGH_PRIO n non−RT tasks

RRES_PRIO

RT_PRIO

RRES Manager

0 or 1 RT tasksRT

RRES

Tail Pointer

AVG_PRIO nonRT nonRT
Scheduling

Figure 4.5: RRES-enhanced MINIX 3 scheduling queue data structure. Two new

queues at the two highest priority levels were added for the RRES manager and

the current real-time task.

on the kind of event RRES may schedule another real-time task. When

RRES has processed the event, it returns to its main loop and blocks waiting

for the next event—allowing a real-time task to run.

• RT PRIO: the second highest priority is reserved for the real-time tasks

served by the RRES manager. At most a single task can be active at any

given time. When there is a task to schedule, it runs uninterrupted until

either its budget is exhausted or some other RRES event makes a higher-

priority task ready to run. In the latter case, preemption occurs and RRES

requests the kernel to schedule the higher-priority task.

Third, we identified the points which needed change in order to modify the

default scheduler behavior. In particular, if a real-time task needs to be scheduled,

that is, if a process’ rres f flag is set, the scheduler simply picks the queue with

priority level RT PRIO rather than its MLFQ priority. Also, a task running

in the RT PRIO queue is not affected by the heuristics of the normal MLFQ

algorithm, such as decreasing the process priority of long-running processes and

periodic balancing of the scheduling queues.

Finally, we changed the scheduler to cope with blocking and unblocking events.
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Whenever a real-time task blocks the kernel sends an event notification to RRES,

so that it can schedule another task. Blocking can occur, for example, during

synchronous service requests or while waiting for an I/O completion interrupt.

We decided to consider a task’s blocking and unblocking events as job completion

and activation times respectively in order to be able to provide the classic real-

time properties previously described. The blocked task’s VRES is put on RRES’

BLOCKED queue. When the kernel notifies RRES that the task is unblocked,

RRES moves the corresponding VRES to the ACTIVE queue and may schedule

it depending on its current priority.

4.4.4.4 CPU Time Accounting

In order to serve real-time tasks the RRES framework requires a reliable source

of high-precision timing. Our implementation is based on the x86’s TSC cycle

counter, but depending on the system architecture, other timing sources may also

be available. The TSC cycle counter is convenient because it is accessible to both

the user-space RRES manager and the kernel’s scheduling code. However, since

the TSC cycle counter is read-only and cannot interrupt when a task’s budget is

exhausted or needs to be replenished, an interrupt-based programmable timer is

also needed. For this, we decided to modify the standard MINIX 3 system timer,

which is based on the i8259 Programmable Interval Timer (PIT). Another option

would have been to use the CMOS ‘Real-Time Clock’, but it is already in use for

the MINIX 3 profiling code [52] and having two sources of timer interrupts would

have complicated the kernel’s code.

Working of RRES Accounting Although the PIT ticks come at a lower

frequency than the TSC cycle counter, the RRES framework can do its work

as follows. During initialization RRES calibrates the TSC cycle counter using

the CALIBRATE TSC in order to determine the number of cycles per microsec-

ond. Budget exhaustion and budget replenishment events are expressed in CPU

cycles rather than PIT ticks in order to prevent rounding errors in the cal-

culation. This number is reported to the kernel on START SCHEDULE and

START RECHARGE, respectively, which stores the count in a global variable

and compares it to the current cycle counter value on each PIT tick. If the

current cycle counter value exceeds the exhaustion or recharging time, the ker-
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nel deschedules the task (in the former case only) and sends an RRES EVENT

notification to the user-space RRES manager.

One important decision was at which frequency the TSC counter should be

read, that is, the PIT interrupt frequency—since a higher frequency leads to a

lower worst-case accounting error. The maximum usable frequency is limited,

however, since each PIT interrupt requires reprogramming the timer. After some

experimentation we decided to use a PIT frequency of 4000 Hz, which limits

RRES accounting error to at most 250 μs. Moreover, task overruns are taken

into account by the RRES manager by reading the TSC cycle counter after the

RRES EVENT notification, comparing it with the original deadline, and reducing

the task’s CPU budget in its next execution frame.

Although RRES accounting works at 4000 Hz, we used a frequency of 500

Hz for the system’s normal tick facility. This distinction takes place in the clock

task’s interrupt handler, which scales the hardware PIT frequency into lower-

frequency system-wide ticks, that is, only 1 in every 8 interrupts is transformed

into a system tick.

Eliminating CPU Monopolization An important benefit of our design is

that denial of service (DoS) attacks that monopolize the CPU [64] are structurally

eliminated. By basing accounting on the actual number of CPU cycles used,

independent of the PIT ticks, a task can no longer cause another task to be billed

by suspending execution just before a PIT tick occurs. In contrast, whenever

a task served by RRES stops execution, the RRES manager is informed and

the current TSC cycle counter is read to decrease its remaining budget with

the number of CPU cycles consumed. Processes that use MINIX 3’s standard

scheduling facilities are still vulnerable, but real-time tasks and, in fact, any

application with stringent timing requirements can use the new RRES framework

for temporal protection.

4.4.5 RRES case study

To better clarify how the framework works, we now discuss an example that

shows the interactions of the RRES framework, configured to use CBS with hard-

reservation mode (CBS-HR). We analyze the sequence of events for two real-
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time tasks, T1 and T2, producing the schedule shown in Fig. 4.6. Initially, the

administrator starts the tasks using the rres create utility. The command entered

is

$ rres create <budget> <period> <binary>

where the request parameters are

<budget>: CPU budget given in each period (Q) in μs;

<period>: the VRES granularity (P ) in μs;

<binary>: the application to be managed by RRES.

