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Abstract

THE goal of this research is the definition of a design process, supported by tools, for the

development, verification and deployment of time-sensitive cyber-physical systems (CPS)

control applications. Safe interaction between a robotic arm and a human co-worker, robotic-

assisted surgery, flight control of an aerial robot; but also, data acquisition and coordination of

smart traffic light systems, advanced driver assistance systems in cars and operation of smart

grids in public infrastructures — all of these are examples of time-sensitive CPS control appli-

cations. They are realized as software algorithms (control software) whose correct functioning

depends not only upon the logical correctness of control actions, but also upon the time in which

these actions are performed.

Control software is in turn realized as a set of software tasks exchanging messages on top

of networks of embedded computers running real-time operating systems (execution platform).

The realization of control software is difficult, because a number of factors may affect the final

performances, such as, how control functions are mapped into tasks, how tasks are deployed onto

the computing nodes, the types of resources for local communication, networks and protocols

for communication among remote nodes. And it is made even more challenging by the need to

keep the software development costs low and the time-to-market short, that mandates careful

selection and efficient usage of hardware/software resources.

As of today, embedded control application design is carried out in stages. In the first stage,

a Model-Based Design approach is used, where models of control functionality are designed and

verified by simulation in a virtual environment. In most cases functional models are based on a

Synchronous-Reactive (SR) execution paradigm. All the computations and communications are

assumed to complete within the interval between two events in logical time and implementation

aspects (including the time delays introduced by the execution platform) are not considered. In

the next stage, a task implementation (code) that realizes the control law is produced. Then,

the software code is analyzed onto prototypical (or even the final target) hardware to verify that

timing constraints are satisfied. This approach impedes design-space exploration, and defers the

validation of the selected implementation (hardware/software) until late, in the integration/test-

ing stage.

In this work, we propose a Model-Driven Design process and tools, encompassing the tight

integration of control, hardware and real-time software architectures from the very beginning,

at model level. This framework supports the transition from the functional model to the code

implementation (with the preservation of the original model semantics), and enables designers

to explore tradeoffs between delays (of task scheduling and messages) and control performances
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when a semantics-preserving implementation of functionality is not achievable. The framework

is based on standards (Simulink and OMG’s SysML/MARTE, MOFM2T and M2M) and open

(EMF-based) tools (Papyrus, Acceleo and QVTo).

We define a common semantic domain and rules for the integration of SR models of con-

trol with models representing the execution platform and the software tasks and messages that

realize the functions. Models incorporate and expose appropriate information to allow accurate

prediction of control performance and timing properties of a candidate software implementa-

tion. The design cycle is a sequence of tool-assisted stepwise refinements which is iterated until

the implementation satisfies the initial specification. Models and rules are defined to gener-

ate semantics-preserving deployment of control functionality on top of the real-time capable,

component-based middleware Orocos-RTT that is very popular among robotics practitioners

(researchers and industry).

When the full preservation of functional model semantics cannot be guaranteed by the im-

plementation, designers may resort to simulation to gather important information about the

estimated impact of time delays (dependent on code execution, scheduling of tasks, and network

communication latencies) on the control performances. System-level prediction of timing behav-

ior is enabled by T-Res, a Simulink-based co-simulation framework which integrates external

simulation engines for real-time scheduling and network communication. The advantages of this

approach are demonstrated onto a model of a simulated rotorcraft Unmanned Aerial Vehicle

(UAV).

Finally, we define a simulation-driven optimization process for the automated synthesis of

software architecture configurations on single-core platforms, in those situations where there are

no feasible task-sets for the deadlines determined in the control design stage. The approach

couples MILP-based optimization with simulation and extend the traditional design flows to

include the exploration of relaxed deadlines and order-of-execution constraints. The experiments

conducted on a simulated UAV case study show the benefits of the approach.



To Annalisa and Leandro.





Acknowledgements

THIS work would not have been possible without the advice and support of many. Firstly, I

want to thank my advisor, Marco Di Natale, for having helped me to get into the domain of

Model-Driven Design and for having always been available to answer my often confusing questions

and discuss concepts in detail. Marco, I greatly appreciated your style, your constructive criticism

and the freedom you gave me to work independently.

I want also to thank Giuseppe Lipari for having actively supported the work on RTSim and

Simulink, and for the interesting discussions on design patterns in Object-Oriented Programming,

which have profoundly influenced the way I now develop software. Many thanks go also to

Mauro Marinoni for his endless patience and for having always provided immediate support with

hardware issues and related discussions. Thanks to Enrico Bini and Giorgio Buttazzo, who,

though less directly involved in my research, have repeatedly provided valuable suggestions and

feedback.

A Special thank goes to Fabio Cremona, who worked with me to develop T-Res. Fabio, I

appreciated your pragmatism and determination to deliver a working system. Thank you for the

enjoyable hours of fighting to embed the OMNeT++ simulation kernel into Simulink. It has been

a pleasure to work with you.

I want to thank my colleagues of LISE Lab. at CEA-List Yasmina Seddik, Sara Tucci-

Piergiovanni and Chokri Mraidha, who have co-authored the work on the automated synthesis

of real-time control tasks. Thanks Sara and Yasmina for the friendly welcome in Paris and also

for the practical help at the beginning of my stay in France.

I wish to thank Federico Moro, Luigi Palopoli, Tizar Rizano and Daniele Fontanelli, of DISI

Lab. at the University of Trento for having shared (and explained) their Simulink models and

C++ code for the (ongoing) project on the robotic car testbench.

I am very grateful to Paolo Gai who shared his experience as a former PhD student of ReTiS

Lab. and pointed me in the right direction at the end of my Master’s Degree program. And

thanks also to Simone Mannori and Roberto Bucher, who first introduced me into the world of

code-generation, since the days of the Scicos-RTAI Code Generator and the Robotics Toolbox

for Scilab/Scicos.

Thanks to Alessandro Passaro, for the helpful discussions on Acceleo at the beginning of my

PhD work, and to Dario Di Stefano and Riccardo Schiavi (Evidence Srl.), for their support with

E4Coder. In general, thanks to all the friendly and smart guys at Evidence Srl. (Errico, Davide,

and many others).

vii



viii ACKNOWLEDGEMENTS

Thanks to all the people of ReTiS Lab., who were next to me in this long project and adven-

ture: Andrea and Riccardo (who enrolled in the PhD Program with me in November 2011); the

former PhD students Christian, Matteo, Claudio, Giulio, Francesco, Juri, Mario, Stefano, Marco

and Daniele; the current PhD students Youcheng, Paquale, Carmelo, Alessandra, Alessandro,

Andrea, David, Davide, Simone and Luca; the research fellows Anna Lina, Gabriele, Gianluca,

Daniel, Paolo, Mariano; and all the people of the staff Igor, Claudio, Valentina, Annalisa, Stefa-

nia, Sabrina, Elena, Antonio, Francesca, Valeria, Ketty and Isabella.

Last, but not least, I desire to thank my family. My parents, Paolo and Paola, who have

been encouraging throughout my entire lifetime, and for all their help. Flavio and Rosanna, for

coming to Pisa so many times to help Annalisa when I was traveling.

Annalisa and Leandro, this work is dedicated to you . Grazie Annalisa per essere

sempre dalla mia parte e per il tuo incessante supporto. Grazie per la determinazione con cui

lavori e ti prendi ogni giorno cura della nostra famiglia (inclusi ovviamente Spike, Jackie, San-

sone, Elvis e Priscilla—grazie anche a voi!), adesso che io sono lontano. Il tuo esempio mi

spinge ogni giorno a dare il massimo. Sei una moglie e una madre meravigliosa. Leandro, grazie

per prenderti cura della mamma e per i tuoi incoraggiamenti. Ho stretto i denti come mi hai

detto di fare tante volte e... Visto? Ce l’abbiamo fatta! Ti voglio bene, piccolo mio ♥



Contents

Abstract iii

Acknowledgements vii

List of Figures xiii

List of Tables xvii

Chapter 1. Introduction 1

1.1. Cyber-Physical Systems (CPS) 1

1.2. Current Design Workflows 2

1.3. Platform-Based Design (PBD) 3

1.4. Research Objectives 5

RI.1. Models and abstractions for the verification of implementation properties 6

RI.2. Semantics-preserving application deployments 7

RI.3. Simulation tools to predict the system-level timing behavior 7

RI.4. Automatic software architecture configuration 7

1.5. Thesis Outline 8

Chapter 2. Methods and Tools for System-Level Modeling and Design 9

2.1. Introduction 9

2.2. Model-Based Design (MBD) 9

2.3. Model-Driven Engineering (MDE) 10

2.4. Frameworks for Heterogeneous-Model Integration 11

2.5. System-Level Approaches in Automotive and Robotics 11

2.6. Simulation of Platform’s Delay Effects 13

2.7. Discussion and Conclusions 15

Chapter 3. Design-Process Flow and Platform Meta-Models 17

3.1. Introduction 17

3.2. Process Flow Based on Standard Technologies 20

3.3. Functional Modeling 21

3.3.1. Functional Modeling in Simulink and EMF 21

3.3.2. M2M Transformation to SysML 22

3.4. Platform Modeling 26

3.4.1. Physical Platform Modeling 26

ix



x CONTENTS

3.4.2. BSW Resources Modeling 28

3.5. Software Architecture Modeling 30

3.6. Summary 32

Chapter 4. Generation of Semantics-Preserving Robot Controls from Simulink Models 35

4.1. Context and Positioning 35

4.2. Constraints in the Implementation of Synchronous (Simulink) Models 37

4.2.1. Model Assumptions and Basic Formalization of the Synchronous Semantics 37

4.2.2. Software Implementation and Preservation of Data-Flows 38

4.3. The Orocos-RTT Run-Time Environment 39

4.4. The Code-Generation Process 40

4.4.1. Generation of Task Synchronization Infrastructure 41

4.4.2. Generation of Task Code 45

4.4.3. Implementation of the Functional Communication Links 45

4.5. Summary 46

Chapter 5. Platform-Aware Control Simulations in Simulink Through Co-Simulation 49

5.1. Context and Positioning 49

5.2. How the Simulink Engine Simulates a Dynamic System 51

5.3. Platform Simulators and Execution Models 52

5.3.1. Discrete-Event Platform Simulators 52

5.3.2. Execution Model of Real-Time Tasks 52

5.3.3. Execution Model of Network Communication 54

5.4. The T-Res Co-Simulation Environment 56

5.4.1. Architecture 56

5.4.2. Simulink Implementation of Platform Execution Models 57

5.4.3. Interface to Other Platform Simulators 62

5.5. Application Examples 65

5.5.1. PID Control of Three Networked DC-servo Systems 65

5.5.2. Scheduling-Aware Design of Attitude Control for a Simulated Quadrotor 67

5.6. Integration in the Proposed System-Level Design Flow 71

5.7. Summary 75

Chapter 6. Simulation-Driven Process for Automated Software Synthesis 77

6.1. Context and Positioning 77

6.2. System Model 79

6.2.1. Definition of Mapping 79

6.2.2. Response-Time Analysis 79

6.3. Optimization Model 80

6.3.1. Optimization Variables 80

6.3.2. Constraints 81

6.3.3. Optimization Metrics 83



CONTENTS xi

6.4. Simulation 84

6.5. Application Example 84

6.5.1. Case Study Definition 84

6.5.2. Computation of Deadline Approximations 84

6.5.3. Exploration Strategies and Application of MILP 86

6.5.4. Evaluation of Candidate Designs 87

6.6. Summary 90

Chapter 7. Conclusions 93

7.1. Contributions 93

7.2. Limitations (Ongoing Work) 95

7.3. Opportunities for Future Research 97

List of Publications 99

Bibliography 101





List of Figures

1.1 CPS: typical realization and real-time guarantees of control software stack. 2

1.2 The PBD concept (reproduced from [DNSV10]). 4

1.3 The levels of platform abstractions that are of concern in this thesis. 6

3.1 Platform models, mapping process and application scenarios for the proposed design

flow. 17

3.2 Examples of safety-critical and performance-sensitive systems in automotive. 18

3.3 Heterogeneous model integration and code generation by the framework tools. 21

3.4 The Ecore meta-model for the functional part. 22

3.5 The SysML meta-model for the functional part. 23

3.6 Sequence of mapping operation calls within the QVTo transformation entry point. 24

3.7 SysML profiles for the execution platform with their dependencies. 26

3.8 HwControlUnit model’s structure. 27

3.9 HwComputing model’s structure. 27

3.10 HwCommunication model’s structure. 27

3.11 Portion of HwIO model’s structure. 28

3.12 BswRTOS model’s structure. 29

3.13 Portion of BswCoreDataTransfer and BswCOM models structures. 30

3.14 Structure of mapping model’s SysML profiles. 31

4.1 Heterogeneous model integration and code generation by the framework tools. 36

4.2 Execution of a pair of connected blocks with direct feedthrough according to the SR

semantics (ij(k) = oi(m)). 38

4.3 Evaluation of blocks at simulation time and at runtime (single- and multi-task

implementations). 38

4.4 Schematic representation of deployed Orocos-RTT components. 40

4.5 BswRobotMW model’s structure. 40

4.6 Structure of Mapping::Synchronization package (extends that of Figure 3.14c). 41

xiii



xiv LIST OF FIGURES

4.7 Mapping model and automatically-generated BSW model representing the

deployment onto a single-core processor. 42

4.8 Mapping model and automatically-generated BSW model describing the deployment

of subsystems and threads onto a dual-core processor. 43

4.9 Threads activation constraints in the dual-core architecture. 44

4.10 Synchronization between producer/consumer Orocos-RTT components on a

dual-core architecture. 44

4.11 Mapping model of functional communication links into signal variables (ComImpl s),

and automatically-generated BSW model. 46

4.12 Automatically-generated code for the platform-dependent realization of functional

links. 47

5.1 T-Res in a Simulink-based PBD-like flow for real-time distributed embedded control

systems development. 50

5.2 Simplified view of S-function callback methods invoked by the Simulink engine

during the simulation loop1. 51

5.3 Execution model of a simulated real-time task in Simulink. 53

5.4 Timing for the transmission of periodic mode messages objects. 55

5.5 The middleware task TxTask executes with period tTx
, reads message objects and

enqueues messages at the driver level. 55

5.6 Co-simulation of the functional controls (e.g., ADAS, dark-gray blocks), the plant

(car) and the task scheduling and network communication parts (light-gray/white

blocks), in a simplified representation. 57

5.7 Simulink implementation of time-consuming task computations execution model. 58

5.8 Instances of T-Res blocks for the representation of kernel and tasks (bottom side),

with respect to the simplified view in Figure 5.6 (top side). 59

5.9 Simulink implementation of finite-communication time network execution model. 61

5.10 Instances of T-Res blocks for the representation of network and messages (bottom

side), with respect to the simplified view in Figure 5.6 (top side). 62

5.11 Extensible architecture for interfacing T-Res with other platform DES simulators

(closer view of top side of Figure 5.6). 63

5.12 Implementation of software architecture of Figure 5.11 using the object adapter

design pattern. 63

5.13 Simulation loop of Kernel S-function (pseudo-code). 64

5.14 The application example from TrueTime [CHL+03], PID control of three DC-servo

systems. 65

5.15 Simulink model of DC-servo control system with back-annotations. 66



LIST OF FIGURES xv

5.16 Verification of DC-servo control system back-annotated model. 67

5.17 The IRIS quadrotor (left) and the PX4FMU Autopilot (right) 68

5.18 Models used for the quadrotor flight-control scheme. 68

5.19 Attitude control with models of RT kernel and tasks from T-Res. 69

5.20 Definition of type and timing properties of tasks. 70

5.21 Execution trace of FP#1 (200ms), clearly showing that the task-set is non-schedulable. 71

5.22 Simulation results of first candidate design solution (FP#1), with respect to the

control performance of model of Figure 5.18a (Functional). 71

5.23 Execution trace of FP#2 (200ms): task-set is again non-schedulable . 72

5.24 Simulation results of refined candidate design solutions (FP#2 and EDF), with respect

to the control performance of model of Figure 5.18a. 72

5.25 SysML IBD describing the deployment of quadrotor’s control functions and threads

onto the single-core FMU board running a FP real-time scheduler. 73

5.26 Acceleo instructions for the generation of the Kernel block. 74

6.1 Flow of the simulation-driven automated software synthesis process. 78

6.2 The T-Res setup to evaluate the maximum acceptable delay for f2. 86

6.3 Values of delays for f6 (top) and f2 (bottom) for which the performance is

significantly compromised. 86

6.4 Difference with respect to ideal case. 89

6.5 Rod model, comparison of task configurations and optimization metrics (U = 92%). 90





List of Tables

3.1 Transformation rules for the Subsystem EClass and its EAttributes. 23

3.2 Transformation rules for the Port EClass and its EAttributes. 25

3.3 Transformation rules for the Signal EClass and its EAttributes. 25

6.1 Subsystem names and corresponding function names for the quadrotor example. 85

6.2 Case study configurations for the design exploration. 85

6.3 Table of all computed mappings. 88

xvii





CHAPTER 1

Introduction

1.1. Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) integrate computation, networking, and physical processes.

The physical process, or plant, is the physical part of the CPS. Embedded computers and net-

works are the cyber part. The plant is the controlled system and may include mechanical parts,

human operators, etc. The cyber components monitor and control the plant.

Robotics is one of the most immediate applications of CPS, with future robots that are

expected to move out of structured environments and cooperate extensively with humans in

homes, offices, and novel industrial facilities designed for flexible manufacturing. Not only this,

but also robotic-assisted surgery, autonomous driving and flight-control of Unmanned Aerial

Vehicles (UAVs) are further emerging trends for CPS applications. Besides robotics, CPS have

applications in domains such as agriculture, energy, defense, aerospace and building. Rajkumar

et al. [RLSS10] describe CPS as the next computing revolution and discuss some technical

challanges for their widespread adoption. Lee et al. [L+] provide a interesting conceptual chart

that characterizes CPS, their core enabling technologies and applications.

The typical realization of a CPS has the structure sketched in Figure 1.1a. Each embedded

computer (Electronic Control Unit, or ECU) is made up of

• a set of hardware elements, including sensors, actuators, processors and network devices;

• an embedded software layer called Basic Software (BSW), including device drivers,

operating system (OS), communication stack and middleware services.

Networked ECUs use sensors to measure the dynamics of plant. Processors execute the con-

trol logics; based on the sensors’ data (feedback), they collaboratively determine the actions to

influence the plant dynamics. Actuators perform these actions on plant.

The software algorithms that implement the control logics are called the control software.

The control software is organized in layers, as shown in Figure 1.1b. Each software layer requires

at least one type of real-time guarantees (as described in classical real-time textbooks, e.g.,

[But11]): non-real-time, soft, hard real-time. Note that most layers do not fall into exactly one

category of the real-time guarantees.

In this work, we focus on time-sensitive CPS control applications, for which the correct

functioning depends not only upon the logical correctness of control actions, but also upon the

time in which these actions are performed. Control software is implemented as a set of tasks

executed periodically within timing constraints (deadline or latency) and exchanging messages

on networks.

1
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Figure 1.1. CPS: typical realization and real-time guarantees of control soft-

ware stack.

Broenink et al. [BN12] give a clear characterization of real-time embedded control software

stack, which is summarized as follows. Time-sensitive applications/systems are operated by

software at supervisory, sequence and loop control level. The loop control is at the lowest level,

and is the software part that commands actuators. It is usually classified as hard real-time.

The sequence control layer is a “task-level” controller that computes the set points for the loop

controllers. Sequence control runs at a lower frequency than loop control. It can be classified

either as hard or soft real-time, depending on application requirements. The supervisory control

layer is a “strategy” controller. It instructs the sequence controller with the next task. Its

calculations may take considerable amount of time and is typically classified as soft real-time.

For a robotic arm, an example of loop control is the (digital) Proportional-Integral-Derivative1

(PID) controller to follow voltage/current setpoints for motor driving. Inverse dynamics or other

PID controllers compute the setpoints for the lower-level PIDs from desired motion trajectories.

These are examples of sequence controllers. If the arm is in close interaction with a human

operator, reaction strategies upon unexpected collision or active control of arm’s mechanical

compliance will also be included in the computations of setpoints. The desired motion trajecto-

ries are computed by supervisory controllers performing, e.g., visual tracking, obstacle detection

and collision avoidance tasks.

1.2. Current Design Workflows

V-Shaped Lifecycle

The traditional real-time embedded system development process follows the standard V-

shaped lifecycle. V-cycle splits the product development process into a design and an integration

phase. Instead of moving down in a linear way, the process steps are bent upwards after the

implementation. Each phase of the development life cycle has its associated phase of testing.

1https://en.wikipedia.org/wiki/PID_controller

https://en.wikipedia.org/wiki/PID_controller
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While the way the V-cycle is actually realized varies significantly among practitioners in

embedded systems, a number of limitations are common to all realizations. First, a very small

amount of Verification and Validation (V&V) is performed that is supported by formal methods,

model checking or other similar techniques. Timing verification starts after implementation and

integration, with all the negative consequences this entails (issues due to timing are difficult to

detect and even more difficult and expensive to fix). Second, the transition between the different

stages requires careful manual inspection and cross-checking, and this is frequently error-prone.

Third, it produces inefficient testing methodologies.

Multiple-V-Shaped Lifecycle

The multiple-V-shaped lifecycle addresses the above issues. It is developed in a sequence

of three consecutive V-shaped development cycles (model, prototypes, and final product). The

first V covers the definition and simulation of the overall system functionality. Software-in-the-

Loop simulation is the primary methodology applied, and implementation aspects (including the

time-triggered nature of the application) are not considered. The second V is characterized by

rapid prototyping based on Hardware-in-the-Loop simulation. This phase covers the mapping of

application tasks to computer nodes and the determination of among messages nodes. The third

V addresses the system development for the final target hardware.

Gaps among V-cycles are the major drawbacks of multiple-V-cycle. There is a gap between

the first and the second V: a distributed control application running stable at the first V might

experience excessive delay due to message passing between computer nodes and fail (i.e., provide

unacceptable Quality-of-Service or even exhibit unstable behavior) at the second V. There is a

gap between the second and the third V: deadlines met by the oversized prototypical hardware

(second V) might not be met on the target (third V).

1.3. Platform-Based Design (PBD)

Platform-Based Design (PBD) originates from Electronic Design Automation (EDA) indus-

try, where it is in use since some years. In the embedded systems industry, it has been promoted

and advocated by A. Sangiovanni-Vincentelli [SV02]. Further literature references on this sub-

ject include [SSVDB+05, B+06, DNSV10]. The application of PBD to the development of

complex CPS is introduced in [SV07] and recently discussed in [SVS14].

PBD introduces the concept of platform for virtual exploration in which some abstraction

of the execution infrastructure is used in the earlier phases of the design flow in support of the

exploration. In fact, PBD enables a multi-level virtual exploration. The rationale behind this

design approach is that there is no reason to require that all parts of a system be explored

simultaneously with the same level of granularity. The PBD cycle is a sequence of tool-assisted

stepwise refinements that go from the initial specification towards the final implementation using

models of platform at various level of abstraction.

