
Adaptive Resource Reservation

PhilosophiæDoctor (Ph.D.) Thesis

Luca Santinelli

Retis Lab

Scuola Superiore Sant’Anna

December 2010

./retis-logoC.eps
./sssup-logoC.eps

Commission

1. Reviewer: Prof. Giorgio Buttazzo
Retis Lab, Scuola Superiore Sant’Anna

2. Reviewer: Prof. Lothar Thiele
TIK, ETH Zurich

3. Reviewer: Researcher Liliana Cucu-Grosjean
Trio Team, INRIA Nancy-Grand Est

Abstract

Many real-time systems consist of sets of applications that need to be ex-
ecuted in isolation to limit their reciprocal interference. Temporal isola-
tion can be effectively achieved through resource reservations, which is a
scheduling technique to partition computational resources into a set of ”vir-
tual” processors, with reduced but dedicated bandwidth. Moreover, each
application is typically designed to work in different operating modes, each
characterized by different functionality and resource demands. When appli-
cations and modes are activated online depending on user or environmen-
tal conditions, the system workload becomes highly dynamic and resource
reservations need to be reconfigured at runtime to comply with the new
conditions.

The problem of finding the optimal reservation parameters that satisfy the
application requirements in each operating mode has been deeply investi-
gated in the real-time literature. Similarly, there are solutions that allow
performing safe mode transitions, but without reservations. Surprisingly,
the problem of resource reconfigurations for systems with reservations has
not been addressed yet.

This thesis investigates methods for analyzing and reconfiguring resource
reservation under different abstraction models. Adaptive mechanisms are
studied and developed to offer a novel framework for scheduling dynamic
real-time applications under dynamic resource reservation mechanisms. Op-
timal or suboptimal solutions to the resource reservation problem can be
requested depending on the system condition and the necessary online appli-
cability. Results are illustrated by examples, simulations, and case studies.

To my family

How do you pick up the threads of an old life? How do you go on, when in
your heart you begin to understand there is no going back. There are some
things that time can not mend. Some hurts that go too deep... that have

taken hold.

Acknowledgements

This work would not have been possible without the contribution of many
people, to whom I would now take the opportunity to thank. Foremost, I
thank Prof. Giorgio Buttazzo, my considerate adviser. His confidence in
our work compelled me to persist and his unique ability of solving problems
challenged me to do the same. His personality commends my admiration.

My gratitude goes also to Prof. Giuseppe Lipari. He has been the ideal
research group director during these years capable to instill motivation and
coordinate activities. I thank him for his gentle and effective leading style.
He helped me finding my own research style.

In the same breath, I want to thank Dr. Enrico Bini, Dr. Marko Bertogna,
Dr. Mauro Marinoni and Dr. Fabio Checconi because they have offered
me support and time to confront with their enlightening researching style
everyone from different perspectives. Our long discussion have passed on
me the value of investigating every possible aspect to obtain valuable re-
sults. I also want to thank Dr. Paolo Pagano which has offered to me
the opportunity to ”meet” the Wireless Sensor Networks together with the
possibility to do research in that field.

The whole Retis Lab, and in a bigger context the CEIIC, provided an
excellent environment for my professional and personal growth. I thank all
those who contributed to it. Foremost my colleagues at the Retis Lab for
their friendship, spirit, and time.

Some of the work in this thesis stems from the period in which I visited the
TIK laboratory at the ETH University in Zurich led by Prof. Lothar Thiele.
I want to thank him for providing me that opportunity and mostly because
he motivated me with his daily example and his capacity of proposing and
investigating interesting research topics. I also thank all the people I met
there for their friendship and support.

New interests and enthusiasm, professional as well as cultural, has been
awaken in me during my visit to the research center of INRIA Nancy-
Grand Est. I am grateful to Dr. Liliana Cucu-Grosjean for the advise she
gave (and still is giving) to me and the enlightening discussion about a
probabilistic vision of real-time. I take this opportunity to thank her for
inviting me and to salute the people I met there.

I would like to express my gratitude to my co-authors for their collaboration
and guidance. I really enjoyed working with you.

Geographically, more or less distant, many people honored me with their
friendship for already frighteningly many years. It means very much to me.
Thus, I thank my friends for the smile and the confidence they have always
offered me. Mostly, I am grateful to my family for the mind set and values
they have passed to me. They have always supported me in any of my
choices, I know it will be like this always.

Luca Santinelli

Pisa, December 2010

Contents

1 Introduction 1
1.1 Real-Time . 2
1.2 The Resource Reservation Framework 5
1.3 Dynamic Real-Time Systems . 8
1.4 Aim of the Thesis . 11
1.5 Overview of the Dissertation . 11

2 Real-Time System Modeling 13
2.1 Real-Time Analysis . 13

2.1.1 Fixed-Priority Scheduling . 14
2.1.2 Dynamic-Priority Scheduling . 15
2.1.3 The Demand Function . 16
2.1.4 Server Mechanisms . 16
2.1.5 The Supply Function . 17

2.1.5.1 Linear Approximation: (slope, ∆) model 19
2.1.6 Classical Feasibility Analysis . 21

2.2 Real-Time Calculus . 22
2.3 Component and Interface-Based Real-Time Systems 26

2.3.1 Abstract Components and Real-Time Interfaces 30
2.3.2 Real-Time Composability . 31

3 Resource Reservation and Schedulability Analysis 36
3.1 Power Management for Hard Real-Time Systems 36

3.1.1 Periodic Power Management . 40
3.1.2 One Event Stream . 41

3.1.2.1 Finding the Minimal Ton 42
3.1.2.2 Optimal and Approximated PPMs 44

3.1.3 Multiple Event Streams . 45
3.1.4 Adaptive Energy Aware Scheduling 47

3.1.4.1 Real-Time Calculus Routines 48
3.1.4.2 Bounded Delay . 48
3.1.4.3 Future Prediction with Historical Information and Back-

logged Demand . 49
3.1.4.4 Basic Algorithms for Single Stream 50
3.1.4.5 Solutions for Multiple Streams 55

iv

CONTENTS

3.1.4.6 FP Scheduling with Distributed Backlog 56
3.1.4.7 EDF Scheduling with Distributed Backlog 57
3.1.4.8 EDF Scheduling with Global Backlog 58
3.1.4.9 Performance Evaluations 60
3.1.4.10 Single Stream . 61
3.1.4.11 Multiple Streams . 63

3.2 Energy Aware Scheduling with Constrained Resource 65
3.2.1 System Models . 67
3.2.2 Schedulability Analysis . 70
3.2.3 Energy Aware Scheduling . 72
3.2.4 Energy Aware Scheduling: implementation Details 74

3.2.4.1 EAS Applicability . 75
3.2.5 Energy Minimization . 76
3.2.6 Simulations . 79

4 Reservation Mechanisms 84
4.1 Survey . 84

4.1.1 Fixed Priority Servers . 84
4.1.2 Dynamic Priority Servers . 85
4.1.3 Resource Reclaiming . 86
4.1.4 Other Server Mechanisms . 90

4.2 Resource Guarantee . 91
4.2.1 Polling servers . 92
4.2.2 Deferrable servers . 95
4.2.3 Sporadic servers . 97
4.2.4 Time Division Multiple Access Server 98
4.2.5 Total Bandwidth Server . 98
4.2.6 Constant Bandwidth Server . 99
4.2.7 Server guarantees . 101
4.2.8 Service Guarantee Improvements 103
4.2.9 Greedy Shapers . 105

5 Dynamic Systems 106
5.1 Motivational Examples . 108
5.2 Application Mode Change . 112

5.2.1 Schedulability Analysis . 114
5.2.1.1 Utilization Approach 115
5.2.1.2 Fixed-Priority Scheduling Scheme 117
5.2.1.3 Dynamic Scheduling Scheme 120
5.2.1.4 Real-Time Calculus and Application Mode Change . . 124

5.3 Server Mode Change . 125
5.3.1 System Model and Backgrounds 125
5.3.2 Server Transitions . 127
5.3.3 Transition Guarantees . 127

5.4 Server Schedulability . 130

v

CONTENTS

5.4.1 Transition Schedulability . 131
5.5 Resource Reservation Analysis . 134

5.5.1 (slope, ∆)-Space . 134
5.5.2 Space Solution Analysis . 137
5.5.3 (slope, ∆)-space Sensitivity Analysis 139

5.5.3.1 Mode Changing Delay 140
5.5.4 Mode Change Resource Reservation 145
5.5.5 Case Study . 147

6 Resource Adaptation 150
6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks 151

6.1.1 System Model . 154
6.1.2 Real-Time Components . 155

6.1.2.1 Component Model . 157
6.1.2.2 Composability Criteria 158

6.1.3 Optimization Problem . 159
6.1.3.1 Bandwidth allocation 159
6.1.3.2 Mode Assignment . 160
6.1.3.3 Linearization . 161

6.1.4 Optimization Algorithms . 162
6.1.4.1 Off-line Optimization 162
6.1.4.2 On-line Problem . 163
6.1.4.3 Bandwidth Re-Allocation Algorithms 163
6.1.4.4 Mode Re-assignment Algorithms (MRA) 163

6.1.5 Example . 167
6.1.6 Simulations . 170

6.2 Resource Adaptation with TDMA Servers 171
6.2.1 Models . 172
6.2.2 Framework for Adaptive Servers with Guarantees 174
6.2.3 Algorithms and Analysis . 179
6.2.4 Case Study . 189

7 Conclusions 191

References 193

vi

Chapter 1

Introduction

Embedded systems are special-purpose information processing systems that are closely
integrated into their environment. An embedded system is typically dedicated to a
specific application domain. The knowledge about this domain and the systems envi-
ronment are used to develop customized and optimized system designs. That makes
the embedded systems also reactive systems that are in continuous interaction with
their physical environment to which they are connected through sensors an actuators.
Consequently they must execute at a pace determined by their environment. This
results in many embedded systems that have to meet timing constraints, i. e. they
must react to stimuli within a time interval dictated by the environment itself. Such
real-time constraints if not met, they could result in a impermissible failure of the
system, or a degradation of the Quality of Service (QoS) the system provides. So to
speak, a real-time systems behavior depends not only on the functional correctness of
its inputs but also on the time on which results are produced.

Nowadays, real-time systems are composed by many applications sharing resources
and executing concurrently. That further increase the complexity of real-time systems
and requires ad hoc countermeasures for guaranteeing the application properties. The
research on real-time systems is mature to a point that many existing works have
been proposed to tackle with the scenario in which a set of independently developed
applications are scheduled upon a computing platform.

Reservation-based resource partitioning, Resource Reservation (RR) for short, is
an emerging paradigm for resource management in embedded systems with timing
requirements. In particular, resource reservations mechanisms allow the operating
system to monitor and enforce application resource usage and timing requirements,
obtaining temporal isolation between real-time applications. This property ensures
that the temporal behavior of applications does not depend on the behavior of any
other, and is as powerful as spatial protection in systems with separate address-space
protection. In other words, resource reservation mechanisms are used as a general
framework for accessing time-multiplexed resources, i.e. the computing resource, the
communication resource, etc.. Indeed, the goal of the resource management is to
guarantee availability of required resources to applications so they can rely on them.
This implies that applications are to some degree isolated from the behavior of other
applications on the same system.

1

1.1 Real-Time

Dynamic environments where applications may be added and removed on-line, to-
gether with more application domains, require adaptive real-time embedded systems
that can change their functionality and resource demand over time. Examples are
applications characterized by multiple execution modes, each consisting of a specific
task set and a specific workload requirement. For these systems, the feasibility of the
schedule has to be guaranteed not only within each individual mode, but also during
mode transitions.

Dynamic domains ask for real-time embedded systems that can adapt their behavior
at run-time by changing their operating mode. Depending on the load of the system
the resources should be distributed in a flexible manner among the applications, and
the applications should adapt their algorithms accordingly, so that the best possible
quality of service for the given resources is achieved (29; 87; 152). According to each
mode change, the static resource reservation paradigm may not be suitable anymore in
case of resource demands of changing applications. In such scenarios, reconfigurations
are needed for changing the resource reservations during runtime and achieve better
resource allocations.

The reservation of the computational resource need to be reconfigured dynamically
to adapt the resource reservations and reflect the changes in the system or its en-
vironment. Such reconfigurations need to be performed online without jeopardizing
the schedulability. Thus, in such systems it is not only necessary to guarantee timing
constraints in every operating mode, but also during the transition between different
modes. It is therefore essential to develop appropriate resource reconfiguration criteria
and algorithms to manage the criticality of the transition phase.

To resume, adaptive real-time systems have to be able to adjust any of their internal
strategies in response to changes in the resource availability and resource demands to
keep the system performance at an acceptable level.

1.1 Real-Time

Real-time systems serve application requests with stringent timing constraints; applica-
tions that are composed by tasks which exploits the basic functionalities of the system.
Since the main issue of real-time systems is predictability, scheduling algorithms are
required because they allow to analyze a priori the feasibility of the system that is
establishing whether the timing constraints are going to be met or there are potential
failure.

In general, to define a scheduling problem it is required to specify a set of n tasks
Γ = {τ1, . . . , τn}, a set of m processors P = {P1, . . . Pm} and a set of g types of resources
r = {r1, . . . , rg}. Moreover, precedence relations among tasks can be specified through
a directed acyclic graph and timing constraints can be associated with each task. In
this context, scheduling means assigning processors from P and resources from r to
tasks from Γ in order to complete all tasks under the imposed constraints.

Since any real-time computing has to be predictable, a task τi is characterized by
a relative deadline Di (relative to the task activation), which is the maximum time
window within which the task must complete its execution.

2

1.1 Real-Time

A real-time task is generally placed into one of the following broad categories based
upon its deadline (36; 118; 148). If meeting a given task deadline is critical to the
operation of the system, then the task deadline is considered to be hard and the task
is hard real-time. If it is desirable to meet a task deadline but occasionally missing the
deadline can be tolerated, then the deadline is considered to be soft and consequently
the tasks are soft real-time. Tasks with no timing constraints at all are simply named
non-real time tasks.

A task can also be classified in accordance to its arrival pattern. Tasks with regular
arrival times are called periodic. A common use of periodic tasks is to process sensor
data and update the current state of the real-time system on a regular basis. Periodic
tasks, typically used in control and signal processing applications, have hard deadlines.
Tasks with irregular arrival times are aperiodic which are mainly used to handle the
processing requirements of random events such as operator requests. An aperiodic task
typically has a soft deadline, while those aperiodic tasks that have hard deadlines are
called sporadic tasks.

Each task τi consists of a sequence of jobs that need to receive a certain amount of
execution time. In order to meet the mandatory deadlines of hard real-time tasks, it is
necessary to define upper bounds on the worst-case execution times (WCET) Ci of such
tasks. Soft real-time tasks are treated as hard real-time task, so it is required a WCET
in order to exploit their analysis. For aperiodic and non real-time tasks (tasks with no
timing constraints at all), instead, there is no need to specify worst-case parameters,
since there are no hard deadlines. Although, we apply Ci to them too in order to make
our analysis more general and take into account also those tasks.

Furthermore, every periodic or sporadic task τi is characterized by a period Ti

which is the exact task period or its minimum inter-arrival time in case of periodic
or sporadic task representation, respectively. Aperiodic tasks does not assume any
pseudo-periodicity in their arrivals. The ratio among the worst case execution time
and the task period Ci

Ti
, is known as the task utilization factor describing the fraction

of the processor spent in the execution of task τi, (106). The processor utilization
factor of the whole task set U =

∑

i∈Γ
Ci

Ti
provides a measure of the computational load

on the CPU due to the task set Γ.
The initial offset Oi of a periodic task τi is the instant of the first activation of the

task. Every successive activation is a multiple of the task period plus the initial offset.
However, even if a periodic task is activated as some time t its release time (i.e. the time
from which it can start executing) may be delayed due to the precedence constraint.
In fact, a task belonging to a group may start only after it has been activated and the
preceding task in the group has completed execution. In case of aperiodic or sporadic
tasks the initial offset is meaningless. Nevertheless, we keep it in the task model in
order to be as much generic as possible.

In this dissertation we consider an application Γ as a set of n periodic or sporadic
hard or soft real-time tasks, Γ = {τ1, τ2, . . . τn}. Every task τi is characterized by the
set of parameters describe before, so it can be represented by the tuple (Oi, Ci, Ti, Di),
τi = (Oi, Ci, Ti, Di).

Real-time systems require also scheduling policies that reflect the timeliness con-
straints of real-time tasks. Schedulers produce a schedule for a given set of tasks, and if

3

1.1 Real-Time

a task set can be scheduled to meet given pre-conditions the task set is termed feasible.
A typical pre-condition for hard real-time periodic tasks is that they should always
meet their deadlines, which means terminating the task execution before the deadline.
An optimal scheduler is then able to produce a feasible schedule for all feasible tasks
sets conforming to a given pre-condition. For a particular process set an optimal sched-
ule is the best possible schedule according to some pre-defined criteria. Typically a
scheduler is optimal if it can schedule all task sets that other schedules can (36; 151).

To meet the timing constraints of the system, a scheduler must coordinate the use
of all system resources by using a set of real-time scheduling algorithms in order to

1. guarantee that tasks with hard timing constraints will always meet their dead-
lines;

2. provide fast average response times for tasks with soft deadlines (aperiodic tasks);

3. ensure scheduling stability under transient overload.

The three main approaches used to schedule a real-time task system are a) Clock-
Driven, b) Processor-Sharing, and c) Priority-Driven. Although this dissertation fo-
cuses on priority-driven approaches, it marginally considers the other two cases. Few
papers detail the work that has been done related to clock-driven and processor-sharing
scheduling.

The priority-driven approach can be divided into dynamic-priority (DP)(19; 39;
151) and fixed priority (FP) (96; 98; 106). The priority is a number associated with a
task and used to establish an order of precedence among tasks competing for a common
resource. For FP scheduling, the tasks and their jobs are prioritized a priori. Once a
job of a task is active into the system, the priority of the job is set to the pre-defined
priority of the task it belongs to. Priorities are assigned to tasks before execution
and do not change over time. As an example, the rate monotonic (RM) scheduling
algorithm is a simple rule that assigns priorities to tasks to their request rate, (106).
Specifically, tasks with higher request rates (that is with shorter periods) have higher
priorities. Since period are constant, RM is a fixed priority assignment.

DP scheduling assigns the priority to the tasks at run-time, the highest priority is
given to the task occurrence according to the actual conditions. The earliest deadline
first (EDF) is a example of dynamic scheduling policy that selects tasks according to
their absolute deadlines. Specifically, tasks with earlier deadlines are executed at higher
priorities. Since the absolute deadline of a periodic task τi depend on the current j-th
instance as di,j = Oi + (j − 1)Ti + Di, EDF is a dynamic priority assignment (at task
level), although the priority of each job is fixed.

For both FP and DP scheduling, the system executes the incomplete tasks with the
highest priority. If there are more than one event with the highest priority, we break ties
by applying the first-come-first-serve (FCFS) strategy. With respect to fixed priority
assignments, dynamic scheduling algorithms are characterized by higher schedulability
bounds which allows the processor to be better utilized.

4

1.2 The Resource Reservation Framework

1.2 The Resource Reservation Framework

Until recent years, the study of real-time scheduling problems has been primarily con-
cerned with allocating dedicated resources to serve a set of application programs which
are characterized by a real-time system model. Since the first real-time system model
was introduced by Liu and Layland in 1973 (106), there have been many variations pro-
posed to model real-time systems, e.g., the sporadic model (118), the pinwheel model
(76). The schedulability analysis of these models always assumes that the resource to
be allocated is made available at a uniform rate and accessible exclusively by the tasks
under consideration.

Todays system requires resource sharing and that poses new difficulties. If pre-
dictability is the main goal of a real-time system, traditional real-time scheduling theory
can be successfully used to verify the feasibility of the schedule under worst-case scenar-
ios. However, when efficiency becomes relevant and when the worst-case parameters of
the tasks are too pessimistic or unknown, the hard real-time approach presents some
problems. In particular, task overruns can cause temporary or permanent overload
conditions that may degrade system performance in an unpredictable fashion. When
executing different real-time applications on a single processor system, one problem is
how to compose these applications and guarantee that their timing requirements are not
violated. Recent study (126) has shown that the use of resource reservation techniques
can bring advantages in terms of control performance. Designing the system for the
worst-case guarantees absence of deadline misses, but can impose a low control loop
rate. On the other hand, designing the system for the average case allows increasing
the control loop rate, and thus improving the control performance as average, but can
lead to deadline misses of critical activities. Resource reservation techniques permit
to calibrate the resource usage for the different activities. For example, in a complex
control system with multi rate sensor acquisition that uses a video camera for pattern
recognition, the most critical low-level control loop can be considered as a hard activity,
which should be assigned an amount of resource equal to its worst-case requirement.
The less critical activities, like image acquisition and recognition, can be assigned a
fraction of the resource equal to their average case conditions, thus increasing their
rate, (2; 126). The resource reservation is a mechanism for partitioning a resource
among tasks, so that each application is assigned a fraction of the resource according
to a predefined strategy, (68; 121).

A considerable amount of work has been recently addressed to the analysis of re-
source reservation mechanisms for achieving temporal protection in real-time systems.
The concept of reservations was originally introduced by Mercer, Savage and Tokuda
(117), and later formalized by Rajkumar et al. (131) as a generic kernel mechanism to
allocate a fraction of a computational resource to a set of tasks. Feng and Mok (64)
adopted resource reservations for achieving hierarchical partitioning of computational
resources.

The key idea behind the concept of hierarchical scheduling is to use two levels of
schedulers: a) global scheduler that allocates the processor to a partition (the active
partition); b) local schedulers that elect tasks to run among the ready tasks in the
active partition. There is a single global scheduler in a computer node and a local

5

1.2 The Resource Reservation Framework

scheduler for every single partition. This leads to view each application as accessing a
virtual resource that operate at a fraction of the rate of the physical resource shared
by the application, (60; 107; 121). Informally, a partition is a collection of intervals
during which the computation resource is made available to the application scheduled
on the partition. So the notion of virtual resource is introduced for abstracting resource
sharing by application task that are subject to different timing requirements (120).
Sharing is enforced by partitioning schemes that time-multiplexes the resource among
the different applications.

The shared resource is partitioned into real-time virtual resources by a resource-level
scheduler such that each real-time virtual resource is accessible only by an individual
application task group; tasks within the same task group are scheduled by an applica-
tion level scheduler that is specialized to the real-time requirements of the tasks in the
group. Through this model, partitions on each level are scheduled as if they had access
to a dedicated resource and there is minimal interference between neighboring partition
levels resulting in a hierarchical scheduling scheme. The hierarchical partitioning of a
computational resource is well known in literature, (120; 121). With that it is possible
to compose schedulers at arbitrary levels of the hierarchy. It is possible to analyze and
guarantee the schedulability of an application on a partition as well as to address the
reverse problem: given an application, scheduled by a local fixed priority scheduler,
how to select the best resource partition for the given application.

For real-time systems, there has been a growing attention to compositional analysis
of hierarchical scheduling frameworks (113; 160). Traditionally, this analysis has been
achieved by using interfaces that characterize the resource supply necessary to schedule
components. Mok and Feng proposed the bounded delay resource partition model for a
hierarchical scheduling framework (64), and Shin and Lee (141; 142; 144) addressed the
interface generation problem for these models. Similarly, there are studies on the com-
ponent abstraction problem using periodic resource models (68; 134; 135). When these
techniques are used for hierarchical frameworks with conditional task models, complex-
ity of interface generation depends on the utilization of the task set (i.e., schedulability
checking of conditional task models depends on utilization (16)).

Within a partitioned scenario, the concept of server become relevant. A server is a
real-time system element dedicated to the management of a shared resource and it is
implemented as a kernel process. A possible way of composing applications is through
the resource reservation approach where each application is handled by a dedicated
server that is assigned a fraction of the processor. Using this approach, the system
can be seen as a multi-level hierarchical scheduler where servers are used to isolate the
temporal behavior of real-time applications through resource reservations (116).

Resource reservation is typically implemented through a server mechanism, which
allocates a budget Q every period P to the served application. Several service algo-
rithms have been proposed in the literature, both under fixed priority systems, like
the Polling Servers (PS) (36), the Deferrable Server (DS) (97) and the Sporadic Server
(SS) (147), and under EDF, like the Dynamic Sporadic Server (DSS) (109) and the
Constant Bandwidth Server (CBS) (5).

Another common problem is the coexistence of hard periodic tasks and soft ape-
riodic tasks. Even such a problem can be solved by a resource reservation strategy,

6

1.2 The Resource Reservation Framework

which assigns each soft task a maximum resource bandwidth, calculated using the mean
execution time and the desired activation period, in order to increase CPU utilization.
If a task needs more than its reserved bandwidth, it may slow down its execution, but
it will not jeopardize the schedulability of the hard real-time tasks. Once isolated the
effects of task overloads, hard tasks can be guaranteed using classical schedulability
analysis.

Real-time servers (36) are used for both scheduling soft and non real-time tasks
together with other instances having hard timing requirements (95; 147; 148), and also
providing temporal isolation among different applications in a hierarchical environment
(53; 63; 110; 116). From the computational resource point of view the two problem
formerly listed, are the same, such as different applications need to share a common
computing platform, without interfering each other. By encapsulating each application
in a particular real-time server, it is possible to enforce the desired isolation among the
various system elements. When a particular server is selected for execution by the
high-level scheduler, the corresponding application is executed. The internal scheduler
of the selected application will then decide which instance to execute. Note that an
application could also select to execute another (lower-level) server, increasing the
hierarchical structure depth.

The servers mechanisms enforces the bandwidth reservation and the resource reser-
vation strategies because servers are abstract entities used by a scheduler to reserve a
fraction of CPU-time to a particular instance. In general a server Sk is characterized
by the period of the reservation PSk

and by the reserved execution time per period QSk
;

we define USk
= QSk

/PSk
the fraction of CPU-time reserved by server Sk, also called

utilization factor. In addition, each server maintains its own internal variables that
are updated by the scheduler depending on the server rules. One of these variables is
the server priority, so that servers are inserted in the priority queue of the scheduler.
When a server is selected by the scheduler to execute, the corresponding instance is
executed and the server budget is accordingly decremented.

In the following, we assume each application Γk be scheduled by means of a ded-
icated server Sk. Since an application may as well be composed of a single task, the
above mentioned bandwidth reservation mechanism for soft and non real-time tasks
can be described with the same model.

Along this dissertation, we will refer to resource as the computational resource if
not specified otherwise.

In real-time operating systems, servers are a specific kernel processes that help
scheduling mechanism that handles aperiodic requests as soon as possible, while pre-
serving hard periodic tasks from missing their deadlines. The classical server classifi-
cation distinguishes between fixed priority and dynamic-priority servers, depending on
the scheduling policy used to schedule them. Among fixed priority servers, Deferrable
Server (DS) (156) and Sporadic Server (SS) (147) are the most well known techniques
that preserve their capacity when no request is pending upon the invocation of a server.
Spuri et al. (109) presented a survey of dynamic priority servers that can efficiently
work under EDF, such as the Dynamic Sporadic Server (DSS) (109) and the Constant
Bandwidth Server (CBS) (5).

7

1.3 Dynamic Real-Time Systems

Server models can also be broadly classified into event-driven servers: the servers
are driven by the application requirements. The sporadic servers, the dynamic servers,
the dynamic sporadic servers and constant bandwidth servers are typical examples.
There exist also time-triggered servers. Those are the servers which resource supply
is driven by a predefined timing pattern that depends only on the server properties.
An example is the Time Division Multiple Access (TDMA) server where the resource
is periodically partitioned (167). In particular, a TDMA server assigns time slots
to its applications that repeat each cycle. The time-triggered architectures play an
increasingly important role in large distributed embedded systems as described in (75;
170). Mainly, time-triggered servers offer high predictability with enormous benefits
to the analysis of real-time systems, as we will see later on.