This request has to be made for both task T1 and T2 with parameter Q1 =

3000 μs, P1 = 9000 μs and Q2 = 2000 μs, P2 = 3000 μs. The sum of the fractions
Q
P

gives the CPU utilization and is 100% in this example.

For both tasks, the rres create utility forks a new process, sends a CREATE

message to the RRES manager to inform it about the new real-time task’s pa-

rameters, and executes the binary. RRES first checks if the user is authorized

and then performs an admission test. Since the CPU utilization does not exceed

100%, RRES accepts the requests, creates two virtual resources R1 and R2 with

the required parameters, and sends a START RT TASK message to the kernel to

tell that T1 and T2 are real-time tasks from now on. The virtual resources, R1

and R2, will be enqueued in RRES’ ACTIVE queue, with task T2 at the head of

the queue, since T2’s initial deadline is earlier than that of T1.

We will now analyze the interactions between the RRES manager and kernel

during the execution of tasks T1 and T2, which produces the schedule shown in

Fig. 4.6. As discussed in Sec. 4.4.4.4, the RRES manager uses the TSC cycle

counter for accounting. For reasons of simplicity, however, all times below are

expressed in milliseconds.

At time T = 0, RRES issues a RRES SCHEDULE request to the kernel

specifying the task to be scheduled, in this case T2, and the amount of CPU

budget, that is, how long the task is allowed to execute, in this case 2. The kernel

accepts the RRES request, sets up the time at which the budget is exhausted,

and schedules the task in the queue with priority level RT PRIO.

At time T = 2, the kernel notifies RRES about the budget exhaustion of
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Figure 4.6: Schedule of the case study in milliseconds.

T2. RRES moves R2 from the ACTIVE to the RECHARGING queue and, since

hard-reservation mode is used, asks the kernel to recharge R2’s budget until the

absolute time of R2’s deadline, T = 3. RRES also tells the kernel to schedule

task T1 with budget Q = 3

At time T = 3, the kernel notifies RRES about R2’s budget being recharged,

so that RRES moves it from the RECHARGING queue back into the ACTIVE

one. Since R2 has the earliest deadline, T1 is preempted and RRES asks the

kernel to schedule task T2 with a budget of 2.

At time T = 4, task T2 experiences a blocking event. The kernel notifies

RRES, which in turn moves T2’s virtual resource, R2, to the BLOCKED queue.

Then RRES asks the kernel to resume execution of T1 with a budget of 2.

At time T = 5, task T2 unblocks. RRES is notified by the kernel and computes

the test in CBS rule 3. Since the remaining budget c = 1 ≥ (6 − 5)2
3

= 2
3

a new

deadline is placed at T = 8 and the budget is recharged. R2 is moved to the

ACTIVE queue and task T1 is preempted by T2.

At time T = 7, R2’s budget is exhausted again. RRES is notified by the

kernel, moves R2 to the RECHARGING queue, and tells the kernel to recharge

until T = 8. RRES also requests the kernel to resume execution of task T1 with
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R1’s remaining budget of 1.

At time T = 8, two things happen: R1’s budget is exhausted and R2’s budget

is recharged. R1 is moved to the RECHARGING queue and the kernel is told to

recharge the task until R1’s absolute deadline, T = 9. In addition, RRES ask the

kernel to schedule task T2 with a budget of 2.

This example shows how a user-space scheduler can do all the work using a

small number of interactions with the kernel, obtaining the schedule produced in

Fig. 4.6. In the following section we will see how these interactions impose a very

limited timing overhead on the system.

4.4.6 Experimental evaluation

In addition to the above case study, we ran several experiments on a prototype

implementation to evaluate the RRES framework. The results are presented

below.

4.4.6.1 Timing Measurements

As explained in Sec. 4.4.4.4, time accounting is done using the TSC cycle counter.

The TSC facility is available in both kernel space and user space, allowing RRES

to be kept synchronized with the kernel time line. In addition, this enabled precise

timing measurements, depending on CPU speed only. The tests were conducted

on a Fujitsu-Siemens desktop PC with a 2.8 GHz AMD Athlon64 CPU and 1 GB

RAM. None of the tests required to access the disk.

First, we measured the latency introduced by MINIX 3’s message passing sub-

system, which is independent from the RRES framework. In particular, we mea-

sured the time between issuing a request in a user process (just before IPC SEND)

and the moment that the kernel starts working on it (just after IPC RECEIVE),

that is, the time purely spent on delivering the message from the user process to

the SYSTEM task. We found a message delivery time of 1.5 μs.

Second, we measured the latency introduced by the RRES framework. These

tests were done in the context of the case study discussed in Sec. 4.4.5. We ran

several tests and computed the mean result rounded to microsecond precision.

• Time between receiving a rres create command in the RRES framework

and the moment that the kernel schedules the new real-time task: 192μs.
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• Time between budget exhaustion in the kernel, causing an RRES EVENT

notification processed by the user-space RRES framework, and the moment

that the kernel puts the VRES in the recharging state: 43μs.

• Time between detecting a budget-recharged event in the kernel, notifying

RRES, and the moment that the kernel reschedules the corresponding task:

41μs.

These results clearly show a very limited overhead imposed by the RRES

framework on the system in order to enforce the CBS, CBS-HR and IRIS algo-

rithms.

