
Design of Embedded Control
Systems under real-time

Scheduling Constraints

Tesi per il conseguimento del diploma di perfezionamento
Anno Accademico 2002/2001

Luigi PALOPOLI (palopoli�sssup.it)

Collegio dei Docenti

Prof. Paolo ANCILOTTI Prof. Giorgio BUTTAZZO Dott. Andrea DOMENICI

RETIS Lab.

Scuola Superiore S. Anna

Via Carducci, 40

56100 Pisa – Italy

To the love of my life, Grazia

To my parents

To Nonna

IV

Contents

1 Introduction 3

1.1 The Challenge of Embedded Software Development 4

1.2 Contents of the thesis . 7

2 Background information 9

2.1 Control Design in EC . 9

2.1.1 Control under information constraints 10

2.2 Hardware-software architectures for EC 11

2.2.1 Real-time scheduling of processors 12

2.2.2 Real-time scheduling of the communication resources . 15

2.2.3 The time-triggered model of computation 16

2.3 The Envisioned Methodology 16

2.3.1 Platform based design 18

2.3.2 Contributions of the thesis 21

I Control synthesis

3 Holistic design of real-time controllers on single CPU platforms 25

3.1 The considered platform 27

3.2 Problem Formulation . 28

3.2.1 Robustness metric 32

3.3 Computing the stability radius 33

3.3.1 The case of first order systems 34

3.3.2 Results for multi-variable systems 38

3.3.2.1 An upper bound 39

3.3.2.2 A lower bound 41

3.4 Tackling the design problem 44

3.4.1 The continuous relaxation 46

V

VI Contents

3.4.1.1 The case of first order systems 47

3.4.1.2 The general case 49

3.4.2 The integrality constraint 49

3.5 A numerical example . 51

3.6 Future extensions . 52

4 Numerically efficient control through a shared bus 55

4.1 Model Predictive Control of Control Systems with Communi-

cation Constraints . 57

4.1.1 MPC based stabilization 60

4.1.2 Dealing with the exclusivity constraint 61

4.1.3 An alternative approach 64

4.2 The Generalized Linear Complementarity Problem (GLCP) . . . 66

4.2.1 A numerical example 67

4.3 Dealing with parametric dependence 71

4.4 Conclusions and future work 75

II CAD

5 An object-oriented library for simulating real-time control systems 79

5.1 State of the art . 81

5.2 Design process and modelling primitives 83

5.3 Description of the tool . 93

5.4 Future extensions . 107

III conclusions

6 Summary 111

Aknowledgments

It is obviously difficult to write down a list of the people I wish to thank

for helping me during the years of my PhD. In chronological order, I think

I will start from my parents who gave me life and the opportunity of find-

ing my way through the complex and fascinating world of the Italian univer-

sity. Then my heart goes to my bride-to-be, Grazia. She never stopped loving

me, encouraging me and stimulating me during the tough times of the PhD,

when the professional fun in undertaking novel scientific challenges is not

matched by economic wealth. I never heard complaints about my choice

from her and she gave me a fundamental help in correcting my worst trends

to victimism. When it comes to professionals, the first person I want to thank

is my supervisor, Paolo Ancilotti. He is really a great guy who trusted me

and opened my mind on the secrets of the academic world. My decision

to undertake PhD is largely due to Prof. Rich Gerber, who presented me

the incredible opportunities of the academic career. After a while he appar-

ently changed his mind on this topic, but he is my precious friend and I will

never forget him. Professors Giorgio Buttazzo, Marco Di Natale and Andrea

Domenici gave me precious hints throughout my work. Most of what I learnt

in control theory was due to the stimuli offered by Professor Bicchi. He is a

perfect mentor and it was a great honour and pleasure for me to work with

him. PhD students and Researchers in the ReTiS lab compose a really excit-

ing environment. It is great to joke with them, to fight with them, to work

with them, to grow with them. My heartfelt thanks to Peppe, to Gerardo,

Paolo, Luca, Tommaso, Davide and Marco. Alessandro did me a favour pro-

viding the latex style used for the thesis. Most of what I learnt on the realm

of embedded systems was built during 7 precious months of my life spent

at the University of California Berkeley. UCB is a beautiful place crowded

with talented people. I will never stop being grateful to Prof. Sangiovanni-

Vincentelli for inviting me in his group. He is incredibly full of energy and

1

2 Contents

ideas...sometimes it takes you months to figure what can stem from half an

hour of discussion with him. I wish to thank Claudio Pinello. A good part

of this thesis arose from our cooperation. Professor El-Ghaoui was very kind

and gave me a lot of useful suggestions on optimization topics. Finally, I want

to thank my Buddhist Master, Daisaku Ikeda; most of his teachings are now

written deep in my cells and in my blood.

1

Introdution

I love deadlines. I like the whooshing sound as they fly by.

- Douglas Adams

E
mbedded systems (ES) are electronic components of industrial sys-

tems that typically

1. Monitor variables of the physical system such as temperature, pres-

sure, traffic, chemical composition, position, or speed via sensor mea-

surements;

2. Process the information making use of one or more mathematical mod-

els of the physical system;

3. Output signals, such as controls for power circuitry to open or close

valves, to ignite sparks, to open or close switches. These signals control

the behaviour of the physical system and allow to optimize its perfor-

mance.

Embedded systems are typically hidden from the user and they have to

be designed to operate in close connection with the environment. In partic-

ular, the most challenging embedded systems must produce a reaction to an

external event complying with strict timing requirements. Such systems are

called reactive embedded systems or real-time embedded controllers (EC).

Roughly speaking, reactive systems produce responses to external events at

the speed imposed by the external environment, whereas “interactive” sys-

tems produce the results of the requested computations at their own speed.

The commercial importance of Embedded Controllers (EC) and of Em-

bedded Systems in general has steadily grown in the past few years disclos-

ing unprecedented opportunities for improving the quality of the resulting

3

4 Chapter 1. Introduction

products. The pervasiveness of these components is well illustrated by the

following facts:

I the total shipment of microprocessor units (MPU) and micro control

units (MCU) in 1997 was over 4.4 billion units, and about 98% of this

are related to embedded applications1; and

I between 1994 and 2004 the need for embedded software developers is

expected to increase 10 fold.

One of the most important application fields is represented by the automo-

tive industry: from a marginal technology applied to a category of niche

products, embedded controllers have become a pervasive solution to a va-

riety of different problems concerning safety, comfort, fuel consumption,

emission of polluting gases and so forth. In a recent meeting of the R&D en-

gineers of Daimler Chrysler in Stuttgart, it was argued that 90% of the innova-

tion in future cars will rely on electronic components. In 1998, Dr. Wolfgang

Reitzle, then the Chief Operating Officer of BMW, indicated that the BMW

series 7 (the top of the line of BMW production) had more than 70 embed-

ded processors accounting for more than 30% of the cost of the car. The sta-

bility problem of the Mercedes Class A vehicle was solved relatively quickly

by devising new control algorithms cleverly implemented in software on the

powerful platform that was dedicated to suspension control. This solution

would not have been possible just a few years ago. The emerging X-by wire

technology, applied for years in the avionics field, is making inroads even in

economic lines of automotive products promising sharp improvements in

comfort, performance, pollution and safety.

This thesis proposes a set of analytical procedures and a simulation CAD

tool aimed at effective design of EC. A major emphasis will be put on embed-

ded software (ESW). In this chapter we will first introduce the main problems

related to embedded software development, clarifying the reasons for its rel-

evance, and then summarize the main results of the thesis.

1.1 The Challenge of Embedded Software De-

velopment

The development of EC is a very complex activity for a variety of reasons. The

first problem is the presence of tight safety requirements. A failure of the sys-

tem can even result into the loss of human lives. Moreover, fixing a problem

1.1. The Challenge of Embedded Software Development 5

in a system shipped in thousands of units can result in enormous additional

costs for its manufacturer. For this reason, EC have to be design error free to

the maximum possible extent in industrial. Although relevant, this is not the

only problem posed by these systems. As a matter of fact, other issues such

as time-to-market, costs of the deployed architecture, power consumption

and memory footprint are known to play a role of increasing importance.

In short, designers and engineers are confronted with a challenge of over-

whelming complexity: safety-critical applications have to be developed in

shorter times using low-cost components.

In this context, the interest for embedded software (ESW) has risen to

previously unseen levels. In fact, hardware manufacturing cycles are long

and expensive, whereas software based systems are intrinsically flexible and

allow for easy porting across different architectures. The increasing cost of

the masks pushes hardware manufacturer toward the sharing of hardware

platforms across multiple applications in a given domain. Moreover, such

innovations as reconfigurable platforms along with the constant increase in

computing power and the corresponding decrease in costs are enabling the

shifting of functionalities to software. Chances are that in a near future most

system engineers even in semi-conductors companies will be involved in

software development. Unfortunately, the current industrial practice in ESW

lags far behind the attainment of its ambitious goals. In most cases the devel-

opment goes through different stages: first a control law is synthesized and

then its implementation is devised going through costly prototyping activi-

ties. While this empirical approach could yield acceptable results for simple

control laws implemented on cheap platforms, it is no more adequate to sus-

tain the growing complexity of modern applications. Recent accidentes, like

the ones of the Mars Polar Lander and the Ariane Rocket, clearly pointed out

the risks of using outdated methodologies in the development of complex

systems. In less catastrophic cases, finding a design error during the late

phases of the development may invalidate precious months of work.

In a utterly competitive market, where development time and cost con-

sideration are likely to dominate decision-making processes, effective ways

for streamlining the development of ESW from the specifications down to the

deployment on HW/SW architectures will be a key success factor for EC man-

ufacturers. This thesis elaborates the problem of ESW development along

different directions. The proposed vision is based on the converging appli-

cation of tools and ideas pertaining to different disciplines that have to be

tapped to construct a “sound” methodology. The need for integration of dif-

ferent disciplines is not surprising; rather, it is inherent to the very concept

of embedded computing: i.e. information processing tightly integrated with

6 Chapter 1. Introduction

physical processes. In this work, the stress will be put on the possible syner-

gies between control and software engineering in EC design.

To this regard we will maintain a useful conceptual distinction between

two different viewpoints over EC design: functional design and architectural

design. Control engineering comes into play when defining the functional

design, while computer engineering mainly regards architectural design.

Functional and architectural design should be as much as possible “or-

thogonal” activities [7]: each of them should be governed by the pursuit of

its own design trade-offs. In this way it is possible to exhaustively explore al-

ternative solutions without impacting on the design time. We use the adjec-

tive “orthogonal” as opposed to “separate” to emphasize that the outcomes

of these activities should be safely and verifiably composed in a well founded

methodological framework. On the contrary, in the current practice, the pas-

sage from functional specification to the selection of an architecture and to

the implementation is a “blind” activity where choices belonging to different

conceptual domains are intertwined. As a result, the overall design turns out

to be over-constrained thus hindering the re-usability of components and

generating unnecessary commitments to specific architectures (and to their

producers).

One of the greatest problem in devising a sound design procedure of this

kind is dealing with concurrency: i.e. parallel computations and communi-

cations sharing limited resources. A somewhat counterintuitive fact is that

for functional design to be effectively orthogonal with respect to architec-

tural design, it is necessary that an abstract modeling of concurrency be present

also in functional modeling. This is one of the most important pitfalls of

currently available tools. A Matlab/Simulink scheme captures very well the

physical modeling of a plant or of an analog controller, but such aspects as

concurrent computation/communication and the model of computation of

the controller are not adequately captured. It is our opinion that a paradigm

shfit is necessary and we believe that it can stem from the application of plat-

form based approaches. An architecture, or more precisely a set of architec-

tures, are modeled by means of a limited set of parameters and its effects

on the system performance can be adequately taken into account ever since

the early phases of the design. This absract view on the architecture is called

“platform”. If the level of abstraction for the platform is correctly chosen, the

use of a platform during the functional design does not commit the archite-

cural designer to a specific solution but provides him/her with well defined

specification that can drive the exploration of different alternatives. We will

show how the theory of real-time computing allows one to define platforms

that are simple enoguh for being tractable in the context of analytical control

1.2. Contents of the thesis 7

design procedures. On the other hand the most important architectural as-

pects affecting the system’s perfromance are captured. We will show that for

two important applications classical control design procedure can easily be

adapted to the problem of control under real-time scheduling constraints.

Fundamental components of the approach are CAD tools enabling architec-

ture/function cosimulation and a posteriori performance assesment.

1.2 Contents of the thesis

In chapter 2 we will present some background information on the state of

the art of disciplines that will be tapped throughout the thesis. In particular,

we will shortly review the state of the art in such topics as control design

with information constraints and real-time HW/SW architecture. Moreover

we will present a methodological framework that, in our evaluation, could

radically improve the current state of the art of EC software development.

The proposed methodology is largely inspired to the principles of Platform

Based Design [38].

The first part of the thesis applies these principles in two different con-

texts. Namely, in Chapter 3 we consider a plant comprised of several subsys-

tems. Each of them is controlled by a dedicated control software task. Tasks

share a single CPU computer board operated by a RTOS. We address two dis-

tinct issues: 1) is a platform powerful enough to sustain a specified level of

performance? 2) once a platform has been selected how are design param-

eters to be selected to optimize performance? In Chapter 4 the considered

platform consists of a shared BUS used to deliver messages to a group of ac-

tuators. In this case we assume that the BUS implements a TDMA scheduling

paradigm. A numerically efficient algorithm allows to synthesize both the

control law and the bus schedule. The procedure allows to take into account

also physical constraints on the actuators.

An essential role of the proposed methodology is covered by the possibil-

ity of assessing the performance of the system by a Computer Aided Design

(CAD) tool. The tool simulates at one time: 1) a set of plants, 2) the func-

tional model of a controller, 3) the architectural model of a controller. To this

purpose, a collection of C++ libraries called RTSIM has been realized and it

is presented in the second part of the thesis in Chapter 5.

Finally, in Chapter 6, we state the conclusions of the thesis.

8 Chapter 1. Introduction

2

Bakground information

I always say that, next to a battle lost, the greatest misery is a battle gained.

–The Duke of Wellington

I prefer the most unjust peace to the most righteous war.

– Cicero

T
he main focus of the thesis is to establish a clear and well-founded

connection between control engineering and computer engineering,

with particular regard to the results of real-time scheduling theory.

Therefore, we will first provide a general description of the main topics and

references, belonging to either discipline, that are of interest for our pur-

poses. By the end of the chapter, we will provide an overall description of a

possible methodology that in our evaluation could be greatly beneficial with

respect to software development for EC.

2.1 Control Design in EC

It is a commonplace opinion that designs of embedded systems have to be

captured at the highest level of abstraction to take advantage of all available

degrees of freedom.

From this perspective, the situation in control design is encouraging with

respect to other fields. Control designers are used to tackle their problem

using high level primitives. In particular, the use of abstract graphical nota-

tions such as Simulink is utmost popular. Each block of a Simulink diagram

is part of a library and it has a well defined mathematical meaning, e.g. a

gain, a transfer function, a digital filter, a finite state machine. Moreover, it

exposes some free parameters (e.g the zeros and the poles of a transfer func-

tion) that are degrees of freedom left to the designer. In short, designing a

9

10 Chapter 2. Background information

controller amounts to devising an interconnection of blocks and to appro-

priately selecting their parameters. The question is: how are parameters se-

lected? Here lies the power of this approach since decades of academic re-

search and industrial practice have produced analytical and semi-analytical

procedures to synthesize the appropriate selection of parameters. The syn-

thesis is driven by a set of metrics that can either be used as constraints or as

cost functions in optimization procedures. Typical examples of such metrics

are stability, robustness, convergence speed, quality of the transient evolu-

tion, disturbance rejection and so forth. A particular relevance is assumed,

in our context by performance limitations introduced by the controller im-

plementation. In particular, we want to address limitations on the amount

of information that can be processed by the controller.

2.1.1 Control under information onstraints

A control designer typically has a good physical intuition of what cost func-

tions and constraints should best be used to assess the accomplishment of

her/his design goals. In particular, the physical limitations of the controller,

such as sensor accuracy or actuators authority, have been carefully consid-

ered in the past literature [14]. An entire branch of control theory (i.e. Model

predictive control) [50] explicitly integrates limitations on achievable control

signals in the design procedure.

Only recently is the increasing complexity of computations and commu-

nications inside ECs exposing the importance of other types of constraints,

which, in a general sense, are related to the amount of information that can

be processed and conveyed from sensors to actuators in unit time [15]. Dif-

ferent lines of research consider the problem of information constraints in

control systems under different perspectives. Bandwidth and bit-rate con-

straints in communication links are dealt with in [52, 75, 76]. The application

of LQG techniques to control synthesis over a limited bandwidth channel is

illustrated in [69]. Another important thread of research focuses on the use

of quantized sensors and actuators: the traditional view of quantization as a

disturbance is replaced by a specific analysis of this phenomenon even un-

veiling unexpected opportunities [12, 21, 16].

In this thesis, we deal with information constraints stemming from the

use of shared communication and computation components. There are many

real-life examples where this situation occurs. For instance the same chan-

nel (or bus) can be used to convey multiple sensor readings to processing

units or, dually, multiple command values to actuators. In another scenario,

2.2. Hardware-software architectures for EC 11

the same processing unit can be used to carry out multiple concurrent com-

putations (tasks).

The interest for this type of systems amongst control designer is well proven

by the growing popularity of such tools as the Real-time workshop by MATH-

WORKS INC. or ASCET-SD by Etas Engineering. These tools shorten the dis-

tance between functional design and implementation by automatically gen-

erating the low level code from functional models. However, in absence of an

adequate understanding of what exactly means to have a concurrent imple-

mentation of an EC on a limited pool of computation and communication

resources during the design phase, the simple generation of code turns out

to be a blunt sword.

Remarkable attempts to combine control synthesis and scheduling of com-

munication channels are in [55, 30]. In both papers, an integrated formu-

lation encompassing control and communication is proposed. In this the-

sis this problem will be dealt-with in the context of a platform based design

methodology, as shown later in this chapter and in the next chapters.

2.2 Hardware-software arhitetures for EC

A typical architecture used in modern EC is reported in Figure 2.1. The shown

architecture is comprised of different nodes connected via a shared commu-

nication resource (BUS). At each node, traditional solutions based on ded-

icated hardware are being replaced by more flexible computer boards. By

computer boards we mean a basic microarchitecture composed of programmable

cores, I/O subsystems and memory. This basic architecture can be used with

multiple applications thus sharing the costs of mask sets and design (which

are becoming a dominant factor in deep submicron IC) over a wider number

of deployed components. In some cases, the use of FPGA enables to retain a

certain degree of parametrization of the board for particular purposes.

Shared computation or communication components (or resources) must

be equipped with schedulers to enforce “mutually exclusive” access: in the

case of multiple access requests to a resource, only one of them can be sat-

isfied at a given time. According to the type of components they manage,

schedulers can be realized in hardware, software or both. A real-time oper-

ating system is an example of a software scheduler, while a bus arbitrator is

an example of hardware scheduler. The scheduler satisfies pending requests

according to a scheduling policy that, in turn, bases its decisions upon a set

of scheduling parameters that are associated to each entity requiring the re-

12 Chapter 2. Background information

Computer
Board

RTOS

Thread Thread........

Computer
Board

RTOS

Thread Thread........

Plant

Sensor 1

Sensor n

........

Actuator 1

........

........

Actuator m

Shared communication:

Concurrent computation:

real−time scheduling

BUS

Figure 2.1 Typical architecture of a modern EC

source (which can be a packet for a communication resource or a software

task for a computation resource).

Scheduling policies are chosen according to the requirements of the ap-

plication. In the case of EC the most important requirements is time-determinism

(or real-time schedulability) that can be formulated as follows: given a set of

timing constraints for the tasks and for the communication packets, find a

schedule of the shared resources such that all constraints are met.

An entire branch of academic research in computer science is devoted to

real-time scheduling algorithms. In the rest of the section we give some basic

reference. The interested reader is referred to the large literature in the field,

encompassing specialized journals, proceedings of conferences such as the

Real-Time Systems Symposium and text books.

2.2.1 Real-time sheduling of proessors

This section discusses the scheduling of a computation resource (a proces-

sor) shared among multiple tasks. A task is a piece of software that is re-

peatedly executed on a processor. Each activation of a task corresponds to

the execution of a job. A task is said periodic of period p, being p a natural

number, if its activation instants are separated by p clock units. Each job of

a real-time task is assigned an absolute deadline, which is the time by which

the job has to terminate. The relative deadline of a job is defined as the dif-

ference between the absolute deadline and the instant of the job’s activation.

2.2. Hardware-software architectures for EC 13

Processor scheduling algorithms can be of different types. In particular

it is possible to distinguish between on-line and off-line algorithms. The for-

mer take the scheduling decisions before the activation of tasks, based on an

a priori knowledge of the task parameters. The implementation of the algo-

rithm consists of a simple table storing the activation times of all tasks. The

latter have an ordered queue of jobs to be executed. The queue is updated, at

run-time, during the tasks’ execution. Another important distinction is be-

tween preemptive and non-preemptive algorithms. Preemptive algorithms

allow the execution of a job to be suspended when a job with higher prior-

ity is activated and resumed later. On the contrary using non-preemptive

algorithms, after a job is assigned the processor it cannot be interrupted

until its completion. It is evident that, being non-preemptive algorithms a

subset of preemptive algorithms, the number of task sets that are real-time

schedulable by the former is a subset of those that are schedulable with the

latter. Within preemptive algorithms a further classification between static

and dynamic priorities is possible. For static priority algorithms the schedul-

ing algorithms are based on fixed parameters that are assigned to a task once

and for all upon its first activation. Dynamic priority algorithms allow one to

change parameters driving the scheduling decisions in any moment.

Task sets composed only of periodic tasks for which the relative dead-

line is equal to the period are very important in control applications. The

best known real-time scheduling algorithms for periodic task sets are Rate-

Monotonic (RM) and Earliest-deadline-first (EDF). Both algorithms are pre-

emptive, on-line and based on the assignment of priorities (i.e. at each clock

the task having the highest priority is assigned the CPU). Using RM task pri-

orities are assigned according to the activation period (the shorter the pe-

riod, the higher the priority). The EDF scheduling algorithm assigns the

highest priority to the task having the earliest absolute deadline. Clearly, EDF

implements a scheduling policy based on a dynamic assignment of priori-

ties.

Much of the recent literature in real-time processor scheduling derives

from a fundamental result stated in a seminal work of Liu and Layland [47].

Theorem 1 (Liu and Layland 1973) Consider a set of independent periodic

tasks �
1

, �
2

, . . . , �
n

. Assume that each �

i

has worst case execution time e
i

and is

activated with period p

i

. Then the following statements are true:

1. if the EDF scheduling algorithm is used then the task set is schedulable

if and only if
P

i=1;:::;n

e

i

p

i

� 1;

14 Chapter 2. Background information

2. if the RM scheduling algorithm is used then the task set is schedulable if
P

i=1;:::;n

e

i

p

i

� n(2

1

n

� 1).

This result stemmed two prongs of research activity yielding a remarkable

amount of results, which have been systematically organized in text books [65,

49]. In particular important problems are:

I extensions for aperiodic tasks,

I considering the case of interacting task (i.e. tasks accessing mutually

exclusive resource such as shared memory buffers and devices).