Platforms are libraries of model components representing the design space that can be ex-

plored. For the design of CPS, libraries contain (at different levels of abstractions):
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Figure 1.2. The PBD concept (reproduced from [DNSV10]).

• models of computational components that carry out the appropriate system function-

ality;

• models of architectural elements that represent the execution medium, such as micro-

processors, memories, networks, sensors, actuators;

• models of execution software layers, that abstract the architectural elements to high

level interfaces (APIs) that computational components can use.

Each element has a characterization in terms of performance parameters together with the func-

tionality it can support. The selection of a particular collection of library components whose

parameters are set defines a platform instance, i.e., a potential design solution at the level of

abstraction the platform represents.

For every abstraction level, there is a set of methods used to map the upper level platform

into an instance of the lower platform and propagate constraints (top-down process), and a set

of methods used to estimate performances of lower level abstractions and to build (or refine)

an upper level platform (bottom-up process). PBD is meet-in-the-middle process, as it can be

seen as the combination of these two efforts (top-down and bottom-up), as shown in Figure 1.2a.

The Figure shows that if designers are given a system platform, then several applications can

be mapped into it and the parameters obtained by the design space export can be used to

estimate the performance of the application onto the platform of choice. By the same token, if

the application space is known, then the platform instance could be optimized according to the

needs of the application space.

The mapping can be performed to optimize cost, timing constraints, energy consumption,

reliability, etc. Figure 1.2b visualizes the refinement process. The mapped functionality of the

system to be designed becomes the “function” at the lower level of the refinement. Another

platform is then considered side-by-side with the mapped instance. This process is applied at all



1.4. RESEARCH OBJECTIVES 5

levels of abstraction, and the process is iterated until all the components parameters are fully

instantiated in their final form.

One important characteristic that makes PBD particularly suitable for the design of complex

CPS is that it accounts for the interplay of top-down constraint propagation and bottom-up per-

formance estimation. Another key benefit of adopting the PBD methodology is the elimination

of costly design iterations (short time-to-market cycles), because PBD is a structured method-

ology that limits the space of exploration, and fosters design re-use of hardware and software at

all abstraction levels.

1.4. Research Objectives

The complexity of CPS poses significant challenges for their design and verification. This

thesis aims to contribute to the ongoing discussion on how to deal with this complexity by

applying the methodological framework of Platform-Based Design (PBD) to the development

and deployment of complex, time-sensitive control applications for CPS.

The PBD approach is completely general. It fosters a virtual exploration of the system design

space on multiple levels and enables the specification of multiple goals for the exploration process.

To put this work into a context that otherwise would be intractable in the most general case,

we focus on the three levels that are of most immediate interest in the majority of instances of

CPS design. These levels are the functional and the architecture platform layers, represented as

the two cones in Figure 1.3, and the mapping layer, represented as the vertex of the two cones in

the same figure. The mapping defines a software-architecture layer of tasks and communication

resources that define the implementation of the (control) functionality on top of the architecture

platform. The importance of these platform levels derives from the fact that most of the critical

design choices are taken in the early stages of the design, and misconceptions in these stages

produce costly and time-consuming re-design cycles. With a PBD approach considering those

levels, fair exploration of design space can be performed, since crucial aspects such as functional

specifications (of control) and their implementation characteristics are both handled formally

and early in the design process.

We assume that functionality is modeled using Synchronous-Reactive (SR) models,

that dominate the market of embedded control application design and on which widely used

products like Simulink and SCADE (commercial) and Scicos (open-source) are based.

Finally, the gray arrow in Figure 1.3 indicates that we restrict our focus to timing issues

as the primary design concern.

The model-driven approach of PBD is extremely flexible. It can serve as the backbone

for the definition of a design flow where models from different (standard) tools are shared and

the integration effort is reduced. This is of paramount importance, especially in modern CPS,

where applications are designed by teams of engineers with different specialties (control, software,

firmware and hardware) which work together but use different modeling and development tools.

As model-driven approach that complies to principles of PBD, the design process proposed in

this work must support the transition from the functional model directly to the code implemen-

tation. A fundamental part of this problem is to guarantee that the generated implementation
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Figure 1.3. The levels of platform abstractions that are of concern in this thesis.

preserves the semantics of functional model. Designers must understand under what conditions

this may actually happen, and they must also realize the implications of an incorrect implemen-

tation. If a semantics-preserving implementation of functionality is not achievable, can designers

define an implementation in which delays are deterministic and added to the model? In general,

the proposed design process must be supported by tools that enable designers to explore tradeoffs

between additional delays, feasibility and control performances.

The definition of such a design process, with the corresponding models, methods and tools is

a challenging task, and it was subject to ongoing work throughout the entire thesis. The following

introduces the research issues defined as the basic building blocks towards the realization of a

supporting framework for the design of complex, time-sensitive control applications for CPS.

RI.1. Models and abstractions for the verification of implementation properties

A prerequisite for adopting the PBD approach is the definition of a common semantic domain

where the platform models and the mapping process (Figure 1.3) can be represented formally.

Models and abstractions must be isolated from lower-level details but, at the same time, must

provide enough information to allow accurate prediction of the properties of the implementation.

Because our primary design concern is on timing issues, platform models at the three levels

(control functions, architecture and mapping) must formalize attributes related to time. The

model of the functions must be complemented by the formalization of constraints such as end-

to-end deadlines. The architecture and the mapping models must formalize the properties of

computation and communication resources that have an impact on the timed execution of control

functions. For the architecture model, this requires a detailed representation of the basic software

(BSW) and of the execution hardware (HW). For the mapping model, it requires the description

of activation policies and priorities of tasks and messages, and the worst-case blocking time on

shared communication resources.
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The formalization of time-related attributes in platform models enables designers to devise

system properties such as schedulability and average-case performance, and is at the core of the

design of time-sensitive control applications for complex CPS. This research issue is investigated

in Chapter 3.

RI.2. Semantics-preserving application deployments

In modern CPS, system properties of control functions (e.g., stability at steady-state, over-

shoot and settling time during the transient phase) are verified on a model of functional com-

ponents by simulation or model checking, or other formal means. These properties remain valid

after the implementation provided that the refinement of functional model into executable code

be performed in such a way that the original semantics is preserved. This is especially important

in safety-critical applications, where software certification plays a key role.

When the functional model is a synchronous model (as we assume in this work), available

commercial code generation solutions produce code implementations for a single-core execution,

and under restrictive assumptions about the scheduling policy. Novel tools are needed that

support the code-generation phase in a PBD flow for, at least, multi-core systems. This research

issue is investigated in Chapter 4.

RI.3. Simulation tools to predict the system-level timing behavior

When the full preservation of functional model semantics cannot be guaranteed by the im-

plementation, designers may resort to simulation to gather important information about the

estimated impact of time delays on the control performances.

It is worth to make the clear statement on this scenario, that simulation alone is not suffi-

cient to achieve software certification of implementation. But there exist numerous time-critical

applications in many application domains of CPS that do not need to undergo a rigorous certi-

fication process, and for which predicting the system-level timing behavior (latencies and jitter)

is a crucial competitive advantage for designers.

Tools are needed that enable such a kind of analysis when the functional model is a synchro-

nous model. Moreover, these tools must comply to the key principle of PBD, i.e., the separation

of concerns between control functions and architecture. Separation of concerns requires that

model artifacts representing the software architecture model be added to the functional model as

annotations through automatic transformations. This research issue is investigated in Chapter 5.

RI.4. Automatic software architecture configuration

The mapping of the functional model into the execution platform is a crucial step in the

PBD process. In fact, several possible options exist for the definition of software architecture

(mapping) once the control functionality and the architecture platform are defined. In distributed

architectures, the design of the software architecture is a very complex task that may require

several iterations and is often delegated to the most experienced designer.

The procedure for (software) architecture selection and evaluation is today a “what-if” itera-

tive process [SVDN07]. First, the designer provides an initial set of architecture options. Then,

the designer uses a set of metrics to evaluate if the architecture options fit to the exploration
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goals. If the designer is not satisfied with the result, a new set of candidate architectures is

evaluated. The iterative process continues until a solution is obtained.

Because the search space is extremely large in most cases, it is very likely that designers

have to settle for solutions not only not optimal, but possibly far from optimality. To improve

the current situation, automated tools should provide guidance in the definition of the optimal

configuration of the software architecture when evaluating an execution platform option, and in

the analysis of the results. This research issue is investigated in Chapter 6.

1.5. Thesis Outline

Each of the core Chapters 3–6 is based on peer-reviewed conference or workshop papers.

These Chapters do not include discussions of related work, because all the literature review

relevant to the research objectives of this thesis is discussed in Chapter 2.

Chapter 3 defines formally the process flow and introduces models and abstractions for the

three levels of platform, namely, functional (synchronous models), architecture and mapping.

This chapter lays the groundwork for successive Chapters, that present tools for timing-analysis

and code-generation which operate on these platform models.

Chapter 4 introduces models and a formal process (code-generation) enabling the implemen-

tation of (robot) control applications with the preservation of the SR flows on single-/multi-core

computing architectures. The target of the code-generation process is the real-time capable,

widely used robotic middleware Orocos-RTT [Bru].

Chapter 5 describes models and automated tools to integrate the simulated execution of

system scheduling (of real-time tasks and network messages) with control simulation, allowing

for the analysis of the impact of computation and communication delays on control performance.

The attitude control of a simulated Unmanned Aerial Vehicle (UAV) is used as case study.

Chapter 6 presents a simulation-driven optimization process for the automated synthesis

of the software system architecture. The process aims at exploring the interplay between the

control performance and the real-time behavior under relaxed constraints (e.g., task deadlines),

and at evaluating the quality of different software implementations. The method is applied to a

UAV case study.

Chapter 7 concludes the thesis, by summarizing contributions, impact and limitations of this

work, as well as suggesting opportunities for future research.



CHAPTER 2

Methods and Tools for System-Level Modeling and Design

2.1. Introduction

This Chapter provides a review of existing methods and tools related to the research objec-

tives formulated in Section 1.4. We introduce the methodologies and the supporting modeling

languages and simulation tools that are today in use in the industrial domain or explored in the

academic-research domain. We discuss their strengths and weaknesses and identify the basis for

the proposed system-level design flow described in the next Chapter.

2.2. Model-Based Design (MBD)

The Model-Based Design (MBD) approach enables behavioral modeling based on a mathe-

matical formalism and executable semantics. In a mathematical-based language, the Model of

Computation (MoC) describes the semantics of computation and communication among model

elements, and assumes paramount importance. A wide variety of formalisms exist, as reported

in [LSV+98].

In the domain of CPS control applications development, MBD is the reference approach for

the analysis of the system, its verification by simulation, the documentation of the design and the

automatic generation of a code implementation. Functional models are based on a Synchronous-

Reactive (SR) execution paradigm. Examples of available commercial tools are Simulink [Theb]

(which is the de-facto standard), SCADE [Est] and LabVIEW [Nat]. Open source and research

tools include Scicos [INR]/Xcos [Sci] and Ptolemy [EJL+03] (which supports multiple MoCs).

These tools are feature-rich and allow the modeling of continuous-, discrete-time, and also hybrid

systems. The control functionality is typically defined using dataflow formalism (possibly in com-

bination with an extended finite-state machine formalism). The controls are simulated against a

model of the controlled system (plant), and then validated. The development of complex func-

tionality may require several iterations, but the availability of a virtual simulation environment

allows to speedup the verification of each solution (as opposed to traditional testing) and to

verify scenarios that would be impractical or even impossible to setup on the actual system.

A common limitation to most commercial modeling and simulation tools is that the function-

ality is represented in abstract terms, that is, independent from the execution platform that will

support the execution of the controls as a set of software tasks and network messages. A sound

development methodology should ensure that the computation and communication delays that

occur when the system is implemented on a (possibly distributed) execution architecture with

finitely available resources preserve the execution assumptions that are part of the simulated

(and verified) model.

9
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Sometimes, a semantics preserving implementation is not feasible for the selected execution

platform, and the only option is to account for the computation and communication delays in

the simulation.

Verifying the preservation of the SR semantics or estimating the delays requires the construc-

tion of a model of the execution platform and providing an assumption on how the functionality

will be implemented on the computation resources.

In addition, in a sound model-based flow, the software implementation of the model should be

automatically generated by a model compiler. This is desirable not only for improving efficiency,

but for guaranteeing that no errors are introduced in a manual coding stage. Unfortunately,

current code generators only produce a code implementation for a single core execution, and

under restrictive assumptions about the scheduling policy.

2.3. Model-Driven Engineering (MDE)

Model Driven Engineering (MDE) is a software development approach that promotes the use

of models and their transformations in the software development process. The central idea in

MDE is the definition of domain-specific models (called meta-models) that capture the aspects

relevant to a particular domain. In other words, domain-specific models represent the knowledge

and activities that govern a particular application domain. Concrete models conformant to the

meta-model can then be analyzed, validated, transformed and executed.

MDE is a modeling paradigm. One of most relevant standardization efforts of it is the Model

Driven Architecture (MDA) initiative [(OMb] by the Object Management Group (OMG). MDA

prescribes a design process in three stages. First, a Platform-Independent Model (PIM) defines

the system functionality independently of the software platform it will execute onto. Next, the

PIM is transformed to the Platform-Specific Model (PSM) by means of a Platform-Definition

Model (PDM). Finally, the PSM is transformed in a Platform-Specific Implementation (PSI).

The first transformation is Model-to-Model (M2M): it transforms the PIM (source model) into a

model of the software execution platform (target model). The second transformation is Model-

to-Text (M2T), because it transforms the PSM into final code implementation (PSI).

OMG defines several other standards to effectively support MDA. The Meta-Object Facil-

ity [(OMg] (MOF) specification describes the meta-meta modeling language and the rules that

specify meta-models. The Query/View/Transformation [(OMe] (QVT) standard defines M2M

transformation languages, which operate on models conform to MOF. A key component of QVT

is the Object Constraint Language [(OMd], (OCL) that allows the specification of constraints

on models. M2T transformations are standardized separately as MOF Model to Text Transfor-

mation Language [(OMc] (MOFM2T).

The Unified Modeling Language [(OMh] (UML) defines diagram types for modeling a num-

ber of software aspects, including behavior. However, UML lacks of a rigid semantic formalization,

and only recently OMG has released a behavioral semantics specification with the foundational

UML [(OMf] (fUML) and Action Semantics language [(OMa] (ALF).

Within MDE paradigm, we can distinguish two modeling approaches: profiling and meta-

modeling. Profiling is the mechanism standardized by the OMG that allows adaptation of the
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UML meta-model for a specific application domain. Stereotypes and their attributes enable the

representation of concepts for that specific domain. Today, many profiles exist for numerous

domains. The System Modeling Language [Obj12] (SysML) and the Modeling and Analysis of

Real-Time and Embedded Systems [(OM11] (MARTE) profile are relevant in the context of

this work.

SysML is a general-purpose modeling language for systems engineering applications. SysML

offers concrete advantages over UML for tasks like capturing system requirements and specifying

quantitative constraint on the system. However, its behavioral semantics is not completely and

formally specified (like for UML).

MARTE introduces UML extensions describing a variety of non-functional properties, and

aims to provide support for specification, design, and verification/validation of real time and

embedded systems.

Meta-modeling is the approach of defining a new meta-model from scratch. As of today,

the Eclipse Modeling Framework [Ecla] (EMF) is the most widespread framework that supports

meta-modeling. EMF enables the definition of custom metamodels using its Ecore meta-modeling

language, which is the de-facto reference implementation of (a subset of) OMG’s MOF1.

2.4. Frameworks for Heterogeneous-Model Integration

In agreement with the principle of separation of the functional and architecture design con-

cerns, and with respect to the subject of heterogeneous models integration, several approaches,

methods and tools have been proposed. GME [KML+04] and MetroII [DDM+07] propose the

use of a general meta-model as an intermediate target for the model integration. However, they

do not provide simulation capabilities or a code generation path for distributed implementation

based on open source tools and open standards.

Raghav et al. [RGR+10] and Hugues et al. [HZPK08] proposed two similar MDA methods

for describing the functional behavior according to a reference architecture and then comparing

the deployed system with respect to the reference to check whether the performance (delay)

target is guaranteed.

GeneAuto [Gen], ProjectP [Pro], the Rubus Component Model [HMTN+08] and AADL

[AAD] put emphasis on the modeling of task sets and their interactions and the code generation

infrastructure, without including simulation capabilities or an explicit formal metamodel for the

internal behavior of tasks.

2.5. System-Level Approaches in Automotive and Robotics

Automotive (AUTOSAR)

AUTOSAR [AUT] is a development partnership of automotive OEMs (Original Equipment

Manufacturers) and suppliers. The partnership aims to develop an open industry standard for

automotive software architectures. The standard covers all software levels, from the BSW to the

1https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html

https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html
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specification of platform-independent application-level components. A meta-model formalizes all

the definitions provided by the standard.

AUTOSAR is perhaps the most successful application of MDA paradigm in the industry. The

AUTOSAR standard defines a virtual integration environment for the software components and

a separate model for the distributed execution architecture, later merged in a deployment stage

supported by tools. However, the current implementation of the standard lacks the support of

a formal MoC, and hence is not suitable for the early-stage control validation. Also due to this,

the integration of AUTOSAR with MoC-based executable languages (e.g., Simulink) presents

several difficulties.

Robotics

In robotics, the most common design paradigm for application development is the component-

based SW engineering. Frameworks such as ROS [Ope], OpenRTM-aist [AIS] and Orocos-

RTT [Bru] act as middlewares, providing abstractions to encapsulate active control threads and

communications among them. Orocos-RTT is specifically oriented toward programming and ex-

ecuting component-based applications on top of Real-Time Operating Systems (RTOSes) and

relies on lock-free communication to guarantee a deterministic execution time for all in-process

inter-component data exchange.

However, this situation is changing and MDE approaches are becoming increasingly popular.

In the last few years, several MDE Integrated Development Environments (IDEs) and Domain-

Specific Languages (DSLs) have been made available. BRIDE is an IDE based on Eclipse devel-

oped in the BRICS project [web]. It targets the automatic generation of platform-specific code

for component-based frameworks from a graphical (abstract) model of the system architecture

and its SW components (the BRICS Component Model [BKH+13]). BRIDE uses model-to-

model (M2M) transformations to generate framework-specific code for the communication, con-

figuration, composition and coordination of ROS and Orocos-RTT components. The declarative

description of robotics architectures and SW deployment using a DSL is described in [HGS+13]

with a hierarchy of architectural concepts for HW and SW, inspired by AADL [AAD]. However,

the properties of HW and SW that define the timing behavior of components are not included.

The SmartSoftMDSD toolchain [SSBK10] supports non-functional properties for design-time

real-time schedulability analysis. The framework allows the graphical modeling of applications

and provides M2M transformations to construct a platform-specific model for schedulability

analysis using Cheddar [SLNM04].

Some IDE provide DSLs for the algorithmic description of behaviors. V3CMM [AVCO+10]

is a modeling language that provides a simplified version of UML activity diagrams, to model

the sequential flow of execution within components. RobotML [DKS+12] is a DSL aiming

at the design of robotic applications and their deployment to multiple target execution plat-

forms (and simulators). It uses a specialization of UML state machines for the modeling of the

behavior of generated component implementations. RobotML enables (simplistic) modeling of

platform-specific non-functional properties of SW components, that are used to create models
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for third-party real-time schedulability analyzers. Hence, it suffers the same drawbacks of the

SmartSoftMDSD toolchain.

Virtual Path [NJH09] is a HW-SW co-Design method that includes Simulink in the devel-

opment flow, to create executable models representing the controls. In [WNBG12], Wätzoldt et

al. adapt the automotive toolchain to the development of robotic systems. The design method-

ology uses Simulink for the simulation of robot functionalities, and Embedded Coder for the

generation of the implementation. AUTOSAR models and tools (e.g., SystemDesk [dSP]) are

used to combine hard and soft real-time tasks in a system view and analyze the scheduling

feasibility.

2.6. Simulation of Platform’s Delay Effects

Models can capture the architecture-level details and enable the study of system’s timing

behavior by means of timing analysis techniques (e.g., using MARTE). Another approach is

simulation. Simulators can provide support for the evaluation of effects that computation and

communication delays have on the performance of the system.

Network simulators can aid in the evaluation of communication delays (due to, e.g., mes-

sage transmission). A large variety of simulation tools are available from the industry and

the academia. Most of them are geared towards the use in a specific domain. NS-3 (Network

Simulator) [NS-] and OMNeT++ [OMNa] are freely available discrete-event computer network

simulators. They support several communication protocols and are extensible for the inclusion

of new ones. In [MMT+] a simulation environment for CAN-Ethernet networks is presented as

example of extension to OMNeT++.

Real-time scheduling simulators support the evaluation of computation delays (finite ex-

ecution times, scheduling delays, etc). A huge number of projects target the evaluation of

scheduling policies and the analysis of task implementations (more than 6 million hits when

searching the keywords Real-Time Scheduling Simulator in Google). A necessarily incomplete

list includes Yartiss [CFM+12], Storm [UDT10], ARTISST [DP02], Cheddar [SLNM04],

Schesim [MSHT12], Stress [ABRW94].

Simulators must be used in conjunction with MBD tools that support the definition of

control applications, to effectively support the designer in the architecture evaluation process.

The following lists the possible options for use with Simulink.

Options for Simulink

Co-Simulation with Third-Party Programs

A number of research works address the problem of combined execution of Simulink to-

gether with an external program for network simulation. Relevant works on this topic in-

clude [HA04,Kac10]. They share the idea of using sockets (TCP/UDP) to establish a bidirec-

tional communications between the two simulators. This requires the implementation of special

coupling components, that slow down the simulation and realize the coordination between the

simulators in ad-hoc fashion. Furthermore, these implementations are tied to the specific network

simulator and are difficult to interface with others.
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Co-Simulation with Ad-Hoc Implementations of Scheduling and Network Simula-

tors: The TrueTime Toolbox

In Simulink, a possible solution for the simulation of platform’s computation and commu-

nication delays is provided by the TrueTime toolbox [CHL+03]. TrueTime is already used by

many research groups worldwide to study the (simulated) impact of lateness and deadline misses

on controls. Relevant literature on this subject includes [ÅW11] and [CVMC11].

TrueTime enables the simulation of control functions considering their software task and

message implementations, including scheduling and resource management policies. It provides

two special-purpose Simulink blocks representing a model of multi-tasking real-time kernels and

of a network, respectively. The kernel model supports many popular scheduling policies for

single-core systems, such as Earliest Deadline First (EDF) and Fixed Priority (FP), including

Rate Monotonic (RM). Presently, multi-core architectures are not supported. For what concerns

the network standards, TrueTime supports Ethernet, CAN and FlexRay, and wireless network

standards such as 802.11b WLAN and 802.15.4 ZigBee.