It is important to realize that these values are not dependent on the presence

of other real-time tasks, because (1) the kernel’s interrupt handler always pre-

empts running tasks and (2) messages that are exchanged upon RRES events are

delivered and handled at the highest priority, as shown in Fig. 4.5.

The measured values have to be compared with the resolution the system is

able to grant to the framework. Since time accounting is done at 4000 Hz, the

minimum amount of budget and period can, in principle, be 250μs. However, to

prevent compromising the requested parameters, they should be at least an order

of magnitude larger. Therefore, the budget and period should be set starting

from 5–10 ms in practice.

4.4.6.2 Impact on Kernel and User-Space Code

With help of the Source Code Line Counter [19] tool available on the Internet we

collected data on the total engineering effort required. The number of executable

lines of code for both the standard and modified version of the MINIX 3 kernel

are shown in Fig. 4.7. Similar statistics for the new user-space RRES manager

are shown in Fig. 4.8

4.4.6.3 RRES Tracer and Simulations

We also created a tool written in Ruby to trace the execution of RRES real-time

tasks. The tool parses a log file generated by the RRES server and produces a

graphical representation of the scheduling decisions taken.
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Fig. 4.10 represents a piece of the scheduling of the task set in Fig. 4.9 that

is scheduled according to CBS-HR (CBS with hard reservations); IRIS’ time

warping is not used. The tasks used are an infinite CPU-bound program (cpuload)

that performs calculations in a loop and a finite I/O-bound program (interactive)

that does some work, sleeps one second, and continues calculating. The tracer

output shows three aspects:

• cpuload continuously triggers CBS’ deadline postponement rule, as is clear

in the first two task lines where arcs connect consecutive deadlines;

• since interactive has a large budget, it can execute whenever there is a free

slot, unless it blocks on the sleep() system call;

• at that point, the hard-reservation mode becomes evident, since the two

cpuload utilities run without time warping (the scheduling is not work-

conserving).

Numerous other simulations have been run to verify the behaviour of our

implementation in few real cases, but we refrained from including them here due

to space limitations.

File Standard RRES MINIX 3 Delta

proc.h 99 103 +4
proc.c 482 500 +18
clock.c 115 137 +22
system.c 314 327 +13
rres.h - 24 +24
rres.c - 197 +197
do resres.c - 131 +131

Total Changes +339

Figure 4.7: Lines of executable code (LoC) for the standard MINIX 3 kernel and

the modified version with the RRES framework.
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Header Files LoC

glo.h 42
inc.h 29
proto.h 51
rres.h 106

Header Total 156

Source Files LoC

main.c 158
rres.c 543
rres kernel.c 254
rres userspace.c 251

Source Total 1206

Figure 4.8: Lines of executable code (LoC) for the RRES server.

Task Type Budget (ms) Period (ms)

cpuload CPU-bound 100 400
cpuload CPU-bound 200 2000
interactive I/O-bound 10000 20000

Figure 4.9: Task set and reservation parameters used for tracer simulation. The

execution is shown in Fig. 4.10.

Figure 4.10: Actual schedule executed for the task set of Fig. 4.9 produced by

the RRES tracer based on RRES server logs.

4.4.7 Conclusions and future work

MINIX 3 is a dependable multiserver operating system for uniprocessor systems.

Its modular design makes it a likely candidate for embedded systems, but MINIX 3

currently lacks real-time support. Therefore, we have enhanced MINIX 3 with

temporal protection via resource reservations. To the best of our knowledge, this

had not been done before. Long latencies and slow response times caused by the

message passing mechanism were a potential bottleneck, but measurements on a

prototype implementation have shown that this effect is very limited and can be
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mitigated by carefully designing the framework interactions.

Our resource reservation framework (RRES) implements the CBS, CBS-HR

and IRIS resource reservation algorithms and provides temporal protection in

order to prevent ordinary users from monopolizing the CPU. Our design enables

running soft real-time applications on MINIX 3. The current status is that correct

time accounting happens in presence of nonblocking tasks. If blocking events

occur, the framework operates correctly under the assumption of short server

and driver execution times. Since kernel’s generic interrupt handler has a short

strictly bounded execution time, limited hard real-time support is provided for

tasks that do not rely on the standard MINIX 3 services. In addition, the RRES

framework eliminates denial of service (DoS) attacks [64] targeting the scheduler,

because time accounting uses the TSC cycle counter independent from the system

tick facility.

Work in the context of FRESCOR [7] is in progress to implement a micro-

kernel equivalent of bandwidth inheritance [41] algorithm so that the drivers and

servers working on behalf of a real-time task can use its RRES parameters dur-

ing the servicing time. This gives two important benefits, namely, correct time

accounting and a very simple resource-access protocol, priority inheritance, in

order to prevent priority-inversion phenomena. In addition, we intend to analyze

the possibility of reserving other resources types, such as file system and network

access, through the RRES framework. Success in this area would result in a com-

pletely compartmentalized and fully protected resource environment, enabling

full hard real-time support.

We will see in the next chapter how we improved this work through the in-

troduction in the context of MINIX 3 of a general resource reservation framework

which would allow one to conceive and implement several algorithms very easily.

4.5 Conclusions

In this chapter we have seen how to apply the fundamental real-time concepts

seen in the previous chapters to some existing operating systems, as Linux and

MINIX 3. We have carefully described some design choices that drove our imple-

mentations inside those systems.