As far as the first problem is concerned, a popular way for enhancing effi-

ciency are aperiodic servers (Polling server [44], Sporadic Server [61], Con-

stant Bandwidth Server [1], etc). When tasks interact, checking and enforcing

schedulability becomes a difficult problem due to the priority inversion phe-

nomenon. This phenomenon was discovered by Lui Sha [59] and it vividly

manifested itself in a famous incident occurred to the Mars Planetary Rover

Pathfinder. Strategies for avoiding priority inversion based on static priority

schedulers are priority inheritance and priority ceiling [59]. The Stack Re-

source Policy (SRP) [5] accomplishes the same goal using dynamic priority

schedulers. In the industrial practice static priorities are usually preferred to

dynamic priorities because they are easier to implement.

The most important real-time operating system supporting static prior-

ity algorithms is currently VXWorks by Wind River Inc., which is shipped in

millions of embedded systems ranging from network printers to military air-

planes.

In spite of the remarkable amount of results found for single processor

systems, the problem of real-time scheduling is much more open when it

comes to consider multiprocessor systems. An important result was pro-

posed by Sanjoy Baruah [8] for sets made of independent periodic tasks run

on a symmetric multiprocessor allowing migration. The algorithm proposed

realizes the abstraction called “proportionate fairness”: processors can be

thought of as “fluid” resources that can be shared between the different pro-

cesses. A task having a worst case execution time e
i

activated with period p

i

,

receives a share of the processor equal to w

i

=

e

i

p

i

and its execution proceeds

as it would on a slower dedicated processor, up to a certain granularity. This

work is important in that it generalizes the schedulability condition found

by Liu and Layland for single processor systems: the task set is schedulable

on m processors if and only if
P

n

i=1

e

i

p

i

� m. The concept of a processor as

2.2. Hardware-software architectures for EC 15

a fluid resource that can be shared between processes is particular conve-

nient for multimedia applications and inspired also the family of scheduling

algorithms called proportional share [67]. A different viewpoint on the same

problem is taken by the Resource Reservation algorithms such as the con-

stant bandwidth server [2]. Resource reservation scheduling for different

types of resources (CPU, disks, devices) are implemented in the commercial

real-time kernel linux-RK [54], produced by Timesys inc.

2.2.2 Real-time sheduling of the ommuniation resoures

In principle, the problem of real-time scheduling of packets on communi-

cation resources (buses) is similar to real-time scheduling of software tasks

on processors. However, there are some differences that must be taken into

account. The first important difference is that while a task execution can,

in principle, be interrupted (preempted) and resumed at any time, packets

transmissions over buses cannot be interrupted. Thereby, the granularity for

preemption in buses is generally coarser than the granularity for preemption

in processors. Moreover, the HW/SW architecture for communication is typ-

ically layered (protocol stack). Problems like the resource contention can be

tackled at different levels in the protocol stack and different combinations of

strategies can be devised at the different levels.

In our abstract view, the bus is simply a shared resource that is contended

between different nodes. There are two types of strategies to resolve the

problem of contention. The first type of strategies relies on a shared clock

and realizes different flavours of time division multiplexing (TDMA). Using

TDMA, scheduling decisions are taken offline according to a periodic pat-

tern; each period is divided into slots and each slot is assigned to one of the

peers. In this way contention never occurs, as long as each node behaves

properly and as the clocks of the peers are properly synchronized. Clearly,

this type of protocols is very well suited for real-time communication and it is

comparable to the off-line scheduling of processors. A very important tech-

nology inspired by this principle is the Time-Triggered Architecture (TTA)

produced by TTTech Inc. and derived from the work of Prof. Herman Kopetz

in University of Vienna [35]. We will come back later on this topic. A prob-

lem of non trivial complexity is the synchronization of the clocks. Moreover,

this approach is very conservative (a slot is reserved to a node even when it

does need it) and it is not well suited to handle aperiodic events. To deal with

this problem, the BMW car manufacturer has recently proposed the BYTE-

FLIGHT technology.

An alternative concept of buses allows contention, which is solved on-

16 Chapter 2. Background information

line whenever it occurs. An example is represented by Ethernet networks

and, in general by aloha protocols. When two packets collide on the bus the

peers re-transmit the packets after a random time thus decreasing the proba-

bility of another collision. Aloha protocols are not normally used in real-time

embedded applications since they cannot provide any timing guarantee on

the delivery of packets. Better results can be obtained by using the Controller

Area Network (CAN) Bus. Using the CAN bus, contentions are solved assign-

ing a priority to each packet. This feature enables the implementation of

rate-monotonic [72] or EDF [53] scheduling policies. For this reason, and for

the limited cost of the hardware, the CAN bus is very popular in automotive

contexts.

2.2.3 The time-triggered model of omputation

The time-triggered model of computation [36] is a model for the represen-

tation, design and analysis of distribute embedded systems. Its basic com-

ponents are time-accurate interfaces, communication systems, host com-

puters and transducers that connect the environment to the interfaces. This

model has been developer in the University of Vienna by Prof. Kopetz and it

stemmed the production of the TTA architecture.

The most important concepts are interfaces, also called temporal fire-

walls, that are dual-ported memories, containing timing-accurate informa-

tion, accessed by communicating subsystems according an a priori known

time-triggered schedule. The underlying idea is that subsystems communi-

cate between themselves and with the external environment only at speci-

fied instants in time. The designer is let free in the choice of the scheduling

provided that the specifications of the temporal firewalls are respected. This

concept has been revisited in the Giotto Programming Language [68], where

periodic tasks sample data from the environment and communicate only at

specified instants.

2.3 The Envisioned Methodology

The methodology we envision for developing EC is depicted in Figure 2.2. In

particular we can distinguish different activities:

I functional design,

I architectural design,

2.3. The Envisioned Methodology 17

Architectural

Design
Simulation

&
Performance
Assessment

Mapping

Time constraints

Plant

Physical constraints

Mathematical Model Design

Functional

Constraints

Application

Goals

Design

Cost
Constraints

Design

Goals

Figure 2.2 Schematic representation of the envisioned method-

ology

I mapping,

I performance assessment.

Functional design corresponds to the definition of the control algorithms.

Inputs to this activity is the mathematical model of the plant. The design is

carried out by means of analytical or semi-analytical procedures. The goals

of the design and the constraints it is subject to are mostly dictated by physi-

cal considerations on the application. For instance, on a car we might require

that the maximum obtainable accelerations do not jeopardise its structural

integrity. As far as design goals are concerned, a possible design goal is that

the quantity of fuel required in a given operation mode be minimized. In

other classes of products, such as sport cars, we might require that the time

required to regulate the speed on a set point be minimized.

Architectural design aims at selecting the distributed architecture (hard-

ware, RTOS, device drivers, protocols etc.) to properly support the applica-

tion processes. The selection process can be driven by different goals and

constraints. The constraints include

I maximum total cost (sum of the cost of each component)

18 Chapter 2. Background information

I architectural constraints (e.g. dictated by the location of sensors and

actuators on a large plant)

I fault model (e.g. the fault model may exclude any resource with less

than k processors or p channels).

The design goals may include

I minimize total cost

I minimize number of processors and/or channels

I minimize resource utilization factors.

During the mapping activity the different functions are assigned (mapped)

to the components of the architecture. In particular a set of each functional

blocks has to be mapped on a software task executed on a node. Commu-

nication between the different functional blocks are mapped on global vari-

ables, mutually exclusive memory buffers, packets transmitted over a chan-

nel and so on. Clearly when the mapping is performed, the designer has to

enforce the timing constraints introduced during the control design.

The performance assessment can be developed along two different di-

rections: simulation and prototyping. We are particularly interested in the

performance assessment by simulation. The simulation tool operates on a

heterogeneous aggregation of models (continuous time plants, communica-

tion links, real-time schedulers). The result of this phase are performance

measures which can include: 1) control theoretic performance (overshoots,

rise time, linear quadratic functions, etc.), 2) timing behaviour (CPU utiliza-

tion, end-to-end delays etc.).

2.3.1 Platform based design

Figure 2.2 pictorially expresses the fundamental design principle advocated

in most recent literature on ES, i.e. the orthogonalization of concerns be-

tween functional and architectural design. As shown, the two activities have

their own design space, goals and constraints. Good chances are that re-

quirements placed on either of them might even be contrasting. For instance

the functional designer might push toward a powerful architecture to maxi-

mize the control performance while cost constraints induce the selection of

cheap components from the architectural side. Hopefully, the design pro-

cedure should enable the definition of system-level goals and constraints

2.3. The Envisioned Methodology 19

across the boundaries of the different activities. For instance, it should be

possible to deal with formulations like:

I find the cheapest architecture that sustains a functional performance

specification, or

I given an architecture find a design that optimizes a functional perfor-

mance measure.

An effective methodology that fulfills these requirements is neither bottom-

up nor top-down. Rather it has to be a provably correct “meet-in-the-middle”

approach. The central question to be answered is: “how should the con-

trol designer view the implementation?”. The question can be equivalently

be rephrased in the architectural domain as: “how should the requirements

of the control application be translated into a specification for an architec-

ture?”. Answering this question means to find a difficult balance between two

contrasting needs. On the one hand, we want to hide as many details as pos-

sible of the implementation during the functional design phase. On the other

we want to retain a sufficient level of awareness and control on performance

limitations introduced by the implementation to enable an early and real-

istic assessment of the final performance of the controller: the most critical

parameters of the underlying hardware and software architectures have to be

exposed (e.g., the number of processors available and their speed, the com-

munication costs among hardware components, the abstract characteristics

of sensors and actuators, the real-time operating system scheduling policy).

This goal can be achieved by identifying a set of abstraction levels that mark

the progress from specification to implementation. Each abstraction layer

has to be related to the next in the sequence by a ”behaviour containment”

that should guarantee that whatever has been proven correct at one layer

will stay correct in the next layer down toward implementation. The step of

mapping a design at one layer to the next is a refinement step where more

information are added in a systematic way. To be able to prevent problems

at lower levels of the design abstractions, it is imperative that we summa-

rize the critical parameters as discussed above. At the same time, we have

to be able to transmit constraints as they become explicit from the top layer

to the bottom one. The set of abstraction layers (also called platforms), the

parameters that characterize the implementation layers, the constraints that

are mapped down from the specification layers and the tools that are used

to map one layer into another constitute the so-called platform-based design

paradigms [38].

The basic ideas of platform based design and of system platform are well

captured in Figure 2.3. The vertex of the two cones represent the abstraction

20 Chapter 2. Background information

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Platform

Application instance

Architectural space

Platform instances

Platform Specification

Architectural space esploration

Functional space

Figure 2.3 Platform abstraction and design flows

2.3. The Envisioned Methodology 21

of the HW/SW platform. As a matter of fact, for the purposes of this thesis we

will use a single abstraction layer capturing the entire Hardware/Software

platform. As it is possible to see, the control designer uses the platform ab-

straction to define her/his control algorithms taking into account the limi-

tations introduced by the platform. In doing so, she/he defines a complete

specification of the platform that the architectural designer can use to ex-

plore the architectural space according pursuing her/his own trade-offs. We

remark that this step can very well take advantage of existing tools such as the

Real-Time workshop by Mathworks Inc., the Giotto Programming language,

Cierto VCC by Cadence Inc., ASCET-SD and so forth. However, the presence

of a well-defined platform specification enables a design for the overall sys-

tem that is correct by construction.

2.3.2 Contributions of the thesis

In the proposed methodology two points are not adequately covered by ex-

isting tools and methods.

The first one is control design with platform constraints. To this regard

this thesis offers two distinct contributions. In Chapter 3 a platform com-

posed of a single processor board endowed with a preemptive real-time op-

erating system is considered. In this case, the platform is required to imple-

ment a time-triggered model of computation. The platform is characterized

by the following parameters: 1) the clock period, 2) the tasks worst case ex-

ecution times, 3) the tasks activation periods. The latter are free design pa-

rameters that can be leveraged, along with “functional” parameters like the

gains, to optimize a cost function related to the control robustness. In Chap-

ter 4 the platform consists of a communication resource that is handled by a

TDMA policy. The design space consists of the control algorithms and of the

allocation of the different slots to the different actuators. We apply a varia-

tion of Model Predictive Control and we show that the use of a formulation

for the problem based on the Generalized Linear Complementarity Problem

(GCLP) makes for a numerically efficient solution.

The second point that in our evaluation is not adequately addressed by

current design tools is the simulation of the system after mapping, which

is instrumental to the performance assesment. In particular, we are inter-

ested in a fine grained modeling of the performance effects due to real-time

scheduling. To this purpose we devised a tool, presented in Chapter 5. By us-

ing RTSIM, it is possible to provide an accurate modeling of the concurrent

architecture of the control tasks and of the run-time support offered by the

operating system for the real-time scheduling of the shared resources (CPU,

22 Chapter 2. Background information

memory buffers and network links). In this way, it is possible to compare dif-

ferent scheduling solutions by evaluating their simulated performance di-

rectly in the domain of the control application. Moreover, the tool can be

utilized to tune up such design parameters as the activation frequencies of

the tasks.

I

Control synthesis

3

Holisti design of real-time

ontrollers on single CPU

platforms

It is the mark of an educated mind to be able to entertain a thought without

accepting it.

– Aristotle

T
he platform based design approach described in Chapter 2 is demon-

strated on a particular problem in this chapter. In particular we con-

sider the problem of controlling a set of linear continuous time system

using a shared computation resource. Software tasks are scheduled using a

preemptive real-time scheduling policy. To cope with the problem of jitter in

data acquisition and release a time-triggered model of computation is used.

The combination of the time-triggered MoC and of real-time schedulability

allows for an easy modeling of the Platform accounting both for the timing

behaviour and for the resource constraints.

The set of control tasks must be scheduled trying to maximize some con-

trol performance metric and satisfying a the schedulability constraints aris-

ing from the platform. The performance metric proposed is a measure of

the closed loop stability robustness, more specifically a generalization of the

classical gain margin: the stability radius. As well as being relevant in many

application, this performance metric is particularly suited to the considered

application since it is directly linked to the quantity of information processed

by each loop. We consider either memoryless controllers and a class of dy-

25

26 Chapter 3. Holistic design of real-time controllers on single CPU platforms

namic controllers enabling delay compensation. The stability radius is de-

rived exactly for the special class of first order systems while upper and lower

bounds are derived for the more general case of multi-variable systems. We

address two different kind of problems:1) deciding whether a platform is ad-

equate to achieve a performance specification, 2) optimizing the stability ra-

dius once a platform has been selected. The optimization problem encom-

passes both continuous and integer variables, since the activation periods of

the tasks are integer multiples of the clock. The solution strategy is based

on the continuous relaxation, while the integrality of the activation periods

is recovered using a Branch and Bound scheme. Results are particularly in-

sightful for first order systems and they will be shown on a numeric example.

Basi mathematial de�nitions and notation Consider a generic vector

space V endowed with an inner product < �; � >. The notation jj � jj denotes

a norm defined on V . The dual norm associated jj � jj
�

of jj � jj is defined as

follows:

jjujj

�

= sup

jjvjj=1

f< u;v >g (3.1)

where u, v belong to V . Considering vector norms defined on IRn space, it

can easily be seen that the dual norm of the Euclidean norm is the Euclidean

norm itself, while the dual norm of the1 norm is the 1-norm and vice versa.

The B
R

(u) set denotes a ball having radius R and centered in u:

B

R

(u) = fv 2 V such that jjv � ujj � Rg: (3.2)

The distance of a vector u from a set U in the norm jj:jj is defined as:

dist(u;U) =

(

0 if u 2 U

inf

v2U

jju� vjj otherwise

The Chebychev center of a bounded set C in the norm jj:jj is defined as:

u

()

(C) = argmax dist(u;VnC); (3.3)

and it is the center of the maximum radius ball inside C.

A matrix is said Schur stable if and only if its eigenvalues are all contained

in the unit circle centered in the origin.

Unless otherwise stated, results provided throughout this chapter are re-

ferred to the1-norm. But, in most cases, extensions to the Euclidean norm

are possible.

3.1. The considered platform 27

3.1 The onsidered platform

Model of Computation. The considered model of computation is time

triggered model and it assumes a set of periodic tasks �
i

. Tasks are executed

on a computer architecture that may interact with the environment with a

time granularity no less than the clock period T

. Every p
i

clock cycles task

�

i

becomes active and reads its inputs; then it computes the output values.

Outputs are released right at the beginning of the next activation period and

their values are sustained between two subsequent writings (according to a

ZoH model).

It is worth observing that the timing behavior resembles the one of a

Moore sequential circuit, where the delay between inputs and outputs is

equal to the activation period p

i

. The fixed delay virtually nulls jitter in the

release time of the outputs, greatly simplifying the control law design.

Shedulability Constraints. It is evident that for the correctness of the model

to be guaranteed, each job must terminate before the next period (i.e. the

periodic task set has to be schedulable). A necessary condition for achieving

schedulability of the task set on a single CPU is:

m

X

i=1

e

i

p

i

� 1; (3.4)

where e

i

and p

i

are integer numbers, counting the clock cycles required to

compute process �
i

in the worst case and between successive activations of

process �
i

, respectively. As we said in Chapter 2, sufficient conditions can

be derived for different scheduling algorithms. Popular examples are Rate

Monotonic (RM) and Earliest Deadline First (EDF). As stated in Theorem 1, a

sufficient condition for schedulability is:

m

X

i=1

e

i

p

i

� U

l

; (3.5)

where U
l

= 1 for EDF and U

l

= m(2

1

m

� 1)(> 0:69) for RM. Other schedul-

ing algorithms, called Pfair [8], guarantee schedulability under condition 3.5

withU
l

= 1 on a single processor architecture and scale well also to multipro-

cessor architectures, by setting U

l

equal to the available number of proces-

sors. It is worth pointing out that in schedulability analysis e
i

are the worst-

case execution times for processes and that conservative choices on U

l

allow

to achieve robustness with respect to unmodeled delays or to reserve space

for other processes, as required.

28 Chapter 3. Holistic design of real-time controllers on single CPU platforms

Platform de�nition. Given the choice of the time triggered MoC and of a

class of real time schedulers, the implementation platform can be parame-

terized by:

U

l

; T

; e

1

; : : : ; e

m

; (3.6)

to be used in (3.5). A m-tuple of activation periods p 2 INm satisfying (3.5) is

guaranteed to yield a design adhering to the MoC. It is worth noting that the

set of parameters (3.6) may represent a family of implementation platforms,

all meeting or exceeding those requirements. As a matter of fact information

on the HW/SW architecture condensed in the proposed platform are:

1. it must support the time-triggered MoC,

2. it must ensure worst case execution time of e
i

or lower for task �
i

,

3. it has to be endowed with a preemptive RTOS,

4. the scheduling algorithm has to guarantee schedulability with total uti-

lization U

l

.

As shown next, the proposed characterization for the platform leads to a

compact analytical formulation of the control design problem.

3.2 Problem Formulation

Consider a collection S of single input systems S(i) described by equations:

_
x

(i)

= A

(i)

x

(i)

+ b

(i)

u

(i) (3.7)

where A

(i)

2 IRn

i

�n

i , b(i) 2 IRn

i and i = 1; : : : ; m. Assume that all systems

S

i

are completely controllable and each of them is controlled by a dedicated

feedback controller implemented by a task � (i) (with a slight abuse of termi-

nology words “controller” and “task” will henceforth be used interchange-

ably).

Recall that T

is the clock period, i.e. the minimum time granularity for in-

teractions between the control platform and the plant. Correspondingly task

�

(i) will execute every p(i)T

time units, where p(i) 2 /Z. Each �

(i) controller is

assumed to have complete access to the state variables of the system every

p

(i)

T

time units. However, the time triggered paradigm introduces a delay of

p

(i)

T

between sampling the state variables and actuating the corresponding

control action.

It is possible to distinguish between two types of controllers:

3.2. Problem Formulation 29

memoryless controllers: the controller is only able to use in the feedback

the delayed variables;

dynamic controllers: the controller has its own memory, thus enabling some

form of delay compensation.

In the sequel the analysis will be restricted to two simple but important con-

trol schemes belonging to either class. For notational simplicity, throughout

this section we will drop the (i) superscript. Hence we shall refer to a system

having equation:

_
x = Ax + bu: (3.8)

Let J be the Jordan form of A and U a matrix such that A = UJU

�1. The J

matrix can be written as

J =

2

6

6

4

J

1

(�

1

) 0 0 : : : 0

0 J

2

(�

2

) 0 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 J

l

(�

l

)

3

7

7

5

where �
i

2 CC; i = 1; : : : ; l are the eigenvalues of A and:

J

k

(�

k

) =

2

6

6

6

6

4

�

k

1 0 : : : 0 0

0 �

k

1 : : : 0 0

: : : : : : : : : : : :

0 : : : : : : : : : �

k

1

0 : : : : : : : : : 0 �

k

3

7

7

7

7

5

2 CC

r

k

�r

k

:

As said above, this work considers the case when the value for the control

variables is held constant during a computation period (other types of piece-

wise open loop scheme are reserved for future work). Moreover, the time

triggered model of computation imposes to release at instant (h + 1)pT

the

command ~u(h) whose computation begins at instant hpT

. Therefore, values

applied to the actuators are given by:

u(t) = u(hpT

) = ~u(h� 1); 8t 2 [hpT

; (h+ 1)pT

[: (3.9)

A convenient way for studying the dynamical properties of this systems

is to consider the discrete time sequence ~
x obtained taking samples of the

system at t = h p T

: ~x(h) = x(h p T

).

The dynamic for this sequence is described by:

~
x(h+ 1) = e

A p T

~
x(h) + (

Z

p T

0

e

As

ds)b
~
u(h� 1): (3.10)

30 Chapter 3. Holistic design of real-time controllers on single CPU platforms

The one period delay can be accounted for in the system analysis by intro-

ducing an additional state variable ~z:
�

~
x(h+ 1)

~z(h + 1)

�

=

~

A

�

~
x(h)

~z(h)

�

+

~

b~u(h) (3.11)

where:

~

A =

�

e

A p T

(

R

pT

0

e

As

ds)b

0 0

�

~

b =

�

0

1

�

: (3.12)

The control models produce the following command sequences:

~u(h) =

(

(x)

~
x(h) for memoryless controllers

(x)

~
x(h) +

(u)

~z(h) for dynamic controllers.
(3.13)

Thereby the closed loop dynamics for the subsequence ~
x(h) is given by:

�

~
x(h + 1)

~z(h+ 1)

�

= (

~

A+

~

b)

�

~
x(h)

~z(h)

�

; (3.14)

where = [

(x)

(u)

℄, and

(u)

= 0 for memoryless controllers, (u) 2 IR for

dynamic controllers.