In TrueTime, the kernel models in fact a computer node together with A/D and D/A con-

verters, external interrupt inputs and network interfaces. The corresponding block is configured

via an initialization script (usually written in Matlab code), where a specific API is used by

the designer to create tasks, timers and interrupt handlers and define the scheduling policy and

the communication resources. The model of task code is represented by code functions that are

written in either Matlab or C++ code. A TrueTime developer has two options: hand-code the

control logic and lose availability of Simulink (control) toolboxes, or call external discrete-time

Simulink models from within the code functions using a mechanism based on the MATLAB

built-in operator sim() with several limitations. First, signal-generator blocks that use the sim-

ulation time and blocks for which it is not possible to specify the sample rate (e.g., the Discrete

Derivative block) cannot be used. Second, data connections among Simulink models need to be

implemented in code using a purposely offered API and the application of a TrueTime Sched-

uler to an already existing Simulink model of controls requires substantially rewriting, mixing

the controller functionality, the model of the task set, the scheduler, and the physical execution

platform. Finally, because of the monolithic architecture and the number of code artifacts that

are needed for system configuration (e.g., initialization script and code functions), the current

TrueTime implementation is hardly compatible with an automatic model generation and a M2M

transformation flow.

Native Simulink Discrete-Event Simulation: SimEvents

SimEvents [Thea] is a commercial toolbox developed by The MathWorks, providing a

discrete-event simulation engine and component library for Simulink. It enables event-driven

communication modeling between Simulink components to analyze and optimize end-to-end

latencies, throughput, packet loss, and other performance characteristics. SimEvents is mod-

ular and its component library comes with many blocks that allows the designer to customize

processing delays, prioritization, and other operations, to represent systems that range from

manufacturing processes, to hardware architectures and sensor/communication networks.
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Because of its generality though, SimEvents does not provide an explicit model of task, real-

time scheduler, network protocol or hardware component. They need to be built as libraries

using blocks representing priority queues and servers.

2.7. Discussion and Conclusions

Concepts and methodologies reviewed in Sections 2.2 and 2.3 can be summarized as follows.

On one side, SR languages (e.g., Simulink) allow for the simulation of controller-plant interactions

and behavioral code generation (of control), but offer no support for the representation of complex

system architectural aspects and execution platforms. On the other hand, MDA languages are

very good at representing architectural aspects, can be easily extended and provide mechanisms

to transform models expressed in a language into another; but their behavioral semantics is

weak (not completely and formally specified) and they are not suitable for modeling continuous-

time systems. Their strengths and weaknesses are complementary. Therefore, MBD and MDA

approaches are good choices to form the backbone of the PBD design flow.

Within MDA, MARTE is today the best option for the definition of distributed embedded

systems with real-time constraints, although with some limitations. MARTE purposely lacks

the complete specification of a number of HW and SW concepts, that is left up to model-library

designers. However, when there is the intent of processing a model annotated with MARTE

stereotypes to analyze it or to generate code/models from it, the introduction of new language

constructs becomes necessary [SG14]. Moreover, MARTE defines a number of stereotypes to

represent BSW concepts that are mostly cumbersome, come with a large number of properties

and are quite difficult to be mastered by the system designer. As a result, this work requires

custom taxonomies of stereotypes extending MARTE.

Despite much research, such an integrated MBD/MDA framework, based on SR and SysML/-

MARTE models, is not ready available (Section 2.4). Among possible alternatives, the reviewed

works that provide a clear separation of the functional and platform models (GME, MetroII) typi-

cally do not provide model-based simulation capabilities or a code generation path for distributed

implementation based on open source tools and open standards. AUTOSAR (Section 2.5) does

not have any feature for modeling the behavior of the functions. Therefore, an exetrnal tool or

the actual code is needed for functional modeling. The same consideration holds for the majority

of the frameworks today available for model-driven development in robotics. Those that provide

support for behavioral modeling are based on UML and, consequently, model execution and

simulation are tool-specific. Nearly all lack any kind of support for timing analysis. Others (e.g.,

SmartSoftMDSD) portray an approximate (and sometimes inaccurate) view of the schedulability

problem as a binary decision process (“ok”/“not ok”).

Finally, tools reviewed in Section 2.6 do not represent a viable solution to the problem of

simulating computation and communication delays in SR models. This demands the development

of a novel, modular and extensible co-simulation framework to be integrated in the proposed model-

driven flow.





CHAPTER 3

Design-Process Flow and Platform Meta-Models

3.1. Introduction

As model-driven approach that complies to principles of PBD, the design process proposed

in this work integrates executable, synchronous models of control with structural models of the

execution platform in a sequence of stepwise refinements from the initial specification towards

the final implementation. The mapping of control functions to the platform is performed through

an intermediate layer, in which functions are implemented by tasks and communication between

components maps into local communication (internal or between tasks) and network messages.

The top side of Figure 3.1) represents (conceptually) the process of mapping the functions model

onto a model of the execution architecture through the intermediate SW architecture model.

Two major application scenarios are considered in this thesis, namely those of design of

safety-critical and performance-sensitive systems. In both the scenarios, the use of models is

a consolidated practice to improve the quality of the system and to speed-up the development

process (albeit with several limitations). The link between the proposed PBD process and the

application scenarios is visualized in Figure 3.1) (bottom side). The mapping model is represented

as the foundation part in the successive refinement view of PBD for both the scenarios, since
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Figure 3.1. Platform models, mapping process and application scenarios for

the proposed design flow.
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(a) Steer-by-Wire1 (b) Lane Departure Warning2

Figure 3.2. Examples of safety-critical and performance-sensitive systems in

automotive.

only after mapping is described one can verify whether constraints on non-functional properties

of the design are satisfied.

In safety-critical CPS, failure or malfunction may result in death or serious injury to

people, loss of or severe damage to equipment, and/or environmental harm. Examples from the

aerospace/automotive and robotics domains include X-by-Wire (e.g., Steer-by-Wire, Figure 3.2a)

and physical Human-Robot Interaction (pHRI) systems, respectively.

Safety-critical systems demand precise guarantees that the final implementation will satisfy

a number of properties, formally verified during the design phase with the use of model checkers

or other formal means. They must pass thorough certification processes to be put in operation.

Examples of safety standards are ISO26262 [Int], for road vehicles functional safety, and DO-

178B [RTC], for SW considerations in airborne systems. Therefore, a process addressing their

design at system-level must support the transition from the functional model directly to the

code implementation in a way that the generated implementation is guaranteed to preserve the

semantics of functional model (SR). This includes overcoming the limitations of current commer-

cial code generation solutions, that, for synchronous models, can produce semantics-preserving

code implementations only for a single-core execution, and under restrictive assumptions about

the scheduling policy.

The other major application scenario for the proposed framework is that of performance-

sensitive systems design. This kind of systems are time-critical, i.e., subject to demanding

timing constraints, and often have the potential for very high consequences of failure. In fact, in

many cases the distinction between safety-critical and performance-sensitive systems is subtle,

and mostly depends on whether the law mandates system designers to show compliance with

an applicable (safety) standard. Examples from the automotive domain include Advanced Dri-

ver Assistance Systems (ADAS), such as Adaptive Cruise Control (ACC) and Lane Departure

Warning (LDW) (Figure 3.2b) systems.

1http://www.caranddriver.com/features/electric-feel-nissan-digitizes-steering-but-the-wheel-

remains-feature
2http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/chassis_

safety/adas/

http://www.caranddriver.com/features/electric-feel-nissan-digitizes-steering-but-the-wheel-remains-feature
http://www.caranddriver.com/features/electric-feel-nissan-digitizes-steering-but-the-wheel-remains-feature
http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/chassis_safety/adas/
http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/chassis_safety/adas/
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It is very common that performance-sensitive systems are classified as hard real-time systems.

Therefore, their design is carried out according to the classical separation of concerns between the

correctness of control functionality and the verification of the time properties of the computations.

In reality, many of these systems (including fuel injection [But12]) are tolerant to delays and

deadline misses in a way that is different from a simple “safe/not safe” outcome. Therefore, when

the full preservation of functional model semantics cannot be guaranteed by the implementation,

the evaluation of the impact of computation and communication delays on the performance of

controls in the simulation environment (at design time) gains fundamental importance. Sat-

isfactory (simulated) performance gives designers reasonable expectations on the validity and

effectiveness of the final SW implementation. On the other hand, performances excessively de-

graded may trigger design iterations, where the architecture configuration may be modified or

the mapping decisions may be changed. When iterations are required on the functional model,

a different selection of the execution periods of the functions, or different synchronization and

communication solutions may be explored.

The proposed approach enables design space exploration with a fairly accurate prediction

of (time and control) properties of the implementation upon condition that platform models

incorporate and expose appropriate information. Many factors influence the capability of pre-

dicting the timing behavior (latencies and jitter) of the system, including the synchronization

between tasks and messages, the interplay that different tasks can have at the RTOS level and

the synchronization and queuing policies of the middleware. Ultimately, the timing of end-to-

end (control) computations depends on the deployment of the tasks and messages on the target

architecture and on the resource management policies.

The identification of precisely defined abstraction layers (platforms), where the refinement

processes take place, is the essence of PBD. On one side, exposing too much specialized informa-

tion from lower-level abstraction layers can result in complex platform models that are difficult

to understand and cumbersome to use. On the other side, oversimplified representations of the

design space may lead to predictions/abstractions so inaccurate that refinements are misguided

and the final implementation is, at the very least, ineffective.

This chapter is entirely focused on the definition of the right models and abstractions for the

description of the functional platform specifications, the execution architecture options and the

SW architecture implementation.

The rest of the chapter is organized as follows. Section 3.2 defines the process flow, that

leverages open standards and technologies. Being conformant to standards, it enables the use

of modeling tools with graphical editors, model checkers and processors, and possibly a number

of additional tools for supporting the management of models. Sections 3.3, 3.4 and 3.5 cover

the core content of the chapter and provide, respectively, the characterization of functional,

execution architecture and SW architecture platforms for timing analysis and code-generation.

Finally, Section 3.6 summarizes and closes the chapter.
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3.2. Process Flow Based on Standard Technologies

For the development of complex CPS, we propose an approach that follows the principles of

PBD and benefits from the complementary strenghts of different model-driven approaches such

as domain-specific modeling languages, MDE and MBD.

A natural candidate for the functional modeling is the MBD-oriented Simulink/Stateflow

synchronous language. However, functionality could also be implemented directly as code. In

both cases, an abstract view of the functional model is required. This abstract view accounts for

all the information related to the timed events that are relevant for the system, including rate

constraints, partial order of execution constraints and any other synchronization constraints.

The MDE-oriented open-source environment Papyrus [CEA] is currently the best option for

modeling the execution platform. Papyrus is integrated into the Eclipse Modeling Framework

(EMF) and provides complete support for OMG’s UML and related modeling languages such as

SysML and MARTE. However, the standard MARTE profile is not completely adequate for the

description of (networked) systems considered in this work (Section 2.7). Therefore, on top of

the modeling features offered by the standard SysML meta-model, we provide a domain-specific

profile for cyber-physical applications that leverages (and extends) MARTE. The profile defines

a concise taxonomy of stereotypes to represent common execution HW in use in CPS and the

BSW (including device drivers, middleware classes and RTOS modules) that runs on top of it.

The properties of stereotypes are selected carefully. They enable the representation of concepts

for timing analysis and code-generation at a sufficient level of abstraction, without requiring deep

digging into many lower-level details.

In addition to a dedicated profile for the model of the execution architecture, another profile

is created to represent the model of the SW implementation. This model consists of the set

of all tasks and messages implementing the system functions and the communication signals.

When a functional model is put in correspondence with an execution architecture, the task and

message model is produced as the result (either by hand by the designer or as the result of the

operation of synthesis tools). The profile extensions allow to define the mapping and evaluate

the computation and communication delays, but are also used for the automatic generation of a

concurrent task implementation on top of Orocos-RTT. Code generation is performed using the

open-source, standard MOFM2T transformation tool Acceleo [Obe].

Figure 3.3 visualizes the complete design flow. The Simulink functional model is the starting

point, and is partitioned (at some level in the design hierarchy) in a set of subsystems. Sub-

systems are the unit of execution for the code generation process. Once the simulation results

are satisfactory, code is generated for each subsystem, and the designer uses a purposely written

model exporter to generate an abstract view of functional model. The abstract view conforms to

an Ecore meta-model for SR systems. The Ecore view preserves all the structural properties of the

Simulink model, such as the types and interfaces of the subsystems and the connections among

them, and also accounts for the information related to the timed execution events, including

rate and partial order of execution constraints. Next, a M2M standard-compliant QVTo [Eclb]

transformation translate the Ecore view of the functional Simulink model into a SysML model
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Figure 3.3. Heterogeneous model integration and code generation by the

framework tools.

in Papyrus (leveraging a profile definition). Here, the SysML functional model is extended with

the platform and mapping models.

The mapping model represents the software tasks and messages (local or on the network) that

realize the functions. The task model may be constrained in such a way that only flow-preserving

implementation of the functional model are allowed.

Finally, M2M and MOFM2T transformations process the mapping model to achieve the

goals of (i) generating semantics-preserving executables from a functional model of controls; or,

(ii) exploring the tradeoffs between time delays and control performances. In case a semantics-

preserving implementation of the functionality is achievable, an implementation of mapping

model is generated that executes the C code from Simulink on top of Orocos-RTT. Otherwise,

a set of Matlab scripts containing back-annotation commands are generated that operate on the

original Simulink model and adds to it a set of custom blocks (with connections), representing the

implementation of the Simulink subsystems of the controller in tasks, executing under the control

of a scheduler and exchanging messages onto a network medium (as specified by the mapping

model). Designers then start a sequence of refinements of the control logic and/or the HW/SW

implementation based on the estimated impact of time delays on the control performances.

3.3. Functional Modeling

3.3.1. Functional Modeling in Simulink and EMF

The functional model is created by importing in EMF a Simulink model that includes the

controller part and the model of the plant.

The Simulink model must comply with the restriction that there is a decomposition level in

which the controller part consists of a collection of subsystems, in which each subsystem only

contains periodic blocks with the same period (each subsystem has a single rate).
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Figure 3.4. The Ecore meta-model for the functional part.

A Matlab script uses the Simulink modeling API (programming interface) to parse the model

structure and export an XML view of the controller subsystems. The XML conforms to a schema

created in accordance with an Eclipse Ecore metamodel, defined for representing the execution

constraints that apply to the Simulink subsystems (Figure 3.4). This metamodel is not too

dissimilar from the one proposed in the GeneAuto project (actually, a simplified version of it),

but contrary to GeneAuto, it is formally available as an Ecore definition.

3.3.2. M2M Transformation to SysML

After the functional model is imported in the EMF framework, a QVTo M2M transfor-

mation translates the model in SysML, according to purposely created profile and type library

for SR systems (Figures 3.5a and 3.5b, respectively). The QVTo transformation is structured

as a set of mapping operations that are invoked in sequence within the transformation entry

point. Figure 3.6 shows the sequence of mapping operation calls, that are discussed in the next

subsections.

Mapping operation Subsystem::toSRSubsystem()

The transformation rules of this mapping operation are summarized in Table 3.1. All

Subsystem entities are mapped one-to-one to SRSubsystem instances, which extend the SysML

concept of Blocks. EAttributes type, sampletime and Feedthrough are mapped directly

to their counterpart properties in SRSubsystem. An empty type identifies a special kind of
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Figure 3.5. The SysML meta-model for the functional part.

SRSubsystem, as one that carries out some control-related functionality. Therefore, the stereo-

type Control is added to the SRSubsystem instance. The EAttribute id is mapped to the name

property of SRSubsystem’s base stereotype SysML::Block.

This mapping performs a nested call to a map operation that manages the transformation

of Port objects.

Ecore SysML

EClass EAttribute Stereotype Property

Subsystem SRSubsystem

type type

type (size(type) = 0) Control

sampletime (SRSubsystem) sampleTime

Feedthrough feedThrough

id SysML::Block name

Table 3.1. Transformation rules for the Subsystem EClass and its EAttributes.

Mapping operation Port::toSRPort()

Table 3.2 summarizes the transformation rules of this mapping operation. All the (concrete)

instances of Port are mapped to SRPorts, which specialize the SysML concept of FlowPorts.

The Port type determines the direction of the SysML::FlowPort instance in the destination

model. InPorts are mapped to SRPorts with direction equal to FlowDirection:: in. The

mapped flow direction is FlowDirection:: out for OutPorts.
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-- transform entry point

main() {

-- Generate SRSubsystem and SRPort elements

var setSRSubsystems := src_mdl.block[Subsystem]

->map toSRSubsystem()->asSet ();

dst_mdl.packagedElement += setSRSubsystems;

-- Add the Control stereotype ( SRSubsystems with empty types)

setSRSubsystems ->select(s | s.getValue(sub_stp , "type")

.oclAsType(String ).size ()=0)

->map toControlSubsystem ();

-- Add them to the FunctionalSystem block

var ost_ptySubsys := setOfSubsystems ->map toProperty ()

->asOrderedSet ();

blkFunctSystem.ownedAttribute += ost_ptySubsys;

-- Generate connections

var setSignals := src_mdl.link

->select(s | s.source.container (). oclIsKindOf(Subsystem) and

s.destination.container (). oclIsKindOf(Subsystem ))

->oclAsType(Signal)->asSet ();

var setConnections := setSignals ->map toConnector()->asSet ();

blkFunctSystem.ownedConnector += setConnections;

-- Generating partial order constraints (for SRSubsystems )

var setAllBinaryOrders : Set(Dependency) := Set {};

setOfSubsystems ->map toSetOfSRBinaryOrders(setSignals)

->forEach(setBinaryOrder)

{

setAllBinaryOrders += setBinaryOrder

};

dst_mdl.packagedElement += setAllBinaryOrders;

}

Figure 3.6. Sequence of mapping operation calls within the QVTo transfor-

mation entry point.

The value of the EAttribute numDims determines an additional stereotype for the corre-

sponding SRPort in the destination model. If numDims > 1, the SRPort is further stereotyped as

MultiDimensionalArray, to indicate that it can handle multi-dimensional signals. In this case,

numDims and dims are directly mapped to the counterpart properties in MultiDimensionalArray.

If numDims = 1, the target SRPort is stereotyped as MonoDimensionalArray, and dims is mapped

to the signal length (the signal size along its single dimension).

A Port ’s datatypename determines the type of the corresponding SRPort in the destination

model. The mapping operation compares the datatypename string value with the names of types

in the SysML type library for SR systems. If a correspondence is found, the type is assigned to

the SRPort; otherwise, the Real data type from the SysMLPrimitiveTypes package is assigned

to the SRPort.

Finally, the Port index is mapped to the index property of SRPort.
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Ecore SysML

EClass EAttribute Stereotype Property

Port SRPort

index index

datatypename type

numDims (numDims > 1) MultiDimensionalArray numDims

dims (numDims > 1) MultiDimensionalArray dims

numDims (numDims = 1) MonoDimensionalArray

dims (numDims = 1) MonoDimensionalArray length

InPort SysML::FlowPort direction

OutPort SysML::FlowPort direction

Table 3.2. Transformation rules for the Port EClass and its EAttributes.

Mapping operation Signal::toConnector()

Signals in the source model are mapped one-to-one to standard UML::Connectors in the

destination model. EAttributes source and destination are used to recover the connector’s

endpoints specifications (SRPort and its SRSubsystem) from early mapping operations. Table 3.3

summarizes the transformation rules of this mapping operation.

Ecore SysML

EClass EAttribute Stereotype Property

Signal UML::Connector

source UML::ConnectorEnd

destination UML::ConnectorEnd

Table 3.3. Transformation rules for the Signal EClass and its EAttributes.

Mapping operation Class::toSetOfSRBinaryOrders()

The Simulink modeling API does not allow the extraction of the precedence orders among

blocks in a convenient way. For this reason, the information on precedence orders of execution

between pairs of blocks is determined by the M2M transformation on the basis of the values of

Feedthrough ports attributes.
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Figure 3.7. SysML profiles for the execution platform with their dependencies.

3.4. Platform Modeling

The execution-platform meta-model defines profiles and stereotypes for the embedded system

domain on top of OMG’s MARTE profile. Execution-platform profiles are organized in two

packages, namely HwResources and BswResources, respectively shown in Figures 3.7a and 3.7b.

For the sake of better readability, the implementation details of packages are omitted and

we keep the discussion to a more abstract higher-level. An exception is made for the BswRTOS

package (BswResources). The package BswRobotMW (BswResources) defines the target robotic

middleware for the semantics-preserving code-generation process and is described in the corre-

sponding chapter (Chapter 4).

3.4.1. Physical Platform Modeling

The HwResources package introduces model elements representing embedded HW commonly

used in robotic systems, including computing, communication and device resources.

The meta-model concepts are organized in models (packages). The HwControlUnit model

defines the structure of the HW execution architecture, as shown in Figure 3.8. A control

unit (HwCU) is composed of one or more HW boards (HwBoards), eventually connected together

through expansion slots. A HW board may contain multiple CPUs, both single- and multi-

core; at least one concrete kind of HW communication interface (HwCOMInterface ) connected

to the corresponding bus (HwBus ); and, finally, any number of auxiliary device resources for the

interaction with the environment (HwDevice s).
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Figure 3.10. HwCommunication model’s structure.

The concept of CPU is part of the HwComputing model (Figure 3.9), and is defined by the

stereotype HwProcessor. Like in MARTE, the property nbCores defines the CPU’s number of

cores. Other properties describe the operating frequency, the instruction set architecture, the

endianness and the address space size.

The HwCOMInterface and HwBus specifications are part of the HwCommunication model

(Figure 3.10). The model defines concrete specializations of the two stereotypes to represent

standard HW interfaces for network communication such as CAN, Ethernet, USB, SPI and

PWM.
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Finally, device resources are defined in the HwIO model. The model provides two categories

of HwDevice s: sensors (HwSensor s) and actuators (HwActuator s). These are further classified

into sub-categories according to their logical functionality. Figure 3.11 shows a subset of the

HwIO profile providing a model of two attitude sensors, a gyroscope (HwGyroscope) and an

accelerometer (HwAccelerometer), and a vision sensor (HwCamera). The properties bandwidth

(attitude) and fps and delay (camera) describe sensors’ attributes that are related to time.

The bandwidth indicates how often a reliable sensor reading can be taken (i.e., how many

measurements can be made per second); the fps and delay indicate the frequency rate at which

the camera works and the processing delay, respectively. The other properties complete the

specification of sensor models and are used for code-generation purposes. The HwIO profile also

includes a model of relative encoder, potentiometer and servo-motor.

3.4.2. BSW Resources Modeling

BSW components and deployments of BSW modules onto the HW are modeled according

to the taxonomy of stereotypes defined in BswResources, which is composed of several packages.

BSW components include the I/O drivers and their queuing policies (BswIO), the communica-

tion stacks, with models of the transport and network protocols (BswCOM), possible middleware

tasks and their activation policies (BswRobotMW), and the (real-time) operating system, with the

supported scheduling policies (BswRTOS). Model elements representing the deployment of BSW

modules onto the execution architecture are specified in BswAllocation.

The package BswRTOS is composed of two views: one defines the profile elements used by

system designers to represent RTOS components that are part of the BSW modules of control

units, and the other defines the elements used by the M2M transformations to automatically

generate model artifacts representing the BSW implementation of the real-time (control) tasks

and their interactions (BSW model). Figure 3.12 shows the model elements for the two views,

respectively.
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Figure 3.12. BswRTOS model’s structure.