Many aspects had to be threaten differently in order to reflect the OS ar-
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chitecture we had to work with. In particular, in the context of MINIX 3, the

only IPC facility available in the system - the message passing mechanism - man-

dates several messages exchanges in order to handle every algorithm aspect. In

contrast, the monolithic nature of Linux allows a far higher efficiency when fast

reactions are needed in order to face every possible situation determined by the

real-time scheduler. This comes at the expense of system dependability: being

everything in kernel context, every operation might potentially lead to a whole

system crash. This is not compatible with a mission-critical real-time system.
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The Generic Resource

Reservation Framework

In this chapter we are going to present an entirely new way to look at the Resource

Reservation framework which will allow one to conceive, design and implement

several different algorithms in a very easy and modular way.

In this sense we are speaking more of a taxonomy than a real programming

framework, meaning that we are giving a generic way to describe different algo-

rithms in the same domain.

5.1 State Diagram

We decided to base the framework upon the minimum number of server states we

deem capable to describe every possible algorithm, by computing the necessary

mathematical and logical operations.

By making use of the properties of this framework, the system designer is

able to describe every possible running condition, regardless of the way the actual

algorithms enforce it.

As an example, consider the way in which different algorithms put their re-

claiming properties in action: some of them let CPU idle time be assigned to

currently running servers, some others borrow unused budget from currently in-

active servers. We would aim at using just our diagram with its states, events

and transitions to describe this particular phase, confining the conditions to start
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IDLE

RECHARGING

AHEAD

ACTIVE

Recharged()

Compute
Params()

idle()

Idle()

Update
Params()

SetRecharging()

InitParams() UpdateParams()

SetBWEx()

SetIdle()

RUNNING

Figure 5.1: Generic framework state diagram

reclaiming at a lower level, along with the specific implementation which enforces

this reclaiming.

The state diagram of Figure 5.1 expresses all the possible states of a server.

Besides explaining each of them, we will analyze the set of events and consequent

transitions towards the considered state.

• IDLE, to describe every existing server currently not backlogged, that is

which has no ready process to serve (every server just created goes into this

state);

• ACTIVE, to describe the condition of a server not at the highest priority

in the system, with a ready-to-run process in it;

• RUNNING, to describe a server currently serving its task, thus decreasing

its budget, unless an end condition occurs;

• RECHARGING, to describe a backlogged server with no budget, waiting

for a budget recharging event to occur in order to start serving its task over;
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• AHEAD, which is used in case a server is not currently backlogged but

has consumed more budget than its “fluid” equivalent (the sources of this

budget are of very different nature, as we will see). It is useful to describe

several atypical conditions, like budget reclaiming, stealing and other tem-

porary non-standard activities.

The AHEAD state is tightly bound with time t̄ of Eq. 3.3: after this time it

is definitely possible to consider the current budget parameters as expired and

it is safe to switch the current server state towards the IDLE state for future

use. Before that time, the server residual budget may be useful for the reclaiming

features of several algorithms.

To further refining our framework description, it is necessary to speak of events

and transitions : events determine an action which ends up triggering a transition

between an old state and a new one.

A list of possible events follows:

onTaskBirth at the end of the creation phase of a new task in the system;

onTaskReady when the new task is ready to run (it has backlogged jobs) and

the corresponding server has been created;

onBudgetExhausted when the current task instance (or job) consummes all the

budget reserved for the current server period;

onBudgetRecharged in case servers do not get an immediate recharge of their

budgets, this happens when the budget is completely recharged;

onTaskBlock when the current job experiences a block due to shared resources

or explicit signals;

onTaskUnblock when, after having been blocked, a job restarts for the blocking

condition does not hold any more;

onTaskDeath when an application completes its execution or for an abnormal

terminating condition (a signal or an exception).

Depending on the events and on the current server state, one of the following

transitions may take place:
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idle2active occurs on onTaskBirth events;

active2running occurs on onTaskReady events;

running2active occurs when a higher priority task preempts a lower priority one;

running2ahead occurs on onTaskBlock events;

running2recharging occurs on onBudgetExhausted events;

gen2idle depending on the current server state, iti occurs when a server is not

backlogged (it has no ready jobs);

recharging2active occurs on onBudgetRecharged events;

ahead2idle occurs when the current server parameters expire, meaning that it is

nonsense to save them for a later use (we will see what it means later on);

ahead2active occurs when a new task instance arrives while the server is in the

ahead state and the current parameters may be somewhat maintained or

updated;

Finally, there are globally shared operations which must be taken into account

in every algorithm, along with specific steps not considered here:

InitParams() used to assign the correct values to the server parameters during

the creation phase;

UpdateParams() used to compute the new server parameters following impor-

tant algorithms events;

ComputeParams() as above, but with the additional computation of a test in

order to decide whether UpdateParams() has to be invoked or current pa-

rameters may be exploited;

Idle () used when the server is not backlogged any more, that is no more jobs

are ready to start;

SetIdle () is used when the current job instance stops, following a special block-

ing condition like a busy shared resource, an explicit blocking signal or a

voluntary sleep;
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SetBWExt() used when the current job gets preempted by an higher priority

job to save the current parameters after an execution time frame;

SetRecharging() used in case a specific event must be waited for (whether this

event is actually of recharging or more general type is left to the specific

algorithm implementation);

Recharged(), invoked when the time specified through the SetRecharging() in-

terface has been reached.

We will see, from time to time, how these operations are carried out in the

context of the specific algorithms implementations.

5.1.1 Mappings in GRRF

In this section we are going to analyze the way in which the algorithms described

in 3.2, get mapped on the state diagram just analyzed.