The stability properties of linear system (3.8) under the action of the Zero

Order Hold controllers in Equation(3.13) are easily related to the closed loop

dynamics of the discrete time system (3.14). Assume, for instance, that the

closed loop dynamical matrix of system (3.14) has a spectral radius �. In this

case there exists a constant M such that

�

~
x(h)

~z(h)

�

�M�

h

; 8h � 0:

At a generic time t 2℄hpT

; (h+1)pT

[, the state of the continuous time system

can be written as follows:

x(t) = e

A(t�hpT

)

~
x(h) + (

Z

t�hpT

0

e

As

ds)b~z(h):

Hence,

jjx(t)jj � jje

A(t�hpT

)

jj jj
~
x(h)jj+ jj(

R

t�hpT

0

e

As

ds)bjj jj~z(h)jj �

�

�

jje

A(t�hpT

)

jj+ (

R

t�hpT

0

jje

As

jjds) jjbjj

�

M�

b

t

pT

:

(3.15)

3.2. Problem Formulation 31

It is possible to derive a bound for the exponential matrix (see [48]) as follows:

jje

At

jj = jjU

�1

e

Jt

U jj � �jje

Jt

jj;

where � = jjU

�1

jj jjU jj.

Considering the1 norm, we can write:

jje

Jt

jj � r e

�(A)t

max

0�f�r�1

t

f

f !

;

where r = maxfr

1

; : : : ; r

l

g and �(�) denotes the spectral abscissa (i.e. the

maximum real part of the eigenvalues) of the argument matrix. Hence,

jje

At

jj � �r e

�(A)t

max

0�f�r�1

t

f

f !

:

Getting back to Equation (3.15), it is possible to write:

jjx(t)jj � K(p)e

log �

pT

t

K(p) = M�r max

0�f�r�1

(pT

)

f

f !

(e

�(A)pT

+

1

�(A)

(e

�(A)pT

� 1)): (3.16)

It is possible to summarize this discussion in the following:

Lemma 1 The linear systems (3.8) under the action of the zero-order-hold

controllers (3.13) are exponentially stable if the discrete time systems (3.14)

are. Moreover, if the state of the closed loop matrix ~

A +

~

b has spectral radius

�, then the continuous time system converges with exponential decay rate of

at least� log �

pT

.

The problem of guaranteeing stability and convergence with a given de-

cay rate of the continuous time system can be cast into a pole assignment

problem of a discrete-time linear time invariant system. Under controllabil-

ity assumption the latter problem has always feasible solutions for the class

of dynamic controllers, because the entire state, inclusive of ~x(h) and ~z(h),

is assumed to be accessible. This is not necessarily the case for the class of

memoryless controllers, for which only the partial information ~
x(h) is avail-

able for feedback.

It is worth observing that both the exponential decay rate � log �

pT

and the

constant K(p) capture important aspects of the system performance. The

former is a measure of the convergence speed while the latter provides guar-

anteed bounds on the transient behaviour. For fixed �, both parameters are

32 Chapter 3. Holistic design of real-time controllers on single CPU platforms

negatively affected by longer values of p because the system evolves in open

loop for longer times in the inter-sampling intervals. More precisely, the ex-

ponential decay rate is diminished slowing down convergence, while K(p)

increases allowing worse transient behaviours.

3.2.1 Robustness metri

The notion of robustness proposed here is a generalization of the classical

gain margin and it can be defined for a generic linear system parameterized

by a set of variables.

Definition 1 (Stability center and stability radius) Consider a linear discrete

time system described by:

x(h+ 1) =

^

A()x(h)

where 2 IRd is a vector of parameters. Let � be the set parameters such

that 8 2 � the system is asymptotically stable. The stability center () is

the Chebychev center of �. The stability radius � is the distance of () from

IRd

n�.

For a given choice of activation periods each loop achieves a radius �(i); the

robustness of the entire collection S can be characterized by � = min

i

�

(i).

Therefore, a possible design goal is to choose such activation periodsp(1); : : : ; p(m)

as to maximize �.

The stability radius is a generalization of the gain margin for multi-variable

(Multiple Input Multiple Output) systems. More precisely it accounts for

multiple control parameters
1

; : : : ;

d

.

Assume two choices of the activation periods lead to closed loop systems

with different stability radii. Then the one with larger stability radius is ex-

pected to remain stable under larger perturbations that may manifest in the

following forms

I truncation errors due to finite precision in the implementation arith-

metics of the controller task

I quantization errors on sampled data from sensors and to actuators

I additive or multiplicative noise on sensor data and actuator outputs

I system deviations from the LTI (Linear Time Invariant) model

3.3. Computing the stability radius 33

at least in a first approximation where perturbations can be modeled as a

change in the observed loop gains.

Albeit a fundamental requirement of any system’s design, stability is not

sufficient to capture the entire performance specification of a system. As

mentioned above, there are at least two further parameters one typically needs

to specify: the convergence speed and the quality of the transient evolution.

It is argued that the stability radius actually provides also a measure of

how robustly a given performance specification is met. This will be illus-

trated focusing on the speed of convergence metric.

Focusing the attention on the former, Lemma 1 relates the exponential

decay rate of the continuous time system to the spectral radius � of the closed

loop matrix ~

A+

~

b of the discrete time system (3.14). In particular for system

trajectories to decay with rate � > 0 (i.e. jjx(t)jj � Me

��t), it is sufficient

that � � e

��pT

 . This is equivalent to requiring that matrix e

��pT

(

~

A +

~

b)

be Schur stable. This is equivalent to requiring that matrix e��pT(~A+

~

b) be

Schur stable. The stability radius of the latter system quantifies how robustly

the required performance metric (convergence rate� �) is met by the closed

loop system.

3.3 Computing the stability radius

Basically, for each system S(i) composing the collection, the stability radius

can be derived by studying the values of the gains such that the ~

A +

~

b

matrix is Schur stable (also in this context the (i) superscript denoting the

different systems of the collection has been removed to simplify notation).

Pre-multiplying ~

A +

~

b by [

U

�1

0

0 1

℄ and post-multiplying by [

U 0

0 1

℄, where J =

U

�1

AU , the study of the stability radius can be performed on:

�

e

JpT

U

�1

(

R

pT

0

e

As

ds)b

(x)

U

(u)

�

for dynamic controllers. The case of memory-less controllers is easily ob-

tained selecting projecting on

(u)

= 0.

The coefficients of the characteristic polynomial are affine functions of

the gains and the region � of stabilizing gains can be computed via the Jury

criterion. In the general case � is the intersection of nonlinear inequalities.

For the case of first order systems the region � is a polyhedral, hence the

computation of the stability radius is much easier. Moreover the solution

34 Chapter 3. Holistic design of real-time controllers on single CPU platforms

to the optimization problem can be closely approximated in closed form,

thus providing useful insights on the dependencies of the solution on design

parameters. For these reasons, first order systems will be analyzed in depth.

Later in the section, an upper and a lower bound for the stability radius of

multi-variable systems will be computed.

3.3.1 The ase of �rst order systems

For first order systems the Jury criterion provides a set of linear inequalities.

It is useful to treat separately the case of memoryless and dynamic controller.

−7 −6 −5 −4 −3 −2 −1 0 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

γ (u)

γ (x
)

p=30

p=15

p=5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

γ (u)

γ (x
)

p = 250

p = 500 p = 500

p = 1000

Figure 3.1 Stability region � for two systems. Left: �
1

= 48:8,

b = 50, T

= 10

�3

s. Right: �
1

= �4, b = 50, T

=

10

�3

s.

Dynami ontroller. The characteristic polynomial of the ~

A +

~

b matrix is

given by:

z

2

� (e

�

1

pT

+

u

)z + e

�

1

pT

u

� (

Z

pT

0

e

�

1

s

ds)b

(x)

:

3.3. Computing the stability radius 35

The application of the Jury criterion yields:

e

�

1

pT

(u)

� (

Z

pT

0

e

�

1

s

ds)b

(x)

< 1

(e

�

1

pT

� 1)

(u)

� (

Z

pT

0

e

�

1

s

ds)b

(x)

> �1 + e

�

1

pT

 (3.17)

(e

�

1

pT

+ 1)

(u)

� (

Z

pT

0

e

�

1

s

ds)b

(x)

> �1� e

�

1

pT

(3.18)

In figure 3.1 examples of stability regions � for different values of �
1

and of p

are reported. As shown in the picture � is in this case a triangle (in the case of

static controller it was an interval). The triangle shrinks for increasing values

of p.

For open loop unstable systems, as p tends to infinity the three vertices

collapse onto the point having coordinates (u) = �e�1pT , (x) = � e

�

1

pT

�

1

b

;

therefore the triangle tends to vanish. On the contrary, for open loop stable

systems the triangle shrinks to an “asymptotical” stability region (the ver-

texes tend to distinct values). These qualitative considerations are confirmed

by the following:

Proposition 1 The stability radius of the system is given by:

� =

8

>

>

<

>

>

:

�

1

e

�

1

pT

(�

1

+jbj)�jbj

if �
1

> 0

2�

1

e

�

1

pT

(�

1

+2jbj)+�

1

�2jbj

if �
1

< 0

1

1+pT

jbj

if �
1

= 0

(3.19)

To prove the above, it is useful to recall the following simple result:

Lemma 2 Let P be a polyhedral set defined by a set of linear inequalities:

h

i

u � f

i

; i = 1; : : : ; :

The Chebychev center of P in the norm jj:jj is the solution of the following

linear program:

max �

subject to h

i

u + � jjh

i

jj

�

� f

i

; i = 1; : : : ; m

� � 0

(3.20)

36 Chapter 3. Holistic design of real-time controllers on single CPU platforms

Proof of Proposition 1:

The proof is given for the case � > 0 (the other cases follow similar argu-

ments). With regard to the1 norm (whose dual is the 1-norm), the appli-

cation of Lemma 2 to the set defined in Equation 3.17 yields the following

linear program:

max �

subject to H

2

4

(u)

(x)

�

3

5

� q

� � 0

where

H =

2

6

4

e

�

1

pT

�

e

�

1

pT

�1

�

1

b e

�

1

pT

+

e

�

1

pT

�1

�

1

jbj

1� e

�

1

pT

e

�

1

pT

�1

�

1

b e

�

1

pT

� 1 +

e

�

1

pT

�1

�

1

jbj

�1� e

�

1

pT

e

�

1

pT

�1

�

1

b e

�

1

pT

+ 1 +

e

�

1

pT

�1

�

1

jbj

3

7

5

q =

2

4

1

1� e

�

1

pT

1 + e

�

1

pT

3

5

:

The dual problem is given by:

min [q

T

0℄y

subject to

2

4

H

T

0

0

�1

3

5

y =

2

4

0

0

1

3

5

y � 0

The solutionH�1

q is primal feasible. It is easily seen that the complementary

slackness solution given by
2

6

6

4

H

�T

2

4

0

0

1

3

5

0

3

7

7

5

is dual feasible. Hence the two solutions are an optimal pair. The claim of

the proposition easily follows. �

The above confirms the qualitative intuition that the stability radius is, a

decreasing function of p that tends to 0 for open loop unstable systems and

to a minimum guaranteed value for open loop stable systems.

3.3. Computing the stability radius 37

Memoryless ontroller. The case of static controllers is derived consider-

ing the projection of the region � on

(u)

= 0. Considering the regions in

Fig. 3.1 this intersection is a segment, possibly degenerate to a point or the

empty set. More formally the result can be summarized in the following:

Proposition 2 The following statements hold:

1. if �
1

= 0 the closed loop system is asymptotically stable for all (x) such

that� 1

pT

< b

(x)

< 0;

2. if �
1

6= 0 the set of stabilizing solutions for (x) is given by: � �

1

e

�

1

pT

�1

<

b

(x)

< ��

1

. If the open loop system is asymptotically stable (�
1

< 0)

then this set is non empty (a trivial stabilizing solution is (x) = 0). If the

system is open loop unstable(�
1

> 0) then the set of stabilizing solutions

for (x) is non empty if and only if p < log 2

�

1

T

.

A simple corollary of the above is:

Corollary 1 The stability radius of the system is

� =

(

�

1

2jbj(e

�

1

pT

�1)

(2� e

�

1

pT

) �

1

6= 0

1

2jbjpT

�

1

= 0

(3.21)

The stability center is given by:

()

=

(

�

�

1

2

e

�

1

pT

b(e

�

1

pT

�1))

�

1

6= 0

�

1

2bpT

�

1

= 0

(3.22)

The stability radius � thus obtained is a decreasing function of the acti-

vation period p of the process. If the system is open loop unstable (�
1

> 0)

� vanishes when p overcomes a threshold value. On the contrary, if �
1

< 0

there is a minimum value for � = �

�

1

jbj

that is inherently guaranteed by the

system.

As one would expect, dealing with a static output (state ~z is not accessi-

ble) feedback stabilization, the existence of the solution is not guaranteed in

case of open loop unstable system. This marks an important difference from

the case of dynamic controllers for which there exists a stabilizing solution

for any choice of p. This point is well illustrated by Figure 3.2, where the sta-

bility radii obtained with memoryless and dynamic controllers are plotted as

functions of the activation period of the task.

38 Chapter 3. Holistic design of real-time controllers on single CPU platforms

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10
Memoryless controller

p

µ

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
Dynamic controller

p

µ

Figure 3.2 Stability radius as a function of the activation period

p for a first order system: �

1

= 48:8, T

= 1ms,

b = 50. Top: memoryless controller, Bottom: dy-

namic controller

Also notice that, due to projection, the stability radius is computed into a

lower dimensional subspace (specifically IR). For this reason it may happen

that static controllers exhibit a larger stability radius than the corresponding

dynamic controller, a somewhat unintuitive result.

3.3.2 Results for multi-variable systems

Although the application of the Jury criterion is possible in principle for sys-

tems of any order, in practice it is a viable solution only for low order sys-

tems. As a matter of fact, its application produces in the general case, a re-

gion in the space of the gains given by the intersection of nonlinear inequal-

ities, which is generally hard to study. However, it is possible to find “easy”

polyhedral bounds that can be used in the design problem. One external

and one internal polyhedral approximation will be described next, providing

respectively an upper and lower bound for the stability radius.

3.3. Computing the stability radius 39

3.3.2.1 An upper bound

An upper bound for the stability radius can be found by exploiting the fol-

lowing:

Lemma 3 A necessary condition for a matrixX to be Schur stable is that det(X) <

1.

In the case of dynamic controllers (the case of memoryless controller is a

special case), one easily gets that the determinant of ~

A+

~

b is equal to

det

�

2

6

6

6

6

6

4

e

J

1

pT

0 : : : 0 (

R

pT

0

e

J

1

s

ds)V

T

1

b

0 e

J

2

pT

: : : 0 (

R

pT

0

e

J

2

s

ds)V

T

2

b

: : : : : : : : : : : : : : :

0 0 : : : e

J

l

pT

(

R

pT

0

e

J

l

s

ds)V

T

l

b

(x)

U

1

(x)

U

2

: : :

(x)

U

l

(u)

3

7

7

7

7

7

5

�

where
U = [U

1

U

2

: : : U

l

℄ = [u

1

u

2

: : :u

n

℄

V =

2

6

6

4

V

T

1

V

T

2

: : :

V

T

l

3

7

7

5

=

2

6

6

4

v

T

1

v

T

2

: : :

v

T

n

3

7

7

5

are such that U = V

�1 and A = UJV . The computation of the determinant

above yields an affine expression in the gains:

det(

~

A +

~

b) =

(x)

q(p) +

(u)

l

Y

k=1

(e

�

k

pT

)

r

k

; (3.23)

where the expression for vectorq(p) is easy to find, as a function of p, but not

very clear to write in closed form in the general case. Now it is possible to

state the following:

Proposition 3 An upper bound for the stability radius is given by:

� =

(

1

jjq(p)jj

1

for memoryless controllers
1

jjq(p)jj

1

+j

Q

l

k=1

(e

�

k

pT

)

r

k

j

for dynamic controllers
(3.24)

40 Chapter 3. Holistic design of real-time controllers on single CPU platforms

Proof:

As mentioned above, it is possible to obtain an upper bound by applying the

necessary condition for asymptotical stability:

jdet(A+

~

b)j < 1:

Using expression 3.23, the stabilizing gains, for the case of dynamic con-

troller, belong to the slab:

�1 <

(x)

q(p) +

(u)

l

Y

k=1

(e

�

k

pT

)

r

k

< 1:

An upper bound for the stability radius is given by the radius of the maximum

ball contained in the slab. By Lemma 2 such radius is given by the optimal

solution of the following linear program:

max �

subject to

(x)

q(p) +

(u)

Q

l

k=1

(e

�

k

pT

)

r

k

+ �(jjq(p)jj

1

+ j

Q

l

k=1

(e

�

k

pT

)

r

k

j < 1

�

(x)

q(p)�

(u)

Q

l

k=1

(e

�

k

pT

)

r

k

+ �(jjq(p)jj

1

+ j

Q

l

k=1

(e

�

k

pT

)

r

k

j < 1

� � 0:

whose dual is:

min [1 1 0℄

�

y

1

y

2

y

3

�

subject to

2

4

q(p)

T

�q(p)

T

0

Q

l

k=1

(e

�

k

pT

)

r

k

�

Q

l

k=1

(e

�

k

pT

)

r

k

0

jjq(p)jj

1

+ j

Q

l

k=1

(e

�

k

pT

)

r

k

j jjq(p)jj

1

+ j

Q

l

k=1

(e

�

k

pT

)

r

k

j �1

3

5

2

4

y

1

y

2

y

3

3

5

=

�

0

1

�

y

i

� 0:

Now, it is easy to see that the solution given by (x) = 0, (u) = 0 and � =

1

jjq(p)jj

1

+j

Q

l

k=1

(e

�

k

pT

)

r

k

j

is primal feasible. The proof of the optimality is ended

observing that the complementary slackness solution:

y

1

= y

2

=

1

2(jjq(p)jj

1

+ j

Q

l

k=1

(e

�

k

pT

)

r

k

j)

and y

3

= 0;

is dual feasible. �

Example 1. In the special case of all Jordan blocks having dimension 1, it is

easy to compute the q(p) vector, which is given by:

q(p) = �

n

X

i=1

e

�

i

pT

� 1

�

i

Y

j 6=i

e

�

j

pT

^

b

i

: (3.25)

3.3. Computing the stability radius 41

−4 −3 −2 −1 0 1

−35

−30

−25

−20

−15

−10

−5

0

5

10

15
Region of stabilizing gains

Internal approximation

Externall approximation

Figure 3.3 Internal and external approximations used for the

computation of lower and upper bounds for a first or-

der system.

where ^

b

i

= u

i

v

T

i

b. Therefore, in this special case, the stability radius is

upper-bounded by:

� =

1

jj

P

n

i=1

(

e

�

i

pT

�1

�

i

Q

j 6=i

e

�

j

pT

^

b

i

)jj

1

+

Q

n

i=1

e

�

i

pT

:

A looser upper bound for the stability radius for dynamic controllers is

given by: 1

j

Q

l

k=1

(e

�

k

pT

)

r

k

j

. It is worth observing that if j
Q

l

k=1

(e

�

k

r

k

T

)j > 1

then the stability radius is upper-bounded by a function decreasing with ex-

ponential rate with respect to p.

3.3.2.2 A lower bound

A lower bound for the stability radius can be derived by using the following:

Lemma 4 Consider a matrix X and let zn + q

n

z

n�1

+ : : : + q

1

z + q

0

be its

characteristic polynomial. The matrix is Schur stable if

n�1

X

i=0

jq

i

j < 1:

Proof:

As a first consideration observe that any matrix norm is an upper bound for

42 Chapter 3. Holistic design of real-time controllers on single CPU platforms

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
stability radius
upper bound
lower bound

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

stability radius
upper bound
lower bound

Figure 3.4 Upper and lower bounds for the stability radius of

a first order system. Left: open loop stable system

(�
1

= �10). Right: open loop unstable system (�
1

=

20)

the spectral radius. In particular �(X) � jjXjj

1

. If the X matrix is written

in standard companion form the result easily follows (we recall that the1

norm of a matrix X is given by max

i

P

j

jx

i;j

j). � As pointed out earlier, the

coefficients of the ~

A+

~

b are affine functions of the gains:

q

i

= q

i;0

+ q

i

;

where vectors q
i

and scalars q
i;0

can be found as functions of the p activation

period. Applying Lemma 4, it is possible to define a polyhedron entirely con-

tained in the region of stabilizing gains. Let E = f1; 2; : : : ; ng be an index set.

Define a complete enumerationQ
0

,Q
1

, . . . ,Q
2

n of all possible subsets of E .

Define �

i;0

and �

i

as follows:

�

j;0

=

P

i2Q

j

q

i;0

�

P

i2PnQ

j

q

i;0

�

j

=

P

i2Q

j

q

i

�

P

i2PnQ

j

q

i

Now it is possible to compute numerically a lower bound � of the stability

radius by solving the following linear program:

max

�;

�

subject to �

j

+ jj�

j

jj

1

� 1��

j;0

� � 0

(P. 1)

Example 2. As an example application of the above result, consider again a

first order system with dynamic controller whose parameters are as follows:

3.3. Computing the stability radius 43

�

1

= 20, T

= 1ms, p = 5,b = 30. The region of stabilizing gains is depicted in

dotted lines in Figure 3.3. In the same figure, the external approximation for

the region used to compute the upper bound is the slab depicted in dashed

lines. Finally, the continuous line is used to depict the internal approxima-

tion proposed above for the computation of a lower bound of the stability

radius. In Figure 3.4 the exact stability radius is compared with its upper and

lower bound. For open loop unstable system the exact value and the lower

bounds are coincident.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lower bound(SDP)
Upper bound
Lower bound(LP)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Upper bound
Lower bound (LP)
Lower Bound (SDP)

Figure 3.5 Upper and lower bounds for the stability radius of a

second order system. Left: system has eigenvalues

�

1

= 1, �
2

= 20. Right: system has eigenvalues �
1

=

10, �
2

= �20.

Example 3. As an example of multi-variable systems, we consider a second

order diagonalizable system controlled by a dynamic controller. Let U and V

be the matrices of right and left eigenvectors:

U = [u

1

u

2

℄

V =

�

v

T

1

v

T

2

�

A = Udiag([�

1

; �

2

℄)V:

The upper bound can be computed in closed form and it is given by:

� =

1

e

�

1

pT

e

�

1

pT

+ jj

e

�

1

pT

�1

�

1

e

�

2

pT

^

b

1

+

e

�

2

pT

�1

�

2

e

�

1

pT

^

b

2

)jj

1

;

44 Chapter 3. Holistic design of real-time controllers on single CPU platforms

where ^

b

i

= u

i

v

T

i

b. As far as the lower bound is concerned, vectors q
i

and

scalars q
i;0

are given by:

q

0;0

= 0

q

1;0

= e

�

1

pT

e

�

2

pT

q

2;0

= �e

�

1

pT

� e

�

2

pT

 (3.26)

q

0

=

�

e

�

1

pT

�1

�

1

e

�

2

pT

^

b

1

+

e

�

2

pT

�1

�

2

e

�

1

pT

^

b

2

�e

�

1

pT

e

�

2

pT

�

q

1

=

�

e

�

1

pT

�1

�

1

^

b

1

+

e

�

2

pT

�1

�

2

^

b

2

e

�

1

pT

+ e

�

2

pT

�

q

2

=

2

4

0

0

�1

3

5

Using these expressions, it is possible to set up problem P. 1 and solve it nu-

merically for different values of p. For both examples we choseU = [

0:5028 0:4289

0:7095 0:3046

℄,

b = [

0:5467

�0:591

℄.