The stereotype BswRTOS (Figure 3.12a) denotes an RTOS. Some specializations of BswRTOS

are defined to represent, e.g., kinds of RTOS that comply with the OSEK/VDX and POSIX

standards, including real-time Linux.

The RTOS contains a scheduler (BswScheduler), which executes tasks according to a given

scheduling policy (SchedPolicyKind), selected among one of the kinds defined in the MARTE

model library. When concurrent tasks need to access shared resources, the RTOS uses a resource

access protocol to ensure consistency of the data and time determinism.

In the envisioned development flow, system designers do not represent the application exe-

cution model (processes, threads and their interactions) as BSW model, but rather an abstract

mapping model (Section 3.5). M2M transformations then process the mapping model and gen-

erate a corresponding model with OS threads and middleware components. BswProcess and

BswThread (and its specializations) are the BSW model artifacts that map to the generic con-

cepts of process and thread (Figure 3.12b).

Basic concepts representing data transfers in execution platforms are defined in package

BswCoreDataTransfer and refined in BswCOM and BswIO. Figure 3.13 shows a partial view of

BswCoreDataTransfer and BswCOM profiles.

BswCOM enables the modeling of implementation/configuration of BSW modules that support

local communication and network communication among distributed control units. The specifica-

tion of model elements follows to a large extent the OSEK COM standard [OSE04]. The package

defines an interaction layer, or IL (BswIL ), that provides the API (BswILAPI) with services for

the transfer of messages (BswILServices). A number of stereotypes represent ILs operating ac-

cording to specific network and/or data link layers, e.g., IP/Ethernet (BswILEthernet) and CAN
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Figure 3.13. Portion of BswCoreDataTransfer and BswCOM models structures.

(BswILCAN). The set of functions the IL offers to handle messages is defined by specializations of

BswILAPI, e.g., the socket API to configure and use network sockets.

Finally, the BswIO package specializes the definitions provided in BswCoreDataTransfer to

allow the modeling of the API of common analog and digital I/O device drivers.

3.5. Software Architecture Modeling

The mapping model associates functional elements to tasks, and tasks to processing (HW)

resources. Accordingly, communication signals of the functional view are mapped to signal

variables for intra-task, inter-task, remote and I/O communications. Typically, the association is

performed manually by the system designer. However, the mapping model may also be obtained

as result of several optimization problems, including, but not limited to, how to map functions

into tasks, how to assign the execution order of functions inside tasks and how to assign the task

parameters (priority, deadline, offset) to guarantee semantics preservation and schedulability.

Figure 3.14 visualizes the structure of the mapping profile, organized in four packages. The

Concurrency package classifies concurrent execution contexts in terms of processes and threads.

The Synchronization package includes profile elements to represent precedence relations on

tasks’ executions; it also represents concepts for the code-generation tools to describe the syn-

chronous activation of tasks (these will be introduced later, in Chapter 4). The Interaction

package defines the signal variables, implementing functional communication signals. Finally,
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Figure 3.14. Structure of mapping model’s SysML profiles.

the Allocation package specifies a set of dependencies that define mappings/deployments as

extensions of the standard SysML::Allocate concept.

Two concepts are central to the definition of a mapping model: threads, represented by the

stereotype Thread, and signal variables, denoted as ComImpl. Both stereotypes apply to the

SysML::Block.

A Thread is a unit of concurrent execution that runs on one of the system cores under

the control of an RTOS (Figure 3.14a). Each Thread is contained in a Process and is char-

acterized by a priority value. Concrete specializations of Thread are AperiodicThread and

PeriodicThread (with its period). Precedence relations among threads induce partial order of

execution constraints on the task set, and are modeled as POEConstraints (which extends the

UML meta-class Dependency, as shown in Figure 3.14c).

Each signal variable is an implementation of the communication link between functional

subsystems mapped to tasks and allocated to processing resources. Four specializations of the

stereotype ComImpl are instantiable (Figure 3.14b). The IntraTaskComImpl describes a com-

munication that takes place when two communicating functional subsystems are mapped into

the same Thread.
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The InterTaskComImpl represents a communication between two Thread elements that

execute on the same CPU. In this case, a protection mechanisms for shared resources is used

(lock and lock-free synchronization).

The stereotype NetworkComImpl describes a communication between two Thread s executing

on different HW boards connected by a network, e.g., a field bus.

Finally, the IOComImpl denotes a communication that takes place between a control sub-

system and the functional subsystem representing the plant model (a communication between a

thread and an I/O driver).

The concept of allocation completes the specification of mapping profile (Figure 3.14d).

Allocations are used to associate individual application elements to individual execution platform

elements. Four classes of allocation are defined. First, the FunctionToThreadMap denotes the

mapping of a functional subsystem into a Thread. Each mapped subsystem refers its own step()

method, realizing the output update and the state update functions. This information is used

in the code-generation phase to produce the implementation of thread code. When multiple

subsystems are mapped into the same Thread, the mapOrder defines how the execution of their

step() methods will be serialized in the generated thread code. The mapping order must be

consistent with the partial order of execution imposed by the model semantics.

Second, the ThreadToCPUMap models the deployment of a Thread to an HwProcessor. The

attribute coreAfn enables the binding of the thread to a physical processor core (affinity). Note

that, for every thread, once the target CPU is known, the execTimes of FunctionToThreadMaps

are filled with textual values; these represent the (measured or estimated) times the step()s of

subsystems mapped into the thread take to execute on the target processor.

Third, the SignalMap represents the mapping of a functional communication link to a signal

variable. Concrete kinds of SignalMap denote mapping to a shared resource for inter-task

communication and to a resource for network communication. The stereotype FrameToBusMap

describes the allocation of a network frame onto a physical link connecting control units. Its

attribute offset is used when signals are multiplexed in message frames.

And finally, fourth, the FrameToBusMap describes the allocation of a network frame onto

a physical link connecting HW control units. Its attribute offset is used when signals are

multiplexed in message frames.

3.6. Summary

The Chapter starts by defining the application scenarios for the proposed design flow. We

make a distinction between safety-critical and performance-sensitive applications and systems,

and describe the role of PBD flow in the two scenarios. Next, we define the process flow based on

standards (Simulink and OMG’s SysML/MARTE, MOFM2T and M2M) and open (EMF-based)

tools (Papyrus, Acceleo and QVTo).

We introduce models and abstractions for the description of the functional platform specifi-

cations, the execution architecture options and the SW architecture implementation. Models are

heterogeneous and fit different purposes—SR models for control simulation, testing and behav-

ioral code generation; SysML-/MARTE-based models (more precisely profiles and stereotypes)
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for representing architectural aspects and timing-related properties. We define model transfor-

mation rules that realize the integration between SR and SysML/MARTE models.

We argue that proposed stereotypes expose the adequate level of information to enable timing

analysis and code-generation, without resulting in convoluted models difficult to understand and

cumbersome to use.





CHAPTER 4

Generation of Semantics-Preserving Robot Controls from

Simulink Models

4.1. Context and Positioning

Safety-critical CPS (cfr. Section 3.1) include numerous robotic systems, most notably those

for pHRI (e.g, future robotic co-workers and advanced domestic robots), disaster recovery and

space exploration.

In robotics, component-based software engineering is the most common design paradigm

for application development. Application designers program the robot functionality directly as

C/C++ code into a set of (interacting) SW components and test it against a virtual model of

the robot in a simulation environment providing features such as physics engine(s) and complex

indoor/outdoor scene rendering. Middleware frameworks provide the infrastructure to execute

the component-based applications (and the simulator) and abstract the functionality from the

computing platform. The simulator accepts control inputs from the SW components (e.g., de-

sired joint torques and desired joint position) and outputs sensory feedback from the simulated

world (e.g., cameras and joint positions). In most cases, the virtual HW interfaces of simulated

sensors/actuators match those of the real robot, thus, at least in principle, the same code used

in simulation can be re-used on the real robotic platform.

While this Software-in-the-Loop approach eases the development of high-level, non-time crit-

ical robotic tasks (perception, planning, reasoning, learning, etc.) it suffers of severe drawbacks

when facing the problem of safety-critical application design. Robotic component-based SW

frameworks lack of a formal model of computation and the system-level behavior emerges from

the cooperation of SW components. This makes the realization of a system-level semantics (e.g.,

synchronous-reactive) difficult, because, in general, causal dependencies between producers and

consumers (defining partial orders of execution) are not trivial to express by using event sig-

nals. Furthermore, current middlewares are hardly integrated in a MBD flow with automatic

code generation. Control algorithms are mostly handwritten, and when they are designed using

synchronous models (Simulink) the generated code can only be executed in a single core. Multi-

core and distributed platforms, or platforms based on a domain specific OS and middleware

are not supported by generation tools that can guarantee the preservation of the original model

semantics. In a sound MBD flow, the software implementation of controller should be generated

automatically, so as to improve the efficiency and guarantee that no errors are introduced in a

manual coding stage.

35
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Figure 4.1. Heterogeneous model integration and code generation by the

framework tools.

The tools supporting the proposed system-level design framework target multi-core code-

generation of robotics applications with preservation of the communication flows from synchro-

nous models. The framework enables

(1) the specification of the software and message implementation of SR models, and

(2) a semantics-preserving deployment on top of the Orocos-RTT [Bru] robotics middle-

ware with the automatic generation of glue code.

Figure 4.1 represents the heterogeneous model integration and code generation enabled by the

framework tools. The Simulink model of the controls enable the advance analysis and verification

of the system properties by simulation. Once the simulation results are satisfactory, code is

generated for each control subsystem. Then, a structural view of the functional model is imported

in SysML, where it is extended with the platform and mapping models, that represent the

deployment of the control functions onto the execution architecture. Finally, the mapping model

is processed for the automatic generation of a multi-task implementation of control functions,

which preserves the execution assumptions part of the simulated and verified Simulink model.

This chapter focuses on the description of the underlying concepts and the machinery to

implement the code generation process (bold items in Figure 4.1) for single-/multi-core robotics

architectures.

The rest of the chapter is organized as follows. In Section 4.2 we review the requirements and

constraints that apply to our process, i.e., the need to preserve the synchronous model semantics,

for which we provide a formal description. Section 4.3 gives an overview of the Orocos-RTT

execution middleware, that represents the target run-time of the generation process. Section 4.4

defines the code generation process using synthetic examples. Finally, Section 4.5 summarizes

and closes the chapter.
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4.2. Constraints in the Implementation of Synchronous (Simulink) Models

4.2.1. Model Assumptions and Basic Formalization of the Synchronous Semantics

Simulink implements a Synchronous-Reactive (SR) model of computation (MoC). SR models

are networks of Mealy-type blocks, possibly clustered into subsystems and blocks that can be

continuous, discrete or triggered. Continuous blocks process continuous-time signals and produce

as output other continuous-signal functions according to the block description, typically a set of

differential equations. Discrete-time blocks are activated at periodic-time instants and process

input signals, sampled at periodic instants, producing a set of periodic-output signals and the

state updates. Finally, triggered blocks are only executed on the occurrence of a given event (a

signal transition or a function call).

We are interested in the automatic generation of an implementation of the controller model,

and we assume that (i) its design only uses discrete-time blocks, (ii) each block bi processes a set

of input signals at times that are multiples of a period Ti, and (iii) all block periods are integer

multiples of the base period Tb.

We denote inputs of block bi by ii and outputs by oi (to indicate vectors). At all times kTi

the block reads the signal values on its inputs and computes two functions: an output update

function oi = fo(ii, Si) and a state update function SNew
i = fs(ii, Si), where Si (SNew

i ) is the

current (next) state of bi. Often, the two update functions can be considered as one:

(oj , S
New
j ) = fu(ij , Sj).

Signal values are persistent until updated. Therefore, each input and output is a right-

continuous function, sampled at periodic time instants by a reading block.

A fundamental part of the model executable semantics are the rules dictating the evaluation

order of the blocks. A block has direct feedthrough when the output is controlled directly by

the value of an input port signal. Any block with direct feedthrough cannot execute until the

block(s) driving its input has (have) executed. Some blocks set their outputs based on values

acquired in a previous time step or from initial conditions specified as a block parameter. The set

of topological dependencies implied by the direct feedthrough behavior of blocks input/output

pairs defines a partial order of execution among the blocks.

Let bi and bj two blocks in an input-output relationship. Let bi(k) represent the k-th

occurrence of block bi (belonging to the set of time instants kTi), then a sequence of activation

times ai(k) is associated to bi. Given t ≥ 0, we define ni(t) to be the number of times that bi has

been activated before or at t. Finally, let ij(k) denote the input of the k-th occurrence of bj . In

case bj has direct feedthrough, then the SR semantics specify that ij(k) is equal to the output

of the last occurrence of bi that is no later than the k-th occurrence of bj , i.e.,

ij(k) = oi(m), where m = ni(aj(k)). (1)

The timeline on the bottom of Figure 4.2 illustrates the execution of a pair of connected blocks

with SR semantics, where bj has direct feedthrough. The horizontal axis represents time. The

vertical arrows capture the time instants when the blocks are activated and compute their outputs

from the input values. If the communication link between bi and bj has a delay (i.e., bj is not of
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Figure 4.2. Execution of a pair of connected blocks with direct feedthrough

according to the SR semantics (ij(k) = oi(m)).
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Figure 4.3. Evaluation of blocks at simulation time and at runtime (single-

and multi-task implementations).

type feedthrough), then the previous output value is read, that is,

ij(k) = oi(m− 1). (2)

When the simulation starts, blocks are ordered, and a total order compatible with the par-

tial order of execution is determined. When a block is activated, inputs are sampled and output

update and state update functions computed in sequence to produce the system outputs. The

reaction time of the system is istantaneous, meaning that it takes zero computation and commu-

nication time. An example of behavior at simulation time is shown on the left side of Figure 4.3,

where five communicating blocks are identified with letters and their execution period. Simula-

tion time in general has no direct relationship with real-time.

4.2.2. Software Implementation and Preservation of Data-Flows

In the software implementation of functions, the update functions of blocks and their action

extensions are executed by program functions (or lines of code), executed by a task, under the

control of a priority-based RTOS. The implementation consists of two functions or sequences of

statements, one for the state update, the other for the output update (the output update parts
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must be executed before the state update). The two functions are often merged into a single

update function, typically called step(). The function-to-task mapping consists of a static

scheduling (execution order) of the function code inside the task.

The implementation must preserve the simulation semantics, so to retain the validation and

verification results. In many cases, what is required from a software implementation is not the

preservation of the synchronous assumption, i.e., that the reaction of the system is computed

before the next event in the system, but a looser property, called flow preservation. It amounts

at guaranteeing that all the data-flows in the system are preserved in their implementation, even

if the times at which the results are produced are different. Formally, it is to guarantee that

every source block is executed without instance skips, that Equation (1) or (2) hold for any signal

exchanged between two blocks and the correct untimed behavior of all blocks. The right side of

Figure 4.3 shows the execution instance of a multi-task implementation that does not satisfy the

synchronous assumption (the output of block E is produced after time 1) but is flow-preserving.

Because of preemption and scheduling, in a multi-rate system, the signal flows of the imple-

mentation can differ from the model flows.

Flow preservations in all scenarios requires appropriate communication mechanisms. A for-

mal description of the requirements for flow-preserving communication mechanisms can be found

in [BCDN+07], and the implementation of a general type of such wait-free buffer is discussed

in [WDNSV09].

4.3. The Orocos-RTT Run-Time Environment

The Real-Time Toolkit of the Orocos-toolchain (Orocos-RTT) is a middleware layer which

provides the infrastructure and the functionalities to program and execute component-based

robotics applications. The run-time environment allows components to run on top of Real-Time

Operating Systems (RTOSs). The C++ API1 is flexible and allows many different components

configuration options and operation modes to be selected. We restrict to the specific subset of

settings and object semantics summarized below.

The class RTT::TaskContext represents a component and is the basic unit to execute ap-

plication code in a single thread. Activities are RTT objects that map to threads and can be

periodic, non periodic or event driven, and are all concrete implementations of an interface class

which provides control methods for starting, stopping and querying them for their state. In-

stances of class RTT::Activity run RTT components. An RTT::Activity object allocates a

thread which executes the execution engine of the corresponding RTT::TaskContext instance;

the execution engine calls the updateHook() method of the component and so executes appli-

cation code. RTT Components can be connected to each other so that they can access their

control methods. Connected components are called peers.

In order to send or receive streams of data, components can define data-flow ports. Data

input and output ports are instances of classes RTT::InputPort<T> and RTT::OutputPort<T>,

respectively. A connection policy object describes how a connection between data ports should

1http://www.orocos.org/stable/documentation/rtt/v2.x/api/html/index.html

http://www.orocos.org/stable/documentation/rtt/v2.x/api/html/index.html
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Figure 4.5. BswRobotMW model’s structure.

behave (RTT::ConnPolicy). Various configuration parameters can be set, such as the connection

type (data or buffered), the locking policy (none, mutex- or lock-free-based) and the data size.

Lock-free connections are the basis to build the communication mechanisms that guarantee the

preservation of communication flow. Event (input) ports can also be added to the interface of a

component. The reception of an event signal awakes the component and invokes updateHook().

It is possible to register a callback function that gets executed when a signal arrives on the event

port: in this case, both the callback (executed first) and updateHook() are called.

Components are created in a C++ program and defined at compilation time (static deploy-

ment in a process).

Figure 4.4 shows a schematic representation of a deployment, with connected peer compo-

nents, the threaded execution of a component’s execution engine, and components data-flow

ports connected with a connection policy. The BswRobotMW package in the BswResources profile

(cfr. Section 3.4) provides a taxonomy of stereotypes to represent and configure all these concepts

(Figure 4.5).

4.4. The Code-Generation Process

The code-generation process is two-step. The mapping model is the starting point for a

set of M2M transformations that generate a model of BSW implementation of tasks and their
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Figure 4.6. Structure of Mapping::Synchronization package (extends that

of Figure 3.14c).

interactions. In addition, the M2M transformations generate a model of the scheduling and event

infrastructure that guarantees the execution order among tasks.

In the BSW model, the abstract concept of task is represented by a pair of model ele-

ment instances stereotyped, respectively, as RttActivity and RttTaskContext. The element

RttActivity generated for each RttTaskContext instance contains the definition of the activa-

tion mode and the thread period. This follows directly from the observation that an RttActivity

is a BswThread (Figure 4.5), and hence it can access the corresponding Thread in the mapping

model through the attribute thAbstr (Figure 3.12b).

Next, a set of M2T transformation templates process the BSW model to generate the C/C++

code for (i) threads (the implementation of their updateHook() methods), (ii) threads activations

and synchronization, and (iii) communication among threads.

The following subsections describe the code-generation process through synthetic application

examples.

4.4.1. Generation of Task Synchronization Infrastructure

Single-Core Computing Node

Consider a mapping model where three tasks are mapped onto a single-core platform, and

assume the function-to-task mapping of Figure 4.7a. All tasks are periodic: Task2 executes

every 10ms, Task3 every 30ms and Task1 every 20ms. Input/output relationships among the

subsystems (SRSubsystems on top) define a partial order of execution that implies precedence

constraints (POEConstraints) among the tasks where the subsystems are mapped into. Hence,

Task2 executes before Task1 and Task3. The attribute mapOrder expresses precedence relations

for subsystems mapped into the same task.

Figure 4.7b shows the BSW model generated by the M2M transformations. RttTaskContext

model elements corresponding to Thread s are run by non-periodic activities, and the syn-

chronous activation of tasks is modeled using the stereotypes in Figure 4.6, that extend the

Mapping::Synchronization package (cfr. Section 3.5). One additional RttTaskContext ele-

ment is generated and marked as Dispatcher; it executes periodically at the base period (the

greatest common divisor of all task periods) and with highest priority. All the RttTaskContexts

corresponding to Thread s are added as peer components to the Dispatcher, which is also pro-

vided with a scheduling table, that specifyies which tasks must be activated, and in which
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Figure 4.7. Mapping model and automatically-generated BSW model repre-

senting the deployment onto a single-core processor.

order, in the hyperperiod (the least common multiple of the periods of all tasks). Instances

of SchedulingTableEntry are generated according to values of period, priority and scheduling

policy specified by the PeriodicThread and BswRTOS (BswScheduler) stereotypes.

In the generated C++ code, at every cycle of execution, the dispatcher triggers the activation

of its peers according to the directives in the scheduling table.

Multi-Core CPU (Static Task Partitioning)

Consider the mapping model in Figure 4.8a, where tasks are allocated onto a dual-core

CPU running real-time Linux. Subsystem ss4 is now mapped into a fourth task, Task4. An

input/output relationship is added between subsystems ss2 and ss4. These modifications imply

that Task4 executes after Task1 and Task3. Assume that Task1, Task2 and Task3 have periods

of 20ms, 10ms and 30ms, respectively, whereas Task4 executes every 10ms (it oversamples the

output of Task1 and Task3).

Figure 4.8b shows the BSW model generated by the M2M transformations. For each core,

one Dispatcher element is generated. Similarly to single-core platforms, all the RttTaskContext

instances that correspond to Thread s are run by non periodic activities, and are added as peer

components to the Dispatcher on their respective core. In the generated code, dispatchers

execute at the highest priority in the system with a base period equal to the greatest common

divisor of the periods of all the tasks executing on its core. Each dispatcher has a scheduling

table and, at every cycle of execution, triggers the activation of peer components according to

the order specified by the scheduling table itself.
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Figure 4.8. Mapping model and automatically-generated BSW model describ-

ing the deployment of subsystems and threads onto a dual-core processor.

However, in multi-core platforms, local priorities of tasks are not sufficient to guarantee

the order of execution between components. As shown in Figure 4.8b, precedence constraints

between components executing onto different cores are enforced by means of suitable event signals

from predecessor to successor components on input event ports (RttEventInPorts). An event

signal is also used to enforce precedence constraints between a low-rate producer and a high-rate

consumer that run onto the same core, when the consumer must also wait for the completion of

a task executing onto a different core.

Figure 4.9 shows activations and scheduling constraints (deadlines) of tasks. In the example,

Task1 needs to execute after the output update following the first instance of Task2 and before

the third instance of Task2 completes. At the generated-code level, this is achieved by binding

the input event port of component Tc Task1 to a callback function to handle the inter-core

activation signal sent by Tc Task2 every two instances. Tc Task1 then accesses its inputs (in
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Figure 4.9. Threads activation constraints in the dual-core architecture.

// Callback function attached to the

// input event port of Tc_Task1

void reactTo_Tc_Task2(PortInterface* evp_12)

{

Tc_Task2_ready = true;

}

// Task code of Tc_Task1

void updateHook ()

{

if (Tc_Task2_ready)

{

// do job

generatedDoJob_Tc_Task1 ();

// reset synch variable

Tc_Task2_ready = false;

}

}

(a) One producer on the same core.

// Callback functions attached to the

// input event ports of Tc_Task4

void reactTo_Tc_Task3(PortInterface* evp_43)

{

Tc_Task3_ready = true;

}

...

// Task code of Tc_Task4

void updateHook ()

{

if(( Tc_Task1_ready) || counter %2 != 0) &&

(Tc_Task3_ready) || counter %3 != 0))

{

// do job

generatedDoJob_Tc_Task4 ();

// reset synch variables

if(counter %2==0) Tc_Task1_ready = false;

if(counter %3==0) Tc_Task3_ready = false;

counter ++;

}

}

(b) Two producers on different cores.