5.1.1.1 GRRF: CBS

Here the mapping is quite simple:

• the IDLE state maps directly on the CBS IDLE state;

• the ACTIVE state maps directly on the CBS ACTIVE state;

• the RECHARGING state is not used;

• the RUNNING state maps directly on the CBS RUNNING state;

• the AHEAD state is used when a task instance ends and its virtual resource

has still some budget. In particular, let q be the current residual budget

and U the server utilization, if ( q
U

≤ d − t), then the server is put and

stays in the AHEAD state until ( q
U

= d − t), time at which the server goes

into the IDLE one. As long as it stays in the AHEAD state, if a new task

instance is ready to run, it can directly go to the ACTIVE state.

In Figure 5.2 the state diagram equivalent for the CBS case is depicted. Being

the concept of budget recharging of no utility, the RECHARGING state has
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IDLE

AHEAD

ACTIVE

Compute
Params()

idle()

Idle()

Update
Params()

InitParams() UpdateParams()

SetBWEx()

SetIdle()

RUNNING

UpdateParams()

Figure 5.2: The state diagram for the CBS algorithm

been removed and a circular arrow starts from and ends on the RUNNING state,

through a simple updateparameters() operation.

Let us consider the example of Figure 5.3 and explicitely analyze the distinct

phases the framework passes through.

At time t = 0 three new task are born, so that three onTaskBirth events are

launched. The framework behaves invoking the corresponding generic part of this

event handler which, among other activities, takes care of setting up the initial

parameters (InitParameters()). It also invokes the corresponding idle2active ()

which, in this case, is translated into the cbsactive () function call.

At time t = 2 τA blocks (or, equivalently, its current instance completes).

Thus, the framework invokes the onTaskBlock() handler which takes care of mov-

ing it to the AHEAD state (through the running2ahead()) and selecting the new

server to be put in execution.

An analogous reasoning may be carried on at time t = 3, when τA wakes

up (a new task instance is ready to run). The framework ends up calling the

ahead2active() followed by a active2running() which makes τA’s server start.

At time t = 9 a BUDGET EXHAUSTED event occurs (the task is possibly

misbehaving and asking for further execution) , so that the onBudgetExhausted
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5.1 State Diagram

Figure 5.3: A sample CBS schedule to show the GRRF in action

handler gets called. It is immediately translated into the corresponding cbs equiv-

alent, cbsBudgetExhausted(), which works recharging immediately the server

budget and postponing the current deadline (at time t = 16), according to the

algorithm rules. As a matter of fact, this implies a preemption decrease and

prevents the task from delaying other tasks execution.

5.1.1.2 GRRF: IRIS

In the IRIS mapping the IDLE, ACTIVE, RUNNING and AHEAD states have

exactly the same meaning as in the CBS. The RECHARGING state is directly

mapped on the IRIS RECHARGING state.

An important feature of IRIS is the Time Warping rule taking place every

time there are servers in the RECHARGING and IDLE state only (see Section

3.2.3).

To model this behaviour, it is sufficient to issue a check every time a RUN-

NING → RECHARGING state transition occurs. If the state-changing server is

the last in the RUNNING state and no other one is in the ACTIVE queue, then

this rule is triggered and every parameter is updated accordingly.
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5.1.1.3 GRRF: GRUB

In GRUB the situation is quite more complex. Besides the standard CBS map-

pings, we have to describe the algorithm reclaiming capabilities. There are two

more issues to be addressed, in this case:

• it is necessary to keep a global current active utilization variable;

• the kernel should notify us whenever it is time to decrease this variable;

The utilization variable should be updated on every important algorithm

event, as new servers’ creation and task termination, thus we planned to use

the kernel notification mechanism employed for all the other events also in this

case. Reinterpreting the RECHARGING queue as a WAITING one, it is possible

to insert a server in the AHEAD state inside this queue: whenever the kernel will

issue a BUDGET RECHARGED notification message to the RRES manager,

by examining the server state, we may conclude it is actually a special event

notification and decrese the current active utilization.

In every other situation, GRUB behaves exactly as the standard CBS policy.

5.1.1.4 GRRF: CASH

CASH is likely the most difficult algorithm to implement exploiting our diagram.

As GRUB does, it makes use of reclaiming properties to fully exploit the pro-

cessing power. In order to represent these properties, we are forced to utilize the

WAITING queue with fake servers to represent particular time instants to react

to.

In CASH, we must keep track of the concept of a global shared queue of

remaining, non-exploited budgets, available for ACTIVE servers execution. Fur-

thermore, in every instant t in which this queue is non-empty, the first budget

must be decreased at a rate dc = −dt, either in case there is an ACTIVE server

or not.

So, whenever a RUNNING −→ AHEAD state transition occurs, we enqueue

the server in the AHEAD list, according to its deadline as usual. At this point, if

the server is the first in this list, the global budget parameter is set to the current

remaining budget of the newly enqueued server and we keep track of the time

this setting occurred.
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5.2 IMPLEMENTATION

When a AHEAD −→ ACTIVE transition occurs, we have to compute the

CBS test: if the server changing its state is the first one in the AHEAD queue,

then there is no need to CBS test it, since its budget got continuosly decreased,

so keeping the condition of re-usability valid.

5.2 IMPLEMENTATION

We implemented our framework in the context of MINIX 3 simply extending the

work done in [47].