Figure 3.5 shows some example of upper and lower bounds on second

order systems.

As it is possible to see from the examples above, the upper and lower

bounds are particularly close to each other (for p sufficiently large) if the sys-

tem is strongly unstable. In these cases, it appears a reasonable choice to use

� as a good heuristic in optimization processes where the stability radius is

used as cost function.

3.4 Takling the design problem

Two fundamental questions are raised in the context of the platform based

methodology proposed in this thesis:

I is a chosen platform able to sustain a performance specification?,

I how are design parameters to be chosen to maximize performance on

a given platform?

The first question is useful during the first phase of the design, when the

specification of the system’s performance has to be translated into the spec-

ification of a platform. The second question essentially corresponds to a re-

finement step and it is performed during the last phases of the development,

3.4. Tackling the design problem 45

when a finer characterization for the architecture performance is possible

and the system performance can be optimized. The performance metric we

advocate in this chapter is the minimum stability radius of the collection:

� = min

i=1;:::;n

�

i

.

In this framework, deciding whether a platform is powerful enough to

sustain a given performance specification amounts to solving the following

feasibility problem:
8

>

>

<

>

>

:

find an m-uple p

(1)

; ; p

(2)

; : : : ; p

(m)

subject to
P

i

e

(i)

p

(i)

� U

l

� � �

0

� 0:

p

(i)

2 IN

(P. 2)

where � is the stability radius of the collection. Similarly, optimizing the

system performance of an assigned platform amounts to solving the follow-

ing optimization problem:
8

>

>

>

>

<

>

>

>

>

:

max

p

(1)

;p

(2)

;:::;p

(m)

�

subject to
P

i

e

(i)

p

(i)

� U

l

� � �

0

� 0

p

(i)

2 IN

(P. 3)

It is worth to remark that requiring a minimum guaranteed value �
0

> 0

for the stability radius implies that all systems of the collection have to be

asymptotically stable. Moreover, it is useful that �
0

be greater than the sta-

bility radii inherently guaranteed by open loop stable systems. If this as-

sumption were not made, it would be possible to choose any value for the

activation period of the tasks controlling open loop stable systems and the

resulting design space would become unbounded. On the other hand, there

is no apparent convenience in designing a controller for a subsystem whose

open-loop performance are considered as acceptable.

Decision variables are partly continuous (the feedback gains) and partly

integers (the tasks activation periods). However, the chosen performance

metric naturally induces the selection of the gains on the stability center.

Moreover, for the sake of simplicity, we will assume that T

and U

l

are fixed.

Therefore, the only considered decision variable (i.e. free parameters) will be

the integer periods p(i). In the following results, the design problem is tackled

by considering the relaxation of the problem to real values for the periods. By

the end of the section, a simple branch and bound scheme is illustrated that

permit us to recover the integrality of the activation periods.

46 Chapter 3. Holistic design of real-time controllers on single CPU platforms

3.4.1 The ontinuous relaxation

Recalling the definition of the stability radius of the collection (� = min

i

�

(i))

we can re-write the feasibility problem P. 2 as follows:
8

>

>

<

>

>

:

find an m-uple p

(1)

; ; p

(2)

; : : : ; p

(m)

subject to
P

i

e

(i)

p

(i)

� U

l

�

(i)

� � � �

0

� 0

p

(i)

2 real

+

Notice that periods have been

relaxed to positive reals.

A similar operation is possible for the Problem P. 3. In this formulation

�

(i) are functions of p(i) parametrized by the dynamical parameters of system

S

(i). Introduce functions �(i) defined as follows:

�

(i)

(�) = maxfp 2 IR+

; such that �(i)

(p) � �g: (3.27)

Function �

(i)

(�) is the maximum activation period that can be used on the

task �
i

controlling S(i) to achieve ate least � for the stability radius. Clearly, it

need not be defined for all values of �. Introduce the function H(�) defined

as follows:

H(�) =

X

i=1

e

(i)

�

(i)

(�)

� U

l

: (3.28)

By construction �

(i)

(�) is a decreasing function of � and H is an increasing

function of �. We are in condition to state the following:

Fact 1 The following statements are true:

I The stability radius �
0

can be attained on a platform parametrized by

e

(i)

; T

; U

l

(i.e. Problem P. 2 is feasible) if and only if

H(�

0

) � 0; (3.29)

I If condition 3.29 holds then the H(�) has only one zero �

�

in the set

� � �

0

that is optimal solution of Problem (P. 3). The optimal periods

are given by p
(i)

�

= �

(i)

(�

�

).

The above is simply a different formulation the feasibility and the optimiza-

tion problems. The complexity of the procedure has been moved into the

computation of the �(i) functions. To this regard, observe that if �(i) is a de-

creasing function of the period, then �

(i) is its inverse function. This condi-

tion occurs in many practical systems. An example is offered once again by

first order systems and it will be shown next.

3.4. Tackling the design problem 47

3.4.1.1 The ase of �rst order systems

In this section we will show the results of the optimization for first order sys-

tems. For the sake of brevity, we will assume that all the systems composing

the collection are open-loop unstable: �
(i)

1

> 1; 8i = 1; : : : ; m. We will deal

separately with the case of memoryless and dynamic controllers.

Memoryless ontroller The expression for the stability radius is

�

(i)

=

�

(i)

1

2jb

(i)

j(e

�

(i)

1

pT

� 1)

(2� e

�

(i)

1

pT

)

and it is monotone decreasing in p. The resulting expression for �(i) is:

�

(i)

(�) =

1

�

(i)

1

T

log

2�

(i)

1

+ 2�jb

(i)

j

�

(i)

1

+ 2�jb

(i)

j

: (3.30)

These expressions can be plugged into 3.28 and obtain the optimum value

by finding the zero of H(�). The search for the zero can be restricted to a

small interval by finding “cheap” upper and lower bounds. To this purpose,

it is convenient to consider the function !

(i)

(�) =

1

�

(i)

(�)

that represents the

minimum frequency necessary to attain� on system S(i). Observing that !(i)

is concave and strictly increasing, it is easy to show the following inequality:

!

(i)

� !

(i)

� !

(i)

!

(i)

= (

3

2

+ 2jb

(i)

j

�

�

(i)

1

)�

(i)

1

T

!

(i)

= (

1

log 2

+ 2jb

(i)

j

�

�

(i)

1

)�

(i)

1

T

(3.31)

The use of linear approximations allows for a very fast computation of a

lower and an upper bound of the optimal value �
�

. Moreover, as it is possible

to see in Figure 3.6, the bounds are actually very tight. Therefore they can be

used to find approximated solutions to the optimization problem.

It is interesting to take a glance at the expression of one of these approxi-

mate solutions. In particular the use of !(i) produces an upper bound. Intro-

duce

^

U

l

= U

l

�

X

j

e

j

�

(j)

T

log 2

:

It is easy to find:

�

�

�

^

U

l

2

P

j

e

(j)

jb

(j)

j

: (3.32)

48 Chapter 3. Holistic design of real-time controllers on single CPU platforms

0 10 20 30 40 50 60
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

ω(i)

ω(i)

ω(i)

Figure 3.6 Linear bounds for !(i) for a first order system con-

trolled by a memoryless feedback: �
(i)

1

T

= 1, b(i) =

10.

The approximated optimal values for the periods are given by:

1

p

(i)

�

�

�

(i)

T

log 2

+ jb

(i)

j

^

U

l

2

P

j

e

(j)

jb

(j)

j

: (3.33)

For the optimal frequencies we can distinguish a term �

(i)

T

log 2

necessary to

achieve stability, which is summed to a weighted fraction of the reduced uti-

lization ^

U

l

.

Dynami Controller Under the assumption that all systems S
i

are open

loop stable, we have �

(i)

=

�

(i)

1

e

�

(i)

1

pT

(�

(i)

1

+jb

(i)

j)�jb

(i)

j

. The function is decreas-

ing in p and upper bounded by 1. Hence, the �(i) function is defined only for

� � 1 and it is given by:

�

(i)

(�) =

1

�

(i)

1

T

log

�

(i)

1

+ �jb

(i)

j

�(�

(i)

1

+ jb

(i)

j)

: (3.34)

In this case there is not an easy linear bound for 1

�

(i)

so the search for the

0 of H has to be performed in the admissible range of �.

3.4. Tackling the design problem 49

3.4.1.2 The general ase

Dealing with multi-variable systems the main problem is represented by the

difficulty in finding the the analytical expression for �(i).

In the feasibility problem it is possible to use the lower bound �

(i) com-

puted in Section 3.3.2.2. The price to be paid is losing necessity of Condi-

tion 3.29. Hence H(�

0

) � 0 becomes a conservative test.

As far as the optimization problem is concerned, if the search is restricted

to periods for which the �(i) and �

(i) bounds are sufficiently close, it is possi-

ble to use one of them as a good heuristic to find suboptimal solutions.

3.4.2 The integrality onstraint

As far as the feasibility of a specification on a platform is concerned, if the

�

(i) functions are decreasing with p

(i) it is possible to set up a conservative

procedure in two steps:

1. apply the feasibility test for the continuous relaxation H(�

0

) � 0; if the

test fails conclude unfeasibility, otherwise set periods p(i) to �

(i)

(�

0

);

2. truncate the periods to their floor; if

X

i

e

(i)

bp

(i)

< U

l

conclude feasibility.

For the optimization problem, it is possible to use a standard branch and

bound scheme. To illustrate the algorithm it is useful to introduce some no-

tation. P � INm will denote the set of period m-tuples p respecting the con-

straint inequalities; �
l

(

�

P), �
u

(

�

P) will denote respectively a lower bound and

an upper bound of the objective function�(p) on the region �

P . Lwill denote

a list of the disjoint subregions of the solution space which are currently can-

didate for the solution. The �

l

function is assumed to be derived from an

admissible solution. The �

u

function is required to have the property that,

when applied to a set containing a single element, it returns the value of the

cost function computed for that element. The branch and bound algorithm

is codified in Algorithm 1. For the problem under analysis theH
i

subregions

can be obtained by fixing some of the elements of thep = [p

(1)

; p

(2)

; : : : ; p

(m)

℄

vector. Let I(H) � f1; : : : ; mg be the index set of periods that are fixed to

50 Chapter 3. Holistic design of real-time controllers on single CPU platforms

Algorithm 1

Insert P into L

set variable �� to �
l

(P)

choose p 2 P s.t. �
l

(P) = �

S

(p)

set variable p� = p

repeat

choose a regionH from L and remove it from L

partitionH into non-empty disjoint subregionsH
1

; : : : ;H

h

for eachH
i

if �
u

(H

i

) � �

�

discardH
i

else

insertH
i

into L

if �
l

(H

i

) > �

�

set �� = �

l

(H

i

)

set p� = p 2 H

i

s.t. �
S

(p) = �

l

(H

i

)

endif

endif

end for each

until L is empty

3.5. A numerical example 51

yield H, then a finer partitionH
1

; : : : ;H

h

can be obtained selecting one in-

dex z not in I(H) and fixing p

(1) to its h different admissible values1. The

selection of the �

u

, �
l

functions is a particularly important issue. In fact, if

the bounds are not tight, the algorithm does not “discard” a good number of

regions resulting into a nearly exhaustive search. On the other hand accu-

rate bounds may not be viable if overly expensive computation is required

to derive them. In order to ensure correctness of the algorithm, the lower

bound �

l

(H

i

) is assumed to be always constructed using some feasible solu-

tion p

�

2 H

i

such that �(p�) = �

l

(H

i

).

One possible upper bound�
u

(H

i

) can be derived usingmin

j2I(H

i

)

�

(j)

(p

(j)

),

i.e. �

u

(H

i

) = minf�

u

(H);min

j2I(H

i

)nI(H)

�

S

j

(p

j

)g. This upper bound may

be quite optimistic and becomes tighter as the number of fixed periods in-

creases. When all periods are fixed, i.e. H
i

= fpg, it becomes �
u

(H

i

) =

�

S

(p). Its computation cost is very low especially when periods are fixed in-

crementally. Different derivations for �
u

can be obtained as shown in the

section devoted to the continuous relaxation.

3.5 A numerial example

In this section we present some numerical examples on the application of the

proposed procedure to a set of first order systems. We consider a set of three

scalar systems, whose dynamics are described by the a(i); b(i) parameters in

Table 3.1. We will separately deal with the case of memoryless and dynamic

controllers. In both cases the platform exploration will be performed on two

hypothetical platforms whose parameters are reported in Table 3.2. As a per-

formance specification we will require the stability radius to be no less than

0:1

System 1 System 2 System 3

a

(i)

i 0.3 10 500

b

(i) -3 12 1

Table 3.1 Dynamical parameters of the controlled systems

Memoryless ontroller Considering the continuous relaxation, the maxi-

mum activation periods for the three tasks to attain the stability radius � =

1This set is finite because it is a projection of some subset of P which is finite. The num-

ber h varies with z.

52 Chapter 3. Holistic design of real-time controllers on single CPU platforms

Platform 1 Platform 2

e

(1) 50 50

e

(2) 15 15

e

(3) 6 4

T

1ms 1ms

Table 3.2 Parameters of the considered platforms

0:1 as are p(1) = 958:9402, p(2) = 59:1364 and p

(3)

= 6:9215. Considering Plat-

form 1 the total utilization is
P

i

e

(

i)

p

(i)

= 1:17 > U

l

. Hence, the problem is un-

feasible on Platform 1. On Platform 2, the total utilization with the continu-

ous periods is 0:883. The periods can be truncated to their floor preserving or

improving performance. Even in this case, we obtain a total utilization equal

to 0:9731. Hence, it is possible to infer that Platform 2 is powerful enough to

sustain the specification.

After the selection of Platform 2, it is possible to start the optimization

procedure to maximize the stability radius. The continuous relaxation yields

an optimum equal to � = 0:2716 with periods p(1) = 481:73, p(2) = 47:338

and p

(3)

= 6:9044. Using the Branch and Bound algorithm, the optimum

value is �
�

= 0:1384 and it is attained at p
(1)

�

= 764, p
(2)

�

= 56 and p

(3)

�

= 6.

Dynami ontroller In this case the maximum activation period to comply

with the specification on the stability radius are p

(1)

= 1992:8, p(2) = 162:7

and p

(3)

= 22:9. Considering the truncation of the periods to the floor in-

tegers, it is easily seen that both Platform 1 and Platform 2 can sustain the

specification.

For the sake of brevity, the optimization step was performed only on Plat-

form 1. The continuous relaxation yields � = 0:4545 and it is attained at

p

(1)

= 345:25, p(2) = 43:54 and p

(3)

= 7:8. In this case the Branch and Bound

algorithm yields an optimum value close to the one of the continuous relax-

ation: �
�

= 0:4469, p(1) = 346, p(2) = 44 and p

(3)

= 8.

3.6 Future extensions

In this chapter the platform based design approach has been shown on a

concrete example. The combination of the time-triggered model of com-

putation and utilization based real-time schedulability test has proven suc-

cessful in modeling the platform. We believe there is room for continuing

3.6. Future extensions 53

this work in different directions. In particular, another possible performance

metric is represented by sensitivity of the state to norm-bounded noise. As

a matter of fact also this metric is quite directly linked to the amount of in-

formation processed by the controller. Another line of investigation might

regard the conservativeness of classical hard real-time scheduling. Is it con-

venient to tolerate occasional failures in updating the actuators taking ad-

vantage of higher activation rates? Even retaining an hard real-time assump-

tion (i.e. each deadline strictly respected), it appears convenient to consider

different time-triggered models for which data are released before the next

activation (i.e. tasks might have a relative deadline lower than the period).

54 Chapter 3. Holistic design of real-time controllers on single CPU platforms

4

Numerially eÆient ontrol

through a shared bus

Talkers are no good doers.

Henry VI - Shakespeare

I
n this chapter, we deal with control design under information constraints

stemming from the use of shared communication components. There

are many real-life examples where this situation occurs. For instance the

same channel (or bus) can be used to convey multiple sensor readings to

processing units or, dually, multiple command values to actuators. As shown

in the previous chapter designing a controller with shared resources in the

loop, amounts to synthesizing an appropriate control law and deciding the

allocation of the resource by choosing a set of scheduling parameters. The

way this problem can be solved depends on the approach used for schedul-

ing.

A very popular scheduling mechanism for communication resources is

based on time division multiplexing allocation (TDMA): the time during which

a resource can be accessed is divided in a fixed number of equal slots that

are statically assigned to each potential user. The schedule thus defined is

repeated cyclically. Remarkable attempts to combine control synthesis and

scheduling of communication channels via TDMA are in [55, 30]. For each

allocation of slots, the authors find an optimal design for the closed loop sys-

tem using the theory of linear periodic systems. However, different schedul-

ing choices can be only compared with exhaustive search, which is not nec-

essarily a viable solution in many applications.

In this chapter, we start from a lower level of abstraction, i.e. initially we

formulate an optimization problem to decide on-line the allocation of each

55

56 Chapter 4. Numerically efficient control through a shared bus

slot of the shared resource. In the second step, taking advantage of the para-

metric structure of the optimization problem, the state space is partitioned

in polhyedral regions: in each region the solution of the problem has a fixed

schedule for the bus. Thereby, in each region it is possible to use a TDMA

schedule.

The particular problem considered here is the stabilization of a multi-

actuator system for which commands are issued through a shared bus. This

problem is common to a number of applications; in our case, the motivation

came from automotive electronics systems where a standard bus, the CAN

bus, is used to link subsystems. In fault tolerant automotive applications it

is very frequent to have bus configurations with a throughput of 128Kbit/s.

If the plant is sampled at 2 ms, at each sample we can transmit 4 floating

numbers (formatted according to the IEEE 754 standard). If the architecture

has only 10 groups of actuators, each requiring 4 floating point numbers,

the need for a design procedure that can solve at the same time the control

problem and the scheduling of the shared resource is clear. The alternatives

to the procedure we propose could be either to lower significantly the sam-

pling frequency, which is not a good choice if the plant has highly unstable

modes, or using a much more expensive technology to have (ten times) faster

transmissions.

To achieve stabilization, we use Model Predictive Control (MPC). This

choice allows to formulate physical constraints on the actuators and the spec-

ification of safe sets on the state’s evolution. Thereby, it is possible to study

in a unified framework the interplay between physical and information con-

straints.

In this chapter, we introduce two different ways for modeling the exclu-

sivity condition (i.e. the fact that the bus can be allocated to one actuator

at each time): the first uses a linear complementarity formulation, leading

to a parametric variation of the Generalized Linear Complementarity Prob-

lem (GLCP) [78]; the second uses the theory of mixed logic dynamical sys-

tems (MLD) [9]. This is not surprising, since in the related field of hybrid sys-

tems linear complementarity formulations have been proposed [74, 57] and

proven equivalent to mixed logic dynamical systems [29]. This work builds

upon the PGLCP formulation, which, in this application, is particularly com-

pact and convenient. We show an algorithm for the PGLCP solution, first

proposed in [51], and demonstrate its efficiency on a numerical example.

Finally, we briefly deal with the issue of parametric dependence of the

PGLCP solutions from the state from which the optimization problem is ini-

tiated. In particular, we introduce the definition of basis set, characterizing a

4.1. Model Predictive Control of Control Systems with Communication Constraints 57

Controller

Plant

Actuator 1 Actuator m

BUS

B1
Bm

Figure 4.1 Scheme of the addressed system

region of the state space for which solutions of the PGLCP with the same set

of active constraints exist. Some preliminary results on the basis sets of the

PGLCP are then offered. In our context, basis sets are particularly interest-

ing since they represent regions of the state space for which the stabilizing

control law has a fixed schedule of the bus over the control horizon of the

MPC.

4.1 Model Preditive Control of Control Systems

with Communiation Constraints

We consider the problem of stabilizing to the trivial equilibrium a discrete

time linear system described by the following state equations:

x(k + 1) = Ax(k) +B

1

u

1

(k) + : : :+B

m

u

m

(k) (4.1)

where x 2 IRn and u

i

2 IRm

i . A scheme of the addressed problem is in Fig-

ure 4.1. We will make the following assumptions:

1. pair (A; [B
1

B

2

: : : B

m

℄) is time invariant and completely controllable;

2. a measure for the system’s state x(k) is available at each step k;

3. control commandsu
1

;u

2

; : : : ;u

m

are issued through a communication

resource (generically denoted as “bus”) which is shared amongst the

different groups of actuators; hence, at a given time only one command

vector u
i

is allowed to be different from zero. In the sequel this condi-

tion will be referred to as “exclusivity condition”.

State and command variables are required to evolve within a polyhedral “safe”

set:

Hx(k) +G

1

u

1

(k) +G

2

u

2

(k) + : : :+G

m

u

m

(k) � g; (4.2)

58 Chapter 4. Numerically efficient control through a shared bus

where inequalities are imposed componentwise. For the stabilization prob-

lem to be well posed it is necessary that the point:

2

6

6

6

6

4

x

u

1

u

2

: : :

u

m

3

7

7

7

7

5

=

2

6

6

6

6

4

0

0

0

: : :

0

3

7

7

7

7

5

;

belongs to the safe set (i.e. g � 0).

Remark 1 This model is rich enough to include both physical constraints on

the actuators (modeled by the definition of the safe set) and information con-

straints (i.e. the exclusivity condition). However, an evident limitation is the

required instantaneous availability of the state. Releasing this assumption

amounts to formulating the problem of finding an asymptotical estimation of

the system’s state when the measurements of the different sensors are conveyed

through a shared bus. This problem can be formulated using techniques simi-

lar to the ones shown in this chapter. However, since measurements on sensors

can be very complex data (e.g. a grabbed image), other factors like informa-

tion quantization and abstraction take a prominent role. These issues will be

subject to future investigations.

The stabilization problem will be attacked using a Model Predictive Con-

trol (MPC) scheme. The reader interested to MPC in general is addressed to

existing text books such as [50], or to complete review papers such as [11].

In this context, we just describe our specific application recalling some ba-

sic results which will be used throughout the chapter. MPC is a closed loop

algorithm that can shortly be described as follows:

for each instant k –

acquire the state vector x(k);

compute sequences v
i

(0);v

i

(1); : : : ;v

i

(N

u

� 1) for all i

apply only the first elements of the computed sequences: u
i

(k) = v

i

(0) for all i

˝.