Figure 4.10. Synchronization between producer/consumer Orocos-RTT com-

ponents on a dual-core architecture.

updateHook()) only when the value of a synchronization variable is true, since this means

that the activation has been triggered by Tc Task2 and not by the dispatcher, and that the

signal data value is ready to be consumed. The callback function is executed first and sets the

synchronization variable, as in Figure 4.10a. Tc Task1 then resets the variable in updateHook().
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Task4 must synchronize with Task1 and Task3, in order to use the correct data items when

they are available. As in the previous case, activation constraints are handled at code level by

binding callback functions to the input event ports of the reader component. Figure 4.10b shows

the codes of callbacks and Tc Task4’s updateHook(). Tc Task4 is triggered for the execution

by the dispatcher component at a high rate; in order to synchronize with Tc Task3, once every

three activations, Tc Task4 delays the access to its inputs until the synchronization variable

Tc Task3 ready is true, meaning that the correct data items produced by Tc Task3 are available.

The same approach is used to synchronize with Task1; in this case, Task4 reads the incoming

data once every two activations triggered by the dispatcher. Task4 uses a counter variable

(counter) to keep track of the number of activations, and resets the synchronization variables

in updateHook().

4.4.2. Generation of Task Code

For each instance of (generated) RTT::TaskContext, M2T templates also generate the imple-

mentation of function generatedDoJob Tc *() in updateHook() (Figure 4.10) as a sequence of

calls to the step() methods of the functional subsystems mapped into the component, serialized

according to the mapping order.

As an example of generated code, with reference to the mapping model of Figure 4.8a and

the updateHook() code in Figure 4.10a, the generatedDoJob Tc Task1() code is

// Generated ’do job ’ function for Tc_Task1

// via M2T

void generatedDoJob_Tc_Task1 ()

{

step_ss5 ();

step_ss6 ();

}

Note that the consistency of the partial order of execution among subsystems mapped onto

the same task is guaranteed by the static order of the calls to the step() methods inside

generatedDoJob Tc *().

4.4.3. Implementation of the Functional Communication Links

The generation of the subsystems’ behavioral code from Simulink Coder (bottom-left side

in Figure 4.1) is redefined (using custom storage classes) in such a way that ports are not

implemented and accessed inside the init() and step() methods as global variables, but using

a simple and uniform MW-level API:

mw_read(block_id , port_id , value)

mw_write(block_id , port_id , value)

Acceleo M2T templates generate a concrete implementation for each macro invocation ac-

cording to the nature of the communication.

Figure 4.11a shows a mapping model in which subsystems ss1, ss5 and ss3 are mapped

to Task1, and subsystem ss2 is mapped to Task2. Assume that ss2 has an internal state and

that the output does not depend on the inputs, so that the algebraic loop is eliminated. Tasks

are deployed onto the same CPU (not shown). Inter-task communication signals (e.g., c23) are
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Figure 4.11. Mapping model of functional communication links into signal

variables (ComImpl s), and automatically-generated BSW model.

mapped to LockFreeComImpl variables; the signal from ss5 to ss3 is mapped to one instance of

IntraTaskComImpl.

M2M transformations generate the model of BSW implementation of Figure 4.11b. Lock-

free inter-task communications are translated into streams of data (described by RttConnPolicy

objects opportunely configured) that flow through the components’ ports.

M2T templates generate the code of Figure 4.12 for the intra-task and inter-task communica-

tions. Acceleo scripts resolve the intra-task communication generating accesses to simple global

data variables (of the same type as the connected data flow ports). Inter-task communications are

realized by write/read (lock-free) accesses to the ports of connected RTT::TaskContext compo-

nents. Port connections are realized through objects that specialize the class RTT::ConnPolicy

and implement the semantics of RT blocks (cfr. Subsection 4.2.2). Each connection object is

opportunely configured depending on the periods of sender and receiver RTT::TaskContexts

(high-to-low or low-to-high rate transitions).

4.5. Summary

This Chapter presents a design methodology for complex robotics systems and the sup-

porting tools for the realization of robot applications on single-/multi-core platforms, from the

system-level modeling to the generated code. The development process integrates MDA and

MBD paradigms. It enables the generation of a semantics-preserving implementation of robotics
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// Middleware -level API

#define mw_read(block_id , port_id , value) \

mw_read_ ## block_id ##_## port_id (&value)

#define mw_write(block_id , port_id , value) \

mw_write_ ## block_id ##_## port_id(value)

// Implementation of intra -task communication

port_type ss5_out_1;

void mw_write_ss5_1(const port_type value)

{ss5_out_1 = value;}

void mw_read_ss3_2(port_type *value)

{*value = ss5_out_1 ;}

// Implementation of inter -task communication c23

extern RTT:: TaskContext *pTc_Task1 , *pTc_Task2;

#define mw_read_ss3_1(value) tctask1_read_1(pTc_Task1 , value)

#define mw_write_ss2_1(value) tctask2_write_1(pTc_Task2 , value)

void tctask1_read_1(RTT:: TaskContext *t, port_type *value)

{t->ports()->getPort("ss3_in_1")->read(*value );}

void tctask2_write_1(RTT:: TaskContext *t, const port_type value)

{t->ports()->getPort("ss2_out_1")->write(value );}

Figure 4.12. Automatically-generated code for the platform-dependent real-

ization of functional links.

controls based on Orocos-RTT, from a merger of Simulink and SysML/MARTE models defining

the execution platform and the mapping, using open standards and transformation tools.





CHAPTER 5

Platform-Aware Control Simulations in Simulink Through

Co-Simulation

5.1. Context and Positioning

Control applications that do not have strict safety requirements but are anyway subject to

demanding timing constraints are said performance-sensitive (cfr. Section 3.1). Performance-

sensitive applications are traditionally designed in Simulink, where control engineers define the

controls functionality and the model of the controlled system, and verified according to the

synchronous-reactive (SR) paradigm, in which all the computations and communications are as-

sumed to complete within the interval between two events in logical time. When the controls are

implemented in software and execute on a real architecture of CPUs and communication links,

computation, scheduling and communication delays may exceed what is prescribed by the syn-

chronous assumption and the jitters and latencies may affect the performance that were validated

in simulation. The impact of these delays is often evaluated late, at testing time, with significant

costs, additional development cycles and possible changes to the hardware architecture.

An early evaluation of the impact of the hardware and software implementation is desir-

able and requires the co-simulation of the controller functionality, the plant model, and the

computation, scheduling and communication hardware and software platform, together with a

model of the software tasks and the messages exchanged over the networks. The T-Res open

framework [CMDN15] enables such a co-simulation in the Simulink environment.

T-Res has a modular and extensible architecture and offers the following unique features.

• The addition of task, scheduler, network and message implementation models to an

existing Simulink model with limited and localized changes; the modeling structure

clearly separates the controller model from the model of task, scheduler, communication

mechanisms and other attributes of the execution platform.

• The modular integration of third-party real-time scheduling and network simulators,

through simple and generic interfaces; T-Res includes bindings to the open-source sim-

ulators RTSim [RTS] and OMNeT++ [OMNb].

• The automatic back-annotation in Simulink of task, scheduler, network and message

models from external formal specifications in SysML.

Figure 5.1 represents the portion of proposed system-level design flow where T-Res plays a

key role. Simulink models are used to define the functionality of the controls and SysML models

define the hardware execution platform and the task model of the controls implementation.

After the functionality is mapped for execution on the platform model, defining the structure

49
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Figure 5.1. T-Res in a Simulink-based PBD-like flow for real-time distributed

embedded control systems development.

of the tasks and messages, the execution and transmission times are estimated (or measured).

The Simulink model can be annotated with blocks that allow the simulation of scheduling,

computation and communication latencies, allowing to fine tune the control logic, to actively

compensate these timing effects, or the task and message model (possibly with their priorities),

to evaluate different implementation options.

The purpose of this chapter is twofold. First, it presents T-Res and explains how platform-

aware controls can be simulated in Simulink (blue item in Figure 5.1). Second, it explains how

Simulink models are annotated with T-Res models of task, scheduler, network and message

implementations, automatically generated from the mapping model (bold items in Figure 5.1).

The rest of the chapter is organized as follows. Section 5.2 complements the description of the

SR semantics presented in Section 4.2 and introduces concepts that are of paramount importance

for the implementation of a co-simulation framework on top of Simulink, such as the time points at

which Simulink computes the states and outputs of the system, and the mechanism for extending

the capabilities of the Simulink environment. Section 5.3 introduces platform’s discrete-events

simulators and formalizes the execution models of real-time tasks and network communication.

Section 5.4 presents T-Res, its software architecture as well as the designed Simulink blockset

and the adopted design patterns enabling the easy integration with other third-party real-time

scheduling and network simulators. Section 5.5 describes the application of T-Res onto two

cases studies, the real-time control of three networked DC servo motors and of an aerial robot.

Section 5.6 explains the back-annotation process. Finally, Section 5.7 summarizes and closes the

chapter.
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Figure 5.2. Simplified view of S-function callback methods invoked by the

Simulink engine during the simulation loop1.

5.2. How the Simulink Engine Simulates a Dynamic System

The Simulink engine computes the states and outputs of the system at time points (time

steps) from the simulation start time to the finish time, using information provided by the

model. This process is called solving a model. The length of time between steps is called step

size. Numerical solvers solve a model at fixed or variable time steps. Fixed-step solvers do it at

regular time intervals from the beginning to the end of the simulation. Variable-step solvers vary

the step size during the simulation, and are invoked at those points in time that are relevant for

the dynamics of the system they solve. Variable-step solvers divide the simulation time span in

major and minor time steps. The solver produces a result at each major time step.

Any point in time that is relevant for the dynamic of controller or controlled system cor-

responds to a major step. For example, all the triggering instants of discrete-time (controller)

subsystems correspond to major steps. A minor time step is a subdivision of the major time

step used to improve the accuracy in the computation of the continuous-time system dynamics.

Minor time steps are also used to find the point in time where continuous-time system have a

zero-crossing point, that is a point when some of the state variables cross a zero threshold (indi-

cating a significant change of state for the system dynamics). At any point in time corresponding

to a major step, blocks are evaluated.

Simulink system-functions (S-functions) are a mechanism for extending the set of predefined

Simulink blocks. An S-function is a computer language description of a Simulink block behavior

written in Matlab, C, C++ or Fortran. Interactions between the Simulink simulation engine and

custom blocks occurs through a predefined set of API functions. Figure 5.2 shows a simplified

1Reproduced from http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-

with-c-s-functions.html

http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html
http://www.mathworks.com/help/simulink/sfg/how-the-simulink-engine-interacts-with-c-s-functions.html
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view of the simulation cycle at run-time with the major and minor steps, and the points in

the cycle in which the simulation engine invokes the API functions specified for the S-function

custom block. Among those, the mdlOutputs is used to update the outputs of the custom block,

the mdlUpdate to update the internal state of the custom block and mdlZeroCrossing to define

the signals that determine the zero-crossing points and possibly use them to set time instants

for future major steps.

5.3. Platform Simulators and Execution Models

5.3.1. Discrete-Event Platform Simulators

Real-time (RT) scheduling and network simulators are Discrete-Event Systems (DESs). They

implement an event handling mechanism, typically with a queue. Events can arrive asyn-

chronously or periodically and are ordered in the event queue in ascending order, following

(i) the event occurrence time, and (ii) a causality order for those with equal occurrence time.

Events are processed sequentially at every simulation step. Processing an event may generate

another bunch of events to be executed at the current time or in the future.

A RT scheduling simulator reacts to tasks arrival events and dispatches the currently active

tasks from the ready queue according to a fixed or dynamic priority-based scheduling algorithm.

To preserve causality among events, a task is dispatched only when all the events at the current

time have been processed. At any point in time, the next scheduling event can be the termination

of the task currently in execution, or the arrival event of a task, that can possibly cause a

preemption (if the new task has higher priority) and a context switch.

A network simulator simulates nodes exchanging messages over a network infrastructure

with a given communication protocol. Similarly to what happens to tasks in a RT scheduling

simulator, a message is dispatched only when all the events at the current time have been

processed, so that the causality among events is preserved. The network simulator defines the

timed events related to the transmission and arrival of messages by the networked nodes. The

communication protocol is the core attribute of the communication network. It defines the

set of rules according to which messages are selected for transmission on shared physical links

and ultimately determines the latency of messages together with the attributes that define the

network speed and reliability. It is therefore important that a network simulator supports a large

set of protocols and can be easily extended to include new protocols.

5.3.2. Execution Model of Real-Time Tasks

In an RT simulator, tasks execute according to a model of time-consuming computation.

We assume a model suited to the typical code generation process for Simulink models (which

is also the same as in TrueTime). The execution of a task is split in preemptable units called

segments, informally corresponding to the execution of a function called by the task main code.

Each segment is identified by an execution time (possibly randomly generated according to a

given distribution) and all segments in a task are executed in a sequence.

When the RT simulator is integrated with Simulink, segments map one-to-one to subsys-

tems. Their execution order in a task must match the order of execution imposed by the model
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Figure 5.3. Execution model of a simulated real-time task in Simulink.

semantics, as in Figure 5.3, where two control subsystems (Sj and Sl) in a producer-consumer

relationship are mapped into the same task (Task P).

A segment interacts with other segments and/or the controlled system at the beginning and

at the end of its simulated execution. With reference to Figure 5.3, tR and tW represent the time

instants at which the subsystem Sj reads the values on its input ports and writes the results of

computation on its output ports, respectively.

The (simulated) time duration of each task segment, corresponds to the execution time of

the corresponding code function implementing the subsystem (and possibly generated from it in

an automatic code generation flow). Figure 5.3 visualizes the time duration of segment Sj , as

the dark gray box in between time instants tR and tW . Note that the input-output latency of

Sj is at least tW − tR. In a simulated task set where other higher-priority tasks preempt Task P

while it is executing Sj , the actual input-output latency will be longer.

The following points describe formally the assumptions on the functional model, considering

a strict subset of the possible Simulink semantics.

• V = {S1, ...., S|V|} is the set of functional subsystems in the Simulink model. Subsys-

tems can be continuous time, modeling the controlled physical system (or plant), or

discrete-time, representing the controller logic. Subsystems may have input and output

ports. They read or sample the inputs when start executing and generate the outputs

instantaneously, according to the logical zero-execution time assumptions prescribed by

the SR semantics.

• The discrete-time controller model is partitioned into single rate subsystems (different

subsystems may have different rates). The sampling period ti denotes the activation

period of the control subsystem Si. All input ports carry signals with a uniform sam-

pling period ti. The result of the block computation is a set of signals with the same

rate, produced on the output ports.

• E = {l1, ...., l|E|} is the set of links. A link li = (Sh, Sk) connects an output port of

subsystem Sh (source) to an input port of Sk (sink).
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• A precedence relation may exist between a pair of subsystems Si and Sj . The notation

used is Si ≺ Sj .

The model of task execution, supported by the RT simulator, is formally described as follows.

• T = {τ1, ..., τ|T |} is the set of tasks. Each task τi has an activation period Ti or

activation event ei and an optional priority πi (or other scheduling attributes). Periodic

tasks may have an activation offset; when the offset is zero, they start at the same time

instant t = 0.

• C = {c1, · · · , c|C|} is the set of single-/multi-core computer nodes that make up the

real-time computing platform.

• A mapping relation mt(τi, cj) is defined between tasks and computer nodes, meaning

that task τi executes on computer cj according to a defined scheduling policy.

• A mapping relation mS(Si, τj , k) is defined between a controller subsystem Si and a

task τj meaning that the code implementing Si is executed in the context of task τj

with order index k. We assume that the code implementing Si is characterized by a

worst case execution time γi on the computer node where τj runs. A mapping relation

is only possible if the execution rate of Si and τj are the same (the constraint could be

relaxed allowing for integer divisors).

5.3.3. Execution Model of Network Communication

The network model is inspired by the OSEK COM Interaction Layer (IL) [OSE04]. We

consider a limited subset of the IL services, most notably non-blocking (remote) transmission

of periodic data streams, and support for multiple channels in transmission and reception (with

multiplexing and demultiplexing of information).

In OSEK COM, the IL uses the concept of message objects to represent the communication

signals at application level (for local as well as remote communications). In the case of remote

communication the IL packs one or more message objects into assigned Interaction Layer Protocol

Data Units (I-PDUs), and passes them to the underlying layer. I-PDUs may contain data from

one or more sending objects and can be received by zero or more CPUs. A receiving CPU reads

the I-PDU data content and forwards it to the destination receiving objects, where the data

values become available to the application software.

We assume a periodic transmission mode , where I-PDUs are transmitted periodically

by the IL without the need of an explicit request. Figure 5.4 shows an example of periodic

transmission mode for I-PDUs. The I-PDU is transmitted periodically to the lower layers,

independently from the time at which the contents of the sending objects are updated. Some

values may be transmitted twice (e.g., v1 in the figure), or may be overwritten (v2) and never

transmitted over the network. The periodic transmissions of I-PDUs is assumed to be realized

by code called periodically at a fixed time interval and executed as part of a task in a multi-

tasking OS. The task is called TxTask. Finally, we assume unqueued receiving message

objects, that can be read multiple times (and are not consumed) and can be overwritten by

newly arrived messages.
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Figure 5.5. The middleware task TxTask executes with period tTx
, reads mes-

sage objects and enqueues messages at the driver level.

When the described network communication model is integrated with Simulink, message

objects map one-to-one to communication signals between subsystems that model a distributed

functionality. More precisely, these subsystems represent functions in application tasks executed

onto different nodes of a distributed computing platform and exchanging data.

Figure 5.5 shows the TxTask reading application signals and enqueuing I-PDUs into mes-

sages at the driver level. Simulink subsystems are implemented as functions executed within

application tasks, that run onto different nodes. Application tasks copy the data values for all

the signals that need to be transmitted in variables shared with the TxTask. Inside the IL,

the TxTask is activated periodically and, at the end of its execution, calls the underlying layer

function for the transmission of the I-PDU. I-PDUs map one-to-one to messages at the driver

level, when the I-PDU size is less than the maximum size allowed for messages.
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The network communication model, supported by the network simulator, is formally de-

scribed as follows.

• M = {m1, · · · ,m|M|} is the set of messages.

• N = {n1, · · · , n|N |} is the set of networks.

• A mapping relation mm(mi, nj) is defined between messages and networks, meaning

that message mi is transmitted over the network nj .

• Each message mi has an associated transmission period ti, expressed as an integer

multiple of the TxTask period tTx
, i.e., ti = kitTx

, and a priority ρi.

• A mapping relation ml(li,mj) is defined between links and messages, meaning that the

data of the signal exchanged over li are mapped onto message mj . Each link li can be

mapped onto at most one message. Many-to-one mappings, i.e., signal multiplexing, are

allowed (see Figure 5.5). If li is not mapped to any message, then its implementation

consists of local communication (typically a shared variable).

5.4. The T-Res Co-Simulation Environment

5.4.1. Architecture

Co-simulation enables the execution of several simulators concurrently. T-Res adopts a

master-slave model of co-simulation, and its architecture is represented in Figure 5.6.

Simulink is the master simulation engine and instances of the slave simulators (the discrete-

event platform simulators) are encapsulated into two dedicated S-functions, Kernel and Network.

Kernel models a single-/multi-core computer node, ch ∈ C, running a real-time kernel and

executing tasks and interrupt handlers according to a given scheduling policy. Network models

a physical communication medium, ni ∈ N , in which messages between connected computer

nodes are exchanged according to a network protocol. Two other S-functions, Task and Message,

complete the T-Res Simulink blockset (light-gray blocks). Task models a task τj ∈ T executed in

a computer node specified by the mapping mt. Message models a message mk ∈ M exchanged

by computer nodes over a network specified by the mapping mm.

A software architecture of tasks and messages onto a distributed computing platform is

modeled in Simulink by multiple instances of Kernel, Network, Task and Message S-functions,

as in Figure 5.6.

Kernel and Network blocks execute at all major steps (time points at which the Simulink

solver produces a result, cfr. Section 5.2). At every invocation, they force the slave simulators

to process all the events at the current time, and update their internal structures to reflect the

computed scheduling of tasks and messages (bi-directional blue arrows). Then, they command

the execution of the scheduled Task and Message blocks (dashed-black arrows). Finally, they

determine the times of next events to be simulated, and use the zero-crossing API call of Simulink

to define new major steps (green arrows).

For the execution of the Kernel S-function, the major steps of the Simulink simulation must

include all the periodic activation times of tasks as well as the aperiodic events that lead to

the activation of other tasks. Major time steps are also defined in correspondence of execution
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blocks), the plant (car) and the task scheduling and network communication

parts (light-gray/white blocks), in a simplified representation.

completions, of tasks and/or segments. For the execution of the Network S-function, the major

steps must include all the periodic activation times of messages, the events that lead to aperiodic

transmissions of messages and message arrival events.

To guarantee the execution models of real-time tasks and network communications (cfr. Sec-

tion 5.3), the zero-execution/communication time semantics of Simulink must be replaced with

the finite-execution/communication time assumption. Dashed-red arrows in Figure 5.6 represent

the realization of this concept in a simplified view. Their meaning is that Task and Message

blocks, respectively, command the execution of the mapped segments (specified by the mapping

mS) and enable the data-flow onto the communication signals (specified by the mapping ml)

to add the delay effects due to finite computation times, scheduling and network protocol and

traffic to the Simulink simulation.

There are a number of possible options to implement finite-execution/communication time in

Simulink through the external activations of block executions and signal data-flows. The solution

adopted here, described at high level in the next subsection, achieves a good trade-off between

simplicity, effectiveness and efficiency.

5.4.2. Simulink Implementation of Platform Execution Models

Implementation of Real-Time Tasks Execution Model

The start and completion times of the segments correspond, respectively, to the times in

which the corresponding subsystems read (sample) their inputs and produce their outputs. To



58 5. PLATFORM-AWARE CONTROL SIMULATIONS IN SIMULINK THROUGH CO-SIMULATION

C Latch

[Start_C] [End_C]

D Q
r

y
u

C

r

y
u

(a) Segment in Simulink.

Task1

Task2

A

B C

A
t2t1

C

Task2

Task1 A

B C

(High Priority)

(Low Priority)

(b) Conceptual view of the scheduling

trace for a simple task set.

Figure 5.7. Simulink implementation of time-consuming task computations

execution model.

force inputs sampling at precise time steps, the activation of the Simulink subsystems is changed

from periodic to triggered2. To synchronize in Simulink the completion of the segments with the

production of the output values, a latch barrier is added on all their outputs. The bottom side

of Figure 5.7a represents the actual implementation of activation/termination mechanisms of a

Simulink subsystem turned into a RT task segment, with respect to the simplified view in the

top side (introduced first in Figure 5.6).

These mechanisms enable the implementation of finite-execution time semantics on top of

Simulink. With reference to Figure 5.7b, the top side visualizes conceptually a simple task set

and the computational activities of its two task, namely Task1 and Task2. The subsystem C

executes as second segment of Task2. Tasks are scheduled according to a Fixed-Priority (FP)

policy, and Task1 has the highest priority. The execution trace of tasks is depicted on the bottom

side.