1.3 Dynamic Real-Time Systems

Complex real-time systems are dynamic which consists in having several behaviors
and is described by a set of functionalities that are carried out by different param-
eter settings. Those systems are characterized by different operational modes, de-
signed to achieve different functionalities or to respond to changes in the environment,
(123; 128; 133; 145). Each mode specifies functional and not functional characteristics
and consists of specific computational demands, resource requirements and resource
availabilities.

A typical example is that of an aircraft control system where it can be distinguished
landing, take off and normal cruise modes, each with a different general objective. The
current operating mode of the aircraft depends on the particular phase it is executing.

For generic embedded systems many could be the operating modes composing the
system. For example:

• the initialization mode which is the startup phase where the different hardware
devices and software modules are initialized before they could be operative. All
the systems virtually have this phase.

• The low power mode where the system optimizes the power supply by minimizing
the number of running activities or the execution frequency in order to reduce
power consumption.

• The high quality mode where the system executes all the requests at the maxi-
mum resource available in order to provide the highest quality of service and no
constrains from the energy consumption.

As a consequence, the overall computational load and the allocated resources may
change over time depending on the operational mode selected for the system. For
example, adding a new task into the system at run-time may result in a reduction of
the computational resources allocated to the other tasks. Other examples comes form
the energy consumption policy where to save energy, the system may be required to
discard some of its functionalities and redistribute the resources among its components
at run-time.

8

1.3 Dynamic Real-Time Systems

A change in the system state, e.g., from start-up to normal, or from normal to
energy saving, or from normal to shut-down, may also require re-allocating the compu-
tational resources among the tasks composing the application. Changing one or more
parameters in the system components at run-time must also be considered a mode
change, because it affects the system load and hence modifies the timing behavior of
the application and the system itself.

The mode change is required to cope with the changing conditions so that the sys-
tem can work properly with the new requirements. To change the operating mode it
is necessary to switch form a set of parameters to another and this circumstance in-
troduces a transient stage where it is not well defined what are the condition and the
parameters of the system along that phase. Such an uncertainty has to be investigated
to make the system predictable even during the mode changes. A mode change is initi-
ated whenever the system detects a change either in the environment or in the internal
state.

Multi-moded real-time systems require a more accurate analysis with respect to
classical single-mode systems, because of the criticality of mode transitions. In fact,
there are situations in which, although timing constrains can be guaranteed to be met
within each individual mode, in steady state conditions, deadlines can still be missed
during mode transitions. It is therefore essential to analyze the system in order to
guarantee feasibility not only within each mode, but also cross modes.

If a resource reservation approach (5; 116) is adopted in the system to achieve
temporal isolation between different application components, then a mode transition
may also require changing reservation parameters, e.g., to re-distribute the available re-
sources whenever a new component is dynamically activated. In this situation, achiev-
ing predictability means not only providing guarantee between components (i.e., at
the reservation level) before, after, and during mode transitions, but also within each
component, before, after, and during mode transitions.

Whereas a server manages an application by supplying the resource it requires,
adaptive applications must rely on adaptive servers to meet their changing resource
requirements. Changing a reservation means changing the corresponding server pa-
rameters (its budget and/or its period) to adapt the resource provisioning to the new
requirements demanded by the system. The server reconfigurations need to be per-
formed online without jeopardizing schedulability. It is therefore essential to develop
appropriate resource reconfiguration criteria and algorithms to manage the criticality
of the transition phase.

In most of the cases already studied are the application running on a real-time
systems that are changing due to the triggering events. Thus, the running task set is
modified passing from an old version to a new one by deleting some tasks and releasing
some new tasks. In this case, the transient introduced may cause temporal overload
conditions where both old-mode and new-mode tasks are concurrently executed.

The problem of timing analysis across mode changes has been addressed in the real-
time literature under different assumptions and system models (128; 139; 153; 163).
For instance, Fohler (65) investigated the problem of mode changes in the context
of pre run-time scheduled hard real-time systems, where a table-driven schedule is
constructed for each operational mode and an appropriate time must be selected to

9

1.3 Dynamic Real-Time Systems

start a new mode and avoid deadline misses. Crespo et al. (133) presented a survey
of mode change protocols for uniprocessor systems under fixed-priority scheduling and
proposed a new protocol along with their own schedulability analysis. Guangming (71)
computed the earliest time at which a new task can be safely added to the system under
the Earliest Deadline First (EDF) scheduling, without jeopardizing the feasibility of
the task set. The underline idea behind such solutions is to wait for a certain amount
time before changing the schedule, identifying a safe time instant where the new mode
can be activated without causing deadline misses.

All of these results address the problem of performing mode transitions in appli-
cations without violating their schedulability. None of them considers how to change
resource reservations online without violating applications schedulability which is the
goal of this paper.

Together with the applications, any other element of real-time system may change
at run-time. The parameters of servers, schedulers (hence the scheduling policy) and
more other can change as a consequence of either external or internal changes, (130).
Furthermore, whereas a server manages an application by supplying the resource it
requires, adaptive applications must rely on adaptive servers to meet their changing
resource requirements.

Fixed reservations paradigms are not appropriate to achieve the desired perfor-
mance with applications in which the computational demand is highly variable. To
cope with such dynamic systems, Buttazzo et al. (33) proposed an elastic scheduling
methodology for adapting the rates of a periodic task set to different workload scenar-
ios, without affecting the system schedulability. Abeni et al. (3) presented a framework
for dynamically allocating the CPU to tasks whose execution times are not known a
priori. Adaptive reservation techniques based on feedback scheduling have also been
investigated by the same authors (4). All of these frameworks are only suitable for soft
real-time systems. Abeni and Buttazzo (5) introduced a bandwidth reservation mecha-
nism (the constant bandwidth server) that allows real-time tasks to execute in dynamic
environments under a temporal protection mechanism, so that the server never exceeds
a predefined bandwidth, independently on the actual requests of the server tasks.

Despite the amount of works done so far, the classical server paradigms and models
do not allow adaptations to changing conditions. To the best of our knowledge, how-
ever, none of the proposed reservation mechanisms has been analyzed to predict the
timing behavior of the served application during a reconfiguration process. Clearly, a
safe approach could be to delay the mode change at the next idle time in the system,
as done in the FRESCOR framework (52). However, the delay cold be too long and it
is highly unlikely that the idle time occurs at the same time for all applications.

Recently, some mechanisms have been proposed to dynamically change the server
models at run-time. For instance, de Olivera et al. (59) addressed the problem of dy-
namically reconfiguring reservation parameters, offering support for multi-moded and
adaptive real-time applications. Valls et al. (165) presented an adaptation protocol
based on the definition of a contract model for filtering peaks in resource demands.
However, in both frameworks no schedulability guarantee is provided during reconfigu-
rations. The FRESCOR project (73) has proposed mode change protocols for sporadic

10

1.4 Aim of the Thesis

servers, but they are not as general as the results presented in this paper, which can
cope with arbitrary activation patterns.

Finally, in (155) Stoimenov et al. have tackled with the problem of adaptive resource
reservation mechanisms in case of TDMA servers. Resource provisioning guarantees
are investigated during the mode changes of the TDMA server paradigm.

1.4 Aim of the Thesis

In this dissertation we aim to support the claim that dynamic real-time systems require
adaptive resource reservation mechanisms. In doing that, we will propose an effective
component-based view of real-time systems to actively support system analysis through
interface-based design methodologies. We will apply alternative approaches of model-
ing component of real-time systems such as tasks, schedulers and resource reservation
mechanisms. We will also present examples to support the need of adaptive mecha-
nisms. in case of complex and dynamic real-time systems. Those examples will outline
scenarios and conditions where the classical (and static) resource reservation mecha-
nisms are improper because unable to cope with changing conditions. Moreover, we
will analyze the requirements and the costs of adaptive resource mechanisms in terms
of the real-time guarantees that have to be offered to the system in any of its working
condition. Besides, solutions to the adaptivity problem will be provided in terms of
adaptive resource reservation mechanisms that effectively manages with the changing
requirements of the systems.

1.5 Overview of the Dissertation

The thesis is composed by Chapter 2 where the most common real-time models are
presented and detailed, including the real-time calculus framework. Feasibility and
schedulability concepts are outlined together with a component-based view of real-
time systems. Those are the basic elements of the analysis framework we are proposing.
Chapter 3 describes examples of scheduling strategies applied to the problem of energy
aware scheduling. Both real-time calculus and the classical real-time analysis are ap-
plied to propose efficient solutions to the problem. Resource reservation mechanisms
are showed through those examples as well as the need for adaptive solutions in case
of complex systems. Chapter 4 presents a survey and an analysis of resource reserva-
tion mechanisms. Among all the possible schemes, some reservation mechanisms are
deeply investigated defining their resource provisioning guarantees to their real-time
applications. Chapter 5 describes the real-time analysis in case of dynamic real-time
systems. First, the case of multi-moded applications is presented and studied. The
well known solutions are briefly mentioned while new solutions are detailed. Second,
it is addressed the problem of multi-moded resource reservation mechanisms. Server
and their resource provisioning mechanisms are investigated in case of mode changes,
and in particular during the transition stage. Finally, Chapter 6 shows two significa-
tive examples of adaptive resource reservation mechanisms. One in case of distributed

11

1.5 Overview of the Dissertation

systems and the other in case of adaptive servers. Conclusions and future works are
then proposed in the last chapter of the dissertation.

12

Chapter 2

Real-Time System Modeling

The environment and the system models describe how the system is being used by the
environment: how often will system functions be called, how much data is provided
as input to the system, and how much data is generated by the system back to its
environment. Real-time systems have functional and mainly temporal requirements
that have to be represented in the model itself.

A real-time system applies computational resources to execute tasks and let them
perform their job. All the system resources have to be considered, and the resource
models have to provide information about the properties of the computing and com-
munication resources that are available within a system, such as processor speed, com-
munication bus bandwidth and storage amount. On the other side, tasks, scheduling
mechanisms, server mechanisms and other elements composing real-time systems, ap-
ply the resources in order to execute and by that, to define the functional aspects of
the systems.

The temporal requirements of the systems and the tasks composing the systems
have to be fulfilled. Hence, the real-time modeling supports the analysis of real-time
systems providing guarantees on the predictable behavior if the whole system.

2.1 Real-Time Analysis

The real-time theory models the elements of a real-time system and their requirements.
It also applies the abstraction of those elements to scheduling and feasibility analysis
frameworks in order to guarantee hard real-time or simply the quality of service re-
quirements for complex systems.

The schedulability of a system depends on the scheduling policy and most of all on
the available resource. Therefore, both in case of fixed priority and dynamic-priority
scheduling the resource required to execute applications and the resource provided by
the system are compared in order to derive feasibility conditions.

In the rest of the dissertation we will make use of t to indicate time instant, while
γ is used to represent time intervals, because some of the analysis criteria refer to time
instants, while others consider intervals.

13

2.1 Real-Time Analysis

2.1.1 Fixed-Priority Scheduling

In fixed priority scheduling any task has assigned a priority that the scheduler applies
to order the task set and let at any time the highest priority runnable task actually
run. There is a unique priority associated with each task, and all the jobs generated
by a task have assigned this priority.

The absolute priority can be assigned in many ways, i.e. the rate monotonic (RM)
policy where the deadline is assigned according to the period of the tasks (96), or
deadline monotonic (DM) scheduling algorithm (98), which assigns priorities to tasks
in inverse order of their relative deadline parameters. Without loss of generality, we
assume that the tasks are indexed in decreasing order of priority: jobs of task τi have
priority over the jobs of task τj for all i, j such that 1 ≤ i < j ≤ n.

Definition 2.1.1 (Response Time). The response time R is the time (measured from
the release time of a task) at which the task instance is completed.

Audisley et al. have developed a necessary and sufficient method in order to com-
pute the interference received by the task τi from its higher priority tasks, (8; 9). The
basic idea is that in oder to compute the largest response time of τi, Ri, then the inter-
ference Ii has to be computed in the interval [0, Ri]. The interference is given by high

priority tasks, Ii =
∑i−1

j=1⌈
Ri

Tj
⌉, and the response time results Ri = Ci +

∑i−1
j=1⌈

Ri

Tj
⌉Cj .

In order to get a result from the last equation and provide the maximum response time
for a task, an iterative solution is obtained by

R
(s)
i = Ci +

i−1
∑

j=1

⌈
R

(s−1)
i

Tj

⌉Cj , (2.1)

and the iteration ends whenever two consecutive Ri, (Rs−1
i , Rs

i) with the same value or
Rs

i > Di. Equation 2.1 is solved with a fixed point algorithm.

Definition 2.1.2 (Level-i Workload). The worst-case workload wi(t) of the i highest
priority tasks in [0, t] (level-i workload) is the total time the processor is i-busy in [0, t].

Given the i-th task, the cumulative workload on the processor made by that task
and its high priority tasks (96) is provided by

wi(t) =
i

∑

j=1

= ⌈
t

T j
⌉Cj,

or equivalently

wi(t) = Ci +
∑

τj∈hp(i)

⌈

t

Tj

⌉

Cj , (2.2)

where hp(i) is the set of high priority tasks with respect to τi. It describes the total
amount of time the processor is busy serving task τi and its high priority tasks.

Lehoczky et al. in (96) came out with the schedulability criteria for rate monotonic
scheduling algorithms. by comparing the workload ad the total available resource task
by task.

14

2.1 Real-Time Analysis

Theorem 2.1.3 (Workload RM Schedulability). Given the task set Γ = {τ1, . . . , τn}

• τi can be scheduled for all task phasing using the rate monotonic algorithm iff

Li = mint∈si

wi(t)

t
≤ 1,

where the elements of si are the scheduling points for task i, si = {kTj | j =
1, . . . , i; k = 1, . . . , ⌊ Ti

Tj
⌋}.

• The entire task set Γ is schedulable for all task phasing iff

L = max1≤i≤nLi ≤ 1.

The set of all schedulability point as been refined in order to reduce the complexity
if such schedulability condition (25; 96).

2.1.2 Dynamic-Priority Scheduling

Under EDF, the analysis of periodic tasks with deadline less than the period can be
carried out using the processor demand criterion (PDC) as introduced by Baruah et al.
(21). In general, the processor demand of a task τi in an interval [t1, t2] is the amount
of processing time gi(t1, t2) requested by the instances of τi activated and that must be
completed in that interval, that is gi(t1, t2) =

∑

ri,k≥t1,di,k≤t2
Ci. By ri,k it is intended

the release time of the k-th instance of task i, and di,k denotes the absolute deadline of
such a job. For the whole task set Γ, the processor demand in [t1, t2], g(t1, t2) is given
by the sum of the processing time of the tasks composing the task set. The feasibility
of the task set is guaranteed if and only if in any interval of time the processor demand
does not exceed the available time, which is

∀t1, t2 g(t1, t2) =
∑

i∈Γ

gi(t1, t2) ≤ (t2 − t1).

From (21) it comes the following schedulability criterion.

Theorem 2.1.4 (Processor Demand Criterion). A set of synchronous periodic tasks
with relative deadline less than or equal to periods can be scheduled under EDF iff

∀t ∈ D
n

∑

i=1

⌊
L + Ti −Di

Ti

⌋ ≤ t,

where D = {dk | dk ≤ min(t∗, H)}, and t∗ =
Pn

i=1(Ti−Di)Ui

1−U
; dk are the deadlines of the

tasks.

15

2.1 Real-Time Analysis

2.1.3 The Demand Function

The computational demand of a task set can be precisely described by the demand
bound function (dbf), introduced by Baruah et al. (21) to express the total computation
that must be executed by the processor in each interval of time when tasks are scheduled
by EDF. For any given periodic task τi activated at time t = 0, its demand bound
function dbfi(t) in any interval [0, t] is given by

dbfi(t) = max

{

0,

(⌊

t−Di

Ti

+ 1

⌋

Ci

)}

.

Hence, the computational demand of a task set Γ of periodic tasks synchronously
activated at time t = 0, can be computed as the sum of the individual demand bound
functions of each task, that is:

dbfΓ(t) =
∑

τi∈Γ

dbf i(t).

By definition, the demand bound function provides an upper bound of the resource
requested by the task set in each interval of time. The dbf = g once it has been fixed
the first extreme of the interval. In case of FP scheduling policies is the concept of
workload (96) to be applied in order to verify the schedulability, so it exploits the
resource requirements of single task or task sets. For a task τi the workload wi(t) is
the total amount of time the processor is busy to serve τi and its high priority tasks in
any interval length of t. By extension, w0(t) = 0 for all t, as from Equation 2.2. The
workload to be applied in the schedulability conditions representing the equivalent of
the demand bound function in case of FP.

2.1.4 Server Mechanisms

From the real-time guarantee point of view it is required that the aperiodic tasks do
not interfere with the schedulability of the periodic ones. Server mechanisms allow to
obtain those guarantees through server processes that manage resource request from
aperiodic tasks. Most of those processes can be modeled by a periodic process which
assigns its resource to its tasks every period, (142). Figure 2.1 show the typical server
usage: to isolate application execution. The servers are described with parameters like
the utilization factors U , periods T and more others.

Although with different peculiarities, a lot of servers can be modeled as periodic
servers because they guarantee to provide Q (and no more than Q) unit of time each
period P . Among the periodic servers we include the polling servers (36), the deferrable
servers (97; 156) and the sporadic servers (147) which are classified as fixed priority
scheduling periodic server; while among the dynamic priority periodic servers we recall
the constant bandwidth servers (2).

Definition 2.1.5 (Periodic Server). A periodic server S is characterized by two param-
eters (Q, P) where Q is the maximum budget (or server capacity), and P is the server
period. A server must guarantee that Q units of time are allocated in each period P to
the served application, with Q ≤ P .

16

2.1 Real-Time Analysis

... ...

a1

a2

a3

an

U1, T1, . . .

U2, T2, . . .

Um, Tm, . . .

S1

S2

Sm

Figure 2.1: Server mechanisms providing isolation among the applications a.

2.1.5 The Supply Function

To derive a consistent definition of resource supply, we first introduce some definitions
that are common in reservation-based scheduling theory (61; 101; 102; 104), even
though presented with different terminology.

Definition 2.1.6 (Partition). A partition P ⊆ R is a countable union of non-overlapping
intervals

P =
⋃

i∈N

[ai, bi) ai < bi ≤ ai+1.

The characteristic function IP : R → 0, 1 of the partition P is defined as IP(t)
having values in 0, 1. If IP(t) = 1 then the resource is allocated to the partition at
time t. A partition is periodic if it exist per > 0 such that IP(t) = IP(t + per).

We distinguish between static partitions and dynamic partitions. A static allo-
cation mechanism pre-computes the partitions off-line, and, at run-time, a dispatch
mechanism will make use of a simple table to allocate the resource. On the other hand,
a dynamic resource allocation mechanism uses some rule for dynamically allocating the
resource (for example allocating Q time units every period P). Therefore, a dynamic
algorithm may produce different partitions every time it is executed, depending on the
arrival times and execution times of the application tasks. Moreover, these partitions
are not necessarily periodic.

For a given partition, we define the minimum amount of time that is available to
the application in every interval of length γ.

Definition 2.1.7 (Supply Function). Given a partition P, we define the supply func-
tion ZP(γ) as the minimum amount of time provided by the partition in every time
interval of length γ ≥ 0, that is

ZP(γ) = mint0≥0

∫ t0+γ

t0

IP(x)dx.

If the partition is static, the previous equation can be readily used to compute
the supply function. However, if the partition is dynamic then it is not known in
advance when the time will be allocated; just at runtime it wil be known. To extend

17

./Pictures/isolation.eps

2.1 Real-Time Analysis

the definition of supply function also to servers allocating time by dynamic partitions,
we refer to (121) and (108) by introducing the following definitions.

Definition 2.1.8 (Set of Partitions). Given a reservation S, we define legal(R) as the
set of partitions P that can be generated by the reservation S.

Notice that if the server S allocates statically the time by a static partition P,
then legal(S) is constituted by the unique element P . We now generalize the supply
function to any server.

Definition 2.1.9 (Minimum Supply Function). Given a server S, its supply function
ZS(γ) is the minimum amount of time provided by the server S in every time interval
of length [0, t),

ZS(γ) = minP∈legal(S)ZP (γ).

dbf

sbf

t

re
so

u
rc

e

Figure 2.2: Demand bound function and supply bound function.

Given a partition P(γ), Bini et al. (68) defined the supply bound function sbfP(γ)
of the partition P, as the minimum amount of time provided by the partition in every
interval of length γ ≥ 0. That is,

sbfP(γ) = mint0≥γ

∫ t0+γ

t0

R(x)dx.

The sbf is defined in the interval domain and gives the minimum amount of resource
available in any interval of time. Hence, the supply bound function represents a lower
bound of the actual resource provided by a server.

As an example, for a periodic model S = (QS, PS), its supply bound function
sbfS(γ) is defined to compute the minimum resource supply for every interval length γ
as follows:

sbfS(γ) =

{

γ(k + 1)(PSQS) if γ ∈ [(k + 1)PS2QS, (k + 1)PSQS]
(k − 1)QS otherwise,

from (143).

18

Pictures/sbf-bdf.eps

2.1 Real-Time Analysis

2.1.5.1 Linear Approximation: (slope, ∆) model

The supply function ZS(γ) fully describes the computation time (the resource) provided
by the server to any time consuming entity requiring it. However it is sometimes
convenient to extract the most significant features from the supply function ZS(γ). A
convenient abstraction of server is based on the only concepts of bandwidth slope and
delay ∆. Note that for the slope we used slope in place of the α used in the original
model to avoid clashes with the other symbols used in the dissertation. In the rest of
the thesis we refer to slope to indicate the slope of a curve.

The bandwidth slope is the average slope of ZS(γ), formally defined as:

slope = limγ→∞
ZS(γ)

γ
(2.3)

The computation of the value of ∆ requires some more efforts. Informally speaking,
once we have computed slope, the delay ∆ is the minimum horizontal displacement
such that slope(γ −∆) is a lower bound of ZS(γ). Formally:

∆ = inf{d ≥ 0 : ∀γ ≥ t ZS(γ) ≥ slope(γ − d)} (2.4)

It can be noticed that this abstraction is very simple, since it is constituted by only
two parameters: the bandwidth and the delay. The advantage of a simple abstraction
is that it can be placed on top of very different server mechanisms. On the other hand
the price of simplicity is paid in terms of tightness: a more detailed description of the
time provided by a server would allow a tighter usage of resources.

The (slope, ∆) representation provides a linear approximation to the resource sup-
ply sbf of a server which is called bounded-delay function (bdf) with

∀γ bdf(γ) ≤ sbf(γ).

and

bdf(γ) =

{

slope(t−∆) if t ≥ ∆
0 otherwise

with slope = limγ→inf
sbf(γ)

t
and ∆ = inf{q | slopeγ + q ≤ sbf(γ) ∀γ}.

The resource provided by a reservation server can also be described by the bounded-
delay function (68; 103; 141) characterized by the tuple (slope, ∆), where slope is the
resource provisioning rate of the server and ∆ is longest interval with no resource
provisioning.

The bounded-delay function of a resource partition R, bdfR = (slope, ∆) is defined
as a linear approximation of the resource provisioning, and it holds

bdfR(t) ≤ sbfR(t) ∀t.

In the worst-case PS, DS, SS and CBS servers have the same resource supply bound
function which is the one from the periodic server. The worst-case resource supply of
a periodic server is provided whenever the resource is allocated at the beginning of

19

2.1 Real-Time Analysis

bdf

sbf

dbf

γ

re
so

u
rc

e

Figure 2.3: Demand bound function, supply bound function, and its bounded delay
approximation in the interval domain.

γ

t

re
so

u
rc

e

Figure 2.4: Supply bound function and bounded delay function for a periodic server in
the interval domain t and scheduling in the time domain.

the first period P and at the end of all the other periods, see Figure 2.4 for details.
In the interval domain, at most there is an interval of 2(P − Q) where no resource is
provided, while after 2(P − Q) the server supplies the resource at a constante rate of
Q
P

alternating the resource provisioning for an interval of Q and the resource holding
for rest of the period (P −Q).

The sbf of a periodic server, as the worst-case resource supply in time interval
[0, t) = γ, is

sbfS(t) = max{0, (k − 1)Q, t− (k + 1)(P −Q)} (2.5)

with k = ⌈ t−(P−Q)
P
⌉.

Such a curve is the shifted version of sbfS(γ) =
⌊

γ
P

⌋

Q + γ −
⌊

γ
P

⌋

P − (P −Q)
+

by
P − Q. In case of periodic resource reservation mechanisms (periodic servers) S =
(QS, PS), the resource supply bound can be approximated with the bounded-delay
function

bdfS(t) =

{

slope(γ −∆) if γ ≥ ∆
0 otherwise

(2.6)

with slope and ∆ that can be computed as

slope =
QS

PS

20

Pictures/sbf-bdf1.eps
Pictures/sbf.eps

2.1 Real-Time Analysis

and

∆ = 2(PS −QS),

as illustrated in Figure 2.4.

Resource Bounded Delay Approximation The demand bound function dbf can
be bounded with a bounded-delay linear approximation (slope, ∆) as well as the re-
source supply sbf. In that case slope is the slope of the linear bound, while ∆ is the
offset of such a curve. By using

slope
def
= lim

γ→∞

dbf(γ)

γ
, (2.7)

∆
def
= sup

γ≥0

{

γ −
dbf(γ)

slope

}

, (2.8)

it is possible to prove that dbf(γ) is bounded by

min{0, slope · γ + ∆} ≥ dbf(γ). (2.9)

The resulting curve is the minimum upper bound of the demand bound function.
The level-i workload wi can be approximated in a linear form applying the same

reasoning as the previous one.

slope
def
= lim

γ→∞

wi(γ)

γ
, (2.10)

∆
def
= sup

γ≥0
{wi − slope · γ} (2.11)

It is possible to prove that wi(γ) is bounded by

min{0, slope · γ + ∆} ≥ wi(γ). (2.12)

2.1.6 Classical Feasibility Analysis

In general, a resource R is said to satisfy the resource demand of τi, In other words it is
schedulable, if its resource supply satisfies its resource demand, dbf i(t) ≤ sbfR(t). The
taks is then schedulable. With the dbf and sbf modeling the former scheduling criteria
can be generalized in order to have what follows. Using the functions defined above,
the EDF schedulability of a task set Γ within a reservation R can be guaranteed if and
only if:

∀t dbfΓ(t) ≤ sbfR(t). (2.13)

Note that schedulability can also be checked using the linear bounded-delay function
bdf, but, due to the approximation involved, the condition becomes only sufficient. An
example of demand bound function, supply bound function and its bounded delay

21

2.2 Real-Time Calculus

approximation is illustrated in Figure 2.3. In that example the applications is feasible
under EDF, since in each interval of time the amount of resource always exceeds the
processor demand of the application.

In case of fixed priority scheduling, a task set Γ is schedulable within a reservation
R if and only if

∀i ∃t ∈ schedPi wi(t) ≤ sbfR(t), (2.14)

where schedPi is the set of testing points where the schedulability has to be checked
(25).

With the bounded-delay approximation, the schedulability condition become only
sufficient.

Proposition 2.1.10 (EDF Schedulability). The EDF schedulability of a task set Γ
within a reservation R can be guaranteed if

∀t dbfΓ(t) ≤ bdfR(t). (2.15)

Proposition 2.1.11 (FP Schedulability). A task set Γ is schedulable within a reser-
vation R with FP scheduling policies if

∀i ∃t ∈ schedPi wi(t) ≤ bdfR(t), (2.16)

2.2 Real-Time Calculus

The increasing complexity of real-time and embedded systems has prompted the need
for modeling and analysis techniques that go beyond those traditionally studied in the
real-time systems literature. In this context, the Real-Time Calculus (RTC) framework
proposed in (43; 159) and subsequently extended in (160; 170) is targeted towards an-
alyzing heterogeneous real-time systems that process various types of streaming data.
RTC is a worst-case analysis framework for real-time system based on the Network
Calculus, (93). The main strength of RTC is a count-based abstraction, where arrival
patterns of event streams are specified as constraints on the number of events that
may arrive over any specified time interval. A collection of such constraints for differ-
ent interval lengths are captured as curves which denote upper and lower bounds on
the event arrival process. The service availability of computational resources is also
specified in a similar fashion.