In the chosen notationu
i

are commands actually applied to the system, whereas

v

i

are sequences of “virtual” commands, of which only the first element is re-

ally applied to the system at each iteration. In particular, thev
i

sequences are

4.1. Model Predictive Control of Control Systems with Communication Constraints 59

computed solving a constrained optimal control problem with a finite hori-

zon. To formulate such a problem, introduce the following cost function:

J(x(:);u

1

(:); : : : ;u

m

(:); h

0

; h) =

h�1

X

j=h

0

(jj	x(j)jj+

m

X

i=1

jj�

i

u

i

(j)jj); (4.3)

where jj:jj will henceforth denote the infinity norm. 	 and �

i

are assumed

to be nonsingular matrices of size n� n and m

i

�m

i

respectively. The com-

putation of the command sequence is performed, at step k, by solving the

following optimization problem:

min

v

1

(:);v

2

(:);:::;v

m

(:)

J(y(:);v

1

(:); : : : ;v

m

(:))

y(h+ 1) = Ay(h) +

P

m

i=1

B

i

v

i

(h); h 2 [0; N

u

[

y(h+ 1) = Ay(h); h 2 [N

u

+ 1; N

y

[

Hy(h) +

P

m

i=1

G

i

v

i

(h) � g; i 2 [1;m℄; h 2 [0; : : : ; N

u

[

Hy(h) � g; i 2 [1;m℄; h 2 [N

u

; : : : ; N

y

[

y(0) = x(k);

6 9i; j; h s. t.v
i

(h) 6= 0 and v

j

(h) 6= 0; i; j 2 [1;m℄; h 2 [0; : : : ; N

u

[

(P. 4)

In the above formulation the y vector has been introduced to describe

the “virtual” evolution of the state during the optimization problem, whereas

x denotes the actual evolution of the state variables. Clearly at each itera-

tion y(0) has to be initialized with x(k). N
y

and N

u

are two constants such

that N
y

� N

u

. A more compact formulation is obtained observing that the

first and the equality constraints on the system’s dynamical evolution can be

eliminated, since y can be expressed as a function of v
i

and y(0)

y(h) = A

h

y(0) +

h�1

X

j=0

A

h�1�j

(

m

X

i=1

B

i

v

i

(j)): (4.4)

Hence the cost function J depends only on the initial state and on the se-

quences:

J(y(:);v

1

(:); : : : ;v

m

(:); 0; N

y

) = J(y(0);v

1

(:); : : : ;v

m

(:)):

60 Chapter 4. Numerically efficient control through a shared bus

In the above, with a slight abuse of notation, we also dropped the depen-

dence from the length of the control horizon. Hence, an equivalent formula-

tion for Problem P. 4 is:

min

v

1

(:);v

2

(:);:::;v

m

(:)

J(y(:);v

1

(:); : : : ;v

m

(:))

H

0

y(0) +

P

m

i=1

P

N

u

�1

j=0

G

i; j

v

i

(h)) � f

y(0) = x(k);

6 9i; j; hs. t.v
i

(h) 6= 0 and v

j

(h) 6= 0; i; j 2 [1;m℄; h 2 [0; : : : ; N

u

[

(P. 5)

where matricesH
0

,G
i; j

and vector f can easily be computed plugging Eq. (4.4)

into the constraint of the safe set.

We observe that Problem P. 5 significantly differs from other MPC opti-

mization problems, such as the one presented in [10], because of the pres-

ence of the constraint in the last row that enforces the exclusivity condition.

In the rest of this section we will first recall some basic result on MPC and

then we will show how the exclusivity constraint can be dealt with.

4.1.1 MPC based stabilization

When dealing with MPC control, a preliminary issue regards whether the op-

timization problem has feasible solutions at each step or not. Feasibility is

required, since, otherwise, the control law would be ill-defined and we shall

assume that it is guaranteed. Such an assumption is trivially satisfied if there

are not constraints on the x variable (H = 0), for the null sequences are

always feasible. In the general case, we have to restrict to initial states for

which a feasible solution exists. If such set is too small, it is possible to apply

a “softening” technique as shown, for example, in [79].

Concerning stability of these systems, a very general result, revisited in

different flavors by several authors, was proven in [32].

Theorem 2 Consider system 4.1, assume that commands are computed ap-

plying the model predictive scheme, where the additional constraint y(N
y

) =

0 is included in Problem P. 4, and assume that the resulting problem is feasible

at each step. Then the resulting closed loop system is asymptotically stable.

The following descends immediately from the proof in the cited paper:

4.1. Model Predictive Control of Control Systems with Communication Constraints 61

Algorithm 2

Start from a conservative evaluation for the cost function: J (0);

for each iteration –

solve the sub-optimal problem up to a value for the cost function lower or equal than J

(k)

apply the first elements of the sub-optimal sequences v�
i

evaluate the cost function J

(k) for the shifted sequences v0
i

˝

Corollary 2 Consider system 4.1, where commands are computed applying

the model predictive scheme, with the additional constraint y(N
y

) = 0 and

assume that the resulting problem is feasible at each step. Assume that at step

k the optimization problem is interrupted at a suboptimal solution v

�

i

such

that J(x(k + 1);v

�

1

(:); : : : ;v

�

m

(:)) � J(x(k + 1);v

0

1

(:); : : : ;v

0

m

(:)), where v0
i

are obtained from the optimal sequences v
i

computed at step k�1 by discard-

ing the first element and appending 0s to the end of the sequences. Then the

resulting closed loop system is asymptotically stable.

v0

i

are called shifted sequences. Corollary 2 can be used to construct a sta-

bilizing control algorithm as shown in Algorithm 2 The suboptimal problem,

with the additional terminal constraint y(N
y

) = 0, is the following:

J(x(k);v

1

(:); : : : ;v

m

(:)) � J

(k)

H

0

x(k) +

P

m

i=1

P

N

u

�1

j=0

G

i; j

v

i

(h)) � f

A

N

y

x(k) +A

N

y

�N

u

P

N

u

�1

j=0

A

N

u

�j

(

P

m

i=1

B

i

v

i

(j)) = 0

6 9i; j; hs. t.v
i

(h) 6= 0 and v

j

(h) 6= 0; i; j 2 [1;m℄; h 2 [0; : : : ; N

u

[

(P. 6)

We remark that Problem P. 6 is a feasibility problem: i.e. for each x(k),

find a feasible set of sequences v
i

or prove that they do not exist. Our as-

sumption is that the latter situation never occurs.

4.1.2 Dealing with the exlusivity onstraint

As a preliminary remark, observe that the exclusivity constraint can be ex-

pressed as:

jjv

i

(h)jj jjv

j

(h)jj = 0; 8i 6= j; h 2 [0; N

u

[:

62 Chapter 4. Numerically efficient control through a shared bus

Furthermore, an equivalent of Problem P. 6 can be found recalling the defi-

nition of the cost function J given in Equation 4.3, and introducing nonneg-

ative slack variables �y 2 IRN

y , �u
1

2 IRN

u , . . . , �u
m

2 IRN

u :

1

T

N

y

�

y

+

P

m

i=1

1

T

N

u

�

u

i

� J

(k)

�1

n

�

y

(h) � 	(A

h

x(k) +

P

m

i=1

P

h�1

j=0

A

h�1�j

B

i

v

i

(j)) � 1

n

�

y

(h); h 2 [0; N

u

[

�1

n

�

y

(h) � 	(A

h

x(k) +A

h�N

u

P

m

i=1

P

N

u

�1

j=0

A

N

u

�1�j

B

i

v

i

(j)) � 1

n

�

y

(h);h 2 [N

u

; N

y

[

�1

m

i

�

u

i

(h) � �

i

v

i

(h) � 1

m

i

�

u

i

(h); h 2 [0; N

u

[

H

0

x(k) +

P

m

i=1

P

N

u

j=0

G

i; j

v

i

(h)) � f

A

N

y

x(k) +A

N

y

�N

u

P

N

u

�1

j=0

A

N

u

�j�1

(

P

m

i=1

B

i

v

i

(j)) = 0

jjv

i

(h)jj jjv

j

(h)jj = 0; 8i 6= j; h 2 [0; N

u

[

�

y

� 0; �

u

i

� 0:

(P. 7)

By the notation �

y

(h), �u
i

(h) we mean respectively the h-th component of

vectors �y, �u respectively. Considering, now, the following problem:

min

P

i 6=j;h=0;:::;N

u

�1

�

u

i

(h)�

u

j

(h)

1

T

N

y

�

y

+

P

m

i=1

1

T

N

u

�

u

i

� J

(k)

�1

n

�

y

(h) � 	(A

h

x(k) +

P

m

i=1

P

h�1

j=0

A

h�1�j

B

i

v

i

(j)) � 1

n

�

y

(h); h 2 [0; N

u

[

�1

n

�

y

(h) � 	(A

h

x(k) +A

h�N

u

P

m

i=1

P

N

u

�1

j=0

A

N

u

�1�j

B

i

v

i

(j)) � 1

n

�

y

(h);h 2 [N

u

; N

y

[

�1

m

i

�

u

i

(h) � �

i

v

i

(h) � 1

m

i

�

u

i

(h); h 2 [0; N

u

[

H

0

x(k) +

P

m

i=1

P

N

u

j=0

G

i; j

v

i

(h)) � f

A

N

y

x(k) +A

N

y

�N

u

P

N

u

�1

j=0

A

N

u

�j�1

(

P

m

i=1

B

i

v

i

(j)) = 0

�

y

� 0; �

u

i

� 0;

(P. 8)

it is easy to prove the following:

Fact 2 Problem P. 7 has a feasible solution if and only if the minimum of Prob-

lem P. 8 is 0.

4.1. Model Predictive Control of Control Systems with Communication Constraints 63

Proof:

First, note that the two problems share all constraints except for the ex-

clusivity constraint on the norms. Thereby, it is sufficient to prove that the

optimal solution of Problem P. 8 is feasible for Problem P. 7. If the optimum

is of Problem P. 8 is 0, being �u
i

non negative, the 8i 6= j; 8h 2 [0; N

u

[it must

be �

i

(h) = 0 or �
j

(h) = 0. Recalling the constraint �1
m

i

�

u

i

(h) � �

i

v

i

(h) �

1

m

i

�

u

i

(h) and considering the nonsingularity of �
i

this leads to: jjv
i

(h)jj = 0

or jjv
j

(h)jj = 0 that is exactly the exclusivity constraint of Problem P. 7.

!

Consider a feasible solution of Problem P. 7: v�
1

(:); v

�

2

(:); : : : ; v

�

m

(:), �u�
1

; : : : ; �

u�

m

,

�

y�. Considering all elements h for which jjv�
i

(h)jj = 0, we can replace �u�
i

(h)

with 0 and still obtain a feasible solution. Observe, now, that the solution

thus constructed is feasible for Problem P. 8 and that its cost function yields

0 due to the exclusivity constraint of Problem P. 7. But 0 is lower bound for

Problem P. 8 due to the non-negativity of �u
i

and, being attained, it is its min-

imum. �

It is now convenient to introduce a more compact notation. Decision

variables �u
i

(h) can be grouped into a vector e:

e = [�

u

1

(0); : : : ; �

u

m

(0); �

u

1

(1); : : : ; �

u

1

(N

u

� 1); : : : ; �

u

m

(N

y

� 1)℄

T

: (4.5)

Introduce vector w =

1

2

Ue; the U matrix is given by:

U =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Z

N

u

; 1

0

N

u

0

N

u

: : : 0

N

u

Z

N

u

; 2

0

N

u

0

N

u

: : : 0

N

u

. .

Z

N

u

; N

u

0

N

u

0

N

u

: : : 0

N

u

0

N

u

Z

N

u

; 1

0

N

u

: : : 0

N

u

0

N

u

Z

N

u

; 2

0

N

u

: : : 0

N

u

. .

0

N

u

0

N

u

0

N

u

: : : Z

N

u

; 1

0

N

u

0

N

u

0

N

u

: : : Z

N

u

; 2

. .

0

N

u

0

N

u

0

N

u

: : : Z

N

u

; N

u

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (4.6)

where Z
i; n

denotes a row vector of n elements composed of all ones except

for a zero in the i-th position. By construction if vector e is made of non-

negative elements, so is vector w. Furthermore, v
i

(:) can be set equal to the

64 Chapter 4. Numerically efficient control through a shared bus

difference z
+

� z

�

, where vectors z
+

and z

�

are component-wise nonnega-

tive. Moreover, it is possible to introduce a positive vector of slack variables

s to transform inequality constraints into equality constraints. Stacking vec-

tors z
+

, z
�

, s, �y into a vector z, Problem P. 8 is equivalent to the following:

mine

T

w

�e+�w+
z = �+�x(k);

e � 0;w � 0; z � 0

(P. 9)

where matrices �, �,
, � and vector � can be computed from the dis-

cussion. We search for a minimizer (e

�

;w

�

) with cost function 0. Such a

situation occurs if and only if (e�;w�

) is a feasible solution of the following

problem:

e

T

w = 0

�e+�w+
z = �+�x(k);

e � 0;w � 0; z � 0:

(P. 10)

Problem P. 10 is called in the literature Generalized Linear Complemen-

tarity Problem (GLCP). Problem P. 9 is called bilinear equivalent (BEP) of the

GLCP. The most important feature of the presented formulation is the affine

dependence of the right hand side of the equality constraint fromx(k) which

makes the problem parametric. For this reason we will call Problem P. 10

Parametric Generalized Linear Complementarity Problem (PGLCP).

4.1.3 An alternative approah

In this section, we briefly outline, for comparison purposes, an alternative

method, based on the theory of mixed logical dynamical systems (MLD) [9],

to model the exclusivity condition. Each actuator i can be associated to a

logical variable Æ
i

2 f0; 1g. Æ
i

(k) takes i if actuator i is selected at time k and

0 otherwise. The system dynamical equations can be written as follows:

x(k + 1) = Ax(k) +B

1

Æ

i

(k)u

1

(k) + : : :+B

m

Æ

m

u

m

(k): (4.7)

Problem P. 4 can be reformulated as:

4.1. Model Predictive Control of Control Systems with Communication Constraints 65

min

(v

1

(:);

1

(:));:::;(v

m

(:);

m

(:))

J

y(h+ 1) = Ay(h) +

P

m

i=1

B

i

i

(h)v

i

(h); h 2 [0; N

u

[

y(h+ 1) = Ay(h); h 2 [N

u

+ 1; N

y

[

Hy(h) +

P

m

i=1

G

i

v

i

(h) � g; i 2 [1;m℄; h 2 [0; : : : ; N

u

[

Hy(h) � g; i 2 [1;m℄; h 2 [N

u

; : : : ; N

y

[

y(0) = x(k);

i

(h) 2 f0; 1g;

P

m

i=1

i

(h) = 1; h 2 [0; N

u

[

(P. 11)

Note that we used

i

(:) to denote the virtual sequence of logic commands

Æ

i

(:) and that the exclusivity condition is simply
P

i

i

(h) = 1. This problem

is mixed integer and it is nonlinear. Introducing two constants M > 0, and

m < 0 (both having an enormous absolute value) we can state the following

correspondence:

y(h+1) = Ay(h)+

P

m

i=1

B

i

i

(h)v

i

(h)$

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

y(h+ 1) � Ay(h) +M

P

m

i=1

Æ

i

(h)

y(h+ 1) � Ay(h) +m

P

m

i=1

Æ

i

(h)

y(h+ 1) � Ay(h) +B

1

v

1

(h) +M(1� Æ

1

(h))

y(h+ 1) � Ay(h) +B

1

v

1

(h) +m(1� Æ

1

(h))

: : :

y(h+ 1) � Ay(h) +B

m

v

1

(h) +M(1 � Æ

1

(h))

y(h+ 1) � Ay(h) +B

m

v

1

(h) +m(1� Æ

1

(h))

By using this correspondence in P. 11, we come up with a multi-parametric

mixed integer linear program (mp-MILP). Advantages of this approach is the

large availability of tools for solving this class of problems. Moreover in [18]

a method is shown for performing off-line much of the computation. The

method allows to find a polyhedral partition of the state space. Inside each

region the combinatorial variables (in our case the schedule of the bus) are

fixed while the continuous variable vary with an affine law. The method has

recently been applied to control of hybrid systems [9]. An evident drawback

with respect to the PGLCP is the spatial complexity: it is necessary to intro-

duce m new variables and each equality constraint on the plant evolution is

transformed into a set of 2m + 1 inequalities. On the contrary, with the ap-

proach that we are proposing, such constraints can be eliminated altogether

by using Equation 4.4. Most importantly, we will show next that very effi-

66 Chapter 4. Numerically efficient control through a shared bus

cient solution methods exist for the PGLCP, though it is generally a NP-Hard

problem.

4.2 The Generalized Linear Complementarity Prob-

lem (GLCP)

. The GLCP was introduced in the literature of the operations research by

Ye [78] and it is equivalent to the following extended linear complementarity

problem (XLCP), first introduced by Mangasarian [51]:

e

T

w = 0

�e+�w 2 P;

e � 0;w � 0;

(P. 12)

where P denotes a generic polyhedral set. Clearly (e

�

;w

�

) is a solution of

Problem P. 12 if and only if it is a global optimizer of the following bilinear

equivalent with cost function 0:

mine

T

w

�e+�w 2 P;

e � 0;w � 0;

(P. 13)

Due to the equivalence of the two problems, results and methods devel-

oped for the GLCP can be ported to the XLCP and vice versa. Such problems

have been intensely studied producing specific algorithms and a plethora of

conditions under which the solutions exhibit interesting mathematical prop-

erties (e.g. convexity).

An interior-point solution method is proposed for the GLCP in [78]. No-

tably, the method produces a solution of the problem in polynomial time

if �T

� is negative semi-definite. In the experimental results presented be-

low we applied the algorithm proposed in [51], which is an adaptation to the

XLCP of the method proposed for bilinear programming by Frank and Wolfe

in 1956 [22]. We can summarize the algorithm as follows: The idea underly-

ing the above algorithm is very simple: at each iteration the cost function is

linearized around the solution found at the previous iteration and the linear

cost function thus obtained is used to solve an LP at the next iteration. It is

immediate to observe:

1. the sequence w

(k), e(k) lives in a bounded space (given by the convex

hull of the veritces of the feasibility polhyedron);

4.2. The Generalized Linear Complementarity Problem (GLCP) 67

Start the algorithm finding a feasible solution w

(0), e(0) for the BP and set k = 0;

if there are no feasible solutions exit.

1. Compute an optimal solution w

(k), e(k) for the following problem:

minw

T

e

(k)

+ e

T

w

(k) subject to the same constraints as the BP

2. stop if (w(k)

)

T

e

(k)

+ (e

(k)

)

T

w

(k)

= 2(w

(k)

)

T

(e

(k)

)

3. Set k = k + 1 and update w(k) and e

(k) as follows:
�

w

(k+1)

e

(k+1)

�

= (1� �

k

)

�

w

(k)

e

(k)

�

+ �

k

"

w

(k)

e

(k)

#

where

�

k

= argmin

�2[0;1℄

(w

k

+ �(w

(k)

�w

(k)

)

T

(e

k

+ �(e

(k)

� e

(k)

)

and go to step 1.

2. the optimum values computed at each iteration are a monotone de-

creasing sequence, which is bounded below by 0; hence, the algorithm

converges to a limit.

In [51] it is also proven that if the BP has the property that every one of its

KKT points solves the XLCP and if the set of feasible solutions of the XLCP

is nonempty, then the algorithm produces a feasible vertex of the XLCP in a

finite number of iterations.

4.2.1 A numerial example

In order to show the effectiveness of the approach, we present the result of

the application of the algorithm to a simple example. The dynamical and the

68 Chapter 4. Numerically efficient control through a shared bus

input matrices of the system are:

A =

2

6

6

4

0:5 0

0 1:1

0

0

1:1739 �0:1306

0:7863 �1:4445

3

7

7

5

(4.8)

B

1

=

2

6

6

4

1:6873

0:9528

0

0

3

7

7

5

(4.9)

B

2

=

2

6

6

4

0

0

1

�1

3

7

7

5

(4.10)

The safe polyhedral set for the state is described by the following inequalities:

2

6

6

6

6

6

6

6

6

4

�1 0 0 0

1 1 0 0

1 �1 0 0

0 0 1 0

0 0 �1 0

0 0 0 1

0 0 0 �1

3

7

7

7

7

7

7

7

7

5

2

6

6

4

x

1

x

2

x

3

x

4

3

7

7

5

�

2

6

6

6

6

6

6

6

6

4

0:6

0:6

0:6

0:32

�0:32

0:32

�0:32

3

7

7

7

7

7

7

7

7

5

(4.11)

Commands are constrained by:

0:12 � u

1

� �0:12

0:3 � u

2

� �0:3

(4.12)

As far as the weighting matrices for the performance index are concerned,

we chose:

	 =

�

1 � I

2�2

0

0 100 � I

2�2

�

(4.13)

�

1

= 10 (4.14)

�

2

= 1 (4.15)

(4.16)

The chosen command horizon was N
u

= 20 and the control horizon was

N

y

= 25. As it is possible to see, our example system has a block diagonal

4.2. The Generalized Linear Complementarity Problem (GLCP) 69

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

Safe set

State

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Safe set

State

(b)

Figure 4.2 Evolution of the state variables of the two subsys-

tems: (a) variables x
1

; x

2

, (b) variables x
3

; x

4

70 Chapter 4. Numerically efficient control through a shared bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−0.1

−0.05

0

0.05

0.1

0.15

time

u1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.4

−0.2

0

0.2

0.4

time

u2

Safe set

Safe set

Figure 4.3 Evolution of the command variables of the two sub-

systems.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

time

ite
ra

tio
ns

Figure 4.4 Number of iterations required at each step.

4.3. Dealing with parametric dependence 71

structure and it is composed of two independent 2 � 2 subsystems, which

are governed by two distinct scalar command. The only coupling between

the two subsystems is, in this simple example, represented by the sharing

of a common communication resource. We applied the MPC scheme pre-

sented in this chapter, using as optimization method, the Frank and Wolfe

algorithm.

The evolution of the state variables of the two subsystems are shown,

along with the projection of the safe set, in Figure 4.2. In Figure 4.3 we report

the evolution of the computed command variables. As it is possible to see

the algorithm implicitly computes an optimal schedule for the bus enforcing

that at most one command variable is nonzero at each instant. If Figure 4.4

we report the number of iterations at each step. Each iteration entails the

solution of a linear program. As it is possible to see the algorithm complexity

is, in this practical application, fairly acceptable.

4.3 Dealing with parametri dependene

Model Predictive Control, as we have shown, naturally leads to parametric

optimization problems. Post-optimal and sensitivity analysis [25] permits

to study the variations of the solutions with respect to the parameters. This

can be used to move much of the computation effort off-line. An example

of this procedure applied to a linear MPC optimization problem is in [10].

In [9], as said above, a similar technique is applied to multi-parametric mixed

integer linear programs arising from MPC of hybrid systems. Results on the

dependence of the optimal solutions from a parameter have been produced

in the past for the standard linear complementarity problem [24, 77], but to

the authors best knowledge no result is still available for the PGLCP. In this

section, we propose some preliminary result which could make inroad to this

type of application.

We will refer to the PGLCP:

e

T

w = 0

�e+�w+
z = �+�x;

e � 0;w � 0; z � 0;

(P. 14)

and to its bilinear equivalent

mine

T

w

�e+�w+
z = �+�x;

e � 0;w � 0; z � 0:

(P. 15)

72 Chapter 4. Numerically efficient control through a shared bus

where, e 2 IRq, w 2 IRq and z 2 IRp, � 2 IRl, � 2 IRl�n. x 2 IRn is a vector

of parameters.

It is convenient to introduce some definitions and notations. If u 2 IRq

is a vector and B � f1; : : : ; qg is a set of indices, we denote by u
B

the vector

obtained taking the components having index in B from u. By B we denote

the set f1; : : : ; qgnB. If A is a matrix we denote by A

B

the matrix obtained

taking the rows having index in B from A; similarly A

B denotes the matrix

obtained taking from A the columns having index in B.