When t = t1, C starts executing and the subsystem is activated. Inputs are sampled and the

output value u = C(r, y) is produced instantaneously (according to the synchronous semantics).

However, u is not available to other blocks until the activation of the latch barrier. The simulation

continues until t = t2, when C terminates and the latch barrier is activated. The value Q =

C(r, y) is then available to consumer blocks after a finite time, that accounts for the execution

times of computations (segments) and scheduling delays (Task1 preempts Task2 and delays the

production of the output value of C).

2This is actually realized through an enable signal converted into a function-call inside the subsystem. Full

in-depth technical description is at https://github.com/m-morelli/tres_bundle/wiki/Triggered-Activation-

of-a-Simulink-Subsystem.

https://github.com/m-morelli/tres_bundle/wiki/Triggered-Activation-of-a-Simulink-Subsystem
https://github.com/m-morelli/tres_bundle/wiki/Triggered-Activation-of-a-Simulink-Subsystem
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Technically, it is possible to simulate very fine-grained details, provided that the slave RT

simulator supports them, such as the delay effects due to the use of caches, context switches and

migration of tasks among CPUs.

The signals activating a subsystem (and its input sampling) and its output latch are generated

by the corresponding Task block (i.e., the block representing the task where the subsystem is

mapped into) upon the beginning of the execution and the completion of the segment. Tasks

are triggered subsystems, executed on the occurrence of a function-call event issued by the

corresponding Kernel (i.e., the block representing the computer node where the task is deployed

onto). Figure 5.8 shows the interface of Kernel and Task blocks, and the interaction among

them. These particular block instances implement (a portion of) the scenario in Figure 5.7b.

Task’s output interface consists of two ports: trigger and next instr dur. The first one

is an array of data-flow signals with size equal to twice the number of segments mapped into the

Task. This port is used to command the activation of subsystems and the output latches. The

second port outputs a scalar signal representing the duration of the next segment executed by the

Task. This information is transmitted to Kernel each time Task is triggered. Whenever there is

no other segment to be executed, Task outputs a special code on the port next instr dur, which

is interpreted by the Kernel as a task completion signal. The duration of segments executed by

Task is set through a variable in the Matlab workspace, specified to the Task block through its

mask dialog.

The block Kernel has two input ports: duration and trigger. On the duration port it

receives the indication of the durations of the next segments to be executed, one for each Task

block. On the second port, it receives the array of activation signals of aperiodic tasks (from

external sources). The block has one output port, named activ, which is used to signal to each

task the execution of the current segment. The block Kernel uses a zero-crossing function to
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require future activations (from the Simulink engine) in correspondence of scheduled events, but

it is also activated synchronously with the arrival of aperiodic tasks.

At each activation, Kernel checks its trigger port for any aperiodic requests. If there is

any, the corresponding aperiodic tasks are activated in the slave RT simulator at the current time

(in synch with the Simulink time). Next, Kernel looks for the next event in the slave simulator’s

event queue. Two types of events are relevant: the segment completion and task completion.

In case an event of the first type occurs, Kernel reads the input signal on the port duration

at the index corresponding to the task that completed the segment, and dynamically creates a

new instruction and insert it in the corresponding task. Finally, once it detects which task has

generated the event, it sends an activation signal to the activ port to trigger the corresponding

Task. If the event task completion is detected, Kernel simply resets the internal state of the

corresponding task clearing the past history of the executed segments.

A number of parameters configure the (simulated) kernel and are set through the Kernel

mask dialog, such as the scheduling policy, the number of cores on which the task execution is

simulated, and the type and the timing properties of the (heterogeneous) task set. Tasks can be

periodic or aperiodic and timing properties include interarrival time, relative deadline and initial

offset. Optionally, task priorities (for tasks scheduled according to FP) and core affinities can be

specified for each task.

Implementation of Network Communication Execution Model

The times when a transmission IL task packs a message object into an I-PDU correspond

to the times in which the corresponding functional signal starts being transmitted to a remote

node. On the receive side, the Rx-Interrupt handler directly unpacks a message object from

the received message at the driver level, and the times when the application task reads the

message object correspond to those in which the reception of the corresponding functional signal

sent by a remote node is completed. To enforce in Simulink the consistency of information flow

with respect to the time instants when packing/unpacking of message objects occur, a double

latch barrier is added on functional signals that correspond to network communications (bottom

side of Figure 5.9a). This mechanism enables the implementation of finite-communication time

semantics on top of Simulink.

Figure 5.9 show an example of network transmission of a functional signal from SubsystemX

to SubsystemY, that execute as segments in two application tasks running on different computer

nodes. At a certain instant, the sender application task updates the content of the sending

message object sM with the value v1. At its next activation, the IL TxTask packs sM into an

I-PDU and passes it to the underlying layer. In the Simulink model, this translates into the

activation of the first latch barrier (LatchM2Send). The corresponding link is sampled, but the

signal is not instantaneously propagated to SubsystemY. The signal is gated by the second latch

barrier that blocks it, until the message reaches the receiver node. The time required to deliver

the message can vary, and depends on the underlying protocol and the network traffic. When

the message is received, the data is copied to the receiving message object rM . In Simulink,

the second latch barrier (LatchM2Receive) is activated and the value v1 becomes available to

SubsystemY, that will read it at the next activation. Information can be lost on the transmit
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Figure 5.9. Simulink implementation of finite-communication time network

execution model.

side, when the content of the sending message object sM is updated before it is read by the IL

TxTask (v2). Information can also be lost on the receive side, when the message object rM is

overwritten before it is read by the receiver application task (v3). The simulation enables the

investigation of the effects that message losts have on the control performances.

Technically, it is possible to simulate very fine-grained details, provided that the slave network

simulator supports them, like finite copy-times and queuing policy at the adapter level.

For each functional signal transmitted over the network, the activations of the 2-latch barrier

are generated by the corresponding Message block (i.e., the block representing the message where

the functional signal is mapped into). Messages are triggered subsystems. A Message executes

upon detection of a rising edge signal on its standard input port, issued by the correspond-

ing Network (i.e., the block representing the network over which the message is transmitted).

Figure 5.10 shows the interface of Network and Message blocks, and the interaction among them.

Network receives a specification of all the messages in the system (transmitted by IL TxTasks)

through its mask dialog. The network topology and a number of configurations of computer

nodes (.e.g,) are also specified through the mask dialog. In the model initialization phase (cfr.

Figure 5.2), Network collects all this information and initializes the slave simulator accordingly.
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Network uses the mdlZeroCrossings() function to specify future activations in correspondence

of scheduled events, but it is also activated synchronously with the arrival of aperiodic messages.

During the simulation loop, at every activation, Network checks for any aperiodic requests

and (eventually) activates the corresponding aperiodic messages in the slave simulator. Next, it

looks for the next event in the slave simulator’s event queue. When a start of message transmis-

sion event is active, the Network block triggers the corresponding Message block for sampling

the signal values that are transmitted with the message. When the message arrives, another

signal is sent to Message to indicate that the signal values are now available at their destination

and ready to be used by the reading subsystems.

5.4.3. Interface to Other Platform Simulators

Kernel and Network blocks are designed according to principles of object-oriented program-

ming to provide an easy integration with, potentially, any external real-time scheduling and

network simulator, respectively. Figure 5.11 provides a detailed view of the organization of the

C++ T-Res software architecture represented in Figure 5.6 (top).

Kernel and Network S-functions access the external simulators through dedicated abstrac-

tion layers (API). The design of the abstraction layers is based on the observation that real-time

scheduling and network simulation frameworks basically consist of two high level components:

an event handling system and, on top of it, the actual scheduling or network simulator. The

first component is the DES that represents and manages events and event queues, and provides

an API that enables the creation and deletion of events and their insertion in and extraction

from the event queue. The second component uses the definitions of events (typically after spe-

cialization) and event queues and realizes the actual real-time scheduling or network simulation

functionality. The real-time scheduling simulator implements the concepts of task (e.g., periodic,

aperiodic), scheduling policy (e.g, DM, FP, EDF), and kernel (e.g., single- or multi-core, with
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object adapter design pattern.

a scheduler and a resource manager). The network simulator implements the concepts of mes-

sage (e.g., periodic, aperiodic), transmission protocol (e.g., Ethernet frame, CAN message, UDP

socket) and network-connection topology.

The designed RT Scheduling Simulator API and Network Simulator API layers (Figure 5.11)

abstract the high level simulator concepts and enable the development of the Kernel and Network

S-functions so that they depend upon a set of interfaces classes, rather than upon their concrete

implementations. The RT Simulator API layer defines three interface classes, tres::Kernel,

tres::SimTask and tres::RTOSEvent. Similarly, the Network Simulator API layer defines

tres::Network, tres::SimMessage and tres::NetworkEvent.
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if <there is any aperiodic request>
  kern->activateAperiodicTask(<request_index>);
 

do {
  RTOSEvent *e = kern->getNextEvent();
 

  switch (e->getType()){ ... }
 

  kern->processNextEvent();
 

} while(kern->getTimeOfNextEvent() == <current_time>);
 

<Determine the running tasks>
 

<Command the tasks execution>

<next_hit> = kern->getTimeOfNextEvent();

Figure 5.13. Simulation loop of Kernel S-function (pseudo-code).

The object adapter pattern [GHJV95] is used to bind the interface classes, used by the

S-functions, to the third-party simulators, as shown in Figure 5.12. Clients are the S-functions

Kernel and Network, which access the Target s (the interface classes). Each Target plays in

fact the role of an Adapter, that redirects the requests of the client to the real Adaptee object

instance in the target simulator.

The following is the set of virtual methods to be specialized by the refinement of the

tres::Kernel class, the main class realizing the adaptation to the real-time scheduling sim-

ulator. A similar set of virtual methods are provided for the tres::Network class (that are not

described for conciseness).

// List of virtual methods of tres :: Kernel

virtual void initializeSimulation(const double , const double* const*) = 0;

virtual void processNextEvent () = 0;

virtual tres:: RTOSEvent* getNextEvent () = 0;

virtual int getTimeOfNextEvent () = 0;

virtual int getNextWakeUpTime () = 0;

virtual void getRunningTasks () = 0;

virtual void activateAperiodicTasks(std::vector <int >&) = 0;

The pseudo-code in Figure 5.13 shows how the Kernel S-function uses its interface classes

during the interaction with the Simulink simulation loop. The actual implementation of methods

of each interface class is demanded to the object adapter, which calls adaptee operations to

actually carry out the requests. Conceptually similar interaction with the Simulink simulation

loop is performed by the Network S-function, and is omitted for brevity.

In order to create an instance of a interface class without making the S-Functions depend

upon its concrete implementation, the factory method pattern [GHJV95] is used. Each adapter

defines a method called createInstance(), which takes a std::vector of std::string objects

as input argument. The std::string objects describe a specific configuration for the adapter

to be instantiated and are provided by the user through the S-function mask. Adding adapters

for new external simulators is easy and just requires to register the factory method of the new
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Figure 5.14. The application example from TrueTime [CHL+03], PID control

of three DC-servo systems.

adapter class to a generic factory class. It does not require any modification to the code of the

factory.

5.5. Application Examples

5.5.1. PID Control of Three Networked DC-servo Systems

Figure 5.14 shows a Simulink model (adapted from the TrueTime example library) in which

three DC-servo systems are controlled with Proportional, Integral, Derivative (PID) control. Each

DC-servo is described by a continuous-time SISO transfer function (a TransferFcn block), and is

controlled by a dedicated discrete-time PID regulator. The three PID controllers have the same

loop-gain coefficients Kp, Kd, Ki, and are modeled as (masked) subsystem blocks. A standard

SignalGenerator block produces a square-wave shaped reference signal for the controllers.

The example considers the case of three periodic control tasks, namely, Task1, Task2, Task3,

running concurrently on a single CPU. Tasks have different periods, respectively equal to 6ms,

5ms and 4ms. Each task executes the PID control logics of one regulator subsystem (the i-th

task, Taski, executes the i-th regulator subsystem PIDi). We assume that each segment of

control code takes a fixed amount of time equal to 2ms to execute, giving a total CPU load

higher than 100% (an overload condition).

In addition, the position of the motors is read by sensors and sent to the PIDs using a periodic

CAN message Message2. Another periodic CAN message Message1 collects all the command

signals from the controls and forwards them to the motors. The bit-rate of CAN bus is 1Mbps.

The period of the two messages is 4ms. Message2 (the message with the sensor data) has higher

priority.

Figure 5.15 shows the original model back-annotated with T-Res blocks. One instance of

Kernel and three instances of Task blocks are added to the functional model (blue blocks on

the left). Since the example does not consider aperiodic tasks, a Ground block is connected to

the trigger port of Kernel1. Each PID subsystem is transformed to a triggered subsystem and
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Figure 5.15. Simulink model of DC-servo control system with back-annotations.

a latch barrier is added on all its outputs. Task blocks use Goto-From connections to manage

the activation and termination signals of the PID subsystems executing in the segments and to

communicate the duration of the next segment to the Kernel block. Type and timing properties

of tasks in the task-set and the execution times of tasks activities are described by Matlab

variables in the workspace:

% task set description

% % type %name %iat %rdl %ph

task_set_descr = {’PeriodicTask ’, ’Task3’, 0.004, 0.004, 0; ...

’PeriodicTask ’, ’Task2’, 0.005, 0.005 , 0; ...

’PeriodicTask ’, ’Task1’, 0.006, 0.006 , 0};

% sequences of pseudo instructions (task codes)

t1_descr = {’fixed (0.002) ’};

t2_descr = {’fixed (0.002) ’};

t3_descr = {’fixed (0.002) ’};

One instance of Network and two instances of Message blocks (purple blocks on the left)

enable the simulation of message exchanges over the CAN bus. Signals to/from servos are

multiplexed into Message1 and Message2, respectively. Each of these signals is replaced with a

pair of Send/Receive barrier blocks, activated by the corresponding Message. Activation signals

flow to barrier blocks through Goto-From connections.

The back-annotated Simulink model enables the verification of the impact that task sched-

uling, execution times and message transmission delays have on the performance of the controls.

Figure 5.16 shows the output of the DC-servos with respect to the reference signal (black), when
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Figure 5.16. Verification of DC-servo control system back-annotated model.

a Rate Monotonic (RM, on the left) or EDF scheduling policy (on the right) is used. The control

outputs are those of the pure-functional model (red), those of the model that considers only

task scheduling and computation delays (blue) and, finally, those obtained also considering the

message transmission delays (magenta).

The overload condition induces some performance degradation of controls with respect to

the simulation results obtained from the Simulink model without back-annotations. In the case

of RM, the task with the lowest priority (Task1) cannot guarantee a stable control, because of

too many deadline misses. In the case of EDF, the delay due to scheduling and tasks’ execution

times tends to be spread among the three tasks, and after an initial transient all tasks miss their

deadlines. However, the motion of the DC-servos is still controlled with a reasonable error, and

the overall control performance is still satisfactory.

5.5.2. Scheduling-Aware Design of Attitude Control for a Simulated Quadrotor

In this example, we use T-Res to estimate the influence of tasks execution times and RTOS

scheduling delays on the control performances of a simulated rotorcraft UAV. We perform a

simple exploration of the SW design space and evaluate three different SW implementations.

The robot has four rotors (quadrotor configuration) and on-board electronics for sensing and

control. Figure 5.17 shows two reference platform implementations, one quadrotor robot from

3DRobotics3, and a Flight Management Unit (FMU) from the open-source, open-hardware

project PX4 4.

3https://store.3drobotics.com/products/iris
4https://pixhawk.org/modules/px4fmu

https://store.3drobotics.com/products/iris
https://pixhawk.org/modules/px4fmu


68 5. PLATFORM-AWARE CONTROL SIMULATIONS IN SIMULINK THROUGH CO-SIMULATION

Autopilot / FMU

CPU + POSIX-comp. RTOS
3D ACC, Gyro, MAG
Barometric pressure
GPIOs

Figure 5.17. The IRIS quadrotor (left) and the PX4FMU Autopilot (right)
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Figure 5.18. Models used for the quadrotor flight-control scheme.

The quadrotor is required to lift off and fly in a circle at constant altitude, while spin-

ning slowly around its Z-axis. The adopted control scheme (shown in Figure 5.18a) is taken

from [Cor11] with minor changes introduced to comply with our design restrictions (cfr. Sec-

tion 3.3). The original model in [Cor11] contains multiple functional loops at the top level of

the model hierarchy dedicated to set-point generation and flight control. Each loop has been

included in a Simulink subsystem. The constantly increasing signal for the desired yaw angle,

originally generated by a Ramp block in [Cor11], is now obtained from the set of blocks of Fig-

ure 5.18b that use the output of an external Clock block as time source. In Figure 5.18b, start

represents the time at which the block begins generating the signal, X0 is the initial value of the

output and the the rate of change of the generated signal is influenced by the parameters of the

block Step. This is because subsystems mapped into segments cannot contain continuous time

blocks (such as Ramp).

The set-points of the desired circular path and the desired yaw and altitude are generated by

the subsystem SetPointGen. Quadrotor implements the motion of vehicle. The inputs are the

speeds of the four rotors; the output is the 12-element state vector with the position, velocity,

orientation and orientation rate of the quadrotor. The actual vehicle velocity is assumed to be

estimated by an inertial navigation system or GPS receiver (i.e., there is no velocity estimator

in the Simulink model).
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Figure 5.19. Attitude control with models of RT kernel and tasks from T-Res.

The control strategy involves multiple nested loops that compute the required thrust and

torques so that the quadrotor moves to set-points. Position control has a two-level hierarchical

structure: the subsystem AttitudeLoop implements the inner loop, which uses the current and

desired roll and pitch angles and angular rates to control the vehicle’s attitude and to provide

damping (to slow down the dynamics). The subsystem PositionLoop realizes the outer loop,

which controls the XY -position of the flyer by generating changes in roll and pitch angles so as

to provide a component of thrust in the direction of the desired motion. Finally, yaw angle and

altitude are controlled by proportional-derivative (PD) controllers, respectively implemented by

the subsystems YawLoop and AltitudeLoop.

In practice, control loops are implemented as real time tasks, with finite execution times,

running at different rates under the control of a scheduler. Typical execution rates range from

10Hz for reading (generating) set-points to 50Hz (or more) for controlling the vehicle attitude.

We select a SW implementation of controls consisting of four periodic tasks. Task spr runs

every 100ms and reads the set-points. Task pos uses the set-points and the current state of

the vehicle to perform the position control. Every 20ms, it executes the position loop, the

attitude loop and the control mixer, in sequence. Finally, Task yaw and Task alt use the same

information to perform yaw and altitude control with a period of 50ms and 25ms, respectively.

Subsystems are modeled as executing with execution times randomly generated according to

uniform distributions. The execution platform is a single-core FMU board running a FP real-

time scheduler. Initially, Task spr is given the highest priority; the other tasks’ priorities are

assigned according to their period, so that the shorter the period the higher the priority (Rate

Monotonic rule). We refer to this candidate design solution as FP#1.
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% task set description

% % type %name %iat %rdl %ph % prio

task_set_descr = {’PeriodicTask ’, ’Task_spr ’, 0.100 , 0.100 , 0, 0; ...

’PeriodicTask ’, ’Task_pos ’, 0.020 , 0.020, 0, 5; ...

’PeriodicTask ’, ’Task_yaw ’, 0.050 , 0.050, 0, 15; ...

’PeriodicTask ’, ’Task_alt ’, 0.025 , 0.025, 0, 10};

% Sequences of pseudo instructions (task codes)

spr_instrs = {’delay(unif (0.001 ,0.002)) ’};

pos_instrs = {...

’delay(unif (0.005 ,0.008)) ’; ... % PositionLoop

’delay(unif (0.003 ,0.007)) ’; ... % AttitudeLoop

’delay(unif (0.002 ,0.004)) ’; ... };% CtrlMix

yaw_instrs = {’delay(unif (0.004 ,0.006)) ’};

alt_instrs = {’delay(unif (0.008 ,0.009)) ’};

Figure 5.20. Definition of type and timing properties of tasks.

Figure 5.19 shows the original model back-annotated with T-Res blocks. One instance of

Kernel block and four instances of Task blocks are added to the functional model. Each control

subsystem is transformed to a segment, activated by the corresponding Task. The type and

timing properties of tasks in the task-set and the execution times of tasks activities are specified

by means of variables in the Matlab workspace, as in Figure 5.20.

Figure 5.21 visualizes a portion of execution trace of FP#1 (two hyper-periods). The task-

set is non-schedulable. Figure 5.22 shows that computation times and scheduling delays induce

deadline misses of tasks Task yaw and Task alt, that do not affect much the altitude control

but degrade the performances of circular path-following significantly. This fact is easily ex-

plained if one considers that the low-priority task Task yaw, which drives the high-priority task

Task pos (that controls the XY -position of the flyer), is repeatedly subject to preemption from

the mid-priority task Task alt, and that this prevents the preservation of SR communication

flows between Task yaw and Task pos, with respect to the pure functional control model of

Figure 5.18a.

The analysis indicates that the response time of task Task yaw has a significant impact on

the effectiveness of the control action, and suggests to raise its priority to a value greater than the

one of Task alt. This can be easily done by changing the priority levels of the two tasks in the

task set descr variable. We refer to the new candidate design solution as FP#2. Figures 5.23

and 5.24 show, respectively, the 200ms-portion of execution trace and the simulation results

of the refined design. The task-set is again non-schedulable, but the quadrotor can

perform the flight task quite satisfactorily! Task yaw has now a priority level greater than

Task alt and meets all its deadlines; consequently, the control behavior is closer to the pure

functional one. On the other hand, Task alt misses more deadlines than in the initial design

and the altitude control performs slightly worse, as seen in Figure 5.24, where the norm of the

altitude error is shown (blue line vs red line). However, it is still controlled with a reasonable

error, which makes the candidate design FP#2 preferable.
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Figure 5.21. Execution trace of FP#1 (200ms), clearly showing that the task-

set is non-schedulable.
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Figure 5.22. Simulation results of first candidate design solution (FP#1), with

respect to the control performance of model of Figure 5.18a (Functional).

The third candidate design solution is referred to as EDF, because tasks are scheduled accord-

ing to the Earliest Deadline First (EDF) dynamic scheduling policy. It results in a slightly worse

performance of the altitude control (green line of Figure 5.24) and path following performance

similar to that of the refined priority model, which is therefore still preferable.

5.6. Integration in the Proposed System-Level Design Flow

T-Res is a key component of the proposed design flow, where Simulink models annotated

with platform-specific informations (i.e., T-Res blocks) are automatically generated from SysML

specifications. The mapping model in Figure 5.1 represents the software tasks and messages

(local or on the network) that realize the control functions on top of a distributed execution

platform.