In an embedded system, an incoming event stream is typically processed by a
sequence of tasks and system elements, that is the reason why event streams are asso-
ciated to tasks activations and so tasks.

22

2.2 Real-Time Calculus

Arrival Curve A trace of an event stream can conveniently be described by means
of a differential arrival function R[s, t) that denotes the sum of events that arrive in the
time interval [s, t) with s ≤ γ < t, with R[s, s) = 0, and with s, t ∈ R. We make use
of the cumulative arrival function R(γ) that is defined as R(γ) = R[0, γ) for all γ ≥ 0.
While any arrival function R always describes one concrete trace of an event stream, a
tuple a(γ) = [au(γ), αl(γ)] of upper and lower arrival curves provides an event stream
model, representing all the possible traces of an event stream. For this, the upper
arrival curve αu(γ) provides an upper bound on the number of events that are seen on
the event stream in any time interval of length γ, and analogously, the lower arrival
curve αl(γ) provides a lower bound on the number of events in a time interval γ. In
other words, in any time interval of length γ there will always arrive at least αl(γ) and
at most αu(γ) events on an event stream that is then modeled by α(γ).

Definition 2.2.1 (Arrival Curve). Let R[s, t) denote the number of events that arrive
on an event stream in the time interval s ≤ γ < t. Then, R, αu and αl are related to
each other by the following inequality

αl(t− s) ≤ R[s, t) ≤ αu(t− s), ∀t ≥ s ≥ 0

with αl(0) = αu(0) = 0.

The concept of arrival curves unifies many other common timing models of event
streams. For example, a periodic event stream with period T can be modeled by a
set of step functions where ᾱu(γ) =

⌊

γ
T

⌋

+ 1 and ᾱl(γ) =
⌊

γ
T

⌋

. For a sporadic event
stream with minimal inter arrival distance T and maximal inter arrival distance T ′, the
upper and lower arrival curve is ᾱu(γ) =

⌊

γ
T

⌋

+1, ᾱl(γ) =
⌊

γ
T ′

⌋

, respectively. Moreover,
for an event stream with period T , jitter J , and minimal inter arrival distance d, the
upper arrival curve is ᾱu(γ) = min{

⌈

γ+J
T

⌉

,
⌈

γ
d

⌉

}. Fig. 2.6 illustrates arrival curves for
the above cases. For details, please refer to (159). Event-based arrival curves can be
converted to workload-based arrival curves α by scaling with the best-case/worst-case
execution demand of events. In this dissertation, we make use use of the workload-
based interpretation and assume that each event has a fixed execution demand. More
general concepts for characterizing these units are discussed in (115).

Service Curve Analogously to the differential arrival function R[s, t) that is used to
describe a concrete trace of an event stream, the concrete availability of a computation
or communication resource (any resource in real-time systems) can be described by
a differential service function C[s, t) with s, t ∈ R, where C[s, t) denotes the sum of
available resource units, e. g. processor cycles or transmittable bits on a bus, in the
time interval s ≤ γ < t, with C[s, s) = 0. Sometimes, we will also use the cumulative
service function C(γ) that is defined as C(γ) = C[0, γ) for all γ ≥ 0. The tuple
β(γ) = [βu(γ), βl(γ)] of upper and lower service curves provides a resource model. The
upper service curve βu(γ) provides an upper bound on the available resources in any
time interval of length γ, and the lower service curve βl(γ) provides a lower bound on
the available resources in a time interval γ. And in other words again, in any time
interval of length γ there will always be at least βl(γ) and at most βu(γ) resource
capacity available on a resource that is modeled by β(γ).

23

2.2 Real-Time Calculus

time0 2 4 6 8 10 12

∆ = 3 ∆ = 3

(a) Time domain

0

2

4

6

8

0 2 4 6 8 10

b b

b b

b b

b b

b b

b b

b b

b

αu(γ)

b b

b b

b b

b b

b b

b b

b

αl(γ)

γ

#
of

ev
en

ts

Figure 2.5: Graphical representation of a event stream with the trace and its curve in
the interval domain.

2

4

6

1p 2p 3p 4p 5p

ᾱu(γ)

ᾱl(γ)

(a)

γ#
o
f
ev

en
ts

2

4

6

1p 2p 3p 4p 5p

ᾱu(γ)

ᾱl(γ)

(b)

γ
2

4

6

1p 2p 3p 4p 5p

ᾱu(γ)

ᾱl(γ)

(c)

γ

Figure 2.6: Examples for arrival curves, where (a) periodic events with period p, (b)
events with minimal inter-arrival distance p and maximal inter-arrival distance p′ = 1.5p,
and (c) events with period p, jitter j = p, and minimal inter-arrival distance d = 0.8p.

Definition 2.2.2 (Service Curve). Let C[s, t) denote the number of processing or com-
munication cycles available from a resource over the time interval s ≤ γ < t. Then C,
βu and βl are related by the following inequality

bl(t− s) ≤ C[s, t) ≤ bu(t− s), ∀t ≥ s ≥ 0

with bl(0) = bu(0) = 0.

With the service curve abstraction β(γ) it is possible to model any resource supply
in the interval domain, including the bandwidth provisioning in WSNs or the compu-
tational resource provided by a processor to tasks or server.

time

on off on off on

0

2

4

6

8

0 2 4 6 8 10 12
b

b b

b b

b

βu(γ)

b b

b b

b b

b

βl(γ)

γ

#
of

cy
cl

es

Figure 2.7: Graphical representation of a periodic service provisioning with the resource
provisioning trace and its curve in the interval domain.

24

2.2 Real-Time Calculus

Together with the input curves, there are other important curve for a real-time
element: the output curves, which are.

• the Output Arrival Curve. The outgoing arrival curves are those curves resulting
from the processing a component served by a service β(γ) does on its input
arrivals α(γ), in any interval γ.

α′l(γ) = min{βl(γ),

inf
0≤µ,γ
{sup

λ≥0
{αl(µ + λ)− βu(λ)}+ βl(γ − µ)}}

α′u(γ) = min{βu
i (γ),

sup
λ>0
{ inf

0≤ µ≤λ+t
{αu(µ) + βu(λ + t− µ)} − βl(λ)}}

• The Remaining Service. If an event stream with arrival curve α(γ) in any interval
γ is processed by an abstract component on a resource with availability β(γ), then
the remaining resources that are not consumed by the abstract component can
be bounded by the service curve:

β ′l(γ) = sup
0≤λ≤γ

{βl(λ)− αu(λ)}

β ′u(t) = max{ inf
λ≥γ
{βu(λ)− αl(λ)}, 0}

In RTC important notions like delay and backlog define schedulability conditions.

• Delay : The maximum delay dmax experienced by an event on an event stream
with arrival curve α(γ) that is processed on an element with service curve β(γ),
is bounded by:

dmax ≤ supλ≥0inf{γ ≥ 0 | αu(λ) ≤ βl(λ + γ)} (2.17)
def
= Del(αu, βl) (2.18)

The delay is then the amount of time that an application has to wait in order
to have the necessary amount of resource available and then execute properly. It
can be seen as the application worst-case response time and the it can be applied
to schedulability purposes.

• Backlog : The maximum number of backlogged events from the stream α that is
waiting to be processed is given by the inequality

bmax ≤ supt≥0{α
u(t)− βl(t)}

def
= Buf(αu, βl). (2.19)

In the performance model of a system, various performance measures can be com-
puted analytically. For instance, for an FP component the maximum delay dmax ex-
perienced by an event is bounded by the previous relationship (Equation 6.19), and

25

2.3 Component and Interface-Based Real-Time Systems

α(γ)

β(γ)

D
B

γ

Figure 2.8: Graphical representation of delay and backlog and the horizontal and
vertical distance respectively.

when processed by a sequence of components, the total end-to-end delay experienced
by an event is bounded by

dmax ≤ Del(αu, βl
1 ⊗ βl

2 ⊗ . . .⊗ βl
n)

(43; 93). Similarly, the maximum buffer space bmax required to buffer an event stream
in front of such an FP component is bounded by Equation 2.19. When the buffers
of consecutive components access the same shared memory, the total buffer space is
bounded by

bmax ≤ Buf(αu, βl
1 ⊗ βl

2 ⊗ . . . βl
n)

In case of EDF an order among the tasks and their execution cannot be decide a
priori. They are scheduled with dynamic priority rules, so the FP analysis does not
apply to those schedulability mechanisms. The schedulability analysis is then carried
out composing the arrivals of the scheduling component α =

∑

τi∈Γ
αi in order to

obtain the total resource demand such which is required by that scheduling element.
The compositional rules will be clarified later on.

S1

β1

S2

β2

Sn

βn β ′
α1 α2 αn

Figure 2.9: An example for fixed-priority scheduling

2.3 Component and Interface-Based Real-Time Sys-

tems

Recent trends depict real-time systems as component-base systems where the appli-
cation tasks or dedicated HW/SW component models provide information about the

26

2.3 Component and Interface-Based Real-Time Systems

∑

α1

αn S
α

β
α′

Figure 2.10: An example for earliest deadline first scheduling

processing semantics that are used to execute the various application tasks or to run
the dedicated HW/SW components.

a
b
a′

b′

α α′
β

β′

Figure 2.11: Generic component with input and output event streams and its RTC
abstraction with arrival and service curves.

Imagine the simple component depicted in Figure 2.11. The component has two
input variables p1 and p2, and one output variable p3. What the component does is
further described by a component description that could be expressed by the formula
p3 = p2−p1. To put this component in a context, lets suppose that it is the abstraction
of a concrete system component, and we want to analyze real-time properties of the
concrete component. We could then interpret this component as follows: input variable
p1 describes the resource demand of an arriving event stream, while p2 describes the
resources that are available to process the arriving event stream. Output variable p3

would then describe the resources that remained unused after processing the resource
demand p1.

p1

p2

p3 [pA
1
, pG

1
] p3

[pA
2 , pG

2]

Figure 2.12: Generic component and its interface abstraction.

In contrast to the component description, that models what the component actually
does, the component interface describes how the component can be used. A well
designed component interface has to provide enough information to decide whether
two or more components can work together properly in a system.

In our scenario, a real-time system is made by components which implement func-
tional services with temporal requirements, expressed by a Real-Time Interface (RTI)
(160; 166). Figure 2.12 depicts an example of a component and its component inter-
face abstraction. To model RTI we make use of an approach similar to the Real-Time

27

Pictures/RTCcomponent.eps
Pictures/RTCcomponent2.eps
Pictures/component1.eps
Pictures/component.eps

2.3 Component and Interface-Based Real-Time Systems

Calculus formerly introduced, where a Real-Time Interface of a generic network com-
ponent has input and output variables related to event streams (arrivals) and resource
availability (services). The definition of Real-Time Interfaces follows the principles
of Interface-based Design as described by de Alfaro and Henzinger in (57), and more
recently in (58). Whereas more recent results relate to state-based interface languages
such as interface automata and extensions towards the use of resources, the Real-Time
Interfaces are based on stateless assume/guarantee (A/G) interfaces, see (57). We make
use of the assume/guarantee paradigm to describe real-time components because closer
to the classical real-time theory. In this section, we introduce some underlying prin-
ciples of interfaces and Interface-based Design on an example of an simple imaginary
component for real-time system design. Note that interfaces and all interface-related
terms in this section are formally defined in (57) and (58).

Figure 2.12 depicts a component and its assume/guarantee interface. Although not
depicted explicitly, this interface also has the two input variables p1 and p2 and the
output variable p3. The component interface puts a constraint on the environment
through a predicate φI on its input variables: the environment is expected to provide
inputs that satisfy φI . In return, the interface communicates to the environment a
constraint φO on its output variables: it guarantees to provide only outputs that satisfy
φO.

If our interface gets connected to other interfaces, these will provide output guaran-
tees on their output variables, e.g. a ≤ p̂1

G and b ≥ p̂2
G, and input assumptions on their

input variables, e.g. c ≥ ĉA. The interface relations p̂3
G = p̂2

G − p̂1
G, p̂1

A = p̂2
G − p̂3

A

and p̂2
A = p̂1

G + p̂3
A, then bring these different input assumptions and output guaran-

tees into relation.

Single Task

Component

provided method
signature signature

required method

αi, Di α′i, Di

βi

β ′i

Figure 2.13: Real-time component.

α, D

β αA, DA

α, D

αG, DG

βA β βG

Figure 2.14: Generic real-time component and its assume/guarantee interface abstrac-
tion.

28

Pictures/componentAbstract.eps
Pictures/nodeComponent.eps
Pictures/componentInterface.eps

2.3 Component and Interface-Based Real-Time Systems

For interface-based design, we first need a set of interfaces, one for every component
in the system we want to design. As with the components themselves, interfaces can
then be composed into bigger interfaces by interconnecting an output of one interface
U to an input of another interface V . The composed interface is then denoted as
U ||V . This composition is however only possible, if the two interfaces are semantically
compatible. And if they are compatible, it is guaranteed that the two components
belonging to the two interfaces can work together properly in the real system. Two
interfaces U and V are semantically compatible if whenever one interface provides
inputs to the other interface, then the output guarantee of the former implies the
input assumption of the latter. In the closed case, where all inputs of U are outputs of
V , and vice versa, U and V are compatible if the closed formula φO

U ∧ φO
V ⇒ φI

U ∧ φI
V

is true. In the open case on the other hand, where some inputs of U and V are left
free, this formula has free input variables. U and V are then compatible if the above
formula is satisfiable. This formula is then the input assumption φI

U ||V of the composite

interface U ||V , as it encodes the weakest condition on the environment of U ||V to make
U and V work together properly.

Interface-based design supports incremental design of systems, because interfaces
can be composed one-by-one in any order. During the composition, the assumptions
on the free input variables are getting increasingly tight, and if we eventually succeed
to compose all component interfaces of a complete system, we are guaranteed that all
components in the system work together properly.

The component composition can be derived from the electronic theory. Indeed, it is
possible to distinguish among serial and parallel composition of real-time components;
such a classification depends on the resource.

• In case of serial composition the same resource is passed from one component to
the next one; just the residual resource is then passed to the next component.

• In case of parallel composition, different resources are passed to different com-
ponents. The components process the same inputs because the output of one
component is the input of the next one.

Figure 2.15 gives an example of the two possible composition schemes.
Besides composition, it is important to apply refinement with interfaces. Refine-

ment of interfaces is very similar to sub-typing of classes in object oriented (OO)
programming: a refinement of an interface must accept all inputs that the original in-
terface accepts, and it may produce only outputs that the original interface specification
allows. Hence, to refine an assume/guarantee interface, the input assumption can be
weakened, and the output guarantee can be strengthened. This definition ensures that
compatible interfaces can always be refined independently and still remain compatible.
We then say that interface-based design supports independent implementability. In
practice, this allows to outsource the implementation of different system components,
or to replace existing implementations of sub-systems with different or new implemen-
tations.

29

2.3 Component and Interface-Based Real-Time Systems

Resource

Residual

...

α1

α2

αn

α′1

α′2

α′n

β1

β ′1

β ′n

Resource

...

Residual Residual Residual

Resource Resource

α1 α′1 α′n

β1 β2 βn

β ′1 β ′nβ ′2

Figure 2.15: Series and parallel composition of real-time components.

2.3.1 Abstract Components and Real-Time Interfaces

In this dissertation, we model HW/SW real-time components by using abstract com-
ponents as depicted in Figure 2.14. An event stream, represented by the arrival curve
α(γ) with associated the maximum event delay D, triggers the component. A fully
preemptable and independent tasks is instantiated at every event arrival and is pro-
cessed greedily while being restricted by the resource availability, that is represented
by the service curve β(γ). Resources that are not consumed by the component are
represented by the service curve β(γ). Following the results from network calculus and
real-time calculus, the following relations can be derived that describe such an abstract
component.

With abstract components as defined above, scheduling policies on a resource can
be expressed by the way the abstract resources β(γ) are distributed among the different
abstract components. For example, consider preemptive fixed priority scheduling: an
abstract component A with the highest priority may use all resources, whereas an
abstract component B with the second highest priority only gets resources that were
not consumed by A. This is modeled by using the remaining service βA(γ) from A as
input to B. For more details see (44).

A real-time interface may have input and output variables related to event streams
(arrival variables) and resource availability (service variables). The output guarantee
on an arrival variable contains the bounds αG(γ) and DG and the output predicate
φO guarantees α(γ) ≤ αG(γ), and D ≥ DG. The input assumption on the other hand
contains the bounds αA(γ) and DA and the input predicate φI reflects the assumption

30

Pictures/series.eps
Pictures/parallel.eps

2.3 Component and Interface-Based Real-Time Systems

that α(γ) ≤ αA(γ) and D ≥ DA. The value of a service variable consists of a service
curve β(γ). The output guarantee on a service variable contains the bound βG(γ), and
the output predicate φO guarantees β(γ) ≥ βG(γ). The input assumption contains the
bound βA(γ) and the input predicate φI reflects the assumption β(γ) ≥ βA(γ) for all
γ.

In order to determine whether two Real-Time Interfaces are compatible, we need
to check that φO ⇒ φI is true for all connections. Two Real-Time Interfaces that are
connected only via a single arrival variable are compatible if

(DA ≤ DG) ∧ (αA(γ) ≥ α̂G(γ)) ∀ γ ≥ 0

and when connected only via a service connection they are compatible if

βA(γ) ≤ βG(γ) ∀ γ ≥ 0

From this, we can generalize that two Real-Time Interfaces are compatible if the former
two conditions are true for all internal arrival and service connections respectively, and
if the input predicates of all open input variables are still satisfiable.

It is then possible to define composability among the components in terms of service
and arrivals.

2.3.2 Real-Time Composability

Any real-time component consists of a real-time workload and a scheduling policy for
the workload it manages. The analysis of such systems can be done compositionally
using interfaces that abstract the timing requirements of components.

The Real-Time Interfaces that we introduce in this chapter not only expose enough
information to decide on composability and compatibility with other component in-
terfaces, but in addition they also change their assumptions and guarantees, following
principles of constraint propagation. Which means that, in the real-time domain, the
concept of composability can be translated into schedulability, and verified at composi-
tion time. Components are composable if their composition is schedulable which means
that the resulting system is schedulable.

Recently, the concept of demand bound functions dbf(γ) and supply bound func-
tions sbf(γ) got about in the area of compositional scheduling, see e.g. (119; 141; 143)
or (144). With these functions, a component i is considered to be schedulable, if
∀ γ dbf i(γ) ≤ sbf i(γ), where dbf i is the resource demanded by the component and sbf i

is the resource demand the component receives. This concept also exists in the theory
of Real-Time Interfaces, where the bound βA(γ) of the input assumption on a service
connection can be interpreted as a demand bound function dbf(γ), and the bound
βG(γ) of the output guarantee on a service connection can be interpreted as a supply
bound function sbf(γ). Then, the compatibility requirement on a service connection
equals the above described schedulability requirement βA(γ) ≤ βG(γ). This way, in
terms of resource the service request never exceeds the service provisioning.

A schedulable/composable component is the one depicted in Figure 2.17. Using the
RTC and its curve modeling it is possible to derive schedulability conditions similar to
the ones of the classical real-time analysis.

31

2.3 Component and Interface-Based Real-Time Systems

The resource demand of a task i is the the resource amount the task request on
order to be scheduled properly, hence not missing its deadline. It is also the minimum
resource a scheduling component has to provide in order to schedule its workload. It
is defined from the arrival curve of the task by considering its deadline D, as αd

i =
αi(γ − Di). Given a task set Γ, the total resource demand is αd

Γ ≡ αd =
∑

i∈Γ αd
i =

∑

i αi(γ − Di). Arrival curves, demand curves and service curves can be bounded by
bounded-delay functions in the former definition.

The EDF schedulability of a task set Γ within a reservation R can be guaranteed
if and only if:

∀t αd
Γ(t) ≤ βR(t). (2.20)

Note that schedulability can also be checked using the linear bounded-delay function
bdf, but, due to the approximation, the condition becomes only sufficient. An example
of demand bound function, supply bound function and its bounded delay approxima-
tion is illustrated in Figure 2.3, where the applications is feasible under EDF, since in
each interval of time the amount of resource always exceeds the processor demand of
the application.

In case of fixed priority scheduling the schedulability applies the level-i workload
of Equation 2.2. Each task contribution to the level-i workload is given by the arrival
curve of the task itself; for the i-task wi(γ) = α(γ) +

∑

hp(i) αj(γ). A task set Γ is
schedulable within a reservation R if and only if

∀i ∃γ ∈ schedPi wi(γ) ≤ sbfR(γ), (2.21)

where schedPi is the set of testing points where the schedulability has to be checked
(24). With the bounded-delay approximation, the schedulability condition become
only sufficient. The workload curve can be bounded by bounded-delay functions as
well as all the other curves.

αi(γ)

α̃i(γ)

αi(t−Di) = αd
i (γ)

α̃d
i (γ)

β β̃(γ)

γ

Figure 2.16: Arrival and demand curves of the i-th task together with the service curve
and their bounded-delay approximations.

Linear bounding eases the curve representation but sensibly reduces the accuracy
of the analysis.

32

2.3 Component and Interface-Based Real-Time Systems

Workload Bounding The arrival curve α(γ) can be bounded (upper bounded) with
a linear curve with the slope and the initial offset of such a curve ∆. The initial offset
is required in order to bound possible bursts that can happen to the task arrival, as in
case of aperiodic tasks.

slope
def
= lim

γ→∞

α(γ)

γ
, (2.22)

σ
def
= sup

γ≥0
{α− slope · γ} , (2.23)

it is possible to prove that α(γ) is bounded by:

min{0, slope · γ + σ} ≥ α(γ). (2.24)

The arrival curve is exactly the task workload mentioned by Lehoczky et al. in (96),
while the linear bounding of the arrival curve is described by the tuple (slope, σ) as
bounded-delay functions where slope and σ are defined as the Equation 2.22 and Equa-
tion 2.23.

Resource Bounding The linear bounding of the service and demand curves are
again bounded-delay functions with slope and initial delay, defined as

slope
def
= lim

t→∞

β(γ)

γ
, (2.25)

∆
def
= sup

t≥0

{

γ −
β(γ)

slope

}

, (2.26)

respectively. The service curve has to be lower bounded by bounded-delay functions

β̃ = max{slope, ∆ | slope · (γ −∆) ≤ β(γ)}

Even αd(γ) can be bounded by the delay-bound function α̃d modeled with the tuple
(slope, ∆) which is composed by the slope and the maximum delay of such a curve,
R and ∆ respectively. The demand curve represents the minimal resource required to
schedule the event stream. For schedulability reason that will be detailed later, the
demand curve has to be upper bounded by bounded-delay curves

α̃d = min{slope, ∆ | slope(γ −∆) ≥ αd(γ)}.

Figure 2.16 depicts the RTC curves and their linear approximations.
Using the delay concept, Disequation 6.19, it is possible to define the schedulability

of task sets which depends on the scheduling policy applied. Those conditions are
equivalent to the previous ones.

Theorem 2.3.1 (EDF Delay Schedulability). Given a task set Γ = {τ1, . . . , τn} with
each task τi described with αi and a timing constraint Di (αd

i), served with a resource

33

2.3 Component and Interface-Based Real-Time Systems

αu(γ)

γ

βA(γ) = αu(γ − D)

βG(γ)

Figure 2.17: A schedulable application.

β. Γ is schedulable under an EDF scheduling policy if and only if the cumulative delay
experienced by the task set in each task is less than or equal to 0,

d ≤ 0, (2.27)

with the delay bounded considering the cumulative demand curve αd =
∑

τi∈Γ
αd

i and
the service available

d ≤ sup
t≥0
{inf{γ ≥ 0 | αd(t) ≤ β(t + γ)}}.

Proof. The demonstration comes from the processor demand criterion (PDC) (21).
The processor demand of a task set is represented by the cumulative demand curve
αd =

∑

τi∈Γ
αd

i , and the task set is schedulable iff the demand is less than or equal to
the service available, Disequation 2.15. Which means that the delay among the curves

d ≤ sup
t≥0
{inf{γ ≥ 0 | αd(t) ≤ β(t + γ)}},

has to be less than or equal to 0. That conclude the demonstration.

Theorem 2.3.2 (FP Delay Schedulability). Given a task set Γ = {τ1, . . . , τn} served
with a resource β, and each task τi described with αi and a timing constraint Di. Γ is
schedulable under a fixed priority scheduling policy if and only if the delay experienced
by each task is less than or equal to its deadline,

∀i di ≤ Di, (2.28)

with the delay bounded considering the level-i workload and the service available

di ≤ sup
t≥0
{inf{γ ≥ 0 | wi(t) ≤ β(t + γ)}}.

Proof. The demonstration comes from the Response Time Analysis (RTA) (96). The
response time of a task τi is obtained by considering the level-i workload wi =

∑

j∈hp(i) αi.
Such a response time has to be less than or equal to the task deadline Di. The delay,
computed using the level-i workload is the response time of task τi

di ≤ sup
t≥0
{inf{γ ≥ 0 | wi(t) ≤ β(t + γ)}}.

34

2.3 Component and Interface-Based Real-Time Systems

According to the RTA, every task must have a response time (or delay) less than or
equal to its deadline. That conclude the demonstration.

The same theorems can be carried out (as sufficient condition only) by applying
the bounded delay approximations of the curves.

35

Chapter 3

Resource Reservation and
Schedulability Analysis

In this chapter there are presented examples about real-time scheduling. Those exam-
ples refers either to the classical real-time representation or the RTC one. It is the case
of real-time theory applied to specific scenarios.

Mainly, the examples tackle with the energy aware scheduling problem where the
scheduling takes into account energy issues in order to reduce the energy consumption
of embedded systems. Thus, the real-time analysis couple the classical scheduling and
energy constraints improving the efficiency of the devices. In the following we will show
the real-time analysis (deterministic - the classical one - and the non deterministic -
the RTC) applied to solve such problem.

Examples and related papers allow us to show the effective of the modeling frame-
work that the real-time community consistently applies.

3.1 Power Management for Hard Real-Time Sys-

tems

Power dissipation has been an important design issue in a wide range of computer
systems in the past decade. Power management with energy efficiency considerations
is not only useful for mobile devices for the improvement on operating duration but
also helpful for server systems for the reduction of power bills.

Two major sources of power consumption of a CMOS circuit are dynamic power
consumption due to switching activities and static power consumption mainly due to
leakage current (84). For micrometer-scale semiconductor technology, dynamic power
dominates the power consumption of a processor. However, as modern VLSI technology
is scaling down to deep sub-micron domain, the tremendous amount of transistors
integrated within a chip consumes significantly more static power. The leakage current
that originates in the dramatic increase in both sub-threshold current and gate-oxide
leakage current is projected to account for as much as 50 percentage of the total power
dissipation for high-end processors in 90 nm technologies (11). The ITRS expects static

36

3.1 Power Management for Hard Real-Time Systems

Figure 3.1: Energy consumption trends form ITRS.

power in the future will be much greater than their calculated value due to variability
and temperature effects (83), as depicted in Figure 3.1.

It has been shown in (7) that for server systems the electricity cost remains signifi-
cant even if servers do not always operate with the maximum power consumption. For
mobile devices, ITRS reports the slow growth of energy density of batteries lacks far
behind the tremendous increase of demands (83). Because of these facts, power con-
sumption becomes one of the first-class design concerns for modern computer systems.

The dynamic voltage scaling (DVS) technique was introduced to reduce the dynamic
energy consumption by trading the performance and the computational resource pro-
vided for energy savings. For DVS processors, a higher supply voltage, generally, leads
not only to a higher execution speed/frequency but also higher power consumption.
As a result, DVS scheduling algorithms, e.g., (12; 175; 176), tend to execute events
as slowly as possible, without any violation of timing constraints. On the other hand,
dynamic power management (DPM) can be applied to control the change of system
mode to consume less leakage power, e.g., to a sleep mode. For DVS systems with
non-negligible leakage power consumption, to minimize the energy consumption for
execution, there is a critical speed, in which executing at any speed lower than the crit-
ical speed consumes more energy than at the critical speed (46; 84). However, returning
from the sleep mode has timing and energy overheads, due to the wakeup/shutdown
of the processor and data fetch in the register/cache. For example, the Transmeta
processor in 70nm technology has 483µJ energy overhead and less than 2 msec timing
overhead (84).