Let e�;w�

; z

� be an optimal solution of Problem P. 14 and let I = f1; : : : ; qg,

J = f1; : : : ; pg. The basis associated with (e

�

;w

�

; z

�

) is defined by:

I the index set B � I such that e�
B

= 0 and e

�

B

> 0,

I the index set H � I such that w�

H

= 0 and w

�

H

> 0,

I the index set G � J such that z�
G

= 0 and z

�

G

> 0,

Based on the notation introduced above, B = InB, H = InH and G = JnG.

In order for e�;w�

; z

� to be a solution of Problem P. 14 it must be: B+H = I .

Now we can give the following:

Definition 2 The basis set associated to a basis (B; H; G) is a setX(B; H; G),

in the parameter space of Problem P. 14, such that 8x 2 X(B; H; G) the

problem has a solution with basis (B; H; G).

Remark 2 It is useful to think of the meaning of basis set in the domain of the

problem being considered. Roughly speaking a basis set is a region for which

the stabilizing control law has a fixed schedule of the bus over the control hori-

zon of MPC. From the technological point this can be interpreted as an assign-

ment of the slots for a TDMA scheduler.

It is easy to show the following:

Lemma 5 The basis set associated to a basis of Problem P. 14 is a convex set.

Proof:

Let r = � + �x be the right hand side of the equality constraints in Prob-

lem P. 14. Assume that for r = r

(1) and r = r

(2) the problem has solutions

with basis (B; H; G). Let (e(1);w(1)

; z

(1)

) be a solution with basis (B; H; G)

4.3. Dealing with parametric dependence 73

obtained for r = r

(1), and similarly let (e(2);w(2)

; z

(2)

) be a solution with basis

(B; H; G) obtained for r = r

(2). It is immediate to verify that:

�(e

(1)

;w

(1)

; z

(1)

) + (1� �)(e

(2)

;w

(2)

; z

(2)

)

with � 2 [0; 1℄ is a feasible solution for r = (1 � �)r

(1)

+ �r

(2) and it has

basis (B; H; G). Hence, the basis set is convex with respect to r. The proof

is completed by observing that convexity is preserved by the inverse affine

mapping yielding x from r. �

This lemma is applicable to any solution of the PGLCP. From now on we

will concentrate on the points that respect that respect Karush-Kuhn-Tucker

condition for the P. 15. Clearly we shall make the following assumption:

Assumption 1 Every solution of Problem P. 15 respecting Karush-Kuhn-Tucker

(KKT) conditions (if any) is a global optimizer of the problem with cost func-

tion 0.

For the sake of commodity, we shall also use the following:

Assumption 2 For each basis (B; H; G) the matrix:

H =

2

6

6

4

�

H

�

B

�

B

�

B

+�

H

�

T

H

G

0 0

T

G

0

0 0 �

T

H

0

0 0 �

T

B

0

3

7

7

5

has full row rank.

Now we are in condition to prove the following:

Theorem 3 Consider Problem P. 15 under Assumptions 1 and 2. LetR
(B;H;G)

�

X(B; H; G) be the set for which Problem P. 15 has KKT solutions with basis

(B; H; G). The following statements hold:

I R

(B;H;G)

is a convex polyhedron;

I inside R

(B;H;G)

the KKT solutions (e;w; z) of Problem P. 15 are affine

functions of parameter x.

74 Chapter 4. Numerically efficient control through a shared bus

Proof:

Consider a KKT solution (e;w; z) of Problem P. 15 with basis (B; H; G). If

(e;w; z). The primal feasibility conditions can be written as:

e

B

= 0;w

H

= 0; z

G

= 0;

e

B

> 0; w

H

> 0; z

G

> 0; �

B

e

B

+�

H

w

H

+

G

z

G

= � +�x:

(4.17)

Clearly for (e;w; z) to be a solution of Problem P. 14 it must be I = H +

B. Moreover (e;w; z) is a KKT solution if and only there exist dual variables

�

(e)

2 IRq, �(w)

2 IRq and � 2 IRl such that:

�

(e)

= w � �

T

�; �

(w)

= e��

T

�; (4.18)

�

(e)

� 0; �

(w)

� 0;

T

� � 0; (4.19)

and

e

T

�

(e)

= 0; w

T

�

(w)

= 0; z

T

(

T

�) = 0: (4.20)

Using (4.17) and (4.18) we can write:

w

H

= �

(e)

H

+�

T

H

�; e

B

= �

(w)

B

+�

T

B

�; �

(w)

B

+�

T

B

� = 0; �

(e)

H

+�

T

H

� = 0: (4.21)

Furthermore, (4.17), (4.19) and (4.20) yield �

(e)

B

= 0, �
(w)

H

= 0 and

T

G

� = 0.

Define C = H \B. As I = B +H , we have H = BnC and B = HnC. Hence

the following correspondence holds:

�

(w)

B

+�

T

B

� = 0$

(

�

(w)

C

+�

T

C

� = 0

�

T

H

� = 0

�

(e)

H

+ �

T

H

� = 0$

(

�

(e)

C

+�

T

C

� = 0

�

T

B

� = 0

(4.22)

It is now possible to write the following linear system:

H

2

6

6

6

6

6

6

6

4

�

(e)

H

�

(w)

B

�

(e)

C

�

(w)

C

�

z

G

3

7

7

7

7

7

7

7

5

=

�

�+�x

0

�

(4.23)

where:

H =

2

6

6

6

6

6

6

4

�

H

�

B

0 0 �

B

�

B

+�

H

�

T

H

G

0 0 0 0

T

G

0

0 0 I 0 �

T

C

0

0 0 0 I �

T

C

0

0 0 0 0 �

T

H

0

0 0 0 0 �

T

B

0

3

7

7

7

7

7

7

5

4.4. Conclusions and future work 75

Observe that H is a square matrix and that, if Assumption 2 holds, it is in-

vertible. Therefore, it is possible to compute exactly the vector of unknown

dual and primal variables:

2

6

6

6

6

6

6

6

4

�

(e)

H

�

(w)

B

�

(e)

C

�

(w)

C

�

z

G

3

7

7

7

7

7

7

7

5

= H

�1

�

� +�x

0

�

: (4.24)

Using now (4.18) leads to the conclusion that the solutions (e;w; z) change

affinely with parameter x. Moreover, using primal feasibility (4.17) and dual

feasibility (4.19) it is possible to define a polyhedral region in the space of x

for the basis set R
(B;H;G)

. �

Remark 3 While assumption 2 is purely technical, and it can probably be re-

leased with little effort, assumption 1 is more substantial but there is a good

deal of results identifying classes of systems for which it holds. Whether and

when such conditions apply to the presented application is the subject for fu-

ture investigations.

4.4 Conlusions and future work

In this chapter, we analyzed the problem of synthesizing a closed loop con-

trol law for a multi-actuator system, for which commands are issued through

a shared communication resource. The use of model predictive control al-

lows to account for several types of constraints, including the mutually ex-

clusive use of a communication resource, which we called exclusivity condi-

tion. The exclusivity condition naturally leads us toward the formulation of

the problem as a PGLCP. Other modeling technique, such as MLD, can also

be applied but exhibit a greater spatial complexity. The PGLCP can be solved

online using efficient algorithms developed in the operations research liter-

ature. We presented one of these algorithms and shown its application on

a nontrivial numerical example. Finally, we showed some properties on the

parametric dependence of the solution of the problem from the system state

used to initiate the optimization problem.

Our future work will be aimed at investigating the latter results. We want

to find efficient partitioning techniques for the state space, based on the

76 Chapter 4. Numerically efficient control through a shared bus

PGLCP formulation, to solve the stabilization problem by a switching set of

TDMA scheduled controllers. From the modeling point of view, we plan to

investigate extensions to the model presented in this chapter. In particu-

lar, we want to deal with the problem of state estimation when sensor mea-

surements are conveyed through a shared resource and, eventually, with the

combined estimation/control problem where communication constraints re-

gard both sensor measurements and actuator commands.

II

CAD

5

An objet-oriented library

for simulating real-time

ontrol systems

An eye for an eye makes the whole world blind.

- Mahatma Gandhi

T
he tool described in this chapter focuses on one of the most famil-

iar problems in real-time control software design, i.e. how the per-

formance of a controller is affected by architectural and implementa-

tion choices (e.g. the decomposition of feedback controllers into tasks, the

allocation of computation resources to tasks, the scheduling of the shared

resources, etc). Realistic and quantitative answers to this question during

the early phases of the development are a precious tool for product develop-

ment.

The concept of performance evaluation for a real-time controller can be

developed along different directions. Most of the research in the area of real-

time computing has studied the performance of concurrent software sys-

tems under the viewpoint of their timing behaviour. Ever since the seminal

work of Liu and Layland [47], a fundamental performance metric is consid-

ered to be the tasks’ schedulability, i.e. the ability for a set of tasks to exe-

cute respecting their assigned deadlines. For some classes of real-time ap-

plications (qualified as soft real-time), a more useful performance metric is

represented by the probability for each task to execute respecting its dead-

lines [1, 70, 40]. At a higher level of abstraction, the “collective” timing per-

79

80 Chapter 5. An object-oriented library for simulating real-time control systems

formance of a set of tasks has been evaluated in terms of end-to-end delay,

output jitter, and other metrics [27].

The compliance of a controller’s timing behaviour with some specified re-

quirements (e.g. schedulability) is not always sufficient to characterize per-

formance at the system level. Classical performance metrics normally used

during the control synthesis consider the step response (rise time, overshoot,

etc.) or the closed loop transfer function. Quadratic cost functions, or other

metrics such asH
2

=H

1

norms, are the foundation of popular procedures for

analytical control synthesis. However, during the control synthesis phase,

effects deriving from the implementation architecture are not usually taken

into account. The difficulties in finding tractable analytical models for the

stochastic delays deriving from data dependencies and scheduling jitter and

the lack of adequate modeling and simulation tools, induce the control de-

signers to synthesize control laws assuming null or fixed delays from the un-

derlying implementation platform. As a consequence, even a software de-

sign complying with the deadline constraints can result into a poorly per-

forming system. These problems are detected only during the late phases of

the design cycle, and the solution is often sought by cycling through a long

series of costly trial-and-error iterations between the different phases of the

development cycle.

The tool presented in this chaper, called RTSIM, aims at alleviating these

difficulties, permitting us to efficiently deal with different aspects of a con-

troller’s synthesis. The main goal of RTSIM is to perform joint simulations

of a real-time controller and of the controlled plant, collecting performance

measures either on the timing behaviour of the controller or on the quality

of the plant dynamics. Specifically, a designer is allowed to specify:

I a set of plants (specified through their differential models) connected

to a distributed control system by means of sensors and actuators,

I the functional behaviour of the controller,

I the architectural components of the implementation (real-time tasks,

RTOS, shared resources),

I the mapping of functional behaviours onto the architectural compo-

nents.

By leveraging a complete orthogonalization of the functional and archi-

tectural designs, RTSIM enables: 1) an easy comparison of different imple-

mentation approaches for the same functionalities, 2) a performance based

5.1. State of the art 81

tuning of such design parameters as the tasks’ activation rates/scheduling

priorities. The tool is organized as a collection of C++ libraries that include

programming facilities for defining stochastic parameters (e.g. for tasks’ ex-

ecution times, network packets dimensions, etc), for collecting performance

statistic and for recording events of interest on execution traces.

A very important feature of the tool is that it encompasses the best known

solutions for real-time CPU scheduling (either on single or on multiproces-

sor boards) and for bounded delay sharing of resources, as predefined library

classes. The functional specification of the system is provided by intercon-

necting a set of reusable components, according to a syntax closely related to

well-known dataflow paradigms1 Another important feature of the tool is the

presence of a well defined programming framework guiding users in devel-

oping their own functional and architectural components. Once the design

of the controller has been settled and properly tuned, its implementation on

a real-time operating system is straightforward. The fine grained modeling of

such software architectural components as real-time tasks, schedulers, syn-

chronization protocols and so on, enables a very accurate simulation of the

system’s performance.

As far as the simulation of the plant is concerned, RTSIM exploits the

functionality of a powerful mathematical library, called OCTAVE [19], em-

bodying state of the art solutions for the integration of differential equations.

5.1 State of the art

The best known tool suite for simulating control systems is MATLAB. The

MATLAB/Simulink platform is an excellent choice to model and simulate a

plant and a functionally described controller. Moreover, it permits one to

automatically generate a prototype on a target real-time operating system

(by the use of the Real-Time Workshop tool). However, it is not possible to

immediately to model generic Hardware/Software architecture and schedul-

ing algorithms. To cope with this shortcoming, a MATLAB tool to simulate a

real-time scheduler in a Simulink block is proposed in [20]. This allows, to a

given degree, the simulation of timing properties and the assessment of the

1The term “dataflow” generally denotes a subclass of Kahn processes [31], introduced

by Dennis in 1975 [17]. However, since many software environments claim variants of this

model even if their semantics bear little resemblance with that proposed by Davis, through-

out this chapter a loose meaning for this term will be used. Therefore, dataflow will intu-

itively denote a directed sequence of transformations applied on data flowing from inputs

to outputs.

82 Chapter 5. An object-oriented library for simulating real-time control systems

performance of real-time controllers against changes in the timing attributes

of the tasks. The most important feature of this tool is the good integration

with the MATLAB/Simulink environment. On the other hand, the lack of a

clear separation between functional and architectural specifications hinders

the application of the tool to complex systems having event driven and/or

time driven activities.

An interesting product, mainly targeted to the automotive industry, is

Ascet-SD, by Etas engineering tools. The tool includes an easy to use graph-

ical interface that permits modeling the functionalities of a controller in a

Simulink like environment. The main focus of Ascet-3D is the generation of

high quality real-time code for prototyped or production hardware.

In recent years many interesting tools have been proposed for the analy-

sis and simulation of complex real-time systems, networks and kernels. One

of the first softwares aimed at simulating real-time scheduling was produced

by Audsley et al. [4]. The tool permits modeling a system of real-time peri-

odic and aperiodic tasks through a scripting language.

A well-known commercial product in this class is TimeWiz, by Timesys

corp., which is mostly aimed at the analysis of the timing behaviour of a real-

time system with respect to schedulability constraints. The toolset is being

integrated with a UML design framework which allows one to describe com-

plex systems in a fairly general way. However, the tool does not allow one

to perform hybrid simulations of a digital controller along with the continu-

ous dynamics of the controlled plant; thus it is not possible to interactively

evaluate the performance of control systems against changes in the task ar-

chitecture and/or in the scheduling policies.

The idea of separating functional and architectural specification is well

supported by the VCC tool, produced by Cadence corp. Functional behaviours

can be specified using different syntaxes (including the C/C++ language) and

the tool permits one to map a given functionality either on hardware com-

ponents (e.g. Asic) or on software (e.g. concurrent tasks) in order to pursue

different performance/cost tradeoffs. The performance assessment in VCC

regards mainly the timing behaviour of the components and the simulation

of a continuous time plant is not directly supported.

The GIOTTO programming language [68] has been devised to develop hy-

brid control applications consisting of periodic tasks. The model of compu-

tation is primarily aimed at the design and prototyping of time-predictable

control system by the usual paradigm of separating the functional from the

timing behaviour (hard schedulability requirements). Time predictability

(schedulability) is obtained by restricting the design to a time-triggered ar-

5.2. Design process and modelling primitives 83

chitecture [34]. A remarkable advantage of this paradigm is the elimination

of input and output jitters. However, the introduced delays can be a very pes-

simistic solution in many cases. Moreover, the time triggered approach does

not easily cope with event-driven systems.

An integrated design of real-time control systems encompassing perfor-

mance and schedulability concerns was first proposed by Seto et al. [58]. In

this work an optimization procedure for the activation frequencies of con-

trol threads is proposed; the goal is maximizing the controller’s performance

under schedulability constraints. The paper is inspired to the evaluation ap-

proach for embedded controllers suggested by Shin et al. [60]. Other note-

worthy results on this problem are presented by Kim et al. [33]; the authors

first map the classical control design parameters onto the end-to-end re-

quirements of the controller and then apply the method of period calibra-

tion [27] to derive the execution parameters of each thread so that the end-

to-end requirements are respected. A tool like RTSIM may be a very useful

aid to validate the assumptions and the result of these methods and of any

other co-design procedure.

5.2 Design proess and modelling primitives

The construction of a simulation model for RTSIM is carried out considering

two orthogonal viewpoints: the functional behaviour of the controller and

the HW/SW architecture of its implementation. In Figure 5.1, an overview on

a typical design process based on RTSIM is depicted.

The functional design, starting from the mathematical model of the plant

and of its interactions with the environment, produces a model of the func-

tional behaviour. The functional behaviour specifies a sequence of opera-

tions to be performed on data flowing through the controller. Such opera-

tions include the computation of the feedback control law, the extraction of

meaningful information from sensors and so on. The functional design also

produces a set of timing constraints based on the dynamics of the plant and

on the physical limitations of sensors and actuators.

The architectural design can be carried out almost independently. This

activity leads to the definition of a model consisting of software tasks, sched-

ulers, network protocols and so on.

The functional design is then mapped onto the architectural design, wrap-

ping up the functional components into corresponding architectural entities

having specified requirements in terms of execution time, length of messages

84 Chapter 5. An object-oriented library for simulating real-time control systems

Design

Functional

Architectural

Design
Simulation

&
Performance
Assessment

Mapping

Time constraints

Plant

Physical constraints

Mathematical Model

Figure 5.1 Typical design process for the specification and the

simulation of a real-time controller.

and so on. In this phase, the timing constraints are translated into real-time

constraints on the processes and on the messages on the network.

The separation of the functional and architectural viewpoints permits

us to easily test and compare different implementations for the same func-

tional specification in order to identify the solution which best fits the per-

formance/cost tradeoffs of the project.

Finally the system model, composed of its functional and architectural

specification, can be simulated obtaining different types of results. A first

possibility is to analyze the execution traces (by an appropriate visual tool)

to verify if the design meets the desired timing constraints. Moreover, statis-

tics can be collected on the occurrence of events measuring such quantities

as the average delay, the jitter and so forth. Most importantly, fundamen-

tal information can be derived on the control system’s performance by using

typical control theoretical metrics (overshoot, rise time, integral cost func-

tions). If the resulting performance is not satisfactory, it is easily possible

to return back to any of the previous phases and change the system param-

eters, the system components (schedulers, communication protocols) and

even the entire architecture.

In the rest of this section, the most important modeling primitives of RT-

SIM for defining both the functional and the architectural specification are

introduced. A simple example will show how these primitives are applied to

a practical case.

Modeling the funtional behaviour

The separation between the functional and architectural specification is aided,

in the RTSIM tool, by the use of a dataflow approach for the functional mod-

eling of the system. Dataflow models are a well-suited tool in the design of

5.2. Design process and modelling primitives 85

real-time software [66, 73] and they are provided, in different flavours, by a

variety of tools including Simulink, Ptolemy [42], and GIOTTO [68].

The functional abstractions of RTSIM are essentially of two types: com-

puting units and storage units. Computing units are used to perform the

computation while storage units are used to exchange data between different

computing units or between the controller and the external environment.

A computing unit is endowed with a set of input ports and output ports

which must be connected to storage units. Each computing unit can respond

to three different external commands. The first command, called read is

used to acquire external data from the storage units connected with its input

ports. The second one, called execute, computes an output value, while the

third one, called write, is used to write the output into the storage units con-

nected with the output ports. A computing unit can have an internal state

(i.e. state remaining between two consecutive invocation). Notice that no

particular model is required to specify the execute method. Thus, a comput-

ing unit can be a finite state machine, a digital filter, a proportional integral

derivative (PID) controller, or whatever is needed in the controller’s struc-

ture. A set of common use computing units such as matrix gains, digital fil-

ters, discrete time systems are predefined library objects and can be used in

constructing a model of the system without any further programming effort.

Storage units are of three types: input buffers, memory buffers or out-

put buffers. Input buffers serve as an interface between the environment

and the controller. From the point of view of the environment they can be

thought of as sensors performing a measure on a continuous time quantity.

RTSIM offers also the possibility of modeling sensors whose measurement

are affected by band-limited white noise. From the controller’s side, an input

buffer models an I/O card whose content changes when a sampling com-

mand is received. Output buffers can be used to model actuators and can

only be connected to the output ports of a computing unit. They model dig-

ital to analog converters, i.e. when a computing unit writes new data into

an output buffer, the value is held up to the next writing. Memory buffers

can be accessed either for reading or for writing operations and they realize

communications among different computing units.

It is important to observe that when a functional model is constructed no

particular assumption is made either on the hardware implementation of a

storage unit, or on the way concurrent access requests should be scheduled.

Example. An example of functional design is reported in Figure 5.2. The ad-

dressed problem is the control of a simple physical device (an inverted pen-

86 Chapter 5. An object-oriented library for simulating real-time control systems

Gain
Feedback

F_xdot

F_thdot

Der_x

Der_th

F_th

F_x Filt_x

Filt_th

In_thIn_x

����
����
����

����
����
��������

����
����
����

����
����
����
����

Out_u

Angle

Horizontal
position

Force

Plant

Output
Buffers

Memory

Buffers

Input

Buffers

Computing

Units

LEGEND

Figure 5.2 Functional design of a simple controller for an in-

verted pendulum.

dulum). The pendulum is mounted on a cart moving on a one-dimensional

track. The horizontal position x and the pendulum angle � are acquired

through a couple of sensors and their values are stored into two input buffers

(named In x and In th respectively). Data held in the input buffers are pro-

cessed by the computing units Filt x and Filt th in order to extract the

meaningful information and to filter out the sensor noise: the results are

stored into the F x and F th memory buffers. Two digital filters, namely

Der x and Der th, are derivative blocks and are used to estimate the linear

and angular velocities. Finally the four estimated state variables are used by

a computing unit (FeedbakGain) to compute the force to be applied to the

cart which is stored into an output buffer (Out u). It is worth observing that

the computing units shown in this scheme are instances of library predefined

objects (four digital filters and a matrix gain).

Modeling the arhiteture of the system

In our model, a task (or process) is a finite or infinite sequence of requests for

execution, or jobs. Each job executes a piece of code (a sequence of instruc-

tions) implementing some functional behaviour. When a job is activated, we

say that it arrives and the activation time is called arrival time. Depending

on the pattern of arrival times, tasks can be classified as:

Periodic : if the arrivals are separated by a constant interval of time, called

“period”;

5.2. Design process and modelling primitives 87

Sporadic : if the arrivals are separated by variable intervals of time with a

lower bound, called minimum inter-arrival time;

Aperiodic : if a lower bound is not known on the inter-arrival times.

In real-time systems, tasks have time constraints, often expressed as dead-

lines: for example, a typical time constraint for a periodic task is that each

job must finish before the next activation. Another typical constraint is on

the completion jitter (the interval of time between two consecutive job com-

pletions).

The instructions of a task are used to model its timing behaviour. Basi-

cally, an instruction is modeled by an execution time (which can be deter-

ministic or stochastic) and can be associated with the read, write or execute

command of a computing unit. In this way, one or more computing units

can be easily mapped onto a task.