The mapping model includes all the information needed to automatically generate and add

as back-annotations the Kernel, Task, Network and Message blocks to the Simulink functional



72 5. PLATFORM-AWARE CONTROL SIMULATIONS IN SIMULINK THROUGH CO-SIMULATION

Task_spr

Task_pos

Task_yaw

Task_alt

ends at
220ms

Figure 5.23. Execution trace of FP#2 (200ms): task-set is again non-schedulable .
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Figure 5.24. Simulation results of refined candidate design solutions (FP#2

and EDF), with respect to the control performance of model of Figure 5.18a.

model of controls. Acceleo M2T transformation templates process the mapping model and gener-

ate a collection of Matlab scripts that contain the back-annotation commands. The execution of

the Matlab scripts produces the annotated Simulink model, which can be simulated to verify that

the latencies and jitter added by the scheduling and communication delays do not exceedingly

deteriorate the performance of the controls.

We detail the process with reference to the quadrotor attitude-control example described in

Section 5.5.2. The current set of Acceleo transformation scripts handles the back-annotation of

only Kernel and Task blocks in a Simulink model.

Figure 5.25 shows a (partial) view of the Papyrus SysML model representing the described

four-task implementation. The functional model (on the left) is automatically generated, and

preserves all the structural properties of the Simulink model of Figure 5.18a, including the

connections among the blocks (not shown). Platform and mapping models are developed in

SysML by the system designers.

The Acceleo scripts are invoked from a common main template that performs the following

sequence of operations:
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«block»
MappingSystem

«part»
: Process1

«part»
: Task_spr

«part»
: Task_pos

«part»
: Task_yaw

«part»
: Task_alt

«part»
: PlatformSystem

«part»
: PhysicalSystem

«property»
: FlightManagem...

«property»
: Cortex-M4f

«part»
: BswSystem

«part»
: FunctionalSystem

«part»
: PositionLoop

«part»
: AttitudeLoop

«part»
: CtrlMix

«part»
: SetPointGen

«part»
: YawLoop

«part»
: AltitudeLoop

<<HwProcessor>>
nbCores=1

<<FunctionToThreadMap>>
mapOrder=1
execTime=delay(unif(0.005,0.008))

<<ThreadToCPUMap>>
taskSetIdx=2

<<BswScheduler>>
policy=FixedPriority
dlMissPolicy=Continue

<<BswRTOS>>
timeRes=Milli_Seconds

«part»
: eCOS

«part»
: Scheduling

Figure 5.25. SysML IBD describing the deployment of quadrotor’s control

functions and threads onto the single-core FMU board running a FP real-time

scheduler.

(1) the T-Res blockset is opened;

(2) the functional model is saved and a new model is created for its back-annotated version;

(3) a Matlab script is generated, that creates the initialization variables for the Kernel and

the Task blocks attributes;

(4) another Matlab script is generated for the generation of the Kernel and the Task blocks

instances;

(5) finally, another set of .m files is created to modify the input model by changing the

subsystem blocks to triggered, adding latches on the output links and rerouting the

connections (removing the old links and adding new ones that go through the latches.

Figures 5.26a and 5.26b show the most relevant part of the template files that generate the

Kernel block.

The following is snapshot of the generated Matlab code that adds and configures an instance

of Kernel block to the Simulink model of quadrotor control.

% - Add and configure the Kernel block

kern1 = ’quadcopter_bn/Kernel1 ’;

add_block(’t_res/Kernel ’, kern1);

set_param(kern1 , ’taskset_descr_name ’,’task_set_descr ’);

set_param(kern1 , ’scheduling_policy ’, ’FIXED_PRIORITY ’);

All parameters are available from the platform model and their values are set through the

Matlab function set param(). The Kernel block outputs task-activation signals in the order

specified by the taskSetIdx attributes of the ThreadToCPUMap allocations in the mapping model.

Tasks types and periods (or interarrival times) are available from the mapping model. Rel-

ative deadlines coincide with periods and activation offsets are set to zero. This information is

used to properly initialize the Matlab variable task set descr (Figure 5.20), that describes the

timing properties and the type of tasks in the task-set.
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[template public generate_kernel(mdl : Model) post(trim())]

...

[file (’kernel_gen_commands.m’, false , ’UTF -8’)]

[ ** - Adding the Kernel block */]

[generateKernelBlock(mdl_name , cpu , rtos)/]

[ ** - Infrastructure for the activation of tasks and signals with task duration */]

[generateTasksManagementInfrastructMulti(mdl_name , t2c_set)/]

[ ** - Adding the Duration of next task instruction */]

[generateBlocksOfNextDuration(mdl_name)/]

[/file]

[/template]

(a) Main Acceleo template.

[template public generateKernelBlock(mdl_name:String , cpu:Class , rtos:Class) post(trim())]

[ ** Add and configure the Kernel block */]

...

add_block(’yaks/Kernel ’, ’[mdl_name/]_bn/Kernel1 ’, ’Position ’, kern1_pp);

[ ** Configure ’taskset_descr_name ’ */]

set_param(’[mdl_name/]_bn/Kernel1 ’, ’taskset_descr_name ’, ’task_set_descr ’);

[ ** Compute the other mask parameters by using the Class instances cpu and rtos */]

[ ** Set the scheduling policy ’scheduling_policy ’ */]

[let sched : Class = rtos.getSchedulerFromRtos()]

[setKernelMaskParamSchedPolicy(mdl_name , sched)/]

[ ** Set the Deadline miss rule ’dead_miss_rule ’ */]

set_param(’[mdl_name/]_bn/Kernel1 ’, ’dead_miss_rule ’,

’[sched.getValueOfStereotypePropertyEnumLit(’BswResources::BswRTOS::BswScheduler ’,

’dlMissPolicy ’)/]’);

[/let]

[ ** Set the Time resolution ’time_res ’ */]

set_param(’[mdl_name/]_bn/Kernel1 ’, ’time_res ’,

’[rtos.getValueOfStereotypePropertyEnumLit(’BswResources::BswRTOS::BswRTOS ’, ’timeRes ’)/]’);

[ ** Set the Number of cores ’core_num ’ */]

set_param(’[mdl_name/]_bn/Kernel1 ’, ’core_num ’,

’[cpu.getValueOfStereotypeProperty(’HwResources::HwComputing::HwProcessor ’,’nbCores ’)/]’);

[ ** Set the Underlying engine ’under_engine ’ */]

set_param(’[mdl_name/]_bn/Kernel1 ’, ’under_engine ’, ’RTSIM ’);

...

[/template]

(b) Generation of Matlab construction commands.

Figure 5.26. Acceleo instructions for the generation of the Kernel block.

The duration of segments executed by each task is described by a Matlab cell array of strings

(Figure 5.20). Each string that describes the computation time of a segment is available from

the execTime attributes of the FunctionToThreadMap allocation instances.

According to the proposed methodology, all design is realized at SysML level. Automatic

back-annotation helps system integrators to keep the control model in synch with platform and

mapping models, and enables design refinements (e.g., changing the scheduling policy or mapping

functional subsystems to a different task-set) in a systematic way.
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5.7. Summary

The Chapter presents T-Res, a co-simulation framework which integrates external simula-

tion engines for real-time scheduling and network communication in Simulink. T-Res enables

the simulation of timing delays dependent on code execution, scheduling of tasks, and network

communication latencies (messages), and the verification of their impact on the performance of

controls.

We first use T-Res to the study the real-time control of three networked DC servo motors.

Then, we apply it to the study of the SW implementation of a simulated rotorcraft UAV. We

explore three candidate SW implementations, all leading to non-schedulable task sets. However,

one implementation results in satisfactory control performance for the flight task. This enforces

the claim that not all control loops/tasks are of type hard real-time and may in fact miss deadlines

without losing stability. T-Res allows to quantify the errors for different implementation options.

T-Res is integrated in the proposed system-level design flow. An automatic generation

process allows to obtain a new Simulink model back-annotated with platform information (rep-

resented by T-Res blocks) from the SysML/MARTE mapping model.





CHAPTER 6

Simulation-Driven Process for Automated Software

Synthesis

6.1. Context and Positioning

The design of real-time control systems is typically performed in two steps. First, the

control system is designed as a graph of functional blocks activated at a given rate (sampling

period). Simulink is often used in the industry to model the (continuous-time) dynamics of the

controlled system and the (discrete-time) model of the controller functionality, to be implemented

in software. Second, the software implementation is designed as a set of real-time tasks in charge

of executing the functional code. The sampling periods of the functions, determined in the control

design phase, become timing constraints in the software implementation phase, and deadlines

are often assumed as implicit, meaning that each task instance must complete before the next

activation. The software designer must define a feasible task set where each task meets its

deadline.

In real-time control systems, however, the interplay of the control performance, timing con-

straints and scheduling effects can be somewhat subtle, and the traditional design flow may be

ineffective and result in deadlines tighter than necessary.

Another problem is that the simulation results retain their validity upon condition that the

software implementation preserves the simulation execution semantics. When this is not possible

because the resulting task set would not be schedulable, the designer is forced to explore other

options, including relaxing deadlines and allowing for additional delays in the control functions.

Exploring the interplay between control performance and real-time behavior is desiderable

for a better design. We define a simulation-driven process intended to improve the design flow of

real-time control systems. The traditional design flows based on the definition of implicit tasks

deadlines on control functions are extended to include the exploration of relaxed deadlines and

order of execution constraints. Relaxed deadlines, coupled with an optimization approach to

find feasible task sets, allow the exploration and evaluation of different task implementations.

The definition of relaxed deadlines and the evaluation of task implementations is performed in

simulation , using Simulink and T-Res (cfr. Chapter 5).

The design process is in three stages. The stages are highlighted in Figure 6.1 as bold items.

In the first stage, relaxed deadlines are obtained on an estimate of control performance with

respect to latency. Simulation is used to estimate the maximum delay that can be applied to each

Simulink subsystem in isolation before the control performance deteriorates in an unacceptable

way.

77
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Figure 6.1. Flow of the simulation-driven automated software synthesis process.

In the second stage, the mapping (or implementation) of subsystems onto periodic tasks

scheduled by priority is computed using an optimization formulation. To find an effective map-

ping (functions into tasks and priority assignment to tasks) we encode the problem as a math-

ematical optimization process. The problem is quadratic, but formulated as a Mixed-Integer

Linear Programming (MILP), encoding the response time formulation that is obtained from

schedulability analysis theory as a set of linear constraints. Different metrics are tried and

evaluated according to the simulated performance results. Different mappings considering both

minimal deadlines and relaxed deadlines are considered.

In the third stage, the task mappings obtained as optimal solutions by the MILP solver are

evaluated by simulation, to estimate the control performance and compare the effectiveness of

different metric functions and approaches.

The proposed approach couples MILP with simulation. In general, simulation allows to

capture effects like cache faults, preemption of message transmission attempts, task migration

delays, finite copy time of messages between driver and adapter levels, etc., that are difficult

to model analytically. This chapter focuses on the definition of the simulation-driven software

synthesis process for single-CPU systems.

The rest of the chapter is organized as follows. Section 6.2 describes the system model. It

gives a formal representation of functions and signals dependencies as a directed acyclic graph

and defines the mapping model. Section 6.3 formalizes the optimization model, i.e., the opti-

mization variables, the considered constraints and the optimized metrics. Section 6.4 describes

how the simulation with T-Res is used to compute relaxed deadlines and constraints. Section 6.5
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illustrates the application of the proposed approach on the real-time control of the quadrotor

UAV (see Section 5.5.2). Finally, Section 6.6 summarizes and closes the chapter.

6.2. System Model

We consider systems with a single CPU, on which a set of n functions F = {f1, f2, . . . fn}
obtained as the code implementation of Simulink models must be executed. Each function fi

is the code implementation of a subsystem si (for convenience we assign the same index to a

subsystem and its function) and has a worst-case execution time (WCET) Ci > 0 and a period

Pi > 0 (matching the period of the subsystem they realize), i = 1, . . . , n.

Simulink subsystems communicate by exchanging signals. In the code implementation these

signals are realized as (possibly shared) communication variables. Each signal has a sender and

a destination subsystem/function. In the model simulation, it is transmitted in zero logical

time. Signals dependencies correspond to order of execution constraints when the outputs of the

receiver subsystem are computed as a function of its input values (as opposed to its state only).

Functions and signals can thus be represented as a directed acyclic graph in which nodes are

functions and edges are signals. We use the notation fi → fj to indicate that fj must execute

after fi according to the transitive closure of the order of execution constraints. Sink functions

are those functions that do not have successors in the graph, and source functions have at least

one signal that is not received from any predecessor (meaning that they process information

coming from sensors, or external input.)

We define the set of all graph paths P = {p1, p2, . . . pq} from a source to a sink.

6.2.1. Definition of Mapping

A mapping is determined by:

• A partition of functions f1, . . . , fn on tasks T1, . . . , Th, h ≤ n: each function is assigned

to exactly one task. The functions are called by the task in order.

• An order of execution of functions within a task.

• The priority level πi that is assigned to each task τi. Priorities define a total order on

tasks. By extension, the priority level of any function executed by τi is also πi.

Inter-task communications are performed through finite length buffers with suitable size

[WDNSV09]. A function samples its inputs (resp. produces its output) at execution start

(resp. end).

6.2.2. Response-Time Analysis

The performance of the code implementation of the control algorithms depends on their

latencies and jitter, which are in turn dependent on the response times of the functions. In order

to estimate these response times, we make use of established and recent results on schedulability

analysis.

Deadlines Within the Interarrival Times

When response times are guaranteed (by construction or by adding constraints) to be less

than or equal to periods, the worst case response time of each function can be computed in
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correspondence to its critical instant, when the task in which it executes is activated at the same

time with all other higher priority tasks. Analytically, the worst-case response time ri of fi can

be computed as (from [DNP08], a straightforward extension of the task-based formulation for

periodic tasks in [JP86]):

ri = Ci +
∑

j∈prec(i)

Cj +
∑

j∈hp(i)

⌈
ri
Pj

⌉
Cj (3)

where prec(i) is the set of functions that are in the same task as fi but invoked before it, and

hp(i) indicates the set of all functions executed by tasks with priority higher than the task

implementing fi.

Deadlines Larger Than the Interarrival Times

When the system also allows for functions response times that are larger than periods, that

is, when a task may be activated again when it is still awaiting its completion, the previous

formula (3) may be optimistic and the exact formulation (as in [Leh90]) requires considering all

the task activations in the busy period of level πi. The exact formulation becomes very difficult

to encode in a formal linear or convex optimization formulation and it is therefore discarded in

favor of a recent upper bound ri ≥ ri, as defined in [BPD15].

ri =
Ci +

∑
j∈prec(i) Cj +

∑
j∈hp(i) Cj(1− Uj)− γi

1−
∑

j∈hp(i) Uj
(4)

where Uj = Cj/Pj is the utilization of function fj , and γi is defined as:

γi =
∑

j,k∈hp(i),j<k

min{Pj , Pk}UjUk (5)

6.3. Optimization Model

In order to compute optimal mappings with respect to a given optimization metric, we model

the problem as a Mixed Integer Linear Program (MILP).

A MILP formulation is defined by a set of constraints delimiting the set of feasible solutions,

and an objective function to optimize. Constraints and objective function are defined in terms

of optimization variables (the design parameters to be determined) and parameters (the known

values).

For our function allocation and task configuration problem we extend the MILP formulations

in [MH06] [ZZZ+13] [MWTP+13]. All these papers considered deadlines lower than or equal

to periods. We generalize the model to arbitrary deadlines.

6.3.1. Optimization Variables

To determine a mapping, a task must be assigned to each function, a priority must be

assigned to each task, and an execution order must be defined for functions executed in the

same task. The task mapping and task priority assignment are defined by a single set of priority

values assigned to functions. Each priority value is implicitly assigned and identifies a single task.
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The function priority defines at the same time the task into which it executes and its priority

level. Given that the priority assignment defines a total order, we do not assign absolute priority

values, but rather a priority order.

Priorities are defined by variables πi,j , i, j = 1, . . . , n:

πi,j =

1 if πi > πj

0 otherwise

A sequence order on functions assigned to the same task (i.e. with the same priority) is

defined by variables σi,j , i, j = 1, . . . , n:

σi,j =

1 if πi = πj and fi → fj

0 otherwise

The πi,j and σi,j assignments must be constrained in such a way that the transitive and

antireflexive properties hold for priority and order assignments (omitted here, see [ZZZ+13] for

a description).

6.3.2. Constraints

A necessary requirement for a mapping is to ensure the schedulability of all the functions,

i.e. the following constraints must be satisfied:

ri ≤ Di, i = 1, . . . , n (6)

where ri denotes the response time of function fi, i = 1, . . . , n. Response times are computed as

described in Section 6.2.2.

Deadlines Less Than or Equal to Periods

When the response times are less than the periods, Equation (3) applies. The MILP encoding

of (3) is (as in [ZDN13])

ri = Ci +

n∑
j=1
j 6=i

σj,i Cj +

n∑
j=1
j 6=i

πj,i Cj Ij,i (7)

where integer variable Ij,i represents the possible number of interferences of (possibly higher

priority) function fj on fi. The variable Ij,i is defined by the bounds

ri/Pj ≤ Ij,i < ri/Pj + 1 (8)

Deadlines Possibly Larger Than Periods

In this case, Equation (4) is expressed as:

ri =

n∑
j=1
j 6=i

ri πj,i Uj + Ci +

n∑
j=1
j 6=i

σj,i Cj +

n∑
j=1
j 6=i

πj,i Cj (1− Uj)− γi (9)
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where:

γi =

n−1∑
j=1
j 6=i

n∑
q=j+1
q 6=i

πj,i πq,i min(Pj , Pq) Uj Uq (10)

Equations (9) and (10) are not linear (quadratic) due to the products of the optimization

variables. To linearize Equation (9), we introduce a real variable ρj,i that accounts for the product

ri πj,i and is defined using the big M formulation that is typically used to encode conditional

constraints.

ρj,i =

ri if πj,i = 1

0 otherwise
(11)

The value of ρj,i is determined by the following constraints:

ρj,i ≥ 0 (12)

ρj,i ≤ ri (13)

ρj,i ≤M πj,i (14)

ρj,i ≥ ri −M (1− πj,i) (15)

where M is any constant greater than ri. A suitable value for M is (from an upper bound on

Equation (4)).

M =

n∑
j=1

Cj(2− Uj) (16)

In a similar way, to linearize Equation (10), we introduce the variable µj,q,i:

µj,q,i =

1 if πj,i = 1 ∧ πq,i = 1

0 otherwise

and the following constraints:

µj,q,i ≤ πj,i (17)

µj,q,i ≤ πq,i (18)

πj,i + πq,i ≤ µj,q,i + 1 (19)

Finally, Equations (9) and (10) are replaced by:

ri =

n∑
j=1
j 6=i

ρj,i Uj + Ci +

n∑
j=1
j 6=i

σj,i Cj +

n∑
j=1
j 6=i

πj,i Cj (1− Uj)− γi (20)

γi =

n−1∑
j=1
j 6=i

n∑
q=j+1
q 6=i

µj,q,i min(Pj , Pq) Uj Uq (21)
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In addition, the mapping must be performed in such a way that all functions in a task have

the same period. For any pair of functions {fi, fj} it must be πi = πj ⇒ Pi = Pj , encoded in

MILP form by the following constraint:

πi,j + πj,i = 1 for all i, j = 1, . . . , n, such that Pi 6= Pj (22)

Finally, the last set of constraints deals with the need of preserving the order of execution

of functions. For any pair of functions {fi, fj} such that fi → fj in some path, we have:

πi ≥ πj ∨ (πi = πj ∧ σi,j = 1), (23)

represented by the following constraints:

For all i, j = 1, . . . , n, such that fi → fj in some path:

πj,i = 0 (24)

σj,i = 0 (25)

σi,j = 1− πi,j (26)

6.3.3. Optimization Metrics

We consider three optimization metrics based on path latency, intuitively corresponding to

the worst case end-to-end response on a given path. The latency of path pi is denoted as Li and

computed as [ZZZ+13]:

Li =
∑
fj∈pi

Pj + rj (27)

We consider three metrics for minimization.

Average latency (AL):

1

q

q∑
i=1

Li.

Maximum latency (ML):

max
i=1,...,q

Li.

Maximizing the minimum fractional slack (FS):

max min
i=1,...,q

D(pi)− Li

D(pi)
,

which is equivalent (through simple math) to minimize the maximum relative latency:

min max
i=1,...,q

Li

D(pi)
.

The deadline of path pi is denoted as D(pi), and is computed as:

D(pi) =
∑
fj∈pi

Pj +Dj . (28)



84 6. SIMULATION-DRIVEN PROCESS FOR AUTOMATED SOFTWARE SYNTHESIS

FS attempts at easing future extensibility. We compute it relative to the deadlines of

paths, in order to have a normalized objective function.

6.4. Simulation

Simulation plays a key role in two of the three stages of the proposed design flow (Figure 6.1).

Initially, simulation is used to obtain relaxed deadlines for functions executing the control code.

A relaxed deadline Dmax
i is computed for each function fi by estimating the maximum delay

that it can experience in isolation, i.e., assuming an ideal execution of the other functions, before

the control performance deteriorates in an unacceptable way.

Next, after candidate software implementations are synthesized using MILP, the simulation

is used again to evaluate the influence of their execution on the control performances, and finally,

the implementation having the smallest impact is selected.

Simulations are performed using the T-Res toolkit under Simulink. In the first stage, each

estimate Dmax
i is computed by considering the corresponding function fi as the only time-

consuming computation activity (T-Res segment) in the system. Its delayed output is incre-

mented across multiple simulation runs, until the control becomes unstable or the deviation from

the pure functional control (i.e., the control where all functions execute in zero time, including

fi) is so large that the performance is considered unacceptable.

Note that, the estimated relaxed deadlines are only first order approximations of the actual

maximum delays that can be tolerated, because functions (i.e., control subsystems) are coupled

and not independent. Relaxed deadline values are not used to validate the system configuration,

but only as guidelines for the selection of the best task implementation.

6.5. Application Example

6.5.1. Case Study Definition

We apply the synthesis process to the design of the attitude control for the simulated quadro-

tor of Section 5.5.2. The correspondence between the names of subsystems in Figure 5.18a (con-

trol loops) and the code implementations fi ∈ F is summarized in Table 6.1. In the following,

for sake of simplicity, we will use the numeric indices of subsystems to refer to the corresponding

functions in the SW task implementation.

The periods of the subsystems and functions are: P1 = 100ms, P2 = 20ms, P3 = 20ms,

P4 = 50ms, P5 = 25ms and P6 = 20ms.

We consider five configurations, with different execution times, each represented in Table 6.2.

All times are expressed in milliseconds. The last column shows the total system utilization Ut,

ranging from 84% to 99% (overload conditions are not considered).

6.5.2. Computation of Deadline Approximations

Figure 6.2 shows the model configuration to compute the relaxed deadline of f2, by using

T-res. A single periodic task (Task1), executes f2 with a variable computation delay/execution



6.5. APPLICATION EXAMPLE 85

Original name (Figure 5.18a) Renamed to (si) Code implementation name (fi)

SetPointGen SetPointGen s1 f1

PositionLoop PositionLoop s2 f2

AttitudeLoop AttitudeLoop s3 f3

YawLoop YawLoop s4 f4

AltitudeLoop AltitudeLoop s5 f5

CtrlMix CtrlMix s6 f6

Table 6.1. Subsystem names and corresponding function names for the

quadrotor example.