For non-DVS systems with the sleep mode, Baptiste (15) proposes an algorithm
based on dynamic programming to control when to turn on/off the system for aperi-
odic real-time events with the same execution time. For multiple low-power modes,
Augustine et al. (10) determine the mode that the processor should enter for aperiodic
real-time events and propose a competitive algorithm for on-line use. Swaminathan et
al. (157; 158) explore dynamic power management of real-time events in controlling
shutting down and waking up system devices for energy efficiency. To aggregate the
idle time for energy reduction, Shrivastava et al. (146) propose a framework for code
transformations.

37

Pictures/leakage.eps

3.1 Power Management for Hard Real-Time Systems

Leakage-aware scheduling has also been recently explored on DVS platforms, such
as (45; 46; 84; 85; 86; 94). In particular, researches in (46; 84; 94) propose energy-
efficient scheduling on a processor by procrastination scheduling to control when to turn
off the processor. Jejurikar and Gupta (86) then further consider real-time events that
might complete earlier than their worst-case estimation. Fixed-priority scheduling is
also considered by Jejurikar and Gupta (85) and Chen and Kuo (45). For uniprocessor
scheduling of aperiodic real-time events, Irani et al. (81) propose a 3-approximation
algorithm for the minimization of energy consumption. Niu and Quan (124) apply
similar procrastination strategies for periodic real-time events with leakage consider-
ations. The basic idea behind the above results is to execute at some speed (mostly
at the critical speed) and control the procrastination of the real-time events as long as
possible so that the idle interval is long enough to reduce the energy consumption.

In the following examples we show how to reduce the energy consumption of em-
bedded devices while satisfying the real-time or quality of service (QoS) constraints.
We consider systems (or devices) with active, standby, and sleep modes with different
power consumptions. Similar to the approaches in (45; 84; 85; 86), for systems with
DVS capability, we assume that the execution of events is at the critical speed and
explore the energy reduction by applying DPM for reducing the energy consumption
for idling.

Most of the above approaches require either precise information of event arrivals,
such as systems with periodic real-time events (45; 46; 84; 85; 86; 94) or aperiodic real-
time events with known arrival time (10; 15; 81). However, in practical, the precise
information of event arrival time might not be known in advance since the arrival time
depends on many factors. When the precise information of event arrivals is unknown,
to our best knowledge, the only known approach is to apply the on-line algorithms
proposed by Irani et al. (81) and Augustine et al. (10) to control when to turn on
the system. However, since the on-line algorithms in (10; 81) greedily stay in the sleep
mode as long as possible without referring to incoming events in the near future, the
resulting schedule might make an event miss its deadline.

To model such irregular events, we make use of real-time calculus in order to char-
acterize events with arrival curves by evaluating how often system functions will be
called, how much data is provided as input to the system, and how much data is gen-
erated by the system back to its environment. Therefore, schedulability analysis can
be done based on the curve abstraction, which are the arrival curves for the event
streams and the service curves for the resource. For scheduling event streams based on
Real-Time Calculus in DVS systems under buffer constraints, Maxiaguine et al. (114)
develop adaptive algorithms to control the execution speed dynamically at periodic
intervals of predefined length without exploiting the possibility for finding the optimal
interval length with respect to the power consumption.

Distinct from the on-line adaptive algorithms in (114), to reduce the run-time over-
head for determining when to perform mode changes, first we propose first off-line
algorithms to derived optimal or approximated solutions to periodic power manage-
ment for controlling when to change the system mode periodically. The light run-time
overhead of the periodic power management schemes is very suitable for devices that
only have limited power on computation. For scheduling one event stream under the

38

3.1 Power Management for Hard Real-Time Systems

Active

Pa

Standby

Ps

Sleep

Pσ

<
0;

0 >

<
0;

0 >

<
tsw

,sleep ;E
sw

,sleep >

< tsw,sleep; Esw,sleep >

<
tsw

,on ;E
sw

,on >

< tsw,on; Esw,on >

Figure 3.2: Example for state transit, where the tuple one each transit is the timing
overhead and energy overhead.

real-time or QoS constraints, we develop an approach to derive optimal solutions and
another to derive approximated solutions with lower complexity. Then, by applying
the Modular Performance Analysis (173), we extend the developed approaches to cope
with multiple event streams. To demonstrate the performance of the proposed ap-
proaches, several case studies are explored, in which the results reveal the effectiveness
of our approaches.

Hardware Model We consider a system (or a device) that has three power consump-
tion modes, including active, standby, and sleep modes. The power consumption
in the sleep mode is Pσ. To serve an event, the system must be in the active mode with
power consumption Pa, in which Pa > Pσ. Once there is no event to serve, the system
can enter the sleep mode. However, switching from the sleep mode to the active mode
takes time, denoted by tsw,on, and requires additional energy overhead, denoted by
Esw,on. To prevent the system from frequent mode switches, the system can also stay
in the standby mode. The power consumption Ps in the standby mode, by definition,
is less than Pa and is more than Pσ. In (77; 78; 79), we assume that switching between
the standby mode and the active mode has negligible overhead, compared to the other
switches, which is the same as the assumption in (174; 178). Moreover, switching from
the active (also standby) mode to the sleep mode takes time, denoted by tsw,sleep, and
requires additional energy overhead, denoted by Esw,sleep. Figure 3.2 illustrates the
state diagram of these three modes. For simplicity, once the system issues a mode
switch from one mode to another mode, we assume that the power consumption of the
system before the system enters the new mode is Pσ.

The model is based on curves, service and arrival curves as interfaces of real-time
scheduling components.

Scheduling Policies For scheduling event streams, we consider the fixed priority
scheduling and the earliest-deadline-first scheduling. For FP scheduling, event streams
are prioritized a priori. Once an event of an event stream arrives to the system, the
priority of the event is set to the pre-defined priority of the event stream. For EDF
scheduling, the highest priority is given to the event with the earliest deadline. For both
FP and EDF scheduling, the system executes the incomplete event with the highest
priority. If there are more than one event with the highest priority, we break ties

39

3.1 Power Management for Hard Real-Time Systems

periodic power management (PPM)

Ton Toff Ton Toff Ton Toff

active/
standby sleep

active/
standby sleep

active/
standby sleep

S1
S2

Si

α1, D1

α2, D2

..
.

αi, Di

..
.

Scheduling policy
EDF or FP

β()

Figure 3.3: The abstract model of the periodic power management problem.

by applying the first-come-first-serve (FCFS) strategy. Therefore, events in the same
event stream will be executed in the FCFS manner.

3.1.1 Periodic Power Management

We explore how to efficiently and effectively minimize the energy consumption to serve
a set of event streams S under the real-time or QoS requirements. Of course, one could
determine when to transit between modes to reduce the energy consumption dynami-
cally, but the periodic approach represents the first strep toward adaptive solution to
be applied n-line.

In this dissertation we recall a Periodic Power Management schemes (PPM), in-
troduced in (78). That model is abstractly illustrated in Figure 3.3, in which the
power management is done by analyzing the arrival curves of event streams S stat-
ically. Specifically, the periodic power management schemes first decide the period
T = Ton + Toff for power management, then switch the system to the standby mode
for Ton time units, following by Toff time units in the sleep mode. Therefore, given a
time interval L, where L ≫ T and L

T
is an integer, suppose that γi(L) is the number

of events of event stream Si served in interval L. If all the served events finish in time
interval L, the energy consumption E(L, Ton, Toff) by applying the PPM is

E(L, Ton, Toff) =
L

Ton + Toff
(Esw,on + Esw,sleep)

+
L · Ton

Ton + Toff

Ps +
L · Toff

Ton + Toff

Pσ

+
∑

Si∈S

ci · γi(L)(Pa − Ps)

=
L · Esw

Ton + Toff
+

L · Ton(Ps − Pσ)

Ton + Toff

+L · Pσ +
∑

Si∈S

ci · γi(L)(Pa − Ps)

where Esw is Esw,on + Esw,sleep for brevity.

40

3.1 Power Management for Hard Real-Time Systems

As a result, for an L that is sufficiently large, without changing the scheduling
policy, the minimization of energy consumption E(L, Ton, Toff) is to find Ton and Toff

such that the average idle power consumption P (Ton, Toff)

P (Ton, Toff) =
Esw + Ton(Ps − Pσ)

Ton + Toff

(3.1)

is minimized. The problem considered in (78) is that given a set of event streams S
under the real-time or QoS requirements, the objective of the studied problem is to
find a periodic power management characterized by Ton and Toff that minimizes the
average standby power consumption, in which the response time of any event of event
stream Si in S must be no more than Di.

3.1.2 One Event Stream

For event streams described by real-time calculus, one can apply real-time interface
(160) to verify whether a system can provide guarantee output service βG(γ). Corre-
spondingly, to guarantee that all events in one event stream can be processed while
respecting all timing constraints, the event stream demands a service bound βA(γ). To
satisfy the required deadline for the i-th event stream Di, βA(γ) can be computed as
βA(γ) = αu

i (γ−Di). To check the schedulability of event stream S1 in the system, the
following predicate has to be true:

βG(γ) ≥ βA
i (γ), ∀γ ≥ 0

For PPM with specified Ton and Toff , the guarantee service of the system can be refined
as:

βG(γ) = max
(⌊ γ

Ton + Toff

⌋

· Ton,

γ −
⌈ γ

Ton + Toff

⌉

· Toff

)

(3.2)

For the rest of this section, we are going to present our schemes to find the pair
(Ton,Toff) ∈ R

+ × R
+ to minimize the average idle power consumption such that the

service constraint βG(γ) is satisfied, and, hence, all events in stream S〉 have response
time shorter than the timing constraint Di.

Reviewing the formulation of the average idle power consumption P (Ton, Toff) =
Esw+Ton(Ps−Pσ)

Ton+Toff
, there are two cases. (1) If Esw

Ps−Pδ
≥ Toff , we know that P (Ton, Toff)

is minimized when Ton is set to ∞. (2) If Esw

Ps−Pδ
< Toff , the minimal Ton under the

service constraint βG(γ) minimizes the average idle power consumption P (Ton, Toff).
In this sense, Esw

Ps−Pδ
, can be seen as the break-even time of the system. Our approaches

proposed in (78) paper are based on (1) the finding of the minimal Ton under the
service constraint βG(γ), provided that Toff is given, and (2) the exploration of the
best Toff . One could also derive solutions in another direction by searching the best
Toff for a specified Ton along with the exploration on Ton, but the procedure would be
more complicated.

41

3.1 Power Management for Hard Real-Time Systems

3.1.2.1 Finding the Minimal Ton

By the service guarantee curve βG in (3.2), the service demand curve βA = αu
1(γ−D1),

and the schedulability definition in (3.7), the minimal Ton to fulfill the schedulability
requirement in terms of a given Toff can be defined as:

Tmin
on = min

{

Ton : βG(γ) ≥ βA(γ), ∀γ ≥ 0
}

. (3.3)

To our best knowledge, there is no explicit form to compute Tmin
on . Furthermore,

due to the complex shape of the arrival curves, exhaustive testing of (3.7) is the only
way to determine the minimum from all possible Ton.

Instead of calculating the exact Tmin
on , we propose an alternative approach, namely

bounded-delay approximation, to find an approximated minimal T̃on. The bounded-
delay approach, on one hand, can reduce the computational complexity of finding the
minimal T̃on, and, on the other hand, can provide means to solve the PPM problem
efficiently.

The basic idea of the proposed approach is to compute a minimal bounded-delay
function βA′

(γ), then derive the minimal Ton based on βA′
. A bounded-delay function

bdf(γ, slope, Toff), defined by the slope slope and the bounded-delay Toff for interval
length γ, is max{0, slope · (γ − Toff)}.

For a given bounded-delay function with slope slope and bounded-delay Toff , we
can construct a PPM with

T̃on =
slope · Toff

1− slope

such that the resulting service curve of the PPM is no less than the minimal
bdf(γ, slope, Toff) for any γ ≥ 0. Figure 3.8 illustrates an example to derive T̃on. From
above definitions, we can have the following lem.

Lemma 3.1.1. For specified Toff > 0 and 0 < slope ≤ 1:
(1) If bdf(γ, slope, Toff) ≥ αu

1(γ −D1), then, for any slope′ > slope,
bdf(γ, slope′, Toff) ≥ αu

1(γ −D1).
(2) If bdf(γ, slope, Toff) < αu

1(γ −D1), then, for any slope′ < slope,
bdf(γ, slope′, Toff) < αu

1(γ −D1).

Proof. This is simply based on the construction of the bounded delay function.

By (3.4) and Lemma 3.1.1, finding the minimum slope, namely slopemin,Toff
, under

the constraint of the service demand βA, is equivalent to the derivation of the minimal
T̃on in the bounded-delay approximation, where

slopemin, Toff
= inf{slope : bdf(γ, slope, Toff) ≥ αu

1(γ −D1), ∀γ ≥ 0}.

Now we can formally define T̃on as following.

42

3.1 Power Management for Hard Real-Time Systems

αu
1 (∆)

βA(∆) = αu
1
(∆−D1)

βA′

= ρ(∆− Toff)T̃off

T̃on

D1

∆

Figure 3.4: An example for the bounded delay approximation, in which only part of
the upper arrival curve αu

1 (∆) is presented for simplicity.

Definition 3.1.2. The minimal Ton acquired from the bounded-delay approximation is
a function of Toff :

T̃on =
Toff · slopemin, Toff

1− slopemin, Toff

def
= f(Toff) (3.4)

To compute slopemin, Toff
, based on Lemma 3.1.1, we can simply apply binary search

of slope in the range of [0, 1]. Suppose that there are n possible values of slope,
the number of exploration required to derive slopemin, Toff

is O(log n). Compared to

the search of optimal Tmin
on with respect to a given Toff in Equation 3.3 with O(n)

explorations of possible combinations, the binary search greatly improves the running
time, since verifying whether βG(γ) ≥ βA(γ) for all γ ≥ 0 is time-consuming.

Moreover, the derived T̃on has certain nice property in the following lem, which will
be used to improve the time complexity for searching the optimal PPM.

Lemma 3.1.3. Given a βA, the function f(Toff) defined in Equation 3.4 is strictly

increasing and
Toff

f(Toff)
>

(1+ǫ)Toff

f((1+ǫ)Toff)
for any ǫ > 0.

Proof. From the definition of f , one has slopemin, Toff
< slopemin, (1+ǫ)Toff

and thereby
f(Toff) < f((1 + ǫ)Toff), which proves the property for strict increase. Because

slopemin, Toff
< slopemin, (1+ǫ)Toff

, we can derive 1

1+
Toff

f(Toff)

< 1

1+
(1+ǫ)Toff

f((1+ǫ)Toff)

, then,
Toff

f(Toff)
>

(1+ǫ)Toff

f((1+ǫ)Toff)
.

Before presenting how to search the optimal Toff , we will first discuss about the
feasible region of Toff . Intuitively, if Toff is smaller than the break-even time, i.e.,

Esw

Ps−Pδ
, turning the system to the sleep mode consumes more energy than the energy

overhead Esw for mode switching. The sleep mode thereby introduces additional energy

consumption. Therefore, for searching the optimal Toff , the region
[

0, Esw

Ps−Pδ

]

can be

safely discarded. Moreover, as Toff must also satisfy the timing overhead for mode
switches, we also know that Toff must be no less than tsw, where tsw = tsw,sleep + tsw,on.

There is also an upper bound for Toff . On one hand, Toff should be smaller than
D1 − c1. Otherwise, no event can be finished before its deadline. On the other hand,
as the system provides no service when it is off, that imposes a maximum service

43

3.1 Power Management for Hard Real-Time Systems

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 50 100 150 200 250

A
ve

ra
ge

 Id
le

 P
ow

er
 (

W
at

t)
Toff (msec)

BDA
OPT

Figure 3.5: The relation of the minimal average idle power consumption and Toff for
the OPT and BDA approaches. The stream and device are S1 and IBM Microdrive in
Table 3.1 and 3.2 of Section 3.1.4.9, respectively.

βG
⊤(γ) = max{0, γ − Toff}. According to real-time interface in Equation 3.7, we know

that predicate

βG
⊤(γ) = max{0, γ − Toff} ≥ βA

1 (γ) = α1(γ −D1) (3.5)

has to be true to satisfy the timing constraint. By inverting Equation 3.5, we can
compute the maximum Toff as

Tmax
off = max

{

Toff : βG
⊤(γ) ≥ βA

1 (γ), ∀γ ≥ 0
}

.

In summary, to find an optimal PPM, the feasible region of Toff ∈ [T l
off , T r

off] can be
bounded as follows:

T l
off = max

{

tsw,
Esw

PS − Pδ

}

T r
off = min

{

D1 − c1, Tmax
off

}

3.1.2.2 Optimal and Approximated PPMs

We now present how to apply the results in Sections 3.1.2.1 for deriving Ton and
Toff to minimize the average idle power consumption P (Ton, Toff). Depending on the
bounded-delay approximation and the derivation of minimum Ton with respect to a
given Toff , we will present two approaches, namely BDA and OPT, to derive Ton and
Toff . To show the difference between these two schemes, for a given Toff , Figure 3.5
presents an example for illustrating the irregular pattern of the minimum average idle
power consumption by solving Equation 3.3 and the convexity of the average idle power
consumption by applying bounded-delay approximation.

Approach OPT As shown in Figure 3.5, the minimal average idle power con-
sumption in the feasible region of Toff is irregular. Therefore, to find the optimal solu-
tion, we have to explore all the feasible solution space of Toff . Suppose that there are
m values of Toff within the region [T l

off , T r
off], the complexity of the overall algorithm

thereby is O(n ·m). The pseudo-code of the OPT scheme is shown in Algorithm 1.

44

Pictures/Cost1.eps

3.1 Power Management for Hard Real-Time Systems

Algorithm 1 OPT

Input: α1, D1, T l
off , T r

off , ǫ, Pmin =∞
Output: T ′on, T ′off

1: for Toff = T l
off to T r

off step ǫ do
2: exhaustively find Tmin

on by testing (3.3)
3: if P (Tmin

on , Toff) < Pmin then
4: T ′on ← Tmin

on ; T ′off ← Toff

5: Pmin ← P (Tmin
on , Toff)

6: end if
7: end for

Approach BDA We first show the convexity of the objective function P (Ton, Toff)

acquired from the application of bounded-delay approximated T̃on defined in Defini-
tion 3.1.2.

Theorem 3.1.4. Using the bounded-delay algorithm approach to compute T̃on = f(Toff)
as depicted in (3.4), P (T̃on, Toff) = P (f(Toff), Toff) is a convex function.

Proof. The objective function P (T̃on, Toff) can be split into two parts: Esw

Ton+Toff
and

(Ps + Pδ) ·
Ton

Ton+Toff
. For the first part Esw

Ton+Toff
= Esw

f(Toff)+Toff
, f(Toff) + Toff is strictly

increasing according to Lemma 3.1.3. Therefore Esw

Ton+Toff
is a monotonically decreasing

convex function. For the second part (Ps + Pδ) ·
Ton

Ton+Toff
= Ps+Pδ

1+
Toff

f(Toff)

, according to

Lemma 3.1.3, we know that 1

1+
Toff

f(Toff)

is monotonically increasing and is a convex func-

tion as well. As a linear combination of convex functions is a still a convex function,
the original function P (T̃on, Toff) is a convex function of Toff .

Based on the result from Thm. 3.1.4, exhaustive search for every Toff is not neces-
sary. For instance, the complexity is reduced to O(log n · log m) by applying a bisection
search for the feasible region of Toff . The pseudo code of the algorithm is described in
the Algorithm 2.

3.1.3 Multiple Event Streams

The developed periodic power management method has been extended next to the case
of multiple event streams. Due to space limitation, we will focus our discussions on
fixed priority scheduling, and at the end of this section, we will briefly show how to
handle earliest deadline first scheduling.

Suppose that there are n event streams in S, where n ≥ 2. For FP scheduling,
without loss of generality, we order the event streams S1, S2, . . . , Sn according to their
priorities, where the priority of event stream Si is higher than that of Sk when k > i.
Suppose that βl

1(γ) is the lower service curve of the system. By real-time calculus (159),
we know that the remaining lower service curve β ′1(γ) after serving event stream S1 is

45

3.1 Power Management for Hard Real-Time Systems

Algorithm 2 BDA

Input: α1, D1, T l
off , T r

off , ǫ
Output: T ′on, T ′off

1: if T r
off − T l

off < ǫ then

2: if P
(

T l
off , f(T l

off)
)

< P
(

T r
off , f(T r

off)
)

then

3: return {T ′on ← f(T l
off); T ′off ← T l

off}
4: else
5: return {T ′on ← f(T r

off); T ′off ← T r
off}

6: end if
7: end if
8: slopel ← P ′(T l

off , f(T l
off)) ⊲ P ′ is the derivative of P with respective to Toff

9: slopem ← P ′
(

T l
off+T r

off

2
, f(

T l
off+T r

off

2
)
)

10: if slopel · slopem > 0 then
11: T l

off ← Tm
off

12: else
13: T r

off ← Tm
off

14: end if
15: recursively call BDA with the new T l

off and T r
off

sup0≤λ≤γ{β
l
1(λ)−αu(λ)}. In FP scheduling, the remaining service will be used to serve

the other event streams, in which β ′1(γ) is the available service curve of event stream S2.
For example, as illustrated in Figure 3.6 for three event streams, for FP scheduling, the
schedulability analysis can be decomposed as three components by using the remaining
service curve left by higher priority streams.

S1

βl
1

S2

βl
2

S3

βl
3

α1 α2 α3

βA
3βA

2βA
1

Figure 3.6: An example for fixed-priority scheduling

Therefore, to guarantee the satisfaction of timing constraint for event stream Sn,
as shown in Section 3.1.2, the service provided to stream SN must be at least βA

n (γ) =
αu

n(γ −DN). This also implies that the remaining service curve after serving streams
S1, S2, . . . , Sn−1 must be at least βA

n (γ). To derive the service bound βA
1 (γ), we have to

compute the service bounds βA
N−1(γ), βA

N−2(γ), . . . , βA
2 (γ), sequentially. Suppose that

βA
k (γ) has been derived, we can apply the following equation to derive β♯

k−1(γ) so that

the remaining service curve is guaranteed to be no less than βA
k (γ) if βl

k−1(γ) is no less

than β♯
k−1(γ):

β♯
k−1(γ) = βA

k (γ − λ) + αu
k−1(γ − λ)

where λ = sup{τ : βA
k (γ − τ) = βA

k (γ)}.

46

3.1 Power Management for Hard Real-Time Systems

To guarantee the timing constraint of event stream Sk−1, we also know that βl
k−1(γ)

must be no less than αu
k−1(γ −Dk−1). Therefore, we know that

βA
k−1(γ) = max{β♯

k−1(γ), αu
k−1(γ −Dk−1)}. (3.6)

By applying 3.6 for k = n− 1, n− 2, . . . , 2, we can then derive the lower service curve,
i.e., βA

1 (γ), that the system must provide for satisfying the timing constraints. Then,
the bounded delay approximation (BDA) scheme and the optimal periodic power man-
agement (OPT) scheme can be applied to minimize the average idle power consumption
P (Ton, Toff) by setting βA(γ) to βA

1 (γ) derived above.
For EDF scheduling, as shown in (171), the service bound βA(γ) is simply

∑

Si∈S
αu

i (γ −Di), coming from the composition of all the demands of the tasks com-
posing the task set. The cumulative demand is the minimum resource requirements in
order to have the deadlines satisfied. With dynamic scheduling algorithms a punctual
analysis like the fixed priority one is not possible, so the only solution is to cumulate
the contribution of the tasks and carrying on a cumulated analysis for all the streams
composing the system.

For FCFS, the service bound βA(γ) is
∑

Si∈S
αu

i (γ − Dmin), where Dmin is the
minimum relative deadline of the event streams in S.

β

β′

α1

α2

αn

α′

1

α′

2

α′

n

Figure 3.7: An example of EDF scheduling.

3.1.4 Adaptive Energy Aware Scheduling

In (77; 79) we explore how to efficiently do dynamic power management to reduce
static power consumption while satisfying real-time constraints. Again, we consider a
system that consists of a device with active, standby, and sleep modes with different
power consumptions and a controller that decides when to change the power modes
of the device. Intuitively, the device can be switched off to the sleep mode to reduce
the power consumption when it becomes idle and switched on again to active mode
upon the arrival of an event. These switching operations, however, need more careful
consideration. On the one hand, the sleep period of the device after switching-off
should be long enough to recuperate mode-switch overheads. On the other hand, when
to activate the device is even more involved due to the possible burstiness of future
event arrivals. For every switching-on operation, sufficient time has to be reserved to
serve the possible burstiness of future events in order to prevent deadline violation of
events or overflow of system backlog.

47

Pictures/edf.eps

3.1 Power Management for Hard Real-Time Systems

To resolve these two concerns, we propose online algorithms that are applicable for
the controller. We apply real-time calculus (159) to predict future event arrival and
real-time interface (161) for the schedulability analysis. Specifically, we try to be opti-
mistic to handle events only when they really arrive. Our algorithms adaptively predict
the next moment for mode switch by considering both historical and future event ar-
rivals, and procrastinate the buffered and future events as late as possible without
violating the timing and backlog constraints for the given event streams. To demon-
strate the performance of the proposed approach, several case studies are explored, in
which the results reveal the effectiveness of our approach.

3.1.4.1 Real-Time Calculus Routines

To compute a safe interval for putting the device to sleep, Real-Time Calculus (159)
and real-time interface (169) are applied. Within this context, the device is said to
provide guaranteed output service βG(γ). Correspondingly, a stream Si assumes to
request service demand βA(γ). To obtain a feasible scheduling of stream Si on the
device, the condition

βG(γ) ≥ βA(γ), ∀γ ≥ 0

has to be fulfilled. In this section, we present how to construct proper service guarantee
and demand.

3.1.4.2 Bounded Delay

A service curve β(γ) can be constructed as a bounded delay function.

Definition 3.1.5 (Bounded Delay Service Curve). A bounded delay service curve is
defined as no service provided for at most τ units of time:

bdf(γ, τ)
def

= max
{

0, (γ − τ)
}

, ∀γ ≥ 0

Definition 3.1.6 (Longest Feasible Sleep Interval). The longest feasible sleep interval
τ ∗ with respect to a given service demand βA(γ) is thereby defined as:

τ ∗ = max
{

τ : bdf(γ, τ) ≥ βA(γ), ∀γ ≥ 0
}

(3.7)

Definition 3.1.7 (Deadline Service Demand). Suppose an event stream Si with relative
deadline Di. To satisfy the required relative deadline Di, the minimum service demand
of stream Si is

β♭(γ)
def

= αu
i (γ −Di) (3.8)

48

3.1 Power Management for Hard Real-Time Systems

Definition 3.1.8 (Backlog-size Service Demand). Suppose a system has a backlog of
size Qi to buffer un-processed events for stream Si. To prevent backlog overflow, the
minimum service demand of stream Si is

β†(γ)
def

= αu
i (γ)− wi ·Qi (3.9)

Combining both deadline and backlog service demands, the τ ∗ in (3.7) can be refined
as

τ ∗ = max
{

τ : bdf(γ, τ) ≥ max{β♭(γ), β†(γ)}
}

(3.10)

Figure 3.8 depicts an example from the above analysis for single event stream.
Based on above definitions, we state the following lem.

αu
1

β♭

β†

bdf(γ, τ ∗)

τ ∗
D1

Q · w1

Figure 3.8: An example for the bounded delay function for event stream S1, in which
only part of the upper arrival curve αu

1 (γ) is presented for simplicity.

Lemma 3.1.9. Given τ ∗ computed from Equation 3.10 which is larger than TBET , at
any time instance t when the device is active and no event to process, it is feasible to
deactivate the device for [t, t+ τ ∗) interval without violating the deadline and backlog-
size requirements of for any event in stream Si.