Tasks are assigned to the computational resources (nodes) of the sys-

tem. Each node consists of one or more processors and a real-time oper-

ating system (kernel) endowed with a scheduling policy and a synchroniza-

tion protocol. The state of the art algorithms for CPU scheduling (such as

Fixed Priority, Rate Monotonic [47], Earliest Deadline First (EDF) [47], Pro-

portional share [67]) are provided as predefined objects, both for single pro-

cessor and multi-processor systems. The performance of the schedulers can

be enhanced by using aperiodic servers (Polling server [44], Sporadic Server [61],

Constant Bandwidth Server [1], etc). Priority inversion in accessing mutually

exclusive resources [59] can be avoided by using appropriate synchroniza-

tion protocols implemented in the tool, such as the Priority Ceiling Proto-

col [59] or the Stack Resource Policy [6].

Finally, the system can be comprised of several computational nodes con-

nected by network links. Tasks on different nodes can communicate by

means of real-time messages. A communication resource is modeled by a

shared physical link, an access protocol and a real-time message scheduler.

Example. A better understanding of what is really meant in RTSIM by “archi-

tecture of the system” can be achieved by getting back to the example shown

in Figure 5.2.

Suppose, in the case of the inverted pendulum, that the horizontal po-

sition is computed from the images grabbed by a camera, whereas a poten-

tiometer is used to acquire the angle. In this case the computation work-

load necessary to compute x (associated to computing unit Filt x) is much

88 Chapter 5. An object-oriented library for simulating real-time control systems

Single CPU Resource Manager

EDF Scheduler

Kernel

Shared
Buffer

Filt_x.read()

Filt_x.execute()

Shared.lock()

Filt_x.write()

Der_x.read()

Der_x.execute()

Der_x.write()

Shared.unlock()

Filt_th.read()

Filt_th.execute()

Filt_th.write()

Der_th.read()

Der_th.execute()

Der_th.write()

Shared.lock()

Shared.unlock()

FGain.write()

FGain.execute()

FGain.read()

Task 2Task 1

Application

Figure 5.3 Architectural design for the example shown in Fig-

ure 5.2. The instructions inside each task are exe-

cuted sequentially at every activation.

5.2. Design process and modelling primitives 89

higher than the workload necessary to compute � (associated to computing

unit Filt th). Thus, a possible architecture for the system can be based on

two periodic real-time tasks, Task 1 and Task 2. In particular, Task 1 trig-

gers the actions on computing unit Filt x and Der x in order to compute x

and to estimate the _x horizontal velocity. Task 2 triggers the same opera-

tions on computing units Filt th and Der th.

The main architectural components for this example are depicted in Fig-

ure 5.3: each task is represented by a box containing the list of instructions

executed every period. The two tasks communicate by means of a shared

buffer accessed in mutual exclusion (through the shared.lok() and shared.unlok()

instructions). The concurrent execution of the two tasks is possible using

a scheduler component (named EDFSheduler) endowed with the Earliest

Deadline First scheduling policy [47]. A resource manager is used to select

the access policy: in this example we use a simple blocking policy. Both the

task scheduler and the resource manager are components of a software layer

modeling a real-time operating system (Kernel).

Of course, this is only one of many possible choices for the hardware/software

architecture. This particular choice aims at computational efficiency by con-

centrating in one task all activities that may be performed at the same rate. A

potential drawback of this choice is the lack of modularity. For example, Task

2 could be replaced by two tasks, the first operating the F th and F thdot

computing units, and the second operating the gain unit (FeedbakGain). In

this way, it could be possible to change “on-line” the way x position is ac-

quired to cope with a potential sensor fault or with a mode change. Another

possibility, in case a very high loop rate was needed for stability reasons, is to

use two different CPU boards connected by a network link, one performing

Task 1 (which is computationally expensive), and the other one perform-

ing Task 2. More generally, this simple example shows that the choice of

the hardware/software architecture is the solution to a potentially complex

problem involving performance issues, cost limitations and physical con-

straints. This is the reason why decoupling architectural and functional de-

sign turns out to be a convenient choice.

Moreover, even with the architecture shown in Figure 5.3, the developer

has some degree of freedom in setting the parameters. The choice of the

scheduling algorithm, the resource manager and the task activation rates can

influence the delay of the two tasks and this in turn impacts upon the stabil-

ity of the system and the “quality” of the control. For this reason, it is desir-

able to know in advance which scheduling strategy and which combination

of parameters must be assigned in order to maximize the performance of the

control strategy.

90 Chapter 5. An object-oriented library for simulating real-time control systems

Assessing performane

Once a system has been modeled, a designer is provided with different op-

portunities to simulate the system and evaluate the quality of the design. A

simulation consists of a sequence of events associated with relevant situa-

tions in the architectural model of the system (i.e. task arrivals, task termi-

nations, deadline expirations etc.), which may trigger actions in the func-

tional model. Therefore, events are the fundamental element of any sim-

ulation and they can be used in a variety of ways to evaluate the system’s

performance. With this respect, the first possibility a designer is offered, is

to record all events of a simulation, or a meaningful subset, into a trace file.

The toolset comprises a utility, called RTTracer, which interprets a trace file

and visualizes events in a clear form (see Figure 5.6). In order to facilitate

portability RTTracer is entirely written in Java. The application of RTTracer is

particularly useful for performing a “temporal” debugging of a complex sys-

tem when simulations reveal a failure in respecting deadlines for some task

or network message. The second important possibility is to define statisti-

cal probes, which can be attached to objects to measure the occurrence of

events. Statistics can be collected over multiple runs when such parameters

as computation times are assigned to vary stochastically according to spec-

ified distributions. The main use of this feature is to derive such measures

of the system’s performance as jitter, latency of data, end-to-end delays on

pipelines of tasks and so forth. Finally, particular types of input buffers can

be used to measure the evolution of some quantities of interest in the plant

(very much like in Simulink). Such units can be connected to files in order

to record the time evolution of the observed quantities. In a similar way it

is possible to define performance probes which can, for instance, integrate

over time the squared norm of the measured quantity.

Example. In order to show some of the possibilities offered by RTSIM, we get

back to the example of the inverted pendulum introduced in the previous

sections. The code for this example is included in the official distribution of

RTSIM (it can be downloaded from the web site http://rtsim.sssup.it),

where the interested reader can find the exact parameters of the simulation.

The state space of the pendulum is composed of four variables: [x; _x; �;

_

�℄

T ,

where x is the linear position, _x is the linear velocity, � is the pendulum angle

and _

� is the angular velocity. In the simulations presented in this section, the

pendulum starts from the state [�0:1; 0; 0; 0℄

T and has to be stabilized into

the origin of the state space [0 ; 0; 0; 0℄

T .

The functional and the architectural model of the controller have been

5.2. Design process and modelling primitives 91

0 1 2 3 4 5 6
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Dynamics of the linear position

Time(sec)

X
 p

os
iti

on
 (

m
)

(a)

0 1 2 3 4 5 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Dynamics of the angle

Time (sec)

A
ng

le
 (

ra
d)

(b)

Figure 5.4 Dynamics of the x (a) and � (b) variables for a simula-

tion run compared with an experimental realization.

introduced above. In order to provide an experimental validation for the use

of the tool, we realized a physical implementation of the system based on

the SHARK [23] kernel (for details see the Web site http://shark.sssup.it).

The execution times of the tasks were profiled and imported into the simu-

lation model.

A first element of information on the correctness of the system’s behaviour

can be obtained by visually inspecting the execution traces of the tasks. In

Figure 5.6 the RTTracer output for a simulation is shown. The assumed hard

real-time algorithm is the classic Earliest Deadline First. In order for the

compliance of the control design with some performance expectation to be

verified, it is very important to show the evolution of state variables in time.

92 Chapter 5. An object-oriented library for simulating real-time control systems

10 15 20 25 30 35 40
50

60

70

80

90

100

110

120

130
Performance index of the controller (simulation + experiment)

Period of task T1 (msec)

P
er

fo
rm

an
ce

 in
de

x

experiment

simulation

Figure 5.5 Performance index variations with respect to the ac-

tivation period of Task 1.

In Figure 5.4, the dynamics of x and � obtained from a simulation run are

shown. In order to verify the quality of the simulation we report on the same

plot also data obtained from an experimental realization. For both simula-

tion and experimental dynamics convergence to zero takes approximatively

four seconds.

In order to achieve a quantitative assessment of the influence of the schedul-

ing choices on the control performance, it is necessary to introduce a perfor-

mance index. A possible choice, as proposed by Shin et al. [60], is the use of

a quadratic function:

J = Ef

Z

+

0

1(x

T

Qx +Ru

2

g (5.1)

where:

I E–.˝ denotes the expectation value (calculated over stochastically vary-

ing parameters),

I x denotes the state vector,

I u denotes the command variable,

I the Q matrix and the R constant are two weighting factors.

5.3. Description of the tool 93

As said above, a particular type of input buffer can be attached to the state

and to the input variables in order to compute
R

+

0

1(x

T

Qx+Ru

2 as the sim-

ulation takes place. The expectation value can easily be approximated by at-

taching a statistical probe to the storage unit and by collecting the measures

over a sufficient number of runs.

The simulations were aimed at evaluating the impact of the task frequen-

cies. The schedulability of tasks for this algorithm is ensured, provided that
C

1

T

1

+

C

2

T

2

� U

l

, where T

1

and T

2

are the activation periods of the tasks, C
1

,

C

2

are the worst case execution times and U

l

= 1. Residual computation ac-

tivities (for data logging and man/machine interfaces) where considered by

using a lower utilization bound: U
l

= 0:8.

The simulated and the experimental plots for the performance index are

reported in Figure 5.5. In the horizontal axis period T

1

is varied while T

2

is

chose accordingly to the relation C

1

T

1

+

C

2

T

2

= 0:8. The performance index

for each point was evaluated averaging the result of twenty execution and

simulation runs. As a remark, the evaluation of each point required approx-

imately forty seconds on a PC with an Athlon 1.2 Ghz processor running the

Linux operating system.

As it is possible to see, if high values are chosen for T
1

, the system tends

to instability and the value of the performance index increases. Similarly, if

T

1

becomes too small there is a steep degradation of the performance. The

latter phenomenon is due to the corresponding value of T
2

, which tends to

increase according to the schedulability relation. The best performance is

achieved by a trade-off choice for the periods. The behaviour of the cost

function is pretty similar in the two plots, except for the higher values of the

experimental data. This difference, which is also evident in the plots in Fig-

ure 5.4, is due to the adoption of a simplified model for the plant. As a matter

of fact, such aspects as the transfer function of the motor, the sensors and

process noise and the nonlinearities on the actuators were neglected in the

construction of the plant model, since the accuracy level obtained with the

simplified model was deemed satisfactory for the purposes of this work.

5.3 Desription of the tool

Summarizing the illustration above, RTSIM consists of a collection of C++

libraries containing three types of objects:

I continuous time plants,

94 Chapter 5. An object-oriented library for simulating real-time control systems

Figure 5.6 Graphical output of a trace of a RTSIM simulation.

+ ComputingUnit

+ ActuatorBuffer

+ SensorBuffer

+ PeriodicTimers

+ ContrInstr

+ GenericPlant

+ Sensor

+ ColumnVector

+ Matrix, ...

Event

Package

Generating

RTLIBNumerical
Package

CTRLIB

Package

Data

Processing

Figure 5.7 Main components involved in a RTSIM based simu-

lation of a real-time controller

I functional components of control software, and

I architectural components of control software.

The distinction of these conceptual domains dictated a decomposition of

the software into three interacting packages, as shown in Figure 5.7.

The package denoted as “Numerical Package” is used to model and simu-

late plants. Objects living in this package evolve in continuous time and they

are described by means of differential equations. The package called “CTR-

LIB” is used to construct the functional model of the system. Objects be-

longing to this package do not posses an intrinsic concept of time evolution:

5.3. Description of the tool 95

their actions are triggered by objects belonging to other packages (in par-

ticular to RTLIB). The “RTLIB” package is used to describe the architectural

components a functional model is mapped onto. Objects evolve according

to a discrete event model of computation [41]: they react to events and are

able to generate other events in their turn.

When designing the class hierarchies for the packages, we wanted to achieve

a high degree of decoupling so as to facilitate an autonomous evolution of

the tool along the three different dimensions. For instance, in our inten-

tions, a developer should be able to extend the library of computing units

with new algorithms without caring too much for the structure of kernels or

scheduling algorithms and vice versa. In order to achieve this goal, struc-

tural relations between components and their interactions had to be cap-

tured through a set of clear interfaces. Particularly, for what concerns the in-

teraction between the three packages, we could leverage an important prop-

erty of the addressed systems: meaningful interactions between plants and

controllers take place only on the occurrence of a specific set of events gener-

ated by RTLIB. On one hand, in the time interval separating two writings on

the output buffer, the differential equations of a plant can be integrated as-

suming constant values in the actuators2. On the other hand the plant state

can be observed through the objects simulating the sensors only when an

event associated with sampling is generated. Hence, a substantial role in

the RTSIM simulation environment is played by the generation of discrete

events for RTLIB. This is achieved by using the Metasim library, which is a

small software layer developed at the Retis Lab of Scuola Superiore S. Anna.

Metasim provides the basic classes for writing generic discrete event simula-

tions [13, 37, 39] and a clear framework to use them.

The remainder of this section is devoted to a short description of the three

packages (both structural and behavioural) and of their most important in-

teractions. For obvious space constraints, the description is far from com-

plete. The interested reader is referred to the technical documentation of the

tool [45]. The components of the libraries and their behaviour are described

by the UML graphical notation [56].

The RTLIB Pakage

RTLIB is a library designed to simulate the timing behaviour of a real-time

software system. It models entities like real-time tasks, scheduling algorithms,

single and multi processor nodes, and network links.

2More sophisticated actuator schemes such as first order hold or analog loops can easily

be modeled in the plant description.

96 Chapter 5. An object-oriented library for simulating real-time control systems

«Interface»
AbsTask

+schedule()
+deschedule()
+onArrival()
+onEnd()

«Interface»
AbsRTTask

+getDeadline()
+getRelDeadline()

Task

RTTask

Entity

Instr
+schedule()
+deschedule()
+onEnd() *

ExecInstrWaitInstrContrInstr

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 5.8 Class diagram representing the Task family of classes.

Tasks. One of the most important entities needed to specify a software ar-

chitecture is the task. The family of classes for modeling tasks is shown in

Figure 5.8 as a UML class diagram. In order to de-couple the interface of a

task from its internal implementation, we decided to provide an abstract in-

terface AbsTask that exposes the basic methods to handle a task (shedule,

deshedule, onArrival, onEnd). This same interface is used by all entities

that can be scheduled: for example, an aperiodic server will implement the

AbsTask interface (see the server section below).

The Task class contains a list of instructions, which are modeled by the

Instr class. Examples of instructions are:

I ExeInstr that models a piece of sequential code with a certain execu-

tion time; the execution time is described by a RandomVarobject: hence

it is possible to model a portion of code with an arbitrarily distributed

random execution time;

I WaitInstr and SignalInstr that model the wait and signal system

calls for concurrent access to shared resources using semaphores; and

I the ControlInstr family of classes that model the execution of com-

puting units.

A programmer inserts instructions into tasks, just as she/he would write a

5.3. Description of the tool 97

real implementation. Instructions are executed sequentially 3 and have a du-

ration, which can either be deterministic or specified as a random variable.

In the types of applications we want to model, tasks have timing require-

ments. The most common constraint is the deadline: the absolute deadline

of a job is the instant of time by which the job must finish; the relative dead-

line of a task is the interval of time between the arrival time and the absolute

deadline of each job.

A real-time task is modeled by the abstract interface AbsRTTask which

derives from the AbsTask (Figure 5.8). It comprises the getDeadline() and ge-

tRelDeadline() methods, which return respectively the absolute and the rela-

tive deadline of a task.

Kernels. The Kernel family of classes models a computational resource,

like single processor or multi-processor nodes. As in the case of tasks, we

found it useful to introduce an abstract interface, AbsKernel, capturing the

minimum set of services required to any type of kernel. In particular we iden-

tified the following services:

I task insertion into a ready queue (method ativate),

I task extraction from the ready queue (method suspend),

I task dispatch (method dispath): the currently executing task is revoked

use of the CPU, which is assigned to the first task in the ready queue.

In multiprocessor systems the kernel performs this operation on each

processor under its control.

The kernel interface also includes methods to handle the most important

events a kernel can receive: the arrival of a new task (method onArrival) and

the termination of a task’s job (method onEnd).

Notice that, at this point, we have not yet introduced any notion of “task

priority”. In fact, different scheduling policies compare tasks based on dif-

ferent parameters. For example, the Rate Monotonic scheduler requires a

static priority to be assigned to each task, whereas the Earliest Deadline First

3Thus far, this model has proven sufficiently expressive, since we restricted the applica-

tion of the tool to modeling classical “data-flow” oriented real-time control applications. In

the future, we plan to model also multimodal applications for which a direct support for

branches will be necessary. The addition of this feature requires slight modification to the

structure of RTLIB and it is planned for future revisions.

98 Chapter 5. An object-oriented library for simulating real-time control systems

«Interface»
AbsKernel

+activate(t:AbsTask *)
+suspend(t:AbsTask *)
+dispatch()
+onArrival(t:AbsTask *)
+onEnd(t:AbsTask *)

RTKernel

«Interface»
Scheduler

+insert()
+extract()
+getFirst()

RTScheduler

PrioScheduler
+addTask(t:AbsRTTask *,p:int)

EDFScheduler
+addTask(t:AbsRTTask *)

PrioModel

RTModel
+getPriority()

EDFModel

TaskModel
«Interface»
AbsTask

«Interface»
AbsRTTask

 * *

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 5.9 Class diagram representing the Kernel family of

classes.

scheduler uses the absolute deadline of a job to determine the task prior-

ity. Moreover, some scheduling policies (like Proportional Share or Round

Robin) do not use any priority at all.

Hence, the ordering of tasks in the ready queue depends on the schedul-

ing policy, which is implemented by the Sheduler family of classes. Each

one implements a different queuing policy: for example, EDFSheduler im-

plements the Earliest Deadline First scheduling algorithm, PrioSheduler

implements a generic Fixed Priority scheduling algorithm, and so on. The

scheduling parameters are not stored in the task class, but in the wrapper

class TaskModel: thus, the task implementation is independent from the

scheduling algorithm (as in the Adapter Pattern [26]). The TaskModel hier-

archy of classes is similar to the Sheduler hierarchy: every scheduler corre-

sponds to a task model. In Figure 5.9 the inheritance relationships between

these classes are summarized.

The current distribution of RTLIB provides single processor and multi-

processor kernels as predefined components, with any of the following schedul-

ing policies: FIFO, EDF, fixed priority (FP) and rate monotonic, and EEVDF [67].

For the multi-processor versions of EDF and FP, it is possible to allow/disallow

migration: in the latter case, tasks must be statically allocated to processors.

Example. The notification mechanism and the way events are handled in

RTLIB are better explained with a practical example. The sequence diagram

shown in Figure 5.10 captures a snapshot of the system described in Fig-

ure 5.3 when a preemption occurs: while Task 1 is executing, Task 2 is acti-

vated (arrives) and, having a higher priority, preempts Task 1.

5.3. Description of the tool 99

e1: ExecInstr k: RTKernel s:EDFScheduler

deschedule()
deschedule()

getFirst()

insert()

schedule()

onArrival()

Task 1: RTTask Task 2: RTTask

onArrival()

Figure 5.10 Sequence diagram: Task 2 preempts Task 1.

When Task 2 is activated, its arrival event is processed: as a consequence,

the onArrival() method of Task 2 is invoked. After updating its internal

status (for example recording the arrival time and resetting the current in-

struction pointer to the first instruction),Task 2 calls the onArrival()method

of the kernel. The kernel, in turn, inserts the task in the ready queue (calling

s.insert()), and checks if this task is now the first element in the queue. If

so, a preemption must occur: the current executing Task 1 yields the pro-

cessor and Task 2 becomes the current executing task.

Hence, Task 1must be signaled calling itsdeshedule()method; in turn,

it calls the deshedule() method of its currently executing instruction. Fi-

nally, Task 2 is signaled calling its shedule() method.

Servers. When soft real-time aperiodic tasks are to be scheduled together

with hard real-time periodic tasks, the goal is to improve the response time

of the aperiodic tasks without compromising the schedulability of the hard

real-time tasks. A popular conceptual framework for modeling the behaviour

of such systems is to associate a server to the soft aperiodic tasks. A server is

characterized by certain parameters specifying exactly its performance ex-

pectations. Several aperiodic service mechanisms have been proposed un-

100 Chapter 5. An object-oriented library for simulating real-time control systems

der RM [44, 43, 3, 71] and under EDF [62, 28, 64, 63, 1, 46] scheduling.

The Server class models these algorithms.

We noticed that in almost all the aperiodic server mechanisms, a server is

treated as a particular kind of task and is inserted in the ready queue together

with the other regular tasks. For this reason, we decided to derive the server

class from the AbsTask interface, so that the scheduler does not need to dis-

tinguish a regular task from a server. The main advantage is that, when im-

plementing the server algorithm, the scheduler module can be reused with-

out any modification. On the other side, a server handles aperiodic tasks just

as a kernel does: when several aperiodic requests are pending, the server

must choose which one must be serviced next. For this reason, the server

class also derives from the AbsKernel interface. In this way, a task has not to

distinguish whether it is served by a server or by a regular kernel, and we can

re-use the same code for the task class. In the current RTLIB distribution, the

polling server, deferrable server (DS), sporadic server (SS), total bandwidth

server (TBS), and constant bandwidth server (CBS) are provided as prede-

fined components.

Sharing other resoures. Sometimes, tasks access mutually exclusive re-

sources: for example, tasks can access the same memory block that is pro-

tected by a mutex semaphore. For example, tasks can access the same mem-

ory block that is protected by a mutex semaphore.

In RTSIM, this can be simulated by means of a class Semaphore and of

a Resoure Manager, which is the entity that manages the operations on

a semaphore, holding the blocked tasks in queues. Tasks can operate on

semaphores by means of WaitInstr and SignalInstr instructions.

In Figure 5.11 the relationship among the classes is shown while in Fig-

ure 5.12 we show a possible scenario of execution.

When a task executes a WaitInstr instruction, the Resoure Manager

checks if the semaphore is free by invokinglok(Semaphore *s). In the con-

sidered scenario, the semaphore is locked, thus the task must be blocked: the

resource manager invokes the Kernel::suspend() method to block the task

and Kernel::dispath() methods, in order to schedule another task.

In the current implementation of RTLIB, a simple locking policy, the Pri-

ority Inheritance protocol (PIP), the Priority Ceiling protocol (PCP), and the

Stack Resource Policy (SRP) are provided as predefined components. In the

case where one of these protocols is used, the corresponding resource man-

ager has to interact with Scheduler component to change the task priority

5.3. Description of the tool 101

«Interface»
AbsKernel
+activate()
+suspend()

«Interface»
AbsResManager

+lock(r:Resource,t:AbsTask)
+unlock(r:Resource,t:AbsTask)

Resource
+lock(t:AbsTask)
+unlock()
+isLocked(): bool
+getHolder(): AbsTask *

WaitInstr
+getTask(): AbsTask *
+getResource(): Resource *

SignalInstr
+getTask(): AbsTask *
+getResource(): Resource *

ResManager
+addResource(r:Resource)
+setKernel(t:AbsKernel)

SRPManager
+declareResUsage(t:AbsRTTask,r:Resource)

SemManager

Scheduler

UML legend

inheritance, arrow
toward base class

+ public

<<Interface>> abstract collection
of method specifications

Figure 5.11 Class diagram representing the Resource Manager

family of classes.