5.2.1 MINIX 3

In Section 4.4 we showed how MINIX 3 can be modified to cope with resource

reservations, thus gaining temporal protection properties, the effects of this being

an improvement of the overall system dependability. Being all the communica-

tions based on message passing mechanism, classical synchronization mechanisms

need not to be used, since the synchronous nature of message exchange grants all

accesses to shared resources (processes) happen in mutual exclusions.

The modifications introduced at user and kernel level resulted in a platform

able to provide the application programmer with a soft real-time, dependable

environment. The nature of that implementation did not allow one to easily add

new algorithms, practically limiting the application range to a particular type of

real-time applications.

By introducing our new framework implementation, though, we grant the

system user the possibility to conceive and easily implement new algorithms,

more suitable to the kind of applications that will run on the system.

MINIX 3 organization is layer based. Since the kernel scheduling mechanisms

of our previous implementation are independent from the particular RRES algo-

rithm chosen, this allowed us to introduce our generic framework at server level,

basically modifying our previous RRES server implementation only. This leads

to few immediate advantages:

• new features’ implementation is isolated at server level;
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5.2 IMPLEMENTATION

• policy versus mechanism reciprocal independence allows one to add new

scheduling algorithms, without compromising previous implementations;

• every new algorithm must simply implement a limited number of hooks to

be fully deployed.

From an implementation point of view, we enriched the struct rres server with a

bunch of function pointers:

int (∗ i n a c t i v e 2 a c t i v e ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ act i ve2runn ing ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ runn ing2act i ve ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ running2ahead ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ runn ing2r echarg ing ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ gen2 i nac t i v e ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ r e cha r g i ng2ac t i v e ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ ahead2 inact i ve ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ ahead2act ive ) ( struct r r e s s e r v e r ∗ ) ;

int (∗ adm i s s i on t e s t ) ( struct r r e s s e r v e r ∗ , int ) ;

Each of these functions is called whenever a state change event occurs and

represents a hook function every algorithm must implement in order to take the

actions corresponding to a particular event. As an example, let us analyze the

way the CBS-HR algorithm initializes these hooks.

s−>a lgo type = CBSHR;

/∗ . . . ∗/
s−>ahead2act ive = c b s h r s t a r t j o b ;

/∗ . . . ∗/

As it is immediately clear, we are filling the structure fields with functions

related to the Hard Reservation mode of the CBS. Finally, let us give a look at

one of these hooks implementations.

PRIVATE int c b s h r s t a r t j o b ( struct r r e s s e r v e r ∗ s )

{
/∗ . . . ∗/
i f ( c b s t e s t ( s ) == RRES NB)

{
/∗ New parameters must be generated ∗/
s−>tsc C = mul64u ( usec va lue , s−>Q) ;

s−>tsc D = add64 ( r r e s cu r r t ime ,

mul64u ( usec va lue , s−>P) ) ;

}
/∗ The o ld ones may be used ∗/
/∗ . . . ∗/

}
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We are reactivating a job after it reached a stop condition. In this case we

have to compute the result of the CBS test in cbs test () and, depending on its

result, enqueue it in the ACTIVE queue with different parameters. Similar code

paths may be identified in all the other important algorithm conditions.

From the RRES server point of view, there is the code for events management:

case RRES BUDGET EXHAUSTED:

r e s u l t = onBudgetExhausted ( r r es new ) ;

break ;

case RRES BUDGET RECHARGED:

r e s u l t = onBudgetRecharged( r r es new ) ;

break ;

case RRES JOB START:

r e s u l t = onJobStart ( r r e s new ) ;

break ;

case RRES JOB END:

r e s u l t = onJobEnd ( r r es new ) ;

break ;

Here, whenever the kernel sends an event message to the RRES server, RRES

parses the message and invokes the corresponding function. Job start and end

functions represent the condition of unblocking and blocking of a process, respec-

tively (since in a real operating system we have only a few examples of tasks with

a real periodic nature).

Lastly, here is a code example for managing one of the previous events:

PUBLIC int onJobStart ( struct r r e s s e r v e r ∗ s )

{
/∗ . . . ∗/
return s−>ahead2act ive ( s ) ;

}

This is the place where we invoke the specialized version of the transition

function. According to the server nature, the correct function implementation

gets invoked.

As another example, let us analyze a much more complex algorithm imple-

mentat ion as in the case of CASH (see Section 3.2.4). This algorithm enforces a

clever reclaiming mechanism by which every active server may use an additional

source of budget for its needs.

The following code snippet declares a few global variables, used to implement

the reclaiming property.

u64 t gb = 0 ; /∗ To hold the current g l o b a l budget ∗/
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u64 t gt = 0 ; /∗ To hold the t ime at which the g l o b a l budget was s e t ∗/
u64 t rb = 0 ; /∗ To hold the ac t ua l r e s i d u a l budget o f t he borrowing

server ∗/
struct

r r e s s e r v e r ∗ gs ; /∗ To hold the i d e n t i t y o f the server

l ending i t s budget ∗/

The important time instant to consider for modifications with respect to the

original CBS algorithm follow.

Blocks: in this case a new server may become source of extra budget; it gets

added to the AHEAD list and, in case it is the first AHEAD server, a fake

server is created to represent the lending budget amount.

Unblocks: this is the case when a server wants to restart its service provisioning;

in case it was the lending server the residual budget field is updated before

the standard CBS test is computed.

In the following code snippet, it is possible to understand how an event is

inserted in the WAITING servers’ queue.