C1 C2 C3 C4 C5 C6 Ut

I84 3 4 5 5 4 2 0.84

I92 2 5 5 5 5 2 0.92

I94 3 5 5 8 5 1 0.94

I94b 2 5 5 4 6 2 0.94

I99 2 6 5 4 6 2 0.99

Dmin
i 100 20 20 50 25 20

Table 6.2. Case study configurations for the design exploration.

time, defined as a variable in the Matlab workspace and incremented across multiple simulations,

until an approximation of D2 is found.

Figure 6.3 shows the control performance when varying the response time of functions f6

and f2 (in isolation), respectively indicated by r6 and r2. The top side shows the impact of r6

on the altitude (Z) control. The control performs well until r6 is incremented to 41ms, when it

suddenly becomes unstable and makes the quadrotor fall down on the ground. The bottom side

of Figure 6.3 shows the effects of increasing r2 with respect to the XY path following. The graph

shows the norm of the difference of the controlled position with respect to the pure functional

control, indicated as ‖XYerr‖, versus time. For r2 = 30ms the difference is small at steady-state

(black dashed line), and the control performance is acceptable. It becomes larger as r2 increases,

and reaches a significant steady-state value for r2 = 90ms (continuous-thin black line). There

are also small peaks in the range 0–5 sec., that indicate a further deviation from the original

simulation results in the early phases of the application of the control action. For r2 = 120ms,

‖XYerr‖ ' 5cm at steady state and peaks are even larger. The control performance is considered

unacceptable for r2 > 120ms.
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Figure 6.2. The T-Res setup to evaluate the maximum acceptable delay for f2.
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Figure 6.3. Values of delays for f6 (top) and f2 (bottom) for which the per-

formance is significantly compromised.

The procedure is repeated for the other functions implementing the flight-control logic. As a

result, the relaxed deadlines are: Dmax
1 = 500ms, Dmax

2 = 120ms, Dmax
3 = 40ms, Dmax

4 = 301ms,

Dmax
5 = 82ms and Dmax

6 = 40ms.

6.5.3. Exploration Strategies and Application of MILP

The first step to the software synthesis is to compute an optimal mapping for each possible

configuration, that preserves constraints (6) with Di = Dmin
i and (24)–(26) (preservation of

execution order). Unfortunately, the MILP solver does not return any feasible mapping for the

five configurations. Hence, to obtain a feasible mapping, we explore two possible relaxations of

the model:

• an execution that violates the order of execution among subsystems, denoted as Ro

and,
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• an implementation Rd that allows Di = Dmax
i , i = 1, . . . , n.

In the exploration of the possible solutions, we allow executions that violate the order pre-

scribed by the Simulink semantics (Ro). Order violations may results in data (control samples)

loss by overwriting or skipping. The effect is similar to a disturbance that may be tolerated by

the control systems.

We therefore solve three optimization problems by combining the two model relaxations:

• Model Ro is obtained by relaxing the execution order preservation constraints (Equa-

tions 24, 25, 26);

• Model Rd is obtained by setting Di = Dmax
i , i = 1, . . . , n;

• Model Rod is obtained by relaxing the execution order preservation constraints (Equa-

tions 24, 25, 26) and setting Di = Dmax
i , i = 1, . . . , n.

For each of these three problems we try the three optimization metrics AL, ML and FS (cfr.

Section 6.3.3). The nine resulting MILP formulations are solved for each of the five execution

time configurations in Table 6.2. The MILP problems are solved with an IBM ILOG Cplex

12.6 solver, which returns the mappings summarized in Table 6.3. Tasks are listed from higher

to lower priority; for each task, the function indexes mapped onto it are shown. For example,

[6],[1],[2,3],[5],[4] indicates that the highest priority task executes function f6, the next task

executes function f1, then another lower priority task executes f2 and f3 in sequence, then a

task executes f5 and finally the lowest priority task executes f4. When multiple optimal solutions

are found, they are all listed in the corresponding cell.

The highest utilization configuration is only feasible when Di = Dmax
i , i = 1, . . . , n. Also,

different relaxation methods and different metrics functions can bring to substantially different

configurations, even for our relatively simple case study. The task of the performance evaluation

stage is to understand which relaxation strategy and which metric function works best.

6.5.4. Evaluation of Candidate Designs

Representing the Mappings in Simulink

We use T-Res to evaluate the quality of the candidate implementations (the task mappings

returned as optimal solutions by the MILP solver) with respect to the control performances.

The model in Figure 5.19 can represent all the mappings in the last column of Table 6.3

with a suitable definition of task priorities and functions computation times. The priorities of

the tasks and the execution times of the functions are specified in configuration variables in the

Matlab workspace and set as parameters of the Kernel and Task blocks (as in Figure 5.20).

Similar Simulink models and Matlab code configurations of the blocks Kernel and Task enable

the representation of all the mappings in Table 6.3.

Performance Evaluation

Figures 6.4–6.5 show the measure of the absolute difference of the controlled variables values

between the task implementations (with execution and scheduling delays) and the pure functional

design. On top, the figures show the norm of the difference ‖XYerr‖ in the controlled XY
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Ro Rod Rd

I84

AL [6],[1],[2,3],[5],[4] [6],[1],[4],[2,3],[5] [1],[4],[5],[2,3,6]

ML [6],[1],[2,3],[5],[4] [1],[4],[6,2,3],[5] [1],[4],[5],[2,3,6]

FS [6,2,3],[5],[4],[1] [6,3],[5],[2],[4],[1] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[2],[4] [1],[5],[4],[2,3,6]

[6,3],[1],[5],[2],[4]

[6,3],[5],[2],[1],[4]

I92 AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [1],[4],[6,2,3],[5] [1],[4],[5],[2,3,6]

[6,3,2],[5],[4],[1]

FS [6,2],[5],[3],[4],[1] [6,3],[5],[2],[1],[4] [1],[5],[4],[2,3,6]

[6,2,3],[5],[4],[1] [6,3],[1],[5],[2],[4] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[2],[4]

[6,3],[5],[2],[4],[1]

I94 AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [6],[1],[4],[2,3],[5] [1],[5],[4],[2,3,6]

[6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

FS [6,2],[5],[3],[4],[1] [6,3],[5],[2],[1],[4] [1],[4],[5],[2,3,6]

[6,3],[5],[2],[4],[1] [6,3],[1],[5],[2],[4]

[6],[5],[3,2],[4],[1] [6,3],[5],[1],[2],[4]

[6,3,2],[5],[4],[1]

I94b AL [6,3,2],[5],[4],[1] [6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [6,2,3],[5],[4],[1] [1],[4],[6,3,2],[5] [1],[4],[5],[2,3,6]

[6,3,2],[5],[4],[1] [1],[4],[6,2,3],[5]

FS [6,3,2],[5],[4],[1] [6,3],[5],[2],[1],[4] [1],[5],[4],[2,3,6]

[6,2,3],[5],[4],[1] [6,3],[5],[1],[2],[4]

[6,3],[1],[5],[2],[4]

I99 AL

Infeasible

[6],[1],[4],[3,2],[5] [1],[4],[5],[2,3,6]

ML [1],[4],[6,3,2],[5] [1],[4],[5],[2,3,6]

[1],[5],[4],[2,3,6]

FS [6,3],[4],[1],[5],[2] [1],[4],[5],[2,3,6]

[6,3],[5],[1],[4],[2]

Table 6.3. Table of all computed mappings.

variables (XY-path following). At the bottom, they show the absolute value of the difference of

the controlled altitude |Zerr|. Lower errors indicate better results.

The use of different metrics in Ro and Rd has no significant impact on the control perfor-

mance. This is probably due to the size of the case study and the restrictions of such models.



6.5. APPLICATION EXAMPLE 89

0 5 10 15 20
0

0.01

0.02

0.03

‖X
Y
e
r
r
‖
(m

)

0 5 10 15 20
0

0.1

0.2

Time (s)

|Z
e
r
r
|
(m

)

 

 
I
92

; R
o
; [6,2], [5], [3], [4], [1]

I
92

; R
d
; [1], [5], [4], [2,3,6]

I
94

; R
o
; [6], [5], [3,2], [4], [1]

I
94

; R
d
; [1], [5], [4], [2,3,6]

(a) Difference with respect to ideal case: U ≥ 92%..

0 5 10 15 20
0

0.01

0.02

0.03

‖X
Y
e
r
r
‖
(m

)

 

 

0 5 10 15 20
0

0.1

0.2

Time (s)

|Z
e
r
r
|
(m

)

R
o
; [6], [1], [2,3], [5], [4]

R
d
; [1], [4], [5], [2,3,6]

(b) Difference with respect to ideal case: U = 84%.

Figure 6.4. Difference with respect to ideal case.

Figure 6.4a shows the results for the mapping obtained by optimizing the FS metric. The

dashed lines represent the performance when the order of execution is relaxed (Ro), whereas

continuous lines correspond to the case of relaxed deadlines (Rd). Only instances I92 and I94

are shown in the figure, respectively as dark and light lines, since they are representative of

the behaviour of all cases Ro and Rd and high processor utilizations (U ≥ 92%). Ro generates

mappings with worse performances. This is clearly visible for the altitude control. The trajec-

tory control exhibit two kinds of behaviours: either the dashed line is strictly higher than the

continuous one (U = 92%), or the two lines nearly converge at steady-state but the dashed one

has an initial peak (U = 94%). This is due to f1 having the lowest priority, which occurs in most

Ro mappings (see Table 6.3). In those cases the vehicle is forced to follow a wrong reference

trajectory at the beginning of the control application, and this causes a large deviation (peak)

from the simulation results obtained with the pure functional design. Function f1 has the lowest

priority in most Ro mappings because of the tight deadlines of the other functions. The low

priority of f1 corresponds to a violation of the execution order. The solutions found with both
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Figure 6.5. Rod model, comparison of task configurations and optimization

metrics (U = 92%).

relaxations enabled (Rod) (not shown in Figure 6.4a) yield a performance in between the two Rd

and Ro cases.

A lower processor utilization (U = 84%) may increase the solution space, and the model Ro

yields to a mapping with a very good performance in terms of trajectory following (dashed line

in Figure 6.4b).

In order to evaluate the performances of the different metrics, we focus on the problem

definition Rod, which yields a larger solution space. Figure 6.5 shows the performance of the

solutions for case I92 (other instances have a similar behaviour). The mapping with the best

overall performance (i.e., on both trajectory following and altitude control) is [6,3], [1], [5], [2],

[4], obtained by minimizing FS. This mapping produces a good performance for the trajectory

following, because the most critical functions f1 and f6 have high priorities. It also has a good

performance in altitude control, because f5 is not too much delayed. In case the task of trajectory

following is considered to be more critical than altitude control, optimizing the ML metric yields

the best performance (dark dashed line in Figure 6.5). Minimizing the AL metric seems to yield

the least performant mappings (light dashed line). This result is somewhat expected, since this

metric is quite coarse: it does not target individual paths and allows some responses to be quite

large while others can be very small.

The continuous lines in Figure 6.5 also show how different mappings that are equivalent from

the optimality point of view for a given objective function (FS in this case) may exhibit different

control performances.

6.6. Summary

This Chapter presents a simulation-driven optimization process for the implementation of

real-time control software. The process enables the exploration of the interplay between the

control performance and the real-time behavior under relaxed constraints, such as task deadlines

and order-of-execution constraints. It couples MILP with simulation using T-Res. Simulation
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allows to capture effects difficult to model analytically, such as cache faults, preemption of

message transmission attempts, task migration delays, finite copy time of messages between

driver and adapter levels.

The experiments conducted on a simulated quadrotor case study show that simultaneous

consideration of control performance and real-time concerns leads to SW implementations pro-

viding better results than classical decoupled approaches, where the controls are designed first

and the SW implementation is synthetized next (dealing with the real-time concerns separately).





CHAPTER 7

Conclusions

7.1. Contributions

The goal of this thesis is the definition of a design process, supported by tools, for the de-

velopment, verification and deployment of time-sensitive complex CPS control applications. We

formulate it as a system-level design process, encompassing the tight integration of control, hard-

ware and (real-time) software architectures. We follow the tenets of PBD approach and assume

models based on a Synchronous-Reactive (SR) execution semantics for defining the functional

platform, SysML-/MARTE for representing the execution platform, and timing issues (and their

influence on control performance) as primary design concern.

SysML/MARTE are suited at representing architectural aspects (including timing). Vice

versa, SR languages allows for control simulation, testing and behavioral code generation. The

definition of an integrated design flow exploiting their complementarities has attracted significant

interest over years ( [VD06,DN12]). This work makes the following contribution on this topic.

We present a PBD framework that supports the transition from the functional model

to the code implementation (with the preservation of communication flows), and

enables designers to explore tradeoffs between delays and control performances when

a semantics-preserving implementation of functionality is not achievable .

The following summarizes the related contributions and categorizes them with respect to the

research issues defined in 1.4. All the implemented software and (meta-)models are available at

https://github.com/m-morelli (in dedicated repositories, indicated below) as open-source .

Contributions to RI.1

Chapter 3 defines the process flow, including the definition of a common semantic domain

and rules for the integration of SR and SysML/MARTE platform models. The common seman-

tic domain enables the formal representation of platform models and mapping process; formal

modeling, in turn, enables the implementation of model transformations that concretely realize

the integration.

Platform models incorporate and expose appropriate information to allow accurate prediction

of control performance properties (e.g., stability, steady and transient state performance) and

timing properties (as in classical real-time systems) of a candidate implementation. The design

cycle is a sequence of tool-assisted stepwise refinements which is iterated until the implementation

satisfies the initial specification.

This work brings the following contributions.

93
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• An EMF Ecore definition of a custom meta-model, expressing the structure of SR

models (subsystems, ports, connections, etc.) and all the information related to the

timed events (including rate constraints, partial order of execution constraints and any

other synchronization constraints).

• A Simulink-to-EMF model exporter written in Matlab language, that generates an

XML view of the control model (the XML conforms to a schema in accordance with

the EMF Ecore meta-model)—the dedicated repository is see_simple.

• A QVTo M2M transformation to translate the (exported) EMF model into a SysML

model in Papyrus, by leveraging profile and type library definitions for SR systems—

available as cypbd_functional (profile) and cypbd_fum2m (transformation).

• A set of SysML-/MARTE-based profiles for the modeling of execution architectures

and SW architecture implementations (task and message models) and for the definition

of functionality-to-architecture mapping—repositories are cypbd_architecture (exe-

cution architectures) and cypbd_mapping (SW architectures and mapping).

Contributions to RI.2

Chapter 4 defines models and rules to generate a SW implementation of robot control ap-

plications that is guaranteed to preserve the SR execution semantics of functional model and,

in turn, the system properties formally verified during the design phase. The target of the gen-

eration process is Orocos-RTT, a component-based middleware very popular among robotics

practitioners (researchers and industry). The generation process enables semantic-preserving

deployment of applications on single-/multi-core execution architectures.

We present a set of model transformations (orocosrtt_gen) that improve the state-of-

practice of code-generation from synchronous models. The presented process overcomes the

limitations of current commercial code generation solutions, that (i) produce code only for the

execution on single-core, and (ii) require interspersing the functional model with platform-specific

blocks (for, e.g., the OSEK RTOS, dSPACE RTI, etc.), violating the desirable separation of con-

cerns between the functional and the platform designs.

Contributions to RI.3

Chapter 5 presents T-Res (tres_bundle), a Simulink-based co-simulation framework to es-

timate the impact that time delays, dependent on code execution, scheduling of real-time tasks

and communication latencies, have on the performance of controls. T-Res overcomes a number of

limitations of TrueTime [CHL+03], probably the best known Simulink-based tool targeting the

exploration of the interplay between functional (control performance) and non-functional (tim-

ing constraints and scheduling effects) system properties. Specifically, T-Res brings the following

improvements: an easy integration with Simulink control toolboxes and models; an explicit sep-

aration between controllers, tasks, messages, schedulers; a modular architecture enabling easy

integration with third-party real-time scheduling and network simulators.

T-Res is integrated into the proposed PBD work-flow. An Acceleo MOFM2T transformation

(tres_gen) processes the mapping model and generates a set of Matlab files, that back-annotate

the Simulink model with blocks representing the execution of the controller model into a set

https://github.com/m-morelli/see_simple
https://github.com/m-morelli/cypbd_functional
https://github.com/m-morelli/cypbd_fum2m
https://github.com/m-morelli/cypbd_architecture
https://github.com/m-morelli/cypbd_mapping
https://github.com/m-morelli/orocosrtt_gen
https://github.com/m-morelli/tres_bundle
https://github.com/m-morelli/tres_gen
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of real time tasks under the control of a scheduler and exchanging messages onto a network

medium. This is a key contribution with respect to the state-of-art model-driven design tools for

complex CPS, e.g., robots [Bru15]. These tools assume that all control loops are hard real-time.

In reality, many systems/applications are tolerant to delays and deadline misses, and a flow like

the one we propose is a crucial advantage for designers.

The presented PBD flow enables the prediction of system’s timing behavior (latencies and

jitter) at model-level (i.e., in the early phases of the development). In Section 5.5.2, we apply it to

the study of the SW implementation of a simulated rotorcraft UAV. We explore three candidate

SW implementations, all leading to non-schedulable task sets. Despite this, we find that one can

perform the flight task quite satisfactorily. Note that current design tools would have discarded

it, because they rely on the output of schedulability analyzers.

Contributions to RI.4

Exploring the interplay between control performance and real-time behavior is desiderable

for a better design. Chapter 6 defines a simulation-driven process intended to improve the design

flow of real-time control systems in those situations where there are no feasible task-sets for the

deadlines determined in the control design phase.

We extend the traditional design flows based on the definition of implicit tasks deadlines on

control functions (generally coincident with their sampling periods) to include the exploration of

relaxed deadlines and order-of-execution constraints. Relaxed deadlines, coupled with a MILP-

based optimization approach to find feasible task sets, allow the exploration and evaluation of

different candidate SW implementations. The definition of relaxed deadlines and the evaluation

of implementation options is performed in simulation using T-Res. Simulation allows to capture

effects difficult to model analytically, such as cache faults, preemption of message transmission

attempts, task migration delays, finite copy time of messages between driver and adapter levels.

This is another advantage with respect to a number of works in the literature, that define

design processes based on an analytical formulation of control and real-time scheduling co-design

problem.

7.2. Limitations (Ongoing Work)

Tool Support

The tool support for the presented PBD flow is currently a proof-of-concept. Extensive

testing and robustness improvements are currently ongoing.

Some parts of the presented toolchain are (currently) incomplete. The M2T transforma-

tion templates for semantics-preserving application deployment are only in prototype form (not

included in the online repository). The M2T templates for the automatic generation of back-

annotations of network and message models in Simulink are still missing. All these parts are

under development.

The work on automated synthesis involved several manual operations. In order to fluidize

the design and optimization process, we aim to setup a toolchain integrating the design and
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simulation tools with optimization engines. This work based on model-driven solutions is ongoing.

The resulting automated toolchain will be used to perform a large number of experiments.

Distributed Architectures

Apart from providing appropriate tool support, research effort is currently being carried

out to extend the contributions to RI.2 and RI.4 to distributed architectures. With reference to

the problem of automated synthesis that accounts for relaxed deadlines and order-of-execution

constraints (RI.4), we are setting up a new case study for the simulated quadrotor. We add

visual servoing and obstacle detection to the existing altitude and attitude control tasks. We

explore the space of possible implementation solutions by comparing the control performance of

the best SW realizations for multiple candidate HW architectures.

Experimental Validation

A current limitation of this work is that the validity of proposed design framework has

been extensively tested in simulation, but no experimental validation was conducted. The main

impediment has been setting-up a case study of sufficient complexity to justify the adoption of

PBD. Ready-to-use laboratory kits are typically made up of a single powerful electronic board

connected to a multitude of sensors/motors. Their architecture is highly integrated and difficult

to extend. All the computations related to control run on the board, and sensors/actuators

have dedicated wired buses (that rarely include CAN). In such a configuration, communication

delays do not impact much the control performances, hence the effects of interplay between

control and timing become significant when both a complex functionality is realized (that requires

advanced skills in control engineering) and a careful evaluation of functions’ execution times is

available (that may be difficult to obtain). On the other hand, system architectures in use in

the industry (e.g., automotive) of course do perfectly fit the scope, but (Simulink) models of

functional applications are mostly unavailable, due to intellectual property concerns.

During this work, in collaboration with the research group lead by Prof. Luigi Palopoli at

DISI Lab. of the University of Trento, we set up a robotic car testbench to show the application of

the methodology. A preliminary description of the functional and SW/HW system architecture

is described in [MMR+13]. The system has sufficient complexity to justify the development

of significant functionality using a PBD flow, including image processing, supervisory controls

and low-level control loops. The execution architecture is distributed and leverages computation

boards and communication technologies that are widely available. Because of its complexity and

the distributed execution platform, the software and messaging architecture is not trivial and

justifies timing analysis (schedulability and communication). The HW platform is available, and

the functional and architecture models are currently being completed. In the short term, we will

start experimental validation of PBD flow.
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7.3. Opportunities for Future Research

Additional Execution Models

This work describes a formalized process flow for system-level modeling and timing analysis of

complex CPS control applications. We consider primarily a time-triggered model of activation of

control logics. Future research may explore control activation models based on events rather than

periodic triggers and the possible improvements with respect to the CPU resource utilization, as

discussed in [ABEP13] and [LMV+13].

For what concerns the problem of control under variable computational demand, the Adap-

tive Variable Rate (AVR) task model described by Biondi et al. [BDNB15] represents an viable

solutions. The integration of the AVR model in the process flow may enable the definition of

variation points (execution modes) for the task, verified at design-time and selected at run-time

to accommodate the control accuracy under different load conditions.

Fault-Tolerance

Time predictability is one of the most important design concerns for today’s and future

advanced CPS. However, other design aspects are critical in the system development process,

e.g., fault-tolerance. The controller execution platform is made of heterogeneous components

(generally multiple electronic control units connected with buses) that may incur transient or

permanent faults. Redundancy, i.e., the replication of system HW and embedded SW processes,

is one possible solution to make the controller fault-tolerant. But it has an impact on costs,

especially for high-volume products like the ones from the automotive and (in future) robotics

industry.

Future work may address the specification of models, abstractions and synthesis solutions

to enable the exploration of fault-coverage/cost tradeoffs (the work of Pinello et al. [PCSV08]

may provide cues on this topic) conjointly with those of control and scheduling.

Cyber-Security

Security concerns also take on great importance in the design of CPS. (Cyber-)Security

mechanisms are needed to protect systems against attacks and meet requirements such as in-

tegrity, authenticity, confidentiality, or availability. In many of such systems, the tight resource

constraints and strict timing requirements make it very difficult or even impossible to add se-

curity mechanisms after the initial design stages without violating other system constraints. To

produce secure and safe systems with desired performance, security must be considered together

with other objectives at the system level and at early design stages.

Ideas to extend the presented work in this direction may come from several sources, e.g.

[Lin15], where an approach in line with principles of PBD is presented that enables design-time

architecture exploration and selection based on security mechanisms. Future work may aim at

extending that exploration strategy by also considering control-performance concerns expressed

using a SR model of computation.
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