Task 1: RTTask Task 2: RTTaskWaitInstrw: k: RTKernel

schedule()
lock(Semaphore *s)

suspend()

SimpleResManagerres:

deschedule()

dispatch()
schedule()

Figure 5.12 Sequence diagram showing a locking operation on

a semaphore.

102 Chapter 5. An object-oriented library for simulating real-time control systems

according to the protocol. This justifies the relation between the Resource

Manager and the Scheduler component in Figure 5.11.

Networks. Every kernel may have one or more network interfaces, modeled

by the NetInterfae family of classes, each one connected to a network link,

modeled by the NetLink family of classes. For each network link class, there

is a corresponding network interface class.

A task can send a message, modeled by the Message class, to another task

passing it to the appropriate network interface of its kernel. The Message

class implements the AbsTask interface: in this way, it can be handled by

a Sheduler. A network interface has a pointer to a Sheduler object for

implementing the message en-queuing policy. It realizes the medium ac-

cess protocol, such as the Ethernet or CAN bus protocol. In particular, the

CANInterfae has a pointer to a function that transforms the message prior-

ity (or deadline) in a CAN priority4.

Two additional instructions have been defined:

I SendInstr instruction: takes as parameters the name of the destina-

tion task and a function object for building new messages.

I ReeiveInstr instruction: if a message has already arrived for the task,

it gets the message, otherwise it blocks the task waiting for a message

from the network interface.

In the current distribution of RTLIB, the Ethernet network and the CAN

bus are provided as predefined components.

The Numerial Pakage

The main purpose of the numerical package is to provide programming mod-

els for continuous time plants. A plant is described by means of its state

variables, differential equations and so on. From a structural viewpoint, the

numerical package is a software layer built on the top of a library which pro-

vides some services, such as differential equation integration and linear alge-

bra operations. The current implementation is based on the OCTAVE library,

which is a freely available tool encompassing the best known algorithms for

numerical computation. The presence of a software abstraction layer allows

4High level protocols (like TCP/IP) have not been implemented for they are well beyond

the scope of this work.

5.3. Description of the tool 103

GenericPlant

+integrate(newTime:Tick)
+addSensor(s:Sensor *)
+getState(): ColumnVector
+addActuator(position:integer,a:Actuator *)
-DiffEq()

*

1

«interface»
Sensor

+updateSensor(p:GenericPlant * p)

«interface»
Actuator

+getCommand()

*

1

Figure 5.13 Class diagram representing the components of the

numerical package to be used for modeling plants.

ComputingUnit
+read()
+execute()
+write()
+attachInput(pos:int,in:DataSource *)
+attachOutput(pos:int,o:DataSink)

«interface»
DataSource

+getData(): ColumnVector

«interface»
DataSink

+putData(data:ColumnVector)

OutputBuffer
-value: ColumnVector
-sampledValue: ColumnVector
+sample()

InputBuffer
-value: ColumnVector
+getCommand()

MemoryBuffer

ContrInstr
#onEnd()

PeriodicTimer
+onTimeStamp()

«interface»
Sensor

The sensor may
be sampled periodically
by a Timer (belonging
to the event generating
module)

Operations on a
computing unit can
be triggered by a
pseudoinstruction

ContrReadInstr
+onEnd()

ContrWriteInstr
+onEnd()

ContrExecuteInstr
+onEnd()

«interface»
Actuator

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 5.14 The most important classes used to model the func-

tional behaviour of a controller.

104 Chapter 5. An object-oriented library for simulating real-time control systems

us to replace OCTAVE with any other similar solution without affecting the

structure of the simulator. As well as permitting the definition of a plant, the

numerical package also exports a set of useful classes for linear algebra, such

as Matrix, ColumnVetor and so on.

User-defined plants are derived from an abstract class named GeneriPlant

(see Figure 5.13). The inheritance mechanism permits us to add plant spe-

cific information by inserting new data members in the derived class. The

differential equations are specified by providing a definition to the abstract

method DiffEq.

The plant evolution can be observed by a set of objects implementing the

Sensor interface. Formally speaking, if the state of the plant is represented

by the column vectorx, a Sensor realizes an output functiony = h(x; t). The

programmer is required to implement functionhby writing a virtual method,

called updateSensor, which can read the plant state by issuing a call to the

getState method of the plant. The mechanism used to update the value of

the sensor is based on the observer pattern [26].

The evolution of a plant can be influenced by a set of actuators. An ac-

tuator is an object implementing the Atuator interface. Each actuator is

registered into a position, denoted by an integer number. This convention is

to simplify the writing of differential equations. The integration of the plant

differential equations is performed by issuing a call to the integrate method

exported by the plant.

CTRLIB

The functional model of the system is expressed using the classes of the CTR-

LIB package. CTRLIB offers two types of components: computing units and

storage units. Both of these components are framed within a hierarchy of

classes. The structure of the basic classes of CTRLIB is shown in Figure 5.14.

In order to specify a new type of computing unit, the programmer has to

derive it from the abstract class ComputingUnit and has to provide an imple-

mentation for three pure virtual methods: read(), exeute() and write().

Once the class is defined, the programmer can instantiate objects from it to

be used in different contexts. For example, a class implementing a PID con-

troller is likely to be a reusable component.

A ComputingUnit is connected to a set of inputs, which are objects imple-

menting the DataSoure interface, and to a set of outputs which implement

the DataSink interface. Each computing unit can be associated with special

5.3. Description of the tool 105

rFilt_x: ContrReadInstr Filt_x: MyCompUnit F_x: MemoryBuffer invPend: LTIPlant

onEnd()
integrate()

getData()

read()

RTLIB CTRLIB Numerical Package

Figure 5.15 Sequence diagram showing the interactions which

take place when an end event for a instruction is

handled.

instructions triggering the execution of the read(), exeute() and write()

operation. Such instructions derive from the ContrInstr class.

Input buffers are realized as classes implementing both the Sensor and

DataSoure interfaces. A predefined method, called sample(), is used to

sample the value of the sensor upon the occurrence of certain events. A

particular choice can be the use of a RTLIB object implementing a periodic

timer. Another possibility is to have the sample() method called by an in-

struction of a task. The sampled value can be read by a computing unit call-

ing the getValue() method.

Output buffers are objects implementing both the Atuator and the DataSink

interfaces. Thus, they export the putValue() method to the computing units

and the getCommand() method to the plant. Memory buffers implement

both the DataSoure and DataSink interfaces and are used to exchange in-

formation between the different computing units. Output and memory buffers

can be used with no other efforts than defining the width of the data vec-

tor when an object is instantiated. In order to simplify the simulation code,

the creation of memory buffers connecting different computing units can be

made in a semi-automatic fashion by appropriate programming facilities.

106 Chapter 5. An object-oriented library for simulating real-time control systems

integrate()

Ode.integrate()

updateSensor()

getCommand()

CTRLIB Numerical Package

In_x: invPend: LTIPlantOut_u: OutputBufferInputBuffer

Figure 5.16 Sequence diagram showing how the integration is

performed.

Some insight into the hybrid simulation

This section is devoted to showing the main interactions between the differ-

ent components of the RTSIM tool suite when the libraries are employed to

perform a hybrid simulation between a continuous time plant and a digi-

tal controller, whose timing evolution is simulated by a RTLIB discrete event

model.

In order to highlight the interactions between different components of

RTSIM that take place upon the occurrence of some meaningful events, con-

sider the sequence diagram in Figure 5.15. The boxes represent RTSIM ob-

jects involved in a simulation. The diagram is partitioned according to the

three different packages objects belong to. The diagram shows a sequence

of method calls that follows the termination event of the rFilt˙x instruction.

This event is handled by the onEnd() method of the rFilt˙x object. The first

action performed by rFilt˙x calls the integrate() method on the invPen-

dulum object, which determines the integration of the differential equation

up to the current instant of time. The second action is a call on the read()

method of the computing unit associated with the instruction, which, in its

turn, reads the data from the buffer.

It is also interesting to observe how the integration is performed by de-

tailing the sequence of operations performed by calling the integrate()

method (diagram in Figure 5.16). At the beginning of the integration the

5.4. Future extensions 107

value of the command variables, contained in the output buffer, are acquired

through the getCommand() method. Then, the integration can be performed

(by calling the Ode.integrate() function of the OCTAVE library) assuming

constant values for the input throughout the integration interval. At the end

of the integration, the values contained in the input buffers, which model the

sensors, are updated.

5.4 Future extensions

In this chapter a tool for the joint simulation of a plant and of a real-time em-

bedded controller has been presented. By using hybrid techniques the tool

supports realistic modeling for many implementation related issues, which

are not usually accounted for during controller design. The tool consists of a

complete set of C++ libraries for modeling, simulating and gathering statisti-

cal profiles of performance metrics. The application of the tool is particularly

useful whenever a given control design is based on heterogeneous dataflows

from the environment inducing the use of a complex Hardware/Software im-

plementation. In these cases, the tool provides important guidelines in the

choice of such parameters as the sampling rates of sensors and, more gen-

erally, permits evaluation of different architectural alternatives. In the future

the simulation capabilites of the tool will be extended to include the possibil-

ity of handling discrete events generated from the plants and mode changes

in the controller. The future activities of the RTSIM team will also be aimed at

the integration of the tool in more complex design environments, including

visual modeling tools and automatic code generation for real-time execution

environments.

108 Chapter 5. An object-oriented library for simulating real-time control systems

III

onlusions

6

Summary

”Show me a sane man and I will cure him for you.

- Carl Gustav Jung

This thesis presented a novel methodology for design of embedded controllers

(E.C). The problem has been first analyzed from different viewpoints and

both conceptual and Computer Aided Design tools have been proposed. The

proposed techniques have been successfully applied to meaningful case stud-

ies thus demonstrating the effectiveness of the approach.

In Chapter 2 we provided a general outline of the envisioned methodol-

ogy and of its key cultural references: i.e. control design with information

constraints and real-time scheduling. The work unfolded around the key

concept of platform: i.e. a set of abstraction modeling relevant aspects of

the architecture during the control design.

In Chapter 3 the platform describes a set of time-triggered concurrent

tasks sharing a common CPU by means of a RTOS. Each task was assumed to

implement a feedback controller on a plant. By using the stability radius as a

performance metric, we showed that it is very easy to evaluate if an architec-

ture is adequate for a given performance specification. Moreover, once the

architecture has been selected, it is very easy to set up an optimization proce-

dure over maximizing the minimum stability radius attained by the different

control loops.

In Chapter 4 the platform based design has been applied to a distributed

control problem: a multi-actuator system has to be stabilized but commands

to the different actuators are issued through a shared communication link.

We discussed possible formulation of the problem and showed the numeri-

cal efficiency of a solution based on the Parametric Generalized Linear Com-

plementarity Problem. Exploiting parametric dependence of the solutions,

111

112 Chapter 6. Summary

the state space can be tasseled in different polyhedral regions. In each re-

gion the solution to the control design problem is based on a fixed TDMA

schedule for the bus.

In Chapter 5 we showed a Cad co-simulation tool that has been con-

structed to perform a posteriori validation and accurate performance asses-

ment before the implementation. The tool separates architectural and func-

tional viewpoint on the design and allows one to explore different architec-

tural mappings of a functional design collecting performance measures ex-

pressed in the control application domain. The most important feature of

the tool is the fine grained modeling of the best known real-time scheduling

algorithms.

Bibliography

[1] L. Abeni and G.Buttazzo. Integrating multimedia applications in hard real-time sys-

tems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain,

december 1998. IEEE.

[2] Luca Abeni. Progetto e realizzazione di meccanismi di sistema per applicazioni real-

time multimediali. Master’s thesis, Universit degli studi di Pisa, Aprile 1997.

[3] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new

scheduling theory to static priority preemptive scheduling. Software Engineering

Journal, 8(8):284–292, Sep 1993.

[4] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Stress: A sim-

ulator for hard real-time systems. Software: Practice and Experience, 6(24), 1994.

[5] T. P. Baker. A stack-based allocation policy for realtime processes. In IEEE Real-Time

Systems Symposium, december 1990.

[6] T.P. Baker. Stack-based scheduling of real-time processes. Journal of Real-Time Sys-

tems, 3, 1991.

[7] F. Balarin and other. Hardaware-Software Co-Design of Embedded Systems: the polic

approach. Kluwer Academic Publishers, 1997.

[8] S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress: A

notion of fairness in resource allocation. Algorithmica, 6, 1996.

[9] A. Bemporad, F. Borrelli, and M. Morari. Optimal controllers for hybrid systems:

Stability and piecewise linear explicit form. In Proc. 39th IEEE Conf. on Decision and

Control, December 2000.

113

114 Bibliography

[10] A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based on linear

programming - the explicit solution. submitted to IEEE Transactions on Automatic

Control, 2001.

[11] A. Bemporad and M. Morari. Robustness in Identification and Control, volume 245 of

Lecture Notes in Control and Information Sciences, chapter Robust Model Predictive

Control: A Survey. Springer-Verlag, 1999.

[12] A. Bicchi, A. Marigo, and B. Piccoli. Quantized control systems and discrete non-

holonomy. IEEE Trans. on Automatic Control, 2001.

[13] G. Booch. Object oriented design with applications. Benjamin/Cummings Publish-

ing Company, Inc., 1991.

[14] S. Boyd and C. H. Barratt. Linear controller design: limits of performance. Prentice

Hall, 1991.

[15] Roger Brockett. Minimum attention control, 1997.

[16] David F. Delchamps. Extracting state information from a quantized output record.

Systems and Control Letters, 1989.

[17] J.B. Dennis. First version dataflow procedure language. Technical report, Mas-

sachusetts In. of Tecnology, Lab. Comp. Sc., 1975.

[18] V. Dua and E.N. Pistikopoulos. An algorithm for the solution of multiparmatric

mixed integer linear programming problems. Annals of operations research, 99, 2001.

[19] John Eaton et al. http://bevo.che.wisc.edu/octave.

[20] J. Eker and A. Cervin. A matlab toolbox for real-time and control systems co-design.

In Proc. of The Real-Time Computiong Systems and Applications, Hong Kong, China,

December 1999.

[21] N. Elia and S. Mitter. Stabiliztion of linear systems with limited information. IEEE

Trans. on Automatic Control, 2001.

[22] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research

Logistics Quarterly, 3:95–110, 1956.

[23] Paolo Gai, Luca Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A new kernel

approach for modular real-time systems development. In Proceedings of the 13th

IEEE Euromicro Conference on Real-Time Systems, June 2001.

Bibliography 115

[24] B. Gailly, M. Installe, and Y. Smeers. A new resolution method for the parametric lin-

ear complementarity problem. European Journal of Operational Research, 128:639–

646, 2001.

[25] T. Gal. Postoptimal anlyses, parametric programming and related topics. De Gruyter,

Berlin, 1995.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of

Reusable Object-Oriented Software. Addison Wesley, 1997.

[27] R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time requirements with

resource-based calibration of periodic processes. IEEE Transaction on Software En-

gineering, 21(27), 1995.

[28] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling environ-

ment. Journal of Real-Time System, 9, 1995.

[29] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynam-

ical models. Automatica, 37:1085–1091, 2001.

[30] Dimitris Hristu and Kristi Moransen. Limited communication control. System and

Control Letters, 37(4):193–205, July 1999.

[31] G. Kahn. The semantics of a simple language for parallel programming. In Proceed-

ings of the IFIP Congress 74, Amstrdam, 1974.

[32] S. Keerthi and E. Gilbert. Optimal infinite-horizon feedback laws for a general class

of constrained discrete-time-systems. stability and moving-horizon approximations.

J. Optim. Theory Appl., 57(13):265–293, 1988.

[33] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual asessment of a

real-time system design: a case study on a cnc controller. In Proceedings of the IEEE

Real-time Systems Symposium, 1996.

[34] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla, C. Senft, and R. Zainlinger.

Distributed fault-tolerant real-time systems: The mars approach. IEEE Micro, 9(1),

February 1989.

[35] H. Kopetz and G. Grnsteidl. Ttp-a protocol for fault-tolerant real-time systems. IEEE

Computer, January 1994.

[36] Hermann Kopetz. The time-triggered model of computation. Proceedings of the 19th

IEEE Systems Symposium (RTSS98), December 1998, Dec. 1998.

116 Bibliography

[37] W. Kreutzer. Systems Simulation - Programming Styles and Languages. Addison-

Wesley, 1986.

[38] K. Kuetzer, S. Malik, R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-

level design: Orthogonalization of concerns and platform-based design. IEEE Trans-

action on coputer-aided design of integrated circuits and systems, 21(27), 2000.

[39] A.M. Law and W.D. Kelton. Simulation modeling and analysis. McGraw-Hill Book

Company., 1991.

[40] Chen Lee, Raj Rajkumar, John Lehoczky, and Dan Siewiorek. Pratical solutions for

qos-based resource allocation. In IEEE Real Time System Symposium, Madrid, Spain,

December 1998.

[41] E. Lee and A. Sangiovanni-Vincentelli. A unified framework for comparing models

of computation. Transaction on Computer aided Design of Integrated Circuits and

Systems, 17(12):1217–1229, 1998.

[42] Edward A. Lee. Computing for embedded systems. In IEEE Instrumentation and

Measurement Technology Conference, Budapest, Hungary, May 2001.

[43] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic

tasks in fixed-priority preemptive systems. In Proceedings of the IEEE Real-Time Sys-

tems Symposium, December 1992.

[44] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in hard

real-time environments. In Proceedings of the IEEE Real-Time Systems Symposium,

December 1987.

[45] G. Lipari and L. Palopoli. A framework for simulationg distributed embedded real-

time controllers. Technical report, RETIS-LAB, Scuola Superiore S.Anna, 2002.

[46] Giuseppe Lipari and Giorgio Buttazzo. Schedulability analysis of periodic and ape-

riodic tasks with resource constraints. Journal of Systems Architecture, 46:327–338,

2000.

[47] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the Association for Computing Machinery, 20(1),

1973.

[48] C. Van Loan. The sensitivity of the matrix expoential. Siam Journal of Numerical

Analysis, 1977.

Bibliography 117

[49] Klein M., Ralya T., Pollak B., and Gonzales Harbour M. A Practitioner’s Handbook for

Real-Time Analysis: Guide to rate-monotonic analysis for real-time systems. Kluwer

Academic Publishers, 1993.

[50] Jan Maciejowski. Predictive Control with Constraints. Prentice Hall, 2001.

[51] O. L. Mangasarian and J. Pang. The extended linear complementarity problem. Siam

Journal on Matrix Analysis and Applications, 16:359–368, 1995.

[52] G. N. Nair and R. J. Evans. State estimation under bit rate constraints. In Proc. of the

37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998.

[53] M. Di Natale. Scheduling the can bus with earliest deadline techniques. In Proc. of

21st IEEE Real-Time Systems Symposium, pages 259 –268, Orlando, FL, 2000.

[54] R. Rajkumar, L. Abeni, D. De Niz, S. Gosh, A. Miyoshi, and S. Saewong. Recent devel-

opments with linux/RK. In Proceedings of the Real Time Linux Workshop, Orlando,

Florida, December 2000.

[55] H. Rehbinder and M. Sanfridson. Scheduling of a limited communication channel

for optimal control. In Proc. of the 39th IEEE Conference on Decision and Control,

Sidney, Australia, December 2000.

[56] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language

Reference Manual. Addison-Wesley, 1999.

[57] B. De Schutter and B. De Moor. The extended linear complementarity problem and

its applications in the analysis and control of discrete event systems and hybrid sys-

tem. In Hybrid systems V - Lecture notes on computer science, pages 70–85, 1999.

[58] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability in real-time con-

trol systems. In IEEE Real Time System Symposium, December 1996.

[59] Lui Sha, Ragunathan Rajkumar, and john P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. IEEE transaction on computers, 39(9),

September 1990.

[60] K.G. Shin, C.M. Krishna, and Y. Lee. A unified method for evaluationg real-time

computer controllers and its application. IEEE Transactions on Automatic Control,

AC30(4):357–366, April 1985.

[61] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time sys-

tems. Journal of Real-Time Systems, 1, July 1989.

118 Bibliography

[62] M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest deadline schedul-

ing. In Proceedings of the IEEE Real-Time Systems Symposium, December 1994.

[63] M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems.

Journal of Real-Time Systems, 10(2), 1996.

[64] M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic scheduling under dynamic

priority systems. In Proceedings of the IEEE Real-Time Systems Symposium, Decem-

ber 1995.

[65] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C. Buttazzo. Deadline Scheduling

for Ral-Time Systems – EDF and Related Algorithms. Kluwer Academic Publisher,

1998.

[66] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of dynamically reconfigurable real-

time software using port-based objects. IEEE trans. on Software Engineering, 23(12),

1997.

[67] Ian Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke,

and C. Greg Plaxton. A proportional share resource allocation algorithm for real-

time, time-shared systems. In IEEE Real Time System Symposium, 1996.

[68] C.M. Kirsch T. Henzinger, B. Horowitzm. Embedded control systems development

with giotto. In Proc. of ACM SIGPLAN 2001 Workshop on Languages, Compilers, and

Tools for Embedded Systems (LCTES’2001), June 2001.

[69] S. Tatikonda, A. Sahaim, and S. Mitter. Control of lqg systems under communication

constraints. In Proc. of the 37th IEEE Conference on Decision and Control, Tampa,

Florida, December 1998.

[70] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S. Liu. Probabilis-

tic performance guarantee for real-time tasks with varying computation times. In

Real-Time Technology and Applications Symposium, pages 164–173, Chicago,Illinois,

January 1995.

[71] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing fixed

priority hard real-time tasks. Journal of Real Time Systems, 6(2):133–151, Mar 1994.

[72] K.W. Tindell, A. Burns, and A.J. Wellings. Calculating controller area network (can)

message response times. Control Engineering Practice, 3(8):1163–1169, 1995.

[73] M. Trngren. Fundamentals of implementing real-time control applications in dis-

tributed computer systems. J. of Real-time systems, 14:219–250, 1998.

Bibliography 119

[74] A.J. van der Schaft and J.M. Schumacher. Complementarity modeling of hybrid sys-

tems. IEEE Transactions on Automatic Control, (4), 1998.

[75] W.S. Wong and R. Brockett. Systems with finite bandwidth constraints - part i: State

estimation problems. IEEE Trans. on Automatic Control, 42(9), 1997.

[76] W.S. Wong and R. Brockett. Systems with finite bandwidth constraints - part ii: Stabi-

lization with limited infromation feedback. IEEE Trans. on Automatic Control, 44(5),

1999.

[77] B. Xiao. The linear complementarity problem with a parametric input. European

Journal of Operational Research, 81, 1995.

[78] Y. Ye. A fully polynomial approximation algorithm for computing a stationary point

of the general linear complementarity problem. Mathematics of Operations Research,

18:334–345, 1993.

[79] A. Zheng and M. Morari. Stability of model predictive control with mixed constraints.

IEEE Trans. Auto. Cont., 40:1818–1823, 1995.