PRIVATE int r r e s p r e p f a k e s r v ( s )

struct r r e s s e r v e r ∗ s ; /∗ The server which the fake one has to conform to ∗/
{

struct r r e s s e r v e r ∗ r s ;

i f ( gs != NULL)

/∗ Let ’ s s e t up the former lending r e s i d u a l budget ∗/
gs−>tsc C = sub64 ( gb , sub64 ( r r e s cu r r t ime , gt ) ) ;

/∗ Let ’ s update the l ending server i d e n t i t y wi th the new one ∗/
gs = s ;

/∗ Let ’ s update the g l o b a l budget ∗/
gb = s−>tsc C ;

/∗ Fina l l y , l e t ’ s update the g l o b a l t ime ∗/
gt = r r e s c u r r t im e ;

/∗ Check f o r running server : updat ing i t s budget , by means of

∗ t he rres check queue func t ion i t w i l l be schedu led f o r the

∗ cor r e c t g l o b a l budget t ime ∗/
i f ( ( r s = p s r v s [RUNNING] ) != NULL)

s−>tsc C = gb ;

r s = mal loc ( s izeof ( struct r r e s s e r v e r ) ) ;

rs−>task endpt = s−>task endpt ;

rs−>r r e s s t a t u s = WAITING;

rs−>tsc D = add64 ( r r e s cu r r t ime , s−>tsc C ) ;

r r e s i n s e r t s e r v e r ( rs , WAITING) ;

return RRES OK;

}
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When the first of these servers expires (its current deadline gets reached), if

its status field is not WAITING but AHEAD, a special handling procedure is

invoked to correctly update the environment, as it happens when the following

code is invoked.

i f ( s−>r r e s s t a t u s == AHEAD)

{
/∗ A fake server budget got exhausted .

∗ We must :

∗ − d e l e t e the fake server

∗ − update the running server parameters

∗ − create the new fake server

∗ − put the ahead server in the i n a c t i v e queue ∗/
struct r r e s s e r v e r ∗ r s =

r r e s f i n d s e r v e r b y t a s k ( s−>task endpt , AHEAD) ;

i f ( r s == NULL)

return RRES INVSERVER;

r e s u l t = r r e s i n s e r t s e r v e r ( rs , INACTIVE) ;

i f ( p s r v s [AHEAD] != NULL)

r r e s p r e p f a k e s r v ( p s r v s [AHEAD] ) ;

f r e e ( s ) ;

return RRES OK;

}

The WAITING queue mechanism needs the insertion of a fake struct rres server

which is able to simulate an event queue. The kernel acts as the event time

signaling mechanism.

Similar mechanisms may be exploited to implement the whole variety of RRES

algorithms. When a reclaiming property must be enforced, the WAITING queue

and event insertion within it is the way to go.

5.3 Conclusions and future work

In this chapter, we have proposed a completely new approach to the problem of

resource reservation algorithms design and implementation, by exploiting a new

taxonomy made up by a 5-states diagram. The equivalence in expressive power

with respect to every other algorithm’s state diagram (where this is available)

has not been proven by analytical results and formal procedures, but the high

number of succesful experimental mappings shown so far can reasonably mean

we are on the right way to go.
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A particular mention must go to the algorithms reclaiming capabilities: since

they are of very different nature, in order to correctly implement them, we made

use either of the AHEAD queue or the AHEAD status in the WAITING queue.

We may enforce every kind of special behaviour by simply inserting a fake server

in this queue to be extracted later on, upon a BUDGET RECHARGED event reception:

being this server in a state different from WAITING we may recognize a special

condition to be accounted for.

A lot more work must be done to take into account, through our state diagram,

other issues like resource sharing access protocols, multiprocessor scheduling and

other types of resources to be reserved. Nevertheless, we are firmly convinced

this is a promising and very effective way to abstract both the resource and the

reserving algorithm.
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Chapter 6

Conclusions

During my four years of research I could experiment many failed occasions to

flawlessly move from the theoretical field to the applied one. I saw many excel-

lent algorithms fail in the real case due to unexpected problems, really hard to

be taken into account at design time. In fact, this is a very common mistake

made in the research domain: when conceiving a new algorithm to start from

ideal conditions with negligible latencies, with all planned and expected events

occurring in between. This unavoidably leads to uncertainty when moving to a

real platform with many unforeseen events or, even worse, hardware failures.

It is from this thought that the idea of a work on the boundary between

the two domains was born. In this study we started from the real and concrete

world of operating systems and the mostly theoretical of real-time algorithms to

gradually move on a ground in between. In particular, we considered and analyzed

many existing and widely adopted platforms, and studied every possible way and

consequence of possibly introducing real-time mechanisms within them.

We then chose to focus mainly on two of the foremost candidates in the OS

scene, namely Linux and Minix 3 for several reasons:

• they are open-source and, as such, it is possible to provide them with ad-

ditional functionalities;

• they are general purpose, so their application domain is potentially unlim-

ited;

• they represent two very different architectural choices and this constituted
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a very important chance to demonstrate the flexibility of Resource Reser-

vation in general and of our framework in particular.

We provided a lot of details about introducing real-time shaped behaviours

inside these systems, because we deem this activity one of the most delicate at

all. From the implementation point of view, a lot of details must be taken into

account: dependability was only one of our primary concerns, whereas reduced

latencies and optimal performances are key benefits of such systems.

In the context of Linux, we mainly took into consideration the possibility of

actively managing the resource sharing aspect. If not taken into consideration,

most assumptions about the time each process runs might be invalidated: to this

end, we conceived and implemented an improved resource reservation scheme

which allows one to avoid specifying the maximum time length a process will

hold a resource.