Proof. The service demand β♭ in 3.8 is constructed as horizontally right shifting αu
i

with Di distance, which represents the tightest bound that guarantees the deadline
constraint. Similarly, the service demand β† in 3.9 obtained by vertically shifting αu

i

down by wi ·Q distance and defines the tightest bound that prevents backlog overflow.
The bounded delay function bdf(γ, τ ∗) constructs a βG that bounds both β♭ and β†,
thus fulfills (3.7).

3.1.4.3 Future Prediction with Historical Information and Backlogged De-
mand

As the scheduling decision is made online and is depended on the actual arrivals of
events, we keep track of event arrivals in the past as a history. Because the total
amount of arrived events in any time interval is constrained by the corresponding
arrival curves, one can predict the future event arrivals based on a certain length of
historical information of event arrivals in the recent past. If a burstiness has been
observed recently, for instance, it can be foreseen that sparse events will arrival in the
near future. To make use of the historical information, we define the history curve.

49

3.1 Power Management for Hard Real-Time Systems

Definition 3.1.10 (History Curve). Suppose t is the current time and Ri(t) is the
accumulated number of events of stream Si in interval [0, t). γh is the length of the
history window of which controller can maintain, i.e., historical information for only
γh time units is recorded. At time t the history curve for stream Si is define as

Hi(γ, t)
def
=

{

Ri(t)− Ri(t− γ), if γ ≤ γh,

Ri(t)− Ri(t− γh), otherwise

The maximal future event arrivals in the near future from time t to t + γ, denoted as
ᾱu

i (γ, t), is

ᾱu
i (γ, t) = inf

λ≥0

{

ᾱu
i (γ + λ)−Hi(λ, t)

}

Analogously, we can preciously define the service demand of those backlogged
events. We denote the set of unfinished events of Si in the backlog at time t as Ei(t).
Note that although the absolute deadline Di, j for event ei, j ∈ Ei(t) does not change,
the relative deadline is not Di anymore. It varies according to relative distance from t.

Definition 3.1.11 (Backlogged Demand). Suppose that events in Ei(t) are indexed as
ei,1, ei,2, . . . , ei,|Ei(t)| from the earliest deadline to the latest. a backlog demand curve
for time t and stream Si is defined as

Bi(γ, t)
def

= wi ·

{

(j − 1), Di, j − t < γ ≤ Di, j+1 − t,

|Ei(t)|, γ > Di, |Ei(t)| − t,
(3.11)

in which Di,0 is defined as t for brevity.

3.1.4.4 Basic Algorithms for Single Stream

In general, we have to decide when to turn the device to active mode to serve events
from sleep mode, and when to turn it back to sleep mode in order to reduce static
power. Therefore, we have to deal with deactivation scheduling decisions and activation
scheduling decisions to switch safely and effectively. An overview of our approach is
illustrated in Figure 3.9.

. sleep
activation/

decision

active/

standby
deactivation/

decision
t⊥ yes t⊤

yes

nono

Figure 3.9: The control flow of our approach.

For deactivation scheduling decisions, when the device is in active mode and there
is no event in the backlog, we have to decide whether the device has to change to
sleep mode instantly or it should remain active/idle for a while for serving the next
incoming event (We assume the device switches between active and standby modes
automatically). For brevity, for the rest of this chapter, time instants for deactivation
scheduling decisions are denoted by t⊤.

50

3.1 Power Management for Hard Real-Time Systems

After the device is switched to sleep mode, it has to be switched active again for
event processing. The activation scheduling decision is evaluated at the time instance
upon the arrival of an event or expiration of the sleep interval that the controller
previously set. Our algorithms have to decide whether the device has to change to
active mode instantly to serve events, or it should remain in sleep mode for a while
to aggregate more events for processing and prevent unnecessary mode switches. For
brevity, for the rest of this chapter, time instants for activation scheduling decisions
are denoted by t⊥.

In this section, we present our approach to minimize static power. The assumption
of our approach is that the scheduling decision is always feasible if the device provides
full service all the time, i.e., the device never turns to sleep mode. For simplicity, we
consider only single event stream case, says S1. We first present how to deal with
deactivation of scheduling decisions and then propose two methods for the scheduling
decisions of the activation. The solutions to multiple event streams are presented in
the subsequent two sections.

Deactivation Algorithm The History-Aware Deactivation (HAD) algorithm an-
alyzes whether the device should be turned to sleep mode from active mode. The
principle is to switch the device only when energy saving is possible. One obvious fact
is that as long as there are events in the system backlog, the device can be kept busy
in active mode and no static power is introduced. In order to reduce static power, the
deactivation decision thereby makes sense only when the device is in active or standby
mode while there is no new arrival of events as well as no event in system backlog.
Suppose that t⊤ is such a time instant. Turning the device instantly at time t⊤ to sleep
mode, however, does not always help still. The reason is that we pay overheads for
mode switching. In the case there are events arriving in the very near future, the device
has to be activated again to process these events. If the energy saving obtained from
the short sleep period cannot counteract this switching overhead, the mode switching
only introduces additional energy consumption. Therefore, the idea is firstly to com-
pute the maximal possible sleep interval τ ∗ and check this τ ∗ is sufficient to cover the
break-even time. Specifically, we calculate the arrival curve α̂u

1(γ, t⊤) at time t⊤ by
3.11 and refine the service demands in Equation 3.8 and 3.9 as

β♭(γ) = αu
1(γ −D1, t

⊤) (3.12)

β†(γ) = αu
1(γ, t⊤)−Q · w1 (3.13)

By applying Equation 3.12 and 3.13 to Equation 3.10, the maximal sleep interval τ ∗

is computed, which means turning the device to sleep mode at time t⊤ and switch it
active again at time t⊤ + τ ∗ will not cause constraint violations. If τ ∗ is larger than
TBET , we turn the device to the sleep mode at time t⊤; otherwise, we do not turn the
device to the sleep mode. The pseudo code of the algorithm is depicted in Algorithm 3.
The algorithm leads to the following theorem:

Theorem 3.1.12. The HAD algorithm guarantee a feasible scheduling upon a deacti-
vation decision at any time t⊤ for one event-stream system, if the device provides full
service from time t⊤ + τ ∗ on.

51

3.1 Power Management for Hard Real-Time Systems

Algorithm 3 HAD deactivation

procedure at time instance t⊥w:
1: compute τ ∗ of 3.10 by β♭ and β† in 3.12 and 3.13;
2: if τ ∗ > TBET then
3: deactivate the device;
4: end if

Proof. We prove this theorem by contradiction. At any time instance t⊤ at which the
HAD algorithm decides to deactivate the device, the latest activation time to prevent
constraint violations is t⊤ + τ ∗. Suppose at a later time t⊤ + λ, the deadline of an
event which comes within the interval [t⊤, t⊤ + λ) is missed. We denote the number
of events arrived within this interval as u. Because of the deadline missing, the service
demand u · w1 in this interval is larger than our constructed service supply bdf(λ, τ ∗)
which actually bounds the service demand of the maximum number of events that can
arrival, i.e., w1 · ᾱ

u
1(λ, t⊤). The inequality u > ᾱu

1(λ, t⊤) contradicts to the definition
in Equation 3.11. Therefore, the theorem holds.

Once the device is in sleep mode, the controller needs to switch the device to
active mode later to process events. How to decide the actual switch moment needs
more consideration. On the one hand, it is preferable to aggregate as many events
as possible for each switch operation to not only reduce the standby period but also
minimize the number of switch operations. On the other hand, the real-time constraints
of the aggregated and future events need to be guaranteed. Furthermore, a polling
mechanism is not desirable which will overload the controller. In this section, we present
two algorithms, namely worst-case-greedy (WCG) algorithm and event-driven-greedy
(EDG) algorithm, for the activation scheduling decisions. The difference between these
two algorithms is the following:

• Algorithm WCG conservatively assumes worst-case event arrivals and predicts
the earliest switch moment. If the worst case does not occur when the predicted
time comes, a new prediction is conducted and the switch decision is deferred to
a later moment.

• Algorithm EDG optimistically considers the least event arrivals and predicts the
latest time for mode switch. Upon the arrival of each new event before the
predicted time, the decision is reevaluated and it is shifted earlier if necessary.

Therefore, the time instance t⊥ for the activation scheduling decisions can be eval-
uated at either event arrivals or the predicted activation time. We identify these two
cases by event arrival and wake-up alarm arrival, at time instant t⊥e and t⊥w , respec-
tively.

52

3.1 Power Management for Hard Real-Time Systems

Worst-Case-Greedy (WCG) Activation The WCG algorithm works in a
time-triggered manner. It reacts to each wake-up alarm and performs two tasks: a)
check whether the device has to be switched to active mode for the current alarm; b)
if not, determine a new wake-up alarm. In the case that worst-case burst happens
before the wake-up alarm t⊥w , i.e., our previous prediction is correct, the mode switch
has to be carried on at the current wake-up alarm. If the actual arrivals of events
are less than the worst case, switching the device at the current t⊥w will reserve too
much service than actual needs. The device can stay in the sleep mode for a longer
period. To evaluate the activation decision and predict the next wake-up alarm, we
again apply the bounded-delay function. The deadline service demand β♭ and the
backlog-size service demand β† are refined as

β♭(γ) = αu
1(γ −D1, t⊥w) + w1 · B1(γ, t⊥w) (3.14)

β†(γ) = αu
1(γ, t⊥w)−

(

Q− |E(t⊥)|
)

· w1 (3.15)

Besides the history-refined worst-case event arrival αu
1(γ−D1, t⊥w) at the current wake-

up alarm t⊥w , the deadline service demand β♭ needs to consider those events already
stored in the system backlog, i.e., B1(γ, t⊥w) defined in Equation 3.11. Similarly, the
current size of the available backlog is the original size subtracted by the number of
backlogged events, i.e., |E(t⊥)| defined in previously. Using Equations 3.14 and 3.15,
the next sleep interval τ ∗ is computed. If τ ∗ > 0, the next wake-up alarm is set to
time t⊥w + τ ∗. Otherwise, the device is switched to active mode. The pseudo code of
the WCG algorithm is depicted in Algorithm 4. The constructed β♭ in Equation 3.14

Algorithm 4 WCG activation

procedure event arrival at time t⊥e :
1: do nothing;

procedure wake-up alarm arrival at time t⊥w :
1: compute τ ∗ of (3.10) with β♭ and β† by 3.14 and 3.15;
2: if τ ∗ > 0 then
3: new wake-up alarm at time t⊥w ← t⊥w + τ ∗;
4: else
5: wakeup the device;
6: end if

bounds the future arrival events from t⊥w on and the β† in 3.15 guarantees the backlog
constraint, which lead to following theorem:

Theorem 3.1.13. The WCG algorithm guarantees a feasible scheduling upon an ac-
tivation decision at any wake-up alarm t⊥w for one event-stream system, if the device
provides full service from time t⊥w on.

We omit the proof due to the similarity to Theorem 3.1.12. The WCG algorithm is
effective in the sense that it greedily extends the sleep period as long as the device is
schedulable. It is efficient as well when the event arrival pattern is close to the worst-
case scenario, where the reevaluation of the wakeup alarm does not take place often.
Furthermore, the number of reevaluation is bounded by αu

1(D1 − w1).

53

3.1 Power Management for Hard Real-Time Systems

The last problem is where the first wake-up alarm is. There are two possibilities: a)
at the time the first arrived event after the device is deactivated, and b) at the deacti-
vation time instance t⊤+ τ ∗ (τ ∗ is computed by 3.12 and 3.13) in the HAD algorithm).
Both approaches are effective. For consistency, we adopt the second approach, such
that the WCG algorithm is purely time-driven.

Event-Driven-Greedy (EDG) Activation In contrast to the WCG algorithm
which predicts the earliest wake-up alarm t⊥w , the EDG algorithm predicts the latest
one. It computes the latest moment by assuming the least event arrivals in the near
future. Unlike the WCG algorithm where the evaluation of the activation scheduling
decisions takes place upon each wake-up alarm arrives, the decision here is refined upon
event arrivals. At time t⊥e1,i

when an event e1,i arrives, when is the corresponding latest

wake-up alarm t⊥w is not that obvious. One intuitive guess is t⊥e1,i
+ D1−w1. This time

instance is however too optimistic except for the first event e1,1 after the device is deac-
tivated. Our EDG algorithm works in the following manner. For the first arrived event
e1,1, the wake-up alarm is set to t⊥e1,1

+D1−w1. For any subsequent event e1,i, wake-up

alarm is set to the smaller value of the previous t⊥w and t⊥w − (w1− (t⊥e1,i
− t⊥e1,i−1

)). This

new t⊥w is not yet always a feasible activation time instance. If τ ∗ computed from this
time instance is not larger than 0, the activation is set to an earlier time, i.e., the earliest
activation time as if worst-case event arrival happen at t⊥e1,1

. For an event e1,i arrived

at time t⊥e1,i
, the service demand for the newly computed wake-up alarm t⊥w includes

a) the possible burst from t⊥w on, which is bounded by ᾱu
1(γ, t⊥w), b) the backlog until

t⊥w , and c) the estimated least event arrival between [t⊥e1,i
, t⊥w), constrained by ᾱl

1(γ).

To compute a precise ᾱu
1(γ, t⊥w), we first revise the historical information H1(γ, t⊥w) by

advancing the time from t⊥e1,i
to t⊥w to include those events which definitely have to

come between [t⊥e1,i
, t⊥w). We denote such a trace as H ′(γ, t⊥w):

H ′1(γ, t⊥w) =











ᾱl
1(ǫ)− ᾱl

1(ǫ− γ), if γ < ǫ,

H1(γ, t⊥e1,i
) + ᾱl

1(ǫ), if ǫ < γ < γh − ǫ,

H1(γ
h − ǫ, t⊥e1,i

) + ᾱl
1(ǫ), otherwise,

(3.16)

where ǫ = t⊥w − t⊥e1,i
for abbreviation. The H ′1 can be seen as the concatenation of the

historical information H1 until t⊥e1,i
and the time inversion of ᾱl

1 in the interval [0, ǫ).

The worst-case arrival curve after time t⊥w with the new historical information H ′1 is
ᾱu

1(γ, t⊥w) = inf
λ≥0

{

ᾱu
1(γ + λ)−H ′1(λ, t⊥w)

}

and αu
1(γ, t⊥w) = w1 · ᾱ

u
1(γ, t⊥w). The corresponding backlog demand curve that encap-

sulates the estimated least arrival events within the interval [t⊥e1,i
, t⊥w) is

B′1(γ, t⊥w) =

{

j − 1, D1, j − t⊥w < γ ≤ D1, j+1 − t⊥w ;

E , γ > D1, E − t⊥w ,

where E = |E1(t
⊥
e1,i

)|+ ᾱl
1(ǫ), ǫ = t⊥w− t⊥e1,i

, and D1, 0 is defined as t⊥e1,i
. With the refined

historical information and backlog demand, the two service demands β♭ and β† can be

54

3.1 Power Management for Hard Real-Time Systems

refined as
β♭(γ) = αu

1(γ −D1, t⊥w) + w1 · B
′
1(γ, t⊥w) (3.17)

β†(γ) = αu
1(γ, t⊥w)−

(

Q− |E(t⊥)| − ᾱl
1(ǫ)

)

· w1 (3.18)

By applying Equation 3.17 and 3.18, the sleep interval τ ∗ in 3.10 is computed for event
e1,i. If τ ∗ > 0, the wakeup alarm is valid. Otherwise, the new wakeup alarm is set to
an earlier moment. The pseudo code of the algorithm is depicted in Algorithm 5.

Algorithm 5 EDG activation

procedure event arrival at time t⊥e1,i
:

1: t⊥w ← (t⊥e1,i
− t⊥e1,i−1

> w1)?t
⊥
w : t⊥w − (w1 − (t⊥e1,i

− t⊥e1,i−1
)

2: calculate τ ∗ at time t⊥w by 3.16–3.18;
3: if τ ∗ ≤ 0 then
4: t⊥w ← t⊥e1,1

+ τ⊥, where τ⊥ computed from 3.8 – 3.10
5: end if

procedure wake-up alarm arrival at time t⊥w :
1: activate the device;

Theorem 3.1.14. The EDG algorithm guarantees a feasible scheduling upon an acti-
vation decision at any wakeup alarm t⊥w for single event-stream system, if the device
provides full service from time t⊥w on.

Proof. We differentiate the mode switch decisions into two categories: decisions by hit-
ting Line 4 of the Algorithm 5 or without. In the case of without hitting, the feasibility
of the decision is guaranteed by Equations 3.16–3.18 where the events actually arrived
before time t⊥w and the potential burstiness after are considered in each evaluation. In
the case of hitting, t⊥e1,1

+ τ⊥ is always feasible since it assumes the worst-case event
arrivals happen at the time instance of the arrival of the first event after the device is
switched to sleep mode.

The activation decision in Line 4 is pessimistic. It is possible to refine t⊥w when
τ ∗ ≤ 0 happens, instead of setting the prediction back to t⊥e1,1

+ τ⊥. However, such
refinement demands more computation. The EDG algorithm is designed for scenarios
where events come sparsely and the worst case seldom occurs. In such cases, the
algorithm is effective because Line 4 will seldom be hit. The algorithm is efficient
as well as the number of reevaluations is small which is approximately equal to the
number of events actually arrived. Furthermore, τ⊥ can be computed offline as it is a
constant given the specification of the stream.

3.1.4.5 Solutions for Multiple Streams

To tackle multiple event streams, the essential problem is to compute the total service
demand for the stream set itself. Without loss of generality, we assume a stream set
S with n event streams, where n ≥ 2. The total service demand for S depends on

55

3.1 Power Management for Hard Real-Time Systems

not only the service demand of individual streams but also the scheduling policy as
well as the system backlog organization. To compute the total service of S, real-time
interface theory (169) is applied. In particular, two preemptive scheduling, i.e., earliest-
deadline-first and fixed priority policies are considered for the resource sharing. With
respect to the backlog organization, two different scenarios, i.e., distributed and global
backlog, are investigated. In the case of distributed backlog, each event stream Si owns
its private backlog with size Qi. Buffering more than Qi events for Si incurs a backlog
overflow and causes a controller failure. In the case of global, all event streams in S
share the same backlog.

In this section, we present solutions only for the EDG algorithm. The solutions
for the HAD and WCG algorithms are omitted due to similarity and the limited
space. Note that the refinements of the history curve and backlog demand in Equa-
tion 3.16 and 3.17 can be applied to individual stream, denoted as H ′i and B′i for
briefness.

3.1.4.6 FP Scheduling with Distributed Backlog

Unlike a system with one event stream where the bounded delay is applied directly
to the computed service demand of the event stream, we compute first the individual
service demand of every stream, denoted as βA

i , then derive the total service demand
of the set S, denoted as βA

total. With the computed βA
total, the bounded delay is applied

to calculate the feasible sleep interval τ ∗.
Without loss of generality, the event streams S1, S2, . . . , Sn in S are ordered ac-

cording to their priorities. The priority of stream Si is higher than that of Sk when
k > i. Event streams can thereby be modeled as an ordered chain according to their
priorities and a lower priority stream can only make use of the resource left from a
higher priority stream. To compute the service demand of a higher priority stream,
a backward approach is applied by considering the service demand from the directly
lower priority stream, as shown in Figure 3.10.

SN
. . . S2 S1 βA

total

αN α2 α1

βA
N βA

3 βA
2 βA

1

Figure 3.10: The computation flow for total service demand for the FP scheduling with
distributed backlog.

For the activation scheduling decision of the arrival of an event e1,i , the service
demand of stream Sn at time t⊥w is computed as

βA
n (γ, t⊥w) = max{β♭

n(γ, t⊥w), β†n(γ, t⊥w)}, where

β♭
n(γ, t⊥w) = αu

n(γ −DN , t⊥w) + B′n(γ, t⊥w)

β†N(γ, t⊥w) = αu
N(γ, t⊥w)−

(

Qn − |En(t⊥w)| − ᾱl
n(t⊥w − t⊥e1,i

)
)

· wn

αu
n(γ, t⊥w) = wn ·

(

infλ≥0

{

ᾱu
n(γ + λ)−HN(λ, t⊥w)

}

)

56

3.1 Power Management for Hard Real-Time Systems

To derive βA
1 , we have to compute the service bounds βA

n−1, β
A
N−2, . . . , β

A
2 , sequentially.

Suppose that βA
k has been derived, the resource constraint is that the remaining service

curve should be guaranteed to be no less than βA
k , i.e.,

β♯
k−1(γ) ≥ inf

{

β : βA
k (γ, t⊥w) = sup

0≤λ≤γ
{β(λ)− αu

k−1(λ, t⊥w)}
}

(3.19)

By inverting the former equation we can derive β♯
k−1 as:

β♯
k−1(γ) = βA

k (γ − λ) + αu
k−1(γ − λ, t⊥w)

where λ = sup
{

τ : βA
k (γ − τ, t⊥w) = βA

k (γ, t⊥w)
}

To guarantee the timing constraint of event stream Sk−1, we also know that βA
k−1 must

be no less than its own demand. Therefore, we know that

βA
k−1(γ) = max

{

β♯
k−1(γ), β♭

k−1(γ, t⊥w), β†k−1(γ, t⊥w)
}

(3.20)

where

β♭
k−1(γ, t⊥w) = αu

k−1(γ −Dk−1, t⊥w) + B′k−1(γ, t⊥w) (3.21)

β†k−1(γ, t⊥w) = αu
k−1(γ, t⊥w)−

(

Qk−1 − |Ek−1(t
⊥
w)| − ᾱl

k−1(t
⊥
w − t⊥e1,i

)
)

· wk−1

αu
k−1(γ, t⊥w) = wk−1 ·

(

infλ≥0

{

ᾱu
k−1(γ + λ)−Hk−1(λ, t⊥w)

}

)

(3.22)

By applying (3.20) for k = n− 1, n− 2, . . . , 2, the service demand βA
1 of stream S1

is derived.
Based on this approach, the computed service demand for the highest priority

stream S1 can be also seen as the total service demand βA
total for stream set S under the

fixed priority scheduling. Therefore, the timing as well as backlog constraints for all
streams in S can be guaranteed by the sleep interval τ ∗ with which bdf(γ, τ ∗) bounds
βA

1 :

τ ∗ = max
{

τ : bdf(γ, τ) ≥ βA
1 (γ), ∀γ ≥ 0

}

(3.23)

3.1.4.7 EDF Scheduling with Distributed Backlog

For earliest-deadline-first scheduling, the total service demand βA
total for all n streams

can be bounded by the sum of their service demands. The βA
total computed in this

manner, however, is not sufficient to guarantee the backlog constraint of any stream
in S. When an event of a stream Sj is happened to have the latest deadline, events in
any stream of S \ {Sj} will be assigned a higher priority. Sj will suffer from backlog
overflow.

To compute a correct service demand which satisfies the backlog constraint for
stream Sj , Sj has to be considered as the lowest priority. Similar back-forward approach

57

3.1 Power Management for Hard Real-Time Systems

Sj S \ {Sj} βA
total

αj

∑

i6=j αi

βA
j βA

j, total

Figure 3.11: The computation flow for the total service demand for the EDF scheduling
with distributed backlog.

is applied, as shown in Figure 3.11. Instead of tracing back stepwise, the service demand
needed for higher-priority streams is the sum of all streams from S \ {Sj}. Again, we

present the revision of the EDG algorithm as an example. The service β♯
j to guarantee

the lowest priority stream Sj should be more than the demand βA
j of Sj, i.e.,

β♯
j(γ) ≥ inf

{

β : βA
j (γ, t⊥w) = sup

0≤λ≤γ
{β(λ)−

n
∑

i6=j

αu
i (λ, t⊥w)}

}

(3.24)

By inverting (3.24), we can derive β♯
j(γ) as:

β♯
j(γ) = βA

j (γ − λ, t⊥w) +

N
∑

i6=j

αu
i (γ − λ, t⊥w)

where λ = sup
{

τ : βA
j (γ − τ, t⊥w) = βA

j (γ, t⊥w)
}

, and

βA
j (γ, t⊥w) = max{β♭

j(γ, t⊥w), β†j (γ, t⊥w)}

where β♭
j and β†j are from (3.21) and (3.22). To guarantee the timing constraint of all

higher-priority streams, we also know that βA
j,total must be no less than the demand of

S \ {Sj} as well. Therefore, we know that at time t⊥w ,

βA
j,total(γ) = max

{

β♯
j(γ),

N
∑

i6=j

βA
i (γ, t⊥w)

}

(3.25)

Applying Equation 3.25 to each steam in S, the service demand for each steam is
computed. Because each stream could be the lowest priority in the worst case, only the
maximum of them can be seen as the total service demand for stream set S. Therefore,
the timing and backlog constraints for S can be guaranteed by τ ∗ with which bdf(γ, τ ∗)
bounds the maximum of individual streams:

τ ∗ = max
{

τ : bdf(γ, τ) ≥ max
i∈N
{βA

i,total(γ)}, ∀γ ≥ 0
}

(3.26)

3.1.4.8 EDF Scheduling with Global Backlog

The approach to get the total service demand of S for global backlog is different to the
approach for distributed backlog. Without loss of generality, we assume that a backlog
with size Q is shared by all event streams of S.

58

3.1 Power Management for Hard Real-Time Systems

From (169), the total service demand for all n streams with respect to EDF schedul-
ing can be bounded by the sum of their arrival curves:

βA ≥
N

∑

i=1

αu
i (γ −Di) (3.27)

Based on this result, we refine our algorithms.
For the HAD algorithm, because there is no backlog for each evaluation, the related

deadline for each event ei, j in every stream Si remains Di. Therefore, the service
demand to guarantee deadline requirement of all streams is

β♭(γ) =

n
∑

i=1

αu
i (γ −Di, t

⊤) (3.28)

In the case of Equation 3.14 of the WCG algorithm, the backlogs of different streams
needs to be considered. We apply the backlog demands fro all streams thereof:

β♭(γ) =

n
∑

i=1

(

αi(γ −Di, t⊥) + wi · Bi(γ, t⊥)
)

The same applies to Equation 3.17 of the EDG algorithm at time t⊥w .
Now we consider the backlog-size constraint. Besides the sum of all arrival curves,

the constraint in Equation 3.13 additionally needs to consider events with the longest
execution time, i.e., maxi∈n{wi}. Therefore, it is revised as

β†(γ) =

n
∑

i=1

αu
i (γ)−Q ·max

i∈n
{wi}

The backlog constraint in (3.15) is more complex, because the backlog is not empty
and contains events from different streams. The remaining capacity of the backlog is

max
i∈n
{wi} ·Q−

|E(t⊥)|
∑

j=1

N
∑

i=1

xi,j · wi

where xi,j = 1, ∀j for Stream Si, otherwise 0. Therefore, it is revised as

β†(γ) =

N
∑

i=1

αu
i (γ, t⊥)−

(

max
i∈N
{wi} ·Q−

|E(t⊥)|
∑

j=1

N
∑

i=1

xi,j · wi

)

The last revision is (3.18) of the EDG algorithm, where the estimated future events
of all streams need to be counted. Therefore it is revised as

β†(γ) =

n
∑

i=1

αu
i (γ, t⊥w)−

(

max
i∈N
{wi} ·Q−

|E(t⊥w)|
∑

j=1

n
∑

i=1

xi,j · wi −

n
∑

i=1

αl
i(ǫ)

)

59

3.1 Power Management for Hard Real-Time Systems

Table 3.1: Event stream setting according to (72; 78).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

period (msec) 198 102 283 354 239 194 148 114 313 119
jitter (msec) 387 70 269 387 222 260 91 13 302 187

deday (msec) 48 45 58 17 65 32 78 - 86 89
wcet (msec) 12 7 7 11 8 5 13 14 5 6

Table 3.2: Power profiles for devices according to (48).