We finally faced the problem of designing a general taxonomy which would

help system developers having to provide a system with Resource Reservation

algorithms and capabilities. This framework proved itself a very convenient ap-

proach to the complex problem of resource reservation based scheduling systems.

Its flexibility was proven by practically implementing it within Minix 3: no as-

sumptions were made about the underlying scheduling system. This allows the

system developer to abstract the Resource Reservation algorithms implementa-

tion from the specific mechanisms found at kernel level and to focus on the algo-

rithm itself only. As a matter of fact, by implementing few important callbacks,

almost every kind of algorithm may implemented at this level.

We are actively discussing about the problem of further developing this tax-

onomy to include the description of resource sharing aspects and of the most

advanced capabilities of modern Resource Reservation algorithms. At the same

time, we are developing the very same taxonomy in the context of very different

platforms, like Linux and RT-SIM, to have further details to work on in order to

refine implementation techniques of what we deem a very useful and important

piece of software.

96



References

[1] ADA-2005 interface language specification.

http://www.adaic.org/standards/ada05.html.

[2] Adaptive Domain Environment for Operating Systems.

http://home.gna.org/adeos/.

[3] Apple macosx leopard homepage. http://www.apple.com/macosx/.

[4] The arinc homepage. http://www.arinc.com/.

[5] Arinc homepage. https://www.arinc.com.

[6] Cygwin homepage. http://www.cygwin.com/.

[7] FRESCOR - Framework for Real-time Embedded Systems based on COn-

tRacts. http://www.frescor.org.

[8] Ingo Molnar’s RT Tree. Available online.

[9] Linux: High-res timers and tickless kernel.

http://kerneltrap.org/node/6750.

[10] Linuxworks homepage. http://www.lynuxworks.com/.

[11] List of embedded Operating Systems. http://en.wikipedia.org/wiki/List_of_operating

[12] Microsoft windows vista homepage. http://www.microsoft.com/windows/windows-vista/

97

 http://www.adaic.org/standards/ada05.html
http://home.gna.org/adeos/
http://www.apple.com/macosx/
http://www.arinc.com/
https://www.arinc.com
http://www.cygwin.com/
http://www.frescor.org
http://kerneltrap.org/node/6750
http://www.lynuxworks.com/
http://en.wikipedia.org/wiki/List_of_operating_systems#Embedded
http://www.microsoft.com/windows/windows-vista/default.aspx


REFERENCES

[13] Modular Scheduler Core and Completely Fair Scheduler.

http://lkml.org/lkml/2007/4/13/180.

[14] The osek/vdx homepage. http://www.osek-vdx.org/.

[15] Programming Real-Time with Ada 2005.

http://www.embedded.com/showArticle.jhtml?articleID=192503587.

[16] Qnx homepage. http://www.qnx.com/.

[17] RTAI home page. https://www.rtai.org/.

[18] RTLinux home page. http://www.rtlinux.org.

[19] Sclc.pl - the Source Code Line Counter. Available online.

[20] The Real-Time Driver Model. http://www.xenomai.org/documentation/trunk/html/api/

[21] The Windriver VXWorks homepage. http://www.windriver.com/products/vxworks/.

[22] Tinyos homepage. http://www.tinyos.net/.

[23] Wikipage for posix. http://en.wikipedia.org/wiki/POSIX.

[24] Wikipage for system. http://en.wikipedia.org/wiki/System.

[25] XENOMAI home page. http://www.xenomai.org.

[26] Luca Abeni. Server mechanisms for multimedia applications. Technical

Report RETIS TR98-01, Scuola Superiore S. Anna, 1998.

[27] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In Proc. IEEE Real-Time Systems Sympo-

sium, Madrid, Spain, 1998.

[28] T. P. Baker. A stack-based allocation policy for realtime processes. In

Proc. IEEE Real Time Systems Symposium, 1990.

98

http://lkml.org/lkml/2007/4/13/180
http://www.osek-vdx.org/
 http://www.embedded.com/showArticle.jhtml?articleID=192503587
http://www.qnx.com/
https://www.rtai.org/
http://www.rtlinux.org
http://www.xenomai.org/documentation/trunk/html/api/group__rtdm.html
http://www.windriver.com/products/vxworks/
http://www.tinyos.net/
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/System
http://www.xenomai.org


REFERENCES

[29] T. P. Baker. Stack-based scheduling of real-time processes. Real-Time

Systems, (3), 1991.

[30] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of spo-

radic task systems. In Proceedings of the EuroMicro Conference on Real-

Time Systems, pages 137–144, Palma de Mallorca, Balearic Islands, Spain,

July 2005. IEEE Computer Society Press.

[31] Giorgio Buttazzo and Luca Abeni. Adaptive workload management

through elastic scheduling. Real-Time Syst., 23(1-2):7–24, 2002.

[32] Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time

Syst., 29(1):5–26, 2005.

[33] Marco Caccamo, Giorgio Buttazzo, and Lui Sha. Capacity sharing

for overrun control. In Proc. 21st IEEE Real-Time Systems Symposium,

pages 295–304, 2000.

[34] Allen B. Downey. The Little Book of Semaphores. Green Tea Press,

2007.

[35] Ulrich Drepper and Ingo Molnar. The native posix thread library

for linux. 2005.

[36] Cl.-J Hamann, L. Reuther, J. Wolter, and H.Härtig. Quality-
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