Device Name Pa (W) Ps (W) Pσ (W) tsw (S) Esw (mJ)
Realtec Ethenet 0.19 0.125 0.085 0.01 0.8

Maxstream 0.75 0.1 0.05 0.04 7.6
IBM Microdrive 1.3 0.5 0.1 0.012 9.6

SST Flash 0.125 0.05 0.001 0.001 0.098

3.1.4.9 Performance Evaluations

This section provides simulation results for the proposed adaptive dynamic power man-
agement schemes. All the results are obtained from an AMD Opteron 2.6 GHz pro-
cessor with 8 GB RAM. The simulator is implemented in MATLAB by applying MPA
and RTS tools from (172).

We take the event streams studied in (72; 78) for our case studies. The specifications
of these streams are depicted in Table 3.1. Parameters period, jitter, and delay are
used for generating arrival curves previously defined and wcet represents the worst-
case execution time of an event. The relative deadline Di of a stream Si is defined
by a deadline factor, denoted as χ, of its period, i.e., Di = χ ∗ pi. To compare the
impact of different algorithms, we simulate traces with a 10 sec time span. The traces
are generated by the RTS tools (172) and conformed to the arrival curve specifications.
The history window γh is 200 msec. In our simulations, we adopt the power profiles
for four different devices in (48), depicted in Table 3.2.

In this work, we evaluate our two PPM schemes, i.e., WCG-HAD and EDG-HAD.
To show the effects of our scheme, we report the average idle power that is computed
as the total idle energy consumption divided by the time span of the simulation:

Esw · number switches +
∑

on time · Pσ

total time span

For comparison, two other power management schemes described in (78) are measured
as well, i.e., a periodic scheme (OPT) and a naive event-driven scheme (ED). The OPT
scheme is a periodic power management (PPM) scheme which controls the device with
a fixed on-off period. The lengths of the on and off periods are optimally computed
with respect to the average idle power by an offline algorithm. The ED scheme turns
on the device whenever an event arrives and turns off when the device becomes idle.

60

3.1 Power Management for Hard Real-Time Systems

We simulate different cases of single and multiple streams. For multiple streams,
we only report results for random subsets of the 10-stream set due to space limitation.
S(3, 4), for instance, represents a case considering only streams S3 and S4 in Table 3.1.
For FP scheduling policy of a multiple-stream set, the stream index defines the priority
of a stream. Considering again stream set S(3, 4), for instance, S3 has higher priority
than S4.

The simulation results for single-stream cases, multiple-stream cases, and computa-
tional expenses are reported. Although the periodic power management has provided
interesting results, in the thesis we illustrate only the results concerning the adaptive
solution. The adaptive case is more interesting for the topic of the thesis itself.

3.1.4.10 Single Stream

Firstly, we show the effectiveness of the proposed WCG-HAD and EDG-HAD schemes
comparing to the OPT and ED schemes for single-stream cases. Because OPT does
not consider the size of the system backlog, for fair comparison, we smooth out the
backlog-size effect by setting backlog size to a relative large number, i.e., 60 events for
this experiment. Figure 3.12 shows the normalized values of average idle power with
respect to OPT for streams in Table 3.1 individually running on all four devices in
Table 3.2. As depicted in the figure, both our proposals outperform the pure event-
driven scheme as well as the optimal PPM scheme for all cases. On average, 25% of
the average idle power is saved with respect to OPT for the deadline factor χ = 1.6.

In general, larger ratio of jitter and smaller ratio of wcet with respect to a given
period result in better energy saving, for instance, the cases for streams S1 and S6.
On the contrary, the chance to reduce static power is less with larger wcet ratio, as
in the case of streams S2, S7, and S8. S8 has the biggest wcet-period ratio, thereby
conducting the least energy saving for all four devices. Another observation is that
the overhead caused by the break-even time does not really affect the optimality of the
average idle power. As shown in the figure, the ratio for a given stream does not change
significantly for different devices, although the break-even time is considerably different
for the four devices, e.g., 18.2 ms for the SST Flash and 152 ms for the Maxstream.

We also outline how the average idle power changes when the relative deadline of a
stream varies. Figure 3.13 compares the four schemes by varying the deadline factor χ
for streams S8 and S4. As the figure shown, our online schemes again outperform the
other two. Another observation is that OPT can achieve good results only when the
relative deadline is large. For the cases of small relative deadlines, it is even worse
than ED. Our online schemes, on the contrary, can tackle different deadlines smoothly.
The reason is that our online schemes consider the actual arrivals of event, resulting
in a more precise analysis of the scheduling decision. Note that ideally our two online
schemes, i.e., WCG-HAD and EDG-HAD, should produce identical results, because
the WCG and EDG algorithms should theoretically converge to the same mode-switch
moment, given a same trace. The slight deviation depicted in these two figures is due
to the pessimistic activation decision in Line 4 of the EDG algorithm. This deviation
is expected to become larger for multiple stream cases.

61

3.1 Power Management for Hard Real-Time Systems

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

No
rm

al
ize

d
Va

lu
e

S10S9S8S7S6S5S4S3S2S1

(a) Realtek Ethernet

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

No
rm

al
ize

d
Va

lu
e

S10S9S8S7S6S5S4S3S2S1

(b) Maxstream

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

No
rm

al
ize

d
Va

lu
e

S10S9S8S7S6S5S4S3S2S1

(c) IBM Microdrive

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

ED WCG-HAD

EDG-HAD

No
rm

al
ize

d
Va

lu
e

S10S9S8S7S6S5S4S3S2S1

(d) SST Flash

Figure 3.12: Normalized average idle power consumption with respect to the OPT
PPM scheme for single stream cases individually running on four different devices with
deadline factor χ = 1.6.

62

Pictures/fig8_1.eps
Pictures/fig8_2.eps
Pictures/fig8_3.eps
Pictures/fig8_4.eps

3.1 Power Management for Hard Real-Time Systems

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1 2 3 4 5 6

A
ve

ra
ge

 Id
le

 P
ow

er
 (

m
W

at
t)

Deadline Factor

ED
OPT

EDG-HAD
WCG-HAD

(a) Stream S8

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6

A
ve

ra
ge

 Id
le

 P
ow

er
 (

m
W

at
t)

Deadline Factor

ED
OPT

EDG-HAD
WCG-HAD

(b) Stream S4

Figure 3.13: Average idle power consumption of different deadline settings on Realtek
Ethernet.

3.1.4.11 Multiple Streams

We present simulation results for multiple-stream cases in this section. Figure 3.14
and Figure 3.15 depict simulation results for stream set S(6, 9, 10) running on Realtek
Ethernet with distributed and global backlog allocation schemes, respectively. The re-
sults from these two figures demonstrate the effectiveness of our solutions for multiple
streams. These results confirm as well as following statements: a) when relative dead-
line and backlog size are small, the average idle power is large, where the chances to
turn off the device are slim. b) Increasing the relative deadline or backlog size individ-
ually helps reducing the idle power for only a certain degree. More increments do not
conduct further improvements. c) Increasing both relative deadline and backlog size
can effectively reduce the idle power, where more arrived events can be procrastinated
and accumulated for each activation of the device. Another observation is that the
global backlog scheme results in higher idle power compared to distributed backlog
scheme in the cases of small backlog sizes. The reason is that the backlog demand
curve has to consider the maximal value of the worst-case execution time of all streams
in the set, incurring pessimistic predictions of activation moments.

Computation Expense We also demonstrate the efficiency of our schemes by re-
porting the computational expenses. Figure 3.16 shows the numbers of activations of
our algorithms and Figure 3.17 depicts the worst, best, and average case computational
expenses for an activation. From Figure 3.16, we can find out that, given a same stream
set, the numbers of activations for the EDG algorithm do not vary often as the relative
deadline changes, which confirms to the principle of the algorithm. The fluctuations
are caused by event arrivals when the device is at active mode. Such events do not
activate the algorithm. The second observation is that the numbers of activations for
EDG are depended on the numbers of streams running on the device while the numbers
of activations for WCG quickly converge even more streams are involved. The reason

63

Pictures/fig9a.eps
Pictures/fig9b.eps

3.1 Power Management for Hard Real-Time Systems

 4
 4.5
 5
 5.5
 6
 6.5
 7
 7.5
 8
 8.5
 9

 1
 3

 5
 7

 9 2
 6

 10
 14

 18

 4
 5
 6
 7
 8
 9

A
ve

ra
ge

 I
dl

e
Po

w
er

 (
m

W
at

t)
WCG-HAD

 8

 7

 6

 5

Deadline Factor
Backlog (#event)

(a) EDF Scheduling

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1
 3

 5
 7

 9 2
 6

 10
 14

 18

 4

 5

 6

 7

 8

A
ve

ra
ge

 I
dl

e
Po

w
er

 (
m

W
at

t)

EDG-HAD
 7

 6

 5

Deadline Factor
Backlog (#event)

(b) FP Scheduling

Figure 3.14: Average idle power consumption with respect to different deadline and
backlog settings on Realtek Ethernet for stream set S(6, 9, 10) under distributed backlog
allocation.

is that the activations of WCG are determined by the predicted turn-on moments that
are depended on the backlog size and relative deadline. When the backlog size and rel-
ative deadline are large enough, the number of activations is one, no matter how many
streams are added to the system. From above facts, one might conclude that WCG
is better. EDG is, however, meaningful in the case when event arrivals are sparse.
In such cases, the number of activations of EDG will be less than that of WCG. The
results shown in the figure are caused by the dense-event trace generated by the RTS
tools. Figure 3.17 presents the worst, best, and average case computational expenses of
an activation of the proposed algorithms with respect to different deadline factors for
stream sets S(1–4), S(3–6), and S(2, 4, 6, 8) individually running on Realtek Ethernet.
Results for FP scheduling coupled with distributed backlog scheme and EDF scheduling
coupled with global backlog scheme are shown in Figure 3.17(a) and Figure 3.17(b), re-
spectively. We neglect the results for EDF scheduling with distributed backlog scheme
due to the similarity to the FP case. From the figure, we can conclude that both our
algorithms are efficient. The worst, best, and average case computation expenses of
each activation are within the range of millisecond and are acceptable to the stream
set in Table 3.1. By virtue of the new construction of the bounded delay function, the
computation time are retained almost constant even with large relative deadlines. In
general, EDG is more expensive than WCG and HAD, which are confirmed with the
definition in Section 3.1.4.4. The last observation is that the computation expenses are
not neglectable. There are also means to tackle this problem, for instance, setting the
computation overhead as a safe margin for the computed sleep period or putting the
activation itself as the highest priority events of the system. We do not elaborate them
here, since they are not the focus of this set of papers. As shown in the figure, both
schemes require a small computation time and the increment for the case of a longer
relative deadline is considerably small, which makes our algorithms applicable online.

64

Pictures/fig10a.eps
Pictures/fig10b.eps

3.2 Energy Aware Scheduling with Constrained Resource

 1
 3

 5
 7

 9 7
 11

 15
 19

 4
 5
 6
 7
 8
 9

A
ve

ra
ge

 I
dl

e
Po

w
er

 (
m

W
at

t)
WCG-HAD

 8

 7

 6

 5

Deadline Factor
Backlog (#event)

 4
 4.5
 5
 5.5
 6
 6.5
 7
 7.5
 8
 8.5

(a) WCG-HAD Scheme

 1
 3

 5
 7

 9 7
 11

 15
 19

 4
 5
 6
 7
 8

A
ve

ra
ge

 I
dl

e
Po

w
er

 (
m

W
at

t)

EDG-HAD
 8

 7

 6

 5

Deadline Factor
Backlog (#event)

 4
 4.5
 5
 5.5
 6
 6.5
 7
 7.5
 8
 8.5

(b) EDG-HAD Scheme

Figure 3.15: Average idle power consumption with respect to different deadline and
backlog settings for stream set S(6, 9, 10) running on Realtek Ethernet under global
backlog allocation and EDF scheduling policy.

We can conclude that it is possible to develop efficient adaptive mechanisms (in
this example related to the resource demand) not computationally expensive.

The work described in this part of the dissertation has been presented with the
papers (77; 78; 79).

3.2 Energy Aware Scheduling with Constrained Re-

source

Embedded systems cover a very wide spectrum of application domains, from consumer
electronics to biomedical systems, surveillance, industrial automation, automotive, and
avionics systems. In particular, the technology evolution of sensor and networking de-
vices paved the way for plenty of new applications involving distributed computing
systems, many of them deployed in wireless environments, exploiting the mobility and
the ubiquity of components. Moreover, in most cases, devices are battery operated,
making energy-aware algorithms of paramount importance to prolong the system life-
time.

In each node of the system, at the processor level, two main mechanisms can
be exploited to save energy: the DVS and the DPM. The former is used to reduce
the dynamic energy consumption by trading the performance for energy savings. For
DVS processors, a higher supply voltage, generally, leads to both a higher execution
speed/frequency and also to a higher power consumption. On the other hand, DPM
techniques are applied to control the change of the system mode leading to consume
less leakage power, e.g., by postponing the tasks execution as long as possible still
guaranteeing the schedulability of those tasks. At the network level, the energy con-
sumption due to communication is usually managed by DPM techniques, although

65

Pictures/fig11a.eps
Pictures/fig11b.eps

3.2 Energy Aware Scheduling with Constrained Resource

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8

A

ct
iv

at
io

n

Deadline Factor

EDG (S(3,4))
WCG (S(3,4))
EDG (S(3-6)

WCG (S(3-6))
EDG (S(1,3-6,9)

WCG (S(1,3-6,9))

(a) EDF scheduling

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8

A

ct
iv

at
io

n

Deadline Factor

EDG (S(3,4))
WCG (S(3,4))
EDG (S(3-6)

WCG (S(3-6))
EDG (S(1,3-6,9)

WCG (S(1,3-6,9))

(b) FP scheduling

Figure 3.16: Numbers of Activations for different deadline settings of stream sets
S(3, 4), S(3–6), and S(1, 3–6, 9) running on Realtek Ethernet under distributed back-
log allocation with individual backlog size of 10 events.

other mechanisms have been proposed in the literature, as the Dynamic Modulation
Scaling (DMS) (138).

When the dynamic power is dominant, DVS techniques are used to execute an
application at the minimum processor speed that guarantees meeting real-time con-
straints. Conversely, when static power is dominant, there exists a critical processor
speed below which the energy wasted is greater than that consumed at the critical
speed (47). For this reason, some authors recently proposed energy-aware algorithms
that combine DVS and DPM techniques to improve energy saving (62; 177).

In wireless distributed embedded systems the quality of service offered is impor-
tant as well as the power consumption. Messages have to be transmitted in order to
guarantee the desired quality, (50; 89). The transmission bandwidth provided to each
node allows to send messages and the sending itself represents an energy cost to take
into account. Although a lot of research has been done to reduce power consumption
while guaranteeing real-time requirements, see next section, most papers focus either
on task scheduling or network communication. Instead, a co-scheduling of task and
messages allows to explore more degree of freedom and might allow to save more energy
to each node composing the system. The natural constrained resource is the energy but
mostly the bandwidth which has to be given through the classical resource reservation
mechanisms.

In (137), the combination of the two has to be explored in order to find optimal solu-
tions to the energy consumption problem. Moreover the resource constrained condition
(apart the energy consumption) has to be considered. We have then have extended
the analysis, started with (77; 78; 79), by applying DVS and DPM together. Most of
all is the introduction of resource constraints, such as the communication bandwidth,
that defines the novelty of the proposed solution. It lead the way to the possibility of
modeling complex systems, including distributed systems.

66

Pictures/fig12a.eps
Pictures/fig12b.eps

3.2 Energy Aware Scheduling with Constrained Resource

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

ex
pe

ns
es

 (
m

s)

Deadline Factor

EDG-FP
WCG-FP
HAD-FP

(a) Distributed backlog allocation

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

E
xp

en
se

 (
m

s)

Deadline Factor

EDG-EDF
WCG-EDF
HAD-EDF

(b) Global backlog allocation

Figure 3.17: Worst, best, and average case computation expenses of an activation of the
proposed algorithms with respect to different deadline factors for three different 4-stream
sets S(1–4), S(3–6), and S(2, 4, 6, 8) individually running on Realtek Ethernet.

DPM and DVS represent two different ways of applying the computational re-
source for task scheduling. These methodologies act on two different perspective of
the resource reservation problem. In particular, DVS techniques modify the available
resource and are able to adapt the resource provisioning rate to the actual resource de-
mand from the applications. It can be seen as a greedy shaper techniques (93) applied
to the computational resource. See Section 4.2.9 for more details. DPM techniques
instead, by postponing the resource demand as much as possible, delay the resource
demand. In the former section we have seen an example of adaptive DPM scheduling.
Such example shows the capability of adaptation to dynamic conditions (arrival of the
tasks) by varying the resource demand. This is the dual aspect of adapting the re-
source provided: the demand is equivalent to the minimal resource requirement. In the
remaining part of the chapter both DVS and DPM are applied in order to find optimal
(or at least sub-optimal) solutions to adapt to changing conditions of the scheduling
system.

3.2.1 System Models

We consider a distributed real-time embedded system composed by wireless nodes.
Each node executes a set of independent tasks that need to exchange information with
tasks running in other nodes and accomplishing the system goal. A node is modeled
as component c = (Γ, S, M, B) which takes as input a task set Γ = {τ1, . . . , τn}, a
scheduling algorithm S, a message set
M = {s1, . . . sm} and a transmission bandwidth B.

Task are scheduled by the node processor according to the given scheduling policy
S, while messages are transmitted during the intervals in which the bandwidth B is
made available by the adopted protocol. Note that a node is not required to work
during the remaining intervals.

67

Pictures/fig13a.eps
Pictures/fig13b.eps

3.2 Energy Aware Scheduling with Constrained Resource

The analysis we are proposing is focused on a bandwidth allocation protocol that
provides a slotted bandwidth according to a Time Division Multiple Access (TDMA)
scheme. To decouple task execution from the communication activity, all tasks in a
node build packets and move them to a shared communication buffer in the processor
memory. When the channel is available, packets are transferred from the communica-
tion buffer to the transceiver for the actual transmission.

As outputs, each component could provide a set of performance indexes, such as
message delays, task response times, and the energy consumption. At the moment
we provide only energy consumption performances; other indexes can be added with
a minimal effort, i.e. the response time R as a function of the task assignments. The
component interface is schematically illustrated in Figure 3.18

Γ

B

S

M

delay(messages)
R(tasks)

Figure 3.18: Node interface.

t1Bs
t1Be

t2Bs
t2Be

t3Bs
t3Be

Figure 3.19: Bandwidth assignment.

Workload and Resource Models An application Γ consists of a set of periodic
tasks, where each task τi = (Ci, Ti, Di) is characterized by a worst-case execution time
Ci, a period Ti, and a relative deadline Di. Each task τi produces a message stream
si = (mi, Dmi

) characterized by a payload mi and a deadline (relative to the task
activation) for the message transmission or reception.

In order to decouple the message production from the job execution we suppose
that the message is generated at the end of the job which executes without slack, so
the message activation time is equal to the job deadline. The produced messages are
enqueued in a buffer and then transmitted as soon as the bandwidth becomes available.
Assuming that packets ready to be transmitted are stored as soon as they are created
and that the time for moving them is negligible, then message transmission does not
affect task scheduling.

In each node, the computational resource (i.e., the processor) is assumed to be
always available at any time t, hence it is modeled as a straight line f(t) = t. On
the other hand, the communication bandwidth B is assigned by a bandwidth manager
(running in a master node) in a slotted fashion. In general, the transmission bandwidth

68

./Pictures/node.eps
./Pictures/bandwidth.eps

3.2 Energy Aware Scheduling with Constrained Resource

is modeled as set of disjointed slots B = {b1, . . . br}, where each slot is described by a
start time tiBs

and an end time tiBe
. An example of slotted bandwidth assigned to a

node is shown in Figure 3.19.

Power Model Each node consists of a CPU (processing element) and a Transceiver
(transmitting and receiving element). Each device can be in one of the following states:

• sleep. In this state, the device is completely turned off and consumes the least
amount of power Pσ; however, it takes more time to switch to the active state.

• standby. In this state, the device does not provide any service, but consumes a
small amount of power Ps to be ready to become active within a short period of
time.

• active. In this state, a device performs its job, executing tasks or handling mes-
sages. The power consumed in this state is denoted as Pa.

For a processor that supports DVS management, the power consumed in active
mode depends on the frequency at which the processor can execute. Such a frequency
is assumed to vary in a range [fmin, fmax], while the processor execution speed s is
defined as the normalized frequency s = f/fmax. In particular, for the processor in
active mode we use the power consumption model derived by Martin et al. (111), which
can be expressed as

Pa(f) = a3f
3 + a2f

2 + a1f + a0 (3.29)

where

• a3 is the third order coefficient related to the consumption of the core sub-
elements that vary both voltage and frequency;

• the second order term a2, describes the non linearities of DC-DC regulators in
the range of the output voltage;

• a1 is the coefficient related to the hardware components that can only vary the
clock frequency;

• a0 represents the power consumed by the components that are not affected by
the processor speed (like the leakage).

Switching from two operating modes takes a different amount of time and consumes a
different amount of energy which depends on the specific modes, as shown in Figure
3.20. In particular, the following notation is used throughout the chapter: ta−σ and
Ea−σ are the time and the energy required for active-sleep transition, while the active-
standby transition is described by ta−s and Ea−s. For all devices we have that Pσ <
Ps < Pa and ts−a < tσ−a. In (137), we assume also that switching between the standby
mode and the active mode has negligible overhead, compared to the other switches,
which is the same assumption made by other authors (174; 178).

69

3.2 Energy Aware Scheduling with Constrained Resource

A simplified power consumption model is adopted for the transceiver to concen-
trate on the interplay between DVS and DPM for the processor. The communication
bandwidth is then considered as a constraint for serving the schedule that minimizes
power consumption while guaranteeing a desired level of performance. In particu-
lar, a transceiver is assumed to be either in on (equivalent to the active state) or off
(equivalent to the sleep state) mode only (not in standby). Whenever the transmission
bandwidth is available the transceiver is considered in on mode; the power used to
transmit and receive messages is assumed to be equal to Pon, that is: Ptx = Prx = Pon.
Whenever the transmission bandwidth is not available, the transceiver is assumed to
be in off mode with a power consumption equal to Poff .

Table 3.3 summarizes all the allowed modes with their characteristics, while Figure
3.20 illustrates the mode transition diagram and the transition costs in terms of time
and energy. It is depicted a more complex case than 3.1 because two devices are
consider at one time.

Radio On Radio Off
CPU Sleep / Pσ + Poff

CPU Standby / Ps + Poff

CPU On Pa(f) + Pon Pa(f) + Poff

Table 3.3: Power model: allowed power modes and power contributions.

Sleep Standby

Active +
Radio

Active

< ta−σ, Ea−σ >

<
t
a
−

s
,
E

a
−

s
>

<
ta−

s
, Ea−

s
>

<
t
a
−

σ
,
E

a
−

σ
>

<
ta

−σ , E
a
−σ >

< 0, 0 >

Figure 3.20: Power model: transition time and energy costs.

3.2.2 Schedulability Analysis

In real-time systems, the demand bound function (dbf) and the supply bound function
(sbf) are typically applied to verify the schedulability of real-time applications under
certain scheduling algorithms and resource provisioning (21; 144). In particular, the
dbf(t) of an application Γ describes the resource requirement that the application de-
mands to the scheduling element in any interval [0, t). On the other hand, the sbf(t)
describes the resource amount the scheduler supplies in any interval [0, t). Intuitively,

70

Pictures/powerstatus.eps

3.2 Energy Aware Scheduling with Constrained Resource

the real-time constraints of a scheduling component are met if and only if, in any inter-
val of time, the resource demand by the component is always below the resource supply
curve, as shown in Figure 3.21 with various sbf depicted. The following of the section
instantiates such an analysis under earliest deadline first and fixed priority scheduling
paradigms.

In the case of an EDF scheduling paradigm, Baruah (19; 21) showed that the dbf

of the task set Γ is

dbf(t1, t2) =
∑

i∈Γ

(⌊

t2 + Ti −Di

Ti

⌋

−

⌈

t1
Ti

⌉)

Ci,

and the schedulability of a task set is then guaranteed if and only if

∀t1, t2 dbf(t1, t2) ≤ sbf(t1, t2). (3.30)

The dbf represents both the minimal resource demand from the application Γ and the
minimal feasible service requirement sbf

∗ that guarantees the tasks execution within
their timing constraints, sbf

∗ =
dbf .

Under fixed priority scheduling, the analysis can be carried out using a similar
approach (78), but is not reported here for space limits.

Once the dbf(t) has been computed for an application Γ, the minimum supply bound
function that guarantees the feasibility of Γ is sbf

∗(t) = dbf(t). In the processing model
considered in (137) the processor supply function is a straight line sbf

l(t) that increases
with a constant speed s whenever the processor is in active mode while it is steady
if the processor is in standby or sleep mode. In particular, the minimum straight line
supply bound function sbf

l∗ above sbf
∗ (which keep Γ feasible) is

sbf
l∗ = min{sbf

l|sbf
l ≥ sbf

∗}.

Every sbf
l ≥ sbf

l∗ ≥ sbf
∗ keeps the system feasible, because it anticipates the processor

execution with respect to sbf
∗ and sbf

l∗, which are feasible.

a bcd
sbf(t, s)

dbf(t)

δ1
δ2

time

Figure 3.21: Supply Bound Function: different possible supply bound functions varying
the resource provisioning rate s and the execution starting delay δ.

When applying DPM scheduling techniques it is possible to delay the task execution
inserting a sleep/standby interval δ. In this case, the energy saving consist into finding
the largest δ that still guarantee the feasibility of the application (see (78) for more

71

./Pictures/DVS-DPM.eps

3.2 Energy Aware Scheduling with Constrained Resource

details) by postponing the task executions. That δ is computed by executing the
processor at its maximum possible frequency fmax as is shown in Figure 3.21 with the
sbf curve (d).

If no pending jobs are present at the actual instant t, selecting δ that finishes before
the first activation time tact produces only an energy waste because it reactivates the
processor while the ready queue is still empty, thus, the δ is bounded by tact.

The DVS technique instead, changes the processor execution frequency thus varying
the sbf slope. By the analysis with
sbf

l(t, smax) (sbf as function of t and speed s, in this case the maximum speed smax), the
tfeas is derived as the last time instant that a schedulable activation of the task set Γ
can start. The DPM, through the sbf-dbf analysis, derives such a tfeas as the maximum
waiting δ from the actual analysis instant t before the task execution. Applying the
DVS after the DPM considerations means anticipating such activation time to tx (with
tx ≤ tfeas) by executing at a smaller frequency as shown in Figure 3.21 with sbf (c)
and (b), consequently saving processing energy. The construction of any sbf as we are
doing, follows the constraint that sbf ≥ dbf, thus any sbf assures the schedulability of
the task set if it is assumed schedulable by any other scheduling algorithm.

3.2.3 Energy Aware Scheduling

In Figure 3.22 it can be seen a task execution example with 3 tasks that activate at
time 3, 8 and 10 sec (Activations on the figure). There is also a defined transmission
bandwidth where the system is forced to transmit. A normal task scheduling would
have started as soon as the tasks are active and with the maximum allowed execution
speed (dashed line). Instead, a task scheduling that takes into account energy mat-
ters postpones as much as possible the task execution up to the task deadlines (the
continuous line starting at t = 25sec with maximum allowed execution frequency) and
adapts the execution frequency in order to cope better with the transmission bandwidth
(continuous line starting at t = 15sec).

Such an example motivates the need of an appropriate task execution to save energy.
This section defines a scheduling algorithm that integrates DPM and DVS techniques to
reduce energy consumption, while coping with the available transmission bandwidth
and guaranteeing the application timing constraints. The algorithm is named the
Energy Aware Scheduling (EAS).

The EAS algorithm is applied at a generic time instant t; it computes the domain
[tmin, tmax] for the candidate next activation point ta that satisfies DPM requirements
and timing constraints at the first step. The DPM is applied to compute the maximum
tfeas at which the processor can start executing at its maximum speed smax keeping the
task set schedulable. Second, task executions are anticipated with smax (still keeping
the maximum possible execution speed), to approach the starting point tBs of the
transmission bandwidth. The final step selects the minimum processor speed s needed
to keep the task set schedulable. In order to take message communication into account,
task schedule is arranged to overlap with the bandwidth schedule. In this way the
message sending correspond to the task execution, allowing saving more energy.

72

3.2 Energy Aware Scheduling with Constrained Resource

EXEC

BANDWIDTH

Activations Deadlines

15 25 40 50 55
time(sec)

Figure 3.22: An example of Energy Aware Scheduling that applies DVS and DPM and
copes with the transmission bandwidth.

The objective of the EAS algorithm is to compute that time ta that minimizes the
energy consumption of the next task scheduling and message transmission. Any valid
activation point ta must take into account the feasibility bound tfeas, the starting of
the transmission bandwidth tBs,

and the next activation time tact
1. Those dependencies define the interval [tmin, tmax]

where ta belongs to, ta ∈ [tmin, tmax]. The value tmax is the minimum among tfeas and
tBs. If the processor has no pending jobs, the value of tmin is set to the next activation
time tact, otherwise tmin = t. By the definition of the interval [tmin, tmax], the actual
selection of ta is done by computing the time that minimizes the energy consumption
from now, time t, to the end of the evaluation period tF (discussed in Section 3.2.2.
Algorithm 6 resumes the sequence of steps of the EAS algorithm, while Figure 3.23
depicts the EAS application sequence and the result. The feasibility of any task set
scheduled according the EAS is guaranteed by construction because each step keeps
the feasibility.

The system energy consumption E(ta) is computed using the following formula

E(ta) = (ta − t)Pσ/s + (tF − ta)Pa(s(ta)fmax) +

+2Ea−σ + Eradio(t, tF), (3.31)

which is the collection of all the consumption models detailed in the former section. In
particular Eradio(t, tF) is the energy the transceiver consumes in [t, tF] as a function of
the available bandwidth and Pσ/s the not-working power consumption which is equal
to Pσ if ta − t ≥ 2ta−σ and Ps otherwise.

As we said, the problem to be solved is to find ta in the research interval [tmin, tmax]
that minimize the energy consumption as

ta | minta∈[tmin,tmax]{E(ta)}. (3.32)

1tact is the closest next activation time of the task set after actual time t. By the task set activation
time it is intended the first task activation time after t among all the tasks composing Γ.

73

./Pictures/energy-aware.eps

3.2 Energy Aware Scheduling with Constrained Resource

Algorithm 6 Energy Aware Scheduling - EAS

procedure t | t /∈ B
Compute the dbf(t);
Compute sbf

l∗(t) = sbf
l(t, fmax) and obtain tfeas;

Calculate tmax = min{tfeas, tBs};
if No pending jobs at t then

tmin = tact;
else

tmin = t;
end if
Find ta ∈ [tmin, tmax] | mintaE(ta);
if ta ≥ t + 2ta−σ then

Put the processor in sleep state in [t, ta];
else

Put the processor in standby in [t, ta];
end if
Compute the min frequency fa or slope sa guaranteeing feasibility.

In the next section such a relationship will be deeply exploited by comparing the energy
saving contributions from the DVS and DPM.

EXEC

BANDWIDTH

Activations Deadlines

t ta−σ
ta tBs

tfeas time

Figure 3.23: Feasibility and bandwidth guarantee: EAS algorithm with three possible
processor executions together with the time instants when are applied.

3.2.4 Energy Aware Scheduling: implementation Details

In the previous section we have presented our scheduling algorithm that applies DVS
and DPM techniques with the common idea of saving energy. The constrained trans-
mission bandwidth is assumed provided by the network coordinator. In this way we

74

./Pictures/dbf-sbf3.eps

3.2 Energy Aware Scheduling with Constrained Resource

can concentrate on the node behavior and its energy saving strategies.
In this section we focus on some characteristics of the algorithm to better under-

stand its behavior. First is analyzed how to select the instants in which execute the
algorithm, then a more detailed analysis of the energy minimization problem is carried
out, and finally the computation cost of the method is evaluated.

3.2.4.1 EAS Applicability

The EAS algorithm has been developed in order to be applied at each scheduling point,
such as job activation and termination, preemption points, etc. The EAS overhead
suggests to use it only when it could produce the maximum results. A natural choice is
the instants when the ready queue empties and the processor is about to enter the idle
state; using the algorithm there allows to maximize the idle time and better exploit
the advantages of DPM. By the idle time it is intended the scheduling idle time, where
the processor ready queue is empty. Another interesting point where to apply the EAS
algorithm is the bandwidth finishing instant tBe . Indeed, by forcing the processor to be
active during the transmission bandwidth interval, the possibility of slack time for the
running tasks increases. So tBe is another application point of the algorithm and where
it is possible to recover the eventual slack time. Contrarily, any processor idle time
inside the bandwidth B is not an interesting point where to apply the EAS algorithm
because of one of the reasonable assumption done. Indeed, it has been assumed to
choose the frequency at the beginning of the processor active period hence, inside the
bandwidth, it is only possible to apply the same frequency as it was before entering
the bandwidth slot.

In this work we consider the bandwidth purely as a constraint to the processor
scheduling and the energy saving problem we are tackling with. Our system node
receives the bandwidth and cannot control it in any mode allowing to assume that it
is enough to let all the messages produced by the task set being transmitted1.

Scenarios: We have defined cases that recall the possible scenarios that can happen
in a generic time interval of the system execution. We consider the actual time t, where
either the processor has just emptied the task execution queue and is about to go in
sleep, or the transmission bandwidth is just ended. According to the next bandwidth
chunk and the processor demand of the next task execution (next after t), there are
different possible starting time for the tasks execution which result in different energy
consumption conditions.

Case 1: Task scheduling starting before the transmission bandwidth
The application execution is required to start before the beginning of the bandwidth
ta ≤ tBs , due to tasks timing constraints as depicted by Figure 3.24(a). In this case
the resulting demand bound function requires the task scheduling starts before the
beginning of the transmission bandwidth. The energy consumption is

Pσ(ta − t) + Pa(s(ta))(tBs − ta) + [Pa(s(ta)) +

+Pon](tBe − tBs)

1In the future analysis, we plan to consider the bandwidth as resource to be optimized as well as
the system energy and not just a constraint.

75

3.2 Energy Aware Scheduling with Constrained Resource

Activations Deadlines

EXECEXEC

BANDWIDTH

ta

(a) Case 1: the feasibility analysis forces the
execution to start before the bandwidth

Deadlines

EXEC EXEC

BANDWIDTH

Activations

ta

(b) Case 2: execution can start at the beginning
of the bandwidth

Figure 3.24: Scenarios: the execution starts before or at the beginning of the transmis-
sion bandwidth

which is given by the cost of the processor for executing before the bandwidth
(Pa(s(ta))(tBs − ta)), the cost of the mandatory execution and transmission inside the
bandwidth and the transceiver energy cost due to the transmission bandwidth
([Pa(s(ta)) + Pon](tBe − tBs)).

Case 2: Scheduling starting at the transmission bandwidth In Figure 3.24(b)
is represented the second case where tfeas happens after the beginning of the transmis-
sion bandwidth. This way the processor activation can be advanced in order to meet
the beginning of the bandwidth tBs . The EAS algorithm tends to overlap the processor
activation time ta to the beginning of the bandwidth in order to cope with the band-
width constraint and save more energy. Although, ta can still be different than tBs

because it is the result of the energy minimization problem. The energy consumption
is case of ta = tBs is

Pσ(ta − t) + [Pa(s(ta)) + Pon](tBe − tBs),

which differs from the previous case by the Pa(s(ta))(tBs − ta): there is no energy
consumption before the bandwidth. Whenever ta = tBs it is also possible to antici-
pate the task execution with respect to tBs to let tasks produce messages ready to be
transmitted at the beginning of the bandwidth. In this way the bandwidth would be
better applied by the node even if the energy consumption slightly deteriorate. Since
we are focusing our analysis on the energy consumption, we privilege ta = tBs even if
our approach is easily scalable to solve a wider range of problems.

3.2.5 Energy Minimization

The EAS algorithm every time is applied to compute the next execution starting point
ta for the processor. That ta depends on the processor speed s and on its domain
[tmin, tmax]. The relationship s(ta) among the speed and the activation point is quite
intuitive and depends on the demand bound function of the task set. An heavy loaded
processor results in a high dbf and consequently a high speed is required for the feasible
execution of task set itself. Moreover, a slight difference among two dbf results in
different speeds that keep the dbfs feasible. By that strict dependency, it is impossible

76

./Pictures/dbf-sbfCASE1a.eps
./Pictures/dbf-sbfCASE2a.eps

3.2 Energy Aware Scheduling with Constrained Resource

to derive a closed-form formula for s(ta). Instead we can conclude its convexity because
is defined as the maximum of straight lines with slope y

x−ta
starting at ta,

s(ta)
def
= max{

y

x− ta
} ∀x, y ∈ dbf.

Each (x, y) is a points of the dbf where to control the slope/speed.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 202 204 206 208 210

Sl
op

e

Time [ms]

Utilization = 0.36
Utilization = 0.56

Figure 3.25: Slope/activation time relationship s(ta) depending on the demand bound
function. Two task set with utilization U = 0.36 and U = 0.56 respectively.

Figure 3.25 depicts the dependency of the execution speed sa to the task set and the
dbf associated in a simulated case. By the picture it is possible to guess the convexity
of s(ta). Figure 3.27 shows a general dependency among the energy consumption and
the model of the processor applied. According to the model, the DVS or the DPM
could be more or less applied.

The energy consumption E(ta), computed by Equation 3.32, has to be minimized
evaluating the energy and workload requirements in [t, tF]. The end instant tF depends
on the next time in which the EAS algorithm will be executed that could be either the
next scheduling idle time or the end of the bandwidth slot tBe . Such a dependency is a
consequence of the policy applied, because in the same interval it could happen to have
different services provided and then different workloads executed. Pure DVS starting
to execute at the beginning of the interval could provide a different computational
resource than a combination of DVS and DPM where executing at ta with ta ≥ t.
Figure 3.26 details the different services provided in the same interval by varying the
execution speed and the processor activation point ta.

To resolve the previous dependency we decouple the ending instant tF from ta by
choosing tF as the maximum among the scheduling idle times. The DVS applied at the
beginning of the interval (time t) with the minimum feasible speed results in maximizing
the time distance between t and the beginning of the next idle time, keeping the time
constraints guarantee. The value of tF is the minimum between the DVS idle time and
the tbE

.
Looking for the activation time ta that minimizes the energy consumption E(ta)

must take into account the service supplied by the processor during the interval [ta, tF].
The research of the minimum does not have to find the value of ta that imposes the
minimum energy consumption, but the one that requires the minimum energy in order
to provide the amount of service needed by the workload under the the constraints.

77

./Pictures/slope.eps

3.2 Energy Aware Scheduling with Constrained Resource

The function that has to be minimized is not the plain energy but the ratio between
the energy required in the interval [t, tF] with the chosen ta and the service supplied in
that interval S(ta) = (tF − ta)sa. To compute ta the function that has to be minimized
is then

ta|min
ta

E(ta)

S(ta)
. (3.33)

timeδ

S

Figure 3.26: Different services S provided in an interval δ by different execution policy
applied.

The EAS algorithm looks for the minimum ratio E(ta)
S(ta)

by spanning s(ta) and varying

ta. By the analysis of Equation 3.31 and 3.33 we derive that E(ta) is convex in
the interval [tmin, tmax]. The convexity is guaranteed because Equation 3.31 is the
composition of linear functions (Pσ(ta − t)), convex functions (Pa(s(ta))) and convex
functions multiplied by linear and positive functions in such interval (Pa(s(ta))(t− tF).

The ratio E(ta)
S(ta)

is convex as well as the ration among a convex function and a linear

function. With a convex E(ta)
S(ta)

the minimum exists and can be found with well known

and efficient methods, in particular we have applied the bisection method. There are
two singular cases for that minimum. ta = tmin that shows the condition where the
DVS effect is prominent with respect to the DPM one. Vice versa, ta = tmax shows
a major effect of the DPM over the DVS. Since EAS has to be applied on-line, the
research algorithm has to be quick.

Computational Cost The complexity of the EAS algorithm comes form the com-
ponents of the algorithm itself. By the order of their application in EAS, there is

1. the computation of the dbf which has a polynomial complexity O(n) where n is
the number of tasks activation in the analysis interval [t, tF].

2. To compute tfeas, once known the dbf, requires to compute the intersection among

the sbf
l∗ and x-axes which means O(n).

3. The computation of the two bounds tmin and tmax has a complexity of O(n) due
to the min/max operations and mostly tact which is searched.

4. Finally, finding ta means finding ta | min E(ta). To solve this we have applied
the bisection method which has a polynomial complexity.

Taking into account all the contributions, the EAS has a polynomial complexity that
makes it applicable on-line.

78

./Pictures/workload.eps

3.2 Energy Aware Scheduling with Constrained Resource

3.2.6 Simulations

This section presents some simulation results achieved on the proposed EAS method.
An event-driven scheduler and an energy controller simulator has been implemented in
C language and interfaced to Gnuplot.

Simulation Setup The simulator receives a task set and a bandwidth assignment
as inputs. The task set is executed with a chosen scheduling policy. The energy
consumed to schedule tasks and to transmit messages is computed at each simulation
run. A simulation run consists of scheduling one task set with the assigned bandwidth
until the task set hyper-period hyp. The power consumption E

hyp
in the hyper-period

is then considered.
The scheduling policies applied are:

• EDF with no energy considerations, meaning that the processor is assumed al-
ways active at the maximum frequency, even if tasks are not ready to execute.

• pureDVS on top of an EDF scheduling algorithm. Only speed scaling is applied
off-line to guarantee feasibility and the processor speed is set to that value. Online
changes are not allowed.

• pureDPM where the task execution is postponed as much as possible and then
scheduled by EDF. The execution is at the maximum processor speed.

• DVS and DPM are combined with EDF through the EAS algorithm.

A simulator infrastructure automatically generates a stream of tuples (U, nt, B, nB),
where U denotes the utilization of the generic task set Γ, nt the number of tasks, B
the communication bandwidth (expressed as a percentage of the hyper-period), and
nB the number of slots in which the bandwidth has been split. Both the task set
utilization and the number of tasks are controlled by the task set assignment (U, nt).
The bandwidth assignment (B, nB) allows to control both the total bandwidth and its
distribution within the hyper-period.

Given the total utilization factor U , individual task utilizations are generated ac-
cording to a uniform distribution (24). Each bandwidth slot is set in the hyper-period
with a randomly generated offset. To reduce the bias effect of both random generation
procedures, 1000 different experiments are performed for each tuples (U, nt, B, nB) and
the average is computed among the results obtained at each run.

Two different CPUs have been considered: the Microchip DsPic (DSPIC)1 and the
Texas Instruments (TI)2, both using the CC2420 transceiver as communication device.
Table 3.4 and Table 3.5 report the parameters that characterize the power model of the
processors and the transceiver used in these tests, according to the models described
in Section 6.1.1. Minimum and maximum frequencies of the CPUs are taken from the
device data-sheets, whereas the coefficients [a0, a1, a2, a3] comes form Equation 3.29.

1DSPIC33FJ256MC710 microprocessor
2TMS320VC5509 Fixed-Point Digital Signal Processor

79

3.2 Energy Aware Scheduling with Constrained Resource

CPU Ps f Pa(s) Pσ tsw
[fmin, fmax] [a0, a1, a2, a3]

[mWatt] [Mhz] [mWatt] [mWatt] [sec]

TI − [25, 200] [7.7489, 17.5, 168.0, 0.0] 0.12 0.00125

DSPIC 9.9 [10, 40] [25.93, 246.12, 5.6, 0.0] 1.49 0.020

Table 3.4: Power profiles for processing devices.

Transceiver Ps [mWatt] Pa [mWatt]
CC2420 0.066 62.04

Table 3.5: CC2420 Transceiver power profile.

Simulation Results In a first simulation, we tested the power consumption of the
CPUs as a function of the activation time. Figure 3.27 shows a general dependency of
the power consumption from the model adopted for the processor. The figure shows
also that both CPUs are DVS sensitive, in the sense that both privilege DVS solutions
than the pure DPM ones. Indeed, the DSPIC and the TI exhibit a lower energy at tmin

than at tmax (respectively 160 and 195 in this case as one of the interval of analysis
along the whole execution interval). This means that a pure DVS solution costs less
than a pure DPM one. Moreover, the DSPIC shows a global minimum inside the
interval, meaning that a combined policy is able to reduce energy consumption. The
time value corresponding to the minimum is the ta that has to be found.

 140

 150

 160

 170

 180

 190

 200

 160 165 170 175 180 185 190 195Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

Time [ms]

TI
DSPIC

Figure 3.27: Energy consumption in one interval with the two CPUs and the same task
set. The energy is obtained by varying the activation time ta within [tmin, tmax].

Figure 3.28 compares the two architectures, showing a higher energy consumption
for the DSPIC. The power consumption has been averaged to the hyper-period of each
task set. Note that both the CPUs have a dependency on the utilization.

We also investigated the effects of the transmission bandwidth to the energy con-
sumption of the system. The results are reported in Figure 3.29, which illustrates the
power consumption as a function of the bandwidth assignment. Note how the depen-
dency is stronger with respect to the bandwidth amount, because the transmission cost

80

./Pictures/ENERGY_comparison.eps

3.2 Energy Aware Scheduling with Constrained Resource

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

DSPIC

TI DSPIC

TI DSPIC

TI
A

ve
ra

ge
 P

ow
er

 C
on

su
m

pt
io

n
[W

at
t]

Utilization = 0.3

Utilization = 0.6

Utilization = 0.9

Figure 3.28: CPU comparison by varying the utilization; nt = 4, B = 0.3 and nB = 3.

increases when there is more bandwidth available; in fact, we assumed the CPU re-
mains active while the bandwidth is available. Moreover we assumed to have messages
available to be transmitted, so that the bandwidth is fully used for transmission with
an increasing cost when the assigned bandwidth increases. On the other hand, the
dependency with respect to the bandwidth allocation slots (how much B is split) is
quite weak. This is because message deadlines were assumed to be large enough not
to create a scheduling constraint.

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 1 2 3 4 5

 0.12

 0.14

 0.16

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

Bandwidth
of slots

Figure 3.29: Average power consumption varying the bandwidth assignment; U = 0.3,
nt = 4.

Figure 3.30 shows how the EAS policy is affected by the task set, in terms of U and
n. Notice that the power consumption is significantly affected by the utilization but
not much by the number of tasks.

Figure 3.31 compares the EAS policy with respect to the pureDVS. The results are
quite similar, since the considered CPUs are both sensitive to DVS. Nevertheless, the
EAS is able to exploit the DPM capabilities and the available bandwidth to reduce the
power consumption in all the task set assignments, mainly when the processor is not
heavily loaded (low utilization cases).

Finally, Figure 3.32 and Figure 3.33 compare the four scheduling policies (for TI
and DSPIC, respectively), under the same B, nB, and nt conditions, but for different
task set utilizations. Notice how the EAS policy outperforms the other policies, espe-
cially for low utilizations. For high utilization, EAS and pureDVS exhibit the same

81

./Pictures/hystogram.eps
./Pictures/banda.eps

3.2 Energy Aware Scheduling with Constrained Resource

performance (but lower power consumption with respect to the pureDPM and EDF).
This happens because, for high utilization there is no room for DPM improvements
and only DVS is effective. Also note that, for very low utilizations, pureDPM provides
better results than pureDVS. This is due to the fact that U = 0.1 would require a
speed lower than the TI minimal speed, hence pureDVS forces the CPU to have a
speed greater than the utilization, providing more service than required.

To conclude, the EAS algorithm is proved to be effective with respect to the other
policies because it looks for the minimum energy consumption in [tmin, tmax] and in any
possible condition. If the minimum is found in tmin or tmax, the combined method is
equivalent to the pure DVS or the pure DPM, respectively. Most of the time, however,
the minimum is found inside the [tmin, tmax] interval, so that the EAS is able to further
reduce energy consumption with respect to the pure versions.

The paper (137) deeply exploits the concepts presented in this section.

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 1 2 3 4 5

 0.1

 0.2

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

Utilization
of tasks

Figure 3.30: Average power consumption by varying U and nt. EAS policy applied
with B = 0.5 and nB = 3 and the TI processor.

 0.1 0.3 0.5 0.7

 1 2 3 4 5

 0.0625

 0.125

 0.25

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t] DVS

EAS

Utilization# of tasks

Figure 3.31: Average power consumption by varying U and nt. The two policies applied
with B = 0.5 and nB = 3 and the TI processor.

82

./Pictures/UTIL_eas.eps
./Pictures/UTIL_eas_dvs.eps

3.2 Energy Aware Scheduling with Constrained Resource

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 P
ow

er
 C

on
su

pt
io

n
[W

at
t]

Utilization

EDF

DPM

DVS

EAS

Figure 3.32: Average power consumption by varying U . All the policies are applied
with B = 0.5, nB = 3 and nt = 4 and the TI processor is considered.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ow

er
 C

on
su

pt
io

n
[W

at
t]

Utilization

EDF

DPM

DVS

EAS

Figure 3.33: Average power consumption by varying U . All the policies are applied
with B = 0.5, nB = 3 and nt = 4 and the DSPIC processor is considered.

83

./Pictures/test_0.eps
./Pictures/test_1.eps

Chapter 4

Reservation Mechanisms

A number of methods have been developed that allow scheduling and resource allo-
cation decisions to be made for a single real-time application or set of cooperating
real-time applications. Many such approaches rely on the full knowledge of the avail-
able resources. Besides, often resources are provided statically so that the application
schedulability can be carried out once for all.

4.1 Survey

In this chapter, we review the major existing solutions for the bandwidth reservation
for shared processing systems. The survey focuses on the analysis of the reservation
techniques for single processor platforms, with relation to real-time servers, hierarchical
schedulers, reclaiming techniques, etc.

4.1.1 Fixed Priority Servers

The most used algorithms for the bandwidth reservation in fixed priority systems are
the deferrable server (156) and the sporadic server (147; 148). While DS has a simpler
implementation, SS is able to achieve a larger schedulable utilization. Both algorithms
are able to solve the poor performance of the polling server presented in (54; 140),
and the processor reservation approach presented by Mercer et al. in (116), which is
similar to a polling server. The Priority Exchange Server (PES) has been introduced
in (97; 149). Moreover, it has no advantage over a sporadic server, but requires a more
complex implementation (147; 148). Fixed priority algorithms that implement stealing
mechanisms have been proposed in (95), and (132). Two complementary schemes for
the reclaiming of unused bandwidth are the Capacity Sharing Server presented in (23)
and the HisReWri algorithm proposed in (14). The Dual Priority mechanism has been
first introduced in (56) and later extended in (22).

Polling Server The polling server is based on a periodic task with specific priority
pS, period PS and capacity QS. The replenishment rule executes upon task activation
with a periodic replenishment at the multiple of the period. The aperiodic requests are

84

4.1 Survey

served when available, till the capacity is consumed. Otherwise, the capacity is lost,
which means that if a request is available at the beginning of the server period, then it
is served with the server capacity QS, otherwise, if a request comes after that instant,
it is not served until next server period.

Deferrable Server Deferrable server considers periodic task, usually with the high-
est priority to serve promptly aperiodic tasks, but any specific priority could be. The
replenishment is made upon task activation with a periodic rate at the multiple of PS.
The consumption rule is that the aperiodic requests are served when the server still
has capacity, while the capacity is lost at the end of the period.

Sporadic Server Sporadic servers assumes sporadic task with a specified priority, a
period PS and capacity QS in terms of computation time. The server is active when
the executing priority is no lower than the priority of the server while it is idle when
the executing priority is lower than the priority of the server. Initially, the server is idle
and its budget is QS . When the server becomes active at time t1, the replenishment
time is set to t1 + PS. When the server becomes idle or QS becomes 0 at time t2,
the (next) replenishment amount is set to the amount of capacity consumed in time
interval between the last replenishment time and t2. Aperiodic requests are served
when the server is granted for execution.

There is the corresponding dynamic version of those servers whenever they are
scheduled (their capacity) with dynamic priority schedulers.

4.1.2 Dynamic Priority Servers

Apart the dynamic priority version of the former servers (servers with deadlines sched-
uled by dynamic priority scheduling mechanisms to assigne the resource they require)
PS, DS and SS, there are two more interesting server mechanisms to be detailed.

Total Bandwidth Server and related variants Among real-time servers based
on EDF scheduling, the Total Bandwidth Server (TBS) presented by Spuri et al. in
(150) can be adopted when execution times are known upon job arrivals. Whenever a
new job with execution requirement Ci needs to be scheduled, the server budget and
deadline are set, respectively, to Ci and max{t, Dold + Ci/US}, where US is the server
reserved bandwidth. US is the only parameter describing the TBS server. The Constant
Utilization Server (CUS) presented in (60; 107) has similar characteristics, except for
the fact that instead of immediately replenishing the budget when a new job needs to
be executed, it waits until the server deadline. The Total Bandwidth (TB) (38) is an
improvement over TBS that obtains optimal responsiveness by properly decreasing the
server deadline. Since it is necessary to know in advance the execution requirements
of the scheduled entities, neither of the above servers (TBS, CUS, TB) is suitable for
open environments.

The TBS provides guaranteed bandwidth in a long run with an utilization US.
The deadline assignment rule is the basis of such a server. The server deadline DS is
initialized as 0. When an event arrives at time t, the deadline of this event (as well as

85

4.1 Survey

DS) is set to max{t, DS}+ Ci

US
, where Ci is the required (worst) computation time of

the event. The disadvantage is that the required (worst) computation time Ci of the
event has to be known a priori.

Constant Bandwidth Server A server that does not need any information on the
execution times of the scheduled entities is the Constant Bandwidth Server (CBS)
presented by Abeni and Buttazzo in (2). It has a self-reclaiming mechanism that
allows using in advance the capacity reserved to future jobs of the executing task.
This mechanism is easily obtained by postponing the server deadline as soon as the
budget is exhausted, without needing to wait until the next replenishment instant Zk.
Therefore, no suspended state is needed, and the reactivation time Zk becomes useless.
The drawback of this approach is that it is prone to the deadline-aging problem, so that
neither CBS can be efficiently used to serve systems in which tasks are to be executed
with more complex requirements than the simple First-Come First-Served execution.

The Soft Constant Bandwidth Server (S-CBS) provides a constant bandwidth QS

each period PS. The actual budget qS is initialized as QS and the server deadline DS is
set 0. Each served event is assigned to the current server deadline DS and the budget
qS is decreased by the served amount of computation. When qS reaches 0, the new
server deadline becomes DS + PS and qS is replenished to QS immediately. The server
is active at time t if there are pending events; otherwise the server is idle, and the
events are served in a FIFO manner. When the server is idle at time t and an event
arrives, if qS

DSt
< QS

PS
, the server becomes active; otherwise, the server deadline is set to

t + PS and qS is set to QS.
The Hard Constant Bandwidth Server (H-CBS) is similar to the S-CBS, but the

budget replenishment is done when the old server deadline expires.
The budgeting mechanisms on both the CBS server implementations guarantees

that at each server period PS no more than QS computation time is provided to the
application managed.

4.1.3 Resource Reclaiming

To improve the distribution of the unused bandwidth left by applications managed
by the servers and that execute for less than what declared, it is possible to adopt
particular bandwidth reclaiming mechanisms. The reclaiming mechanism is referred
to reclaim the unused resource in rela-time systems.

In the last decade, many different techniques have been presented for the reclaiming
of unused capacity in a server-based real-time system. The considerable attention that
has recently been dedicated to this problem can be motivated with the typical issues
that can arise while designing a reservation-based environment in an effective way.
The need not to over-reserve the capacity dedicated to a particular task or application
suggests one to assign, when possible, server parameters according to some average
execution value, using worst-case parameters only for very critical instances. In order
to ensure good system performances, soft real-time and best effort processes can then
reclaim over-allocated capacity from servers that did not need it. Previously proposed
works dealing with this problem presented a large number of different techniques to

86

4.1 Survey

distribute the spare capacity in an effective way, allowing overrun handling and fast
system responsiveness. However, it is not clear how these approaches are related, and
to what extent they contribute to solve the addressed problems. To better understand
the mechanisms under the various reclaiming algorithms, we will first distinguish the
unused (reclaimable) bandwidth into the following typologies.

• Not-admitted bandwidth: it is the share of the CPU that has not been accounted
for in the admission control test. It corresponds to the capacity left when the
sum of the bandwidths of the admitted servers is lower than the capacity of the
computing platform.

• Inactive capacity: it is the capacity associated to servers that are not backlogged
and that since their last activation executed for less than their fair share. In other
words, this is the capacity that is left by admitted servers that temporarily dont
have tasks or jobs in their ready queue. This is the bandwidth safely reclaimed
by the GRUB algorithm.

• Cache capacity: it is the remaining budget of servers that have an earlier com-
pletion (an underrun) and that are known to activate themselves again at least
after the next server deadline. This is the kind of capacity reclaimed by CASH
and BASH algorithms.

There are also other kinds of capacities that can be reclaimed in a less safe way.
For the moment, we will focus only on the reclaiming techniques that do not violate
the temporal isolation property of the admitted servers. We hereafter detail such
techniques, but first some definitions.

Definition 4.1.1 (Virtual Time). The value of virtual time Vj at any time is a measure
of how much of the j-th component reserved service has been consumed by that time.

Definition 4.1.2 (Work Conserving). A scheduling algorithm or server mechanisms
is work-conserving if and only if it never idles processors when there exists at least one
active task awaiting the execution in the system.

Definition 4.1.3 (Deadline Aging). CBS server mechanisms can suffer the dead-
line aging problem when their deadline is continuously post-poned and high priority
taks/server arrives to preempt them, so they cannot execute.

• A sort of implicit reclaiming mechanism is used by any work-conserving server.
Systems holding this property will never be idle when an application is waiting to
be executed. Therefore, the bandwidth left unused by an application will always
be used by some other application.

• A simple rule that can be easily added to the server formerly presented in to
render it work-conserving is resetting to Inactive the state of all servers when the
processor is idle. In this way, backlogged servers that were in suspended state
will immediately switch to the Contending state, allowing some application to be
scheduled.

87

4.1 Survey

• Another option to add the work-conserving property to the presented server is
implementing the time-warping mechanism used by IRIS and BEBS. According
to this mechanism, whenever the system is idle because all servers are either non-
backlogged or in suspended state, the reactivation time Zk of each suspended
application Ak is decreased by Zmin− t, where Zmin is the first reactivation time
among all the suspended servers:

∀Ak : Zk = Zk − (Zmin − t).

This is sufficient to avoid an idle condition when there are backlogged servers
waiting to be executed. Somewhat counterintuitively, this solution shows a fairer
distribution of the available bandwidth than with the previously described ap-
proach.

• For non work-conserving systems, a simple way to reclaim the not-admitted band-
width can be provided by assigning such bandwidth to a new server that will work
as a capacity tank. This server will supply additional execution to other servers
that might need a further share of bandwidth to satisfy a temporary overrun.

• The inactive capacity may be reclaimed implementing a smart mechanism adopted
by GRUB. The virtual time Vk of an executing application Ak is updated at a rate
slopeactive/slopek, instead than at a rate 1/slopek, where slopeactive represents the
sum of the slopek of each admitted application Ak that is either in contending,
non-contending or suspended state, i.e. excluding all inactive applications.

• The capacity may be safely reclaimed only when there are valid reasons to be-
lieve that a non-backlogged server will not become active before a particular
time-instant. The capacity that the server would have used in the considered
time interval may then be safely assigned to other servers, as with CASH (40)
and BASH (41) algorithms. The typical case is when a soft real-time task en-
capsulated into a server has an early completion. Since that task will not be
activated until its next period, the unused bandwidth can be assigned to a dif-
ferent application, for instance to the next scheduled server. Nevertheless, the
cache capacity will still be associated to the original server deadline (priority),
and accordingly scheduled. Particular care must be taken when the system is idle.
In this case, the capacity must be properly decremented (see (40; 41) to avoid
capacity overallocation). This kind of reclaiming is not particularly suitable for
hierarchical systems or, in general, for servers that handle more than one task at
a time. In these cases, in fact, it is very difficult to guarantee that a server will
not reactivate before a certain time-instant.

In complex systems where more than one server are applied, resource reclaiming
assumes also a larger perspective. The resource can be reclaimed form subset of servers,
see Section 6.1 for a detailed example about that.

88

4.1 Survey

Not admitted capacity reclaiming: IRIS and BEBS To solve this problem,
Marzario et al. proposed IRIS (112), a server that does not suffer from the deadline-
aging problem, and that can be efficiently used for the implementation of open en-
vironments. It is equivalent to our basic server, with the additional work-conserving
property obtained through a time-warping mechanism: whenever the system is idle, the
reactivation time of each Suspended server is uniformly decreased, so that the earlier
reactivation time coincides with the current time. A server almost identical to IRIS has
been presented by Brandt et al. in (13): the Best-Effort Bandwidth Server (BEBS).
It is an improvement over the Rate-Based Earliest Deadline scheduler (RBED), an
earlier server presented by the same group in (30). The only difference between IRIS
and BEBS is in the actions associated to the time-warping operation. IRIS decreases
the reactivation time of every server and decreases as well the deadline of the server(s)
that first reactivates. BEBS instead does not decrease any deadline, obtaining a fairer
reclaiming.

Inactive capacity reclaiming: GRUB and SHRUB Lipari and Baruah pre-
sented in (100) a CBS-based approach to reclaim the reserved capacity left free by
inactive servers: the Greedy Reclamation of Unused Bandwidth (GRUB). The vir-
tual time Vk of an executing application Ak is updated at a rate slopeactive/slopek,
where aactive is the sum of the ak of each admitted application Ak that is not in In-
active state. In this way, in each time interval dT , an executing server reclaims the
share of bandwidth that has not been reserved to servers that have backlogged work
to do, i.e. the share (1 − Uactive)dT . Note that this includes both the inactive and
the not-admitted capacity. GRUBs reclaiming is greedy because this excess capacity
is entirely given to the executing server. Fairer reclaiming strategies may be derived
by distributing the inactive capacity according to some particular policy. The Shared
Reclamation of Unused Bandwidth (SHRUB) presented in (18; 127) distributes the
reclaimable bandwidth according to weights assigned to each application.

Cash capacity reclaiming: CASH and BASH Two algorithms that are able to
reclaim cache capacities have been presented by Caccamo et al.: CASH (40) and BASH
(41). When one knows that a server will not be activated until a certain time instant,
the unused bandwidth is assigned to another application. This capacity is associated
to the original server deadline, and accordingly scheduled. When the system is idle, the
cache capacity must be properly decremented. CASH decreases the earliest deadline
CASH capacity by the amount of idle time. BASH recomputes each BASH capacity
as slope(Dk − Tidle), where Tidle is the last idle time. Simplified CASH-based servers
are presented in (35).

Aggressive reclaiming: SLASH, BACKSLASH and CSS Four resource reser-
vation algorithms have been presented in (99), each one improving over the previous
one. From the simplest one to the most aggressively reclaiming one, they are: SRAND,
SLAD, SLASH and BACKSLASH. While the first two servers has been designed just
to show that it is better to assign the unused bandwidth to the highest priority task (as
in CASH), the other two servers are more interesting. SLASH adds a self-reclaiming

89

4.1 Survey

mechanism that recharges the capacity postponing the deadline, as with CBS, and
reclaims unused capacity from other servers using its original (unextended and, there-
fore, earlier) deadline. This allows than with CASH, since the executing server can
use a higher priority. BACKSLASH further increases the reclaiming capabilities by
retroactively allocating unused capacity to servers that used in advance their own fu-
ture capacity (with self-reclaiming). The Capacity Sharing and Stealing (CSS) server
presented in (125) integrates the reclaiming mechanism used by SLASH with the pos-
sibility to steal bandwidth reserved to inactive non-isolated servers.

Other dynamic servers Ghazalie and Baker introduced in (69) the Deadline De-
ferrable Server (DDS), Deadline Sporadic Server (DSS) and Deadline Exchange Server
(DXS), adapting to the EDF case the corresponding algorithms previously defined
for fixed priority systems. Spuri and Buttazzo introduced five different servers un-
der dynamic priorities in (109): Dynamic Priority Exchange (DPE), Dynamic Spo-
radic Server (similar to the DSS in (69)), Earliest Deadline Last (EDL) and Improved
Priority Exchange (IPE). Other bandwidth isolation algorithms with rather complex
implementations are the Bandwidth Sharing Server (BSS) (104), its improved version
BSS-I (101), and the Processor Sharing with Earliest Deadline First (PShED) (105).
In (60; 61), Deng et al. introduced the analysis of open environment for realtime sys-
tems. Their two-level hierarchical implementation is based on TBS and CBS servers.
Two attempts for providing the bounded-delay property to CBS and GRUB have been
presented, respectively, in (102) (H-CBS) and (6) (HGRUB).

4.1.4 Other Server Mechanisms

Hierarchical Loadable Schedulers (HLS) (134) is a framework for the composition of
existing scheduling algorithms using hierarchical scheduling, providing a guaranteed
scheduling behavior to the applications. Another framework that supports a hierarchy
of arbitrary schedulers, without providing compositional guarantees, is the CPU inher-
itance scheduling proposed by Ford and Susarla in (67). Offline strategies to deal with
aperiodic workloads have been presented by Fohler et al. in (66; 82).

Overrun handling mechanisms for different task models When different task models
are adopted, other mechanisms have been designed for the bandwidth reclaiming in
overrun conditions. For instance, Buttazzo and Stankovic proposed in (39) the Robust
Earliest Deadline (RED) scheduling algorithm for applications composed of firm real-
time tasks. In (37), a related algorithm is described: Robust High Density (RHD).
Koren and Shasha presented in (88) an on-line scheduling algorithm, called Dover,
that has an optimal competitive factor.

Baruah and Haritsa (20) proposed an on-line scheduling algorithm (ROBUST) that
maximizes processor utilization during overload conditions, given a minimum slack
factor for all tasks. Thomas et al. proposed Spare CASH, an algorithm that adapts
the reclaiming mechanism of CASH for a different model of firm real-time tasks (162).
For adaptive tasks that may change their rate, Buttazzo et al. formulated an algorithm
in which rate changes are modeled using spring coefficients (34). The Variable Rate
Execution Model (VRE) in (70) is a similar (broader) model that implements and

90

4.2 Resource Guarantee

provides schedulability conditions for systems in which task execution rates change
dynamically.

4.2 Resource Guarantee

According to the real-time server theory, a server component is developed in order to
guarantee a certain behavior to the application it directly manages. We are interested
in modeling server components and deriving worst case and best case bounds on their
properties to guarantee the behavior expected. In particular we focus our attention on
the resource service interface of the server components provides.

As briefly introduced in the former sections a server can be seen as a process which
provides resource to its applications. Thus, through its parameters, a server asks for
a resource to an higher level resource scheduler. That resource is then passed to the
applications beneath the server. The resource scheduler can schedule the resource
according to either dynamic or static priority policies, which means that the server
process has to have a priority assigned in order to be scheduled. The principle is
exactly the same as the task scheduling, where most of the time and most of the server
models assume the deadline equal to their period.

In case of dynamic priority server scheduling the specific server is not aware of the
exact amount of resource it could have available because at each scheduling instance
that amount depends on the other servers and their actual scheduling priority and
cannot be known a priori, see Figure 4.3 for details. It is possible to do pessimistic
assumptions in order to derive bounds to the resource received by the server (resource
that has to be partitioned by the server according to its parameters) in case of dynamic
priority server scheduling. Those assumptions consider each server as executing as the
lowest priority server among all the servers at the same scheduling level. In the worst
case, a dynamic priority server component S receives resource β̄S = β ⊘

∑

i6=S βi(0)1

resource as the one left by the rest of the scheduled components. The resource are
considered as the lower bound for schedulability reasons. By βSi

it is represented
the resource demand of server i, or better the resource amount the server is going to
partition according to its parameters (QSi

, PSi
). While in the best case it could receive

β̇S ≡ β. The worst case is the only guarantee that can be given.
In case of fixed priority scheduling, because of the implicit hierarchy among the

servers due to the statically defined priority, each server knows the exact amount of
resource βS is going to receive. The i-th server receives the residual resource from the
i−1 high priority servers, so the resource left unused by those. See Figure 4.2 for some
details.

A server S, as depicted in Figure 4.1, within the RTC framework can be represented
by a tuple (βS, β̂S, β ′S), where βS is the resource S receives as a portion of the service
the main computational resource component or the higher level computational resource
provider. That resource is a portion of the total resource available β. Instead, β̂S is

1β(γ)⊘α(γ)
def
= (max{infλ≥γ{β

u(λ)−αl(λ)}, 0} which is the subtraction in the min-plus algebra,
(93; 159).

91

4.2 Resource Guarantee

the resource that S provides to the application it manages (a portion of the received
amount βS). Finally, β ′S is the amount of βS which has not been partitioned by S.

β ′S
def
= (min{infλ≥γ{β

u
S(λ)− β̂lS(λ)}, 0}, sup0≤λ≤γ{β

l
S(λ)− β̂u

S(λ)})

βS, β̂S and β ′S, are server component interfaces and by them it is possible to define server
guarantees. Figure 4.1 shows the server component interface, the resource partitioning
and the relationship among the server and its application in details. We recall that real-
time servers manages real-time applications forwarding resources to their applications
allowing them to execute and then being scheduled by a real-time scheduler.

In this section we analyze server guarantee analysis by taking into account the
differences among dynamic scheduling servers and static scheduling versions.

In the rest of the dissertation, where not explicitly pointed out, the deadline a server
assigns to its application event streams is assumed to be equal to the server period.
Furthermore, in the following we denote by β(γ) the total resource amount available
by the set of servers in the interval domain, γ.

Server

A

βi = (QS , PS)

βS

β̂S

β′
S

Figure 4.1: Periodic server resource model and interaction with applications A.

4.2.1 Polling servers

A polling server (PS) can be implemented by a periodic task S = (PS, QS). According
to the scheduling policy applied we distinguish PS for dynamic scheduling (DPS) and
PS for static scheduling (SPS). To the event streams it directly manages, a PS is a
component that provides a resource supply of QS during every interval of length PS,
but if no requests are pending, PS suspends itself until the beginning of its next period.
The capacity is not preserved if there is no workload to be served. The analysis of the
PS in terms of service curve has been carried out by Wandeler et al. in (170). We
improve the guarantees that have been derived by proposing tighter bounds.

DPS Under a dynamic priority scheduling assumption, it is impossible to know when
the server application receives the resource within a period. A DPS server can only
guarantee to supply that QS resource at the end of its period. Furthermore it can

92

./Pictures/serverModel.eps

4.2 Resource Guarantee

...

α1

α2

αn

α′1

α′2

α′n

β1

β ′1

β ′n

Figure 4.2: Fixed priority server scheduling.

happen to have an entire period with no resource applied at all, because at its beginning
no requests were pending. A guarantee then is given by

β̂S(γ) =
(

β̂u
DPS(γ), β̂l

DPS(γ)
)

;

β̂u
DPS(γ)

def
= min

{

βu(γ), ⌈ γ
PS
⌉QS

}

β̂l
DPS(γ)

def
= min

{

βl(γ), ⌈γ−2(PS−QS)−PS

PS
⌉QS

}

. (4.1)

Both the lower and upper bound are obtained by considering the total amount of
resource received by the server scheduler β. This gives pessimistic bounds, but the
only that can be derived. Furthermore, the lower bound tells that at most the server
has to wait 2(PS −QS)− PS before providing its budget.

Lemma 4.2.1 (DPS Guarantees). β̂S =
(

β̂u
DPS(γ), β̂l

DPS(γ)
)

are the server DPS guar-

antees.

Proof. The best case service provisioning (which is the upper bound) happens at the
beginning of each server period, whenever the resource is available, which means the
minimum among βu and ⌈ γ

PS
⌉QS in the interval domain. The worst-case situation

happens when in one instance the resource has been provided at the beginning of the
server period, the next period the application was not ready (so the resource has not
been applied) and at the subsequent period the resource is assigned to the server at the
and of the period. This means that the server could wait 2(PS−QS)+PS before it can
provide its resource to the applications. Furthermore, the available resource has to be
taken into account, which means the minimum among βl and ⌈γ−2(PS−QS)−PS

PS
⌉QS has

93

Pictures/fp.eps

4.2 Resource Guarantee

α1

α2

αn

α′1
α′2

α′n

β

β ′

Figure 4.3: Dynamic priority server scheduling.

to be considered. It demonstrates the lemma; see Figure 4.5 for the visual explanation
of the scenario.

SPS Analyzing the hierarchy of SPS servers in a system architecture it is possible to
know exactly when each server S receives the QS resource, βS is the resource the server
receives and where it is coded the static priority hierarchy of the server component.
Still there is the possibility of having one period without any resource applied, hence
the resource is guaranteed only from the second period in an interval domain analysis.
It is possible to guarantee the service passed to the server application as

β̂S(γ) =
(

β̂u
SPS(γ), β̂l

SPS(γ)
)

;

β̂u
SPS(γ)

def
= min

{

βu
S(γ), ⌈ γ

PS
⌉QS

}

β̂l
SPS(γ)

def
= min

{

βl
S(γ), ⌊γ−PS

PS
⌋QS

}

. (4.2)

Lemma 4.2.2 (SPS Guarantees). β̂S =
(

β̂u
SPS(γ), β̂l

SPS(γ)
)

are the server SPS guar-

antees.

Proof. In case of FP scheduling, the server knows the amount of resource βS it is going
to receive in any interval γ, and most of all when it is receiving such resource. The
reasoning is the same of the dynamic priority case apart the fact that it can be used the
available resource βS and not larger bounds. In the worst-case, that server has to wait
one period before receiving the resource to provide to its application, see Figure 4.6.
This is the lower bound of the server resource provisioning and it demonstrates the
lemma.

94

Pictures/edf.eps

4.2 Resource Guarantee

Resource

(QS1 , PS1)

(QS2 , PS2)

(QS3 , PS3)

S1

S2

S3

βS1

βS2

βS3

β̂S2

β̂S3

β′S3

A1

A2

A3

α1,1
α1,m1

α2,1
α2,m2

α3,1
α2,m3

βS

Figure 4.4: Resource scheduling among servers.

PS

QS

t

Figure 4.5: Worst-case resource supply of a DPS server (QS , PS).

4.2.2 Deferrable servers

Deferrable servers (DSs) can be implemented as a periodic tasks S = (PS, QS), but it
differs from the polling server by the way the resource QS is supplied along the period.
The capacity is kept during the period even if not used by the application. This allows
to serve more promptly arriving events. By that rule, it does not happen to have an
entire period where the resource is not provided.

A deferrable server as a polling server, has two different versions according the
scheduling algorithm applied, and to derive their service guarantee we can reason in
the same way as already done for the PS.

With a dynamic policy it is not known where, in each period, the resource will
be assigned. The dynamic deferrable server (DDS) can only guarantee to have QS

resource at the end of the period, so as in case of DPS we apply β to get the resource
supply rate.

95

./Pictures/Servers/Example.eps
Pictures/Servers/DPS.eps

4.2 Resource Guarantee

PS

QS

t

Figure 4.6: Worst-case resource supply of a SPS server (QS , PS).

β̂S(γ) =
(

β̂u
DDS(γ), β̂l

DDS(γ)
)

;

β̂u
DDS(γ)

def
= min

{

βu(γ), ⌈ γ
PS
⌉QS

}

β̂l
DDS(γ)

def
= min

{

βl(γ), ⌈γ−2(PS−QS)
PS

⌉QS

}

. (4.3)

Lemma 4.2.3 (DDS Guarantees). β̂S =
(

β̂u
DDS(γ), β̂l

DDS(γ)
)

are the server DDS

guarantees.

Proof. The demonstration is based on the same one applied for Lemma 4.2.1. The
difference come from the fact that, since the DS maintain the budget in case of no
task are ready to be served, the waiting time in the worst-case is shorter than in case
of the PS. Indeed only 2(PS − QS) is the time interval with no resource provisioning.
Figure 4.7 describes the worst-case interval where no resource is applied.

PS

QS

t

Figure 4.7: Worst-case resource supply of a DDS server (QS , PS).

While, with a static scheduling policy, the static deferrable server (SDS) knows
when it receives the βS resource within the period due to the scheduling priority and
we derive the following service resource guarantee.

β̂S(γ) =
(

β̂u
SDS(γ), β̂l

SDS(γ)
)

;

β̂u
SDS(γ)

def
= min

{

βu
S(γ), ⌈ γ

PS
⌉QS

}

β̂l
SDS(γ)

def
= min

{

βl
S(γ), ⌊ γ

PS
⌋QS

}

. (4.4)

Lemma 4.2.4 (SDS Guarantees). β̂S =
(

β̂u
SDS(γ), β̂l

SDS(γ)
)

are the server SDS guar-

antees.

96

Pictures/Servers/SPS.eps
Pictures/Servers/DDS.eps

4.2 Resource Guarantee

Proof. The demonstration is based on the same demonstration applied for Lemma
4.2.2. In the worst-case a DS servers does not have to wait one period before providing
its resource if the application is not available, see Figure 4.8. This is because the budget
is preserved by the server.

PS

QS

t

Figure 4.8: Worst-case resource supply of a SDS server (QS , PS).

4.2.3 Sporadic servers

The sporadic server (SS) algorithm creates a periodic task to serve aperiodic or peri-
odic stream requests, and like the DS, it preserves its capacity until a request occurs.
However, SS differs from the deferrable server in the way it replenishes its capacity.
Whereas DS replenishes periodically its capacity to its full value at the beginning of its
period, SS does only after the resource has been consumed. Since Sprunt et al. in (96)
have proven that a sporadic server behaves like a normal periodic task, the guaranteed
resource supplied, in bounds, is given by the same relationship derived for the DS. We
keep the distinction between the dynamic priority and static priority versions of the
server, namely respectively dynamic sporadic server (DSS) and static sporadic server
(SSS).

DSS

β̂S(γ) =
(

β̂u
DSS(γ), β̂l

DSS(γ)
)

;

β̂u
DSS(γ)

def
= min

{

βu
S(γ), ⌈ γ

PS
⌉QS

}

β̂l
DSS(γ)

def
= min

{

βl
S(γ), ⌈γ−2(PS−QS)

PS
⌉QS

}

. (4.5)

Lemma 4.2.5 (DSS Guarantees). β̂S =
(

β̂u
DSS(γ), β̂l

DSS(γ)
)

are the server DDS guar-

antees.

Proof. The demonstration is based on the same applied for Lemma 4.2.3.

SSS

β̂S(γ) =
(

β̂u
SSS(γ), β̂l

SSS(γ)
)

;

β̂u
SSS(γ)

def
= min

{

βu
S(γ), ⌈ γ

PS
⌉QS

}

β̂l
SSS(γ)

def
= min

{

βl
S(γ), ⌊ γ

PS
⌋QS

}

. (4.6)

97

Pictures/Servers/SDS.eps

4.2 Resource Guarantee

Lemma 4.2.6 (SSS Guarantees). β̂S =
(

β̂u
SSS(γ), β̂l

SSS(γ)
)

are the server SSS guar-

antees.

Proof. The demonstration is based on the same demonstration applied for Lemma
4.2.4.

4.2.4 Time Division Multiple Access Server

Among the time-driven servers models we investigate the TDMA one. A time-driven
server is a model where the resource supply is driven by a predefined timing pattern
that depends only on the server properties. In particular, a TDMA server assigns
computational resource, so time, as slots that repeats each cycle of the server. A
TDMA server is a pure periodic server with a main cycle and the slots always assigned
in the same position within the main cycle. By S we represent the whole cycle and the
TDMA server which is composed by parts Si, each of them can manage an application.
Among the properties of such server we denote the budget QSi

as the slot assigned to
the application managed by Si and PS the main cycle of the TDMA server.

In the TDMA case there is no worst-case or best case but a strict resource assign-
ment pattern. So assuming the slot ordered from the first assigned to the last one and
the server Si as the TDMA sub-server associated to the i-th server, the guarantees
offered by the i-th slot are

β̂Si
(γ) = β̂u

TDMAi
(γ)

def
= min

{

βu
S(γ),

⌊ γ

P

⌋

QSi

}

.

βS is the resource amount which has been assigned to the whole TDMA server, while
βTDMAi

represents the bound to resource provided by the i-th slot of the TDMA server.
The staircase function lower bounds the service a TDMA server can provide, as detailed
by Figure 4.9.

Lemma 4.2.7 (TDMA Guarantees). β̂Si
= β̂u

TDMAi
(γ) is the server TDMA slot i

guarantees.

Proof. The demonstration is straight forward form the TDMA definition. Since the
resource assignment is strict for each slot (including the slot order), the i-th slot every
each P interval receives QSi

amount of resource. In the interval domain, this means
that every P −QSi

with no resource available, the resource starts to be available. The
fully availability of the budget QS is after an interval of P .

4.2.5 Total Bandwidth Server

The total bandwidth server (TBS) has been proposed by Spuri et al. in (109; 150) as
an alternative to the ”classical” server view. It allows to overcome the problem of the
late scheduling of the applications managed by servers with large deadlines (we remind
the usual assumption of server deadline equal to server period). A solution to such a
problem is to assign a possible earlier deadline to each request. The assignment must be

98

4.2 Resource Guarantee

PS −QS1

QS1

slot1

#
p
ro

ce
ss

cy
cl

es

t

γ

Figure 4.9: Resource supply of a TDMA server (QSi
, PS). The staircase function lower

bounds the service curve of the server.

done in such a way that the overall processor utilization of the server application load
never exceeds the guaranteed maximum value US. A TBS server is then characterized
by its bandwidth US and applies to dynamic scheduling policy only. Each event stream
τi = (Ti, Ci), once processed by a TBS server, receives a deadline di = max{ri, di−1}+
Ci

US
. The deadline is assigned so that the server demand does not exceed the given

bandwidth.
In terms of service, the TBS algorithm denotes only that to each event stream i,

it is provided Ci workload every Ci

US
. But nothing can be guaranteed concerning the

service curve βTBS of the server. The server service provisioning depend also by the
rest of the task set according to the EDF scheduling mechanism applied. The TBS
server does not implements any budget mechanism and does not have any protections
against overloads conditions.

4.2.6 Constant Bandwidth Server

Abeni et al. in (2) have defined the constant bandwidth server (CBS) as a particular
periodic model that manages task for dynamic periodic scheduling policies only. A
CBS processes each of its event stream received as input in order to assign them a
deadline according to specific rules.

The constant bandwidth server has a periodic representation (PS, QS) where the
server actual budget cS(t) is recharged immediately at its maximum value QS after
being exhausted. When this happens, the resulting output event stream from the
server gets an increased deadline d′S = dS +PS (dS is the former deadline of the server)
by the period of the server PS. The CBS guarantees that, if uS(t) is the fraction
of processor time managed by the server time by time i.e., its actual bandwidth, its
contribution to the total utilization factor will not be greater than US = QS/PS even
in case of overloads.

This version of the CBS is the soft one, where soft stands for the ability of replenish
the server capacity any time it is exhausted. Such a mechanism does not allow to derive
significative guarantees in the service provided. Indeed, supposing an application that
continuously arrives demanding resource to the server; the server quickly exhausts
its budget and immediately replenishes it extending the deadline for the application
execution. In the worst-case that server (and its deadline) can be preempted by high
priority tasks/servers, which means the application server will be always postponed

99

Pictures/Servers/TDMA.eps

4.2 Resource Guarantee

without being executed. This is the worst-case condition which means no minimum
service guaranteed. That is close to the TBS case.

The hard CBS version differ from the soft one by mean of the replenishing mech-
anism. Once exhausted the budget, the hard CBS has to wait until next period to
replenish its budget. A hard CBS server guarantees is then

β̂S(γ) =
(

β̂u
CBS(γ), β̂l

CBS(γ)
)

;

β̂u
CBS(γ)

def
= min

{

βu
S(γ), ⌈ γ

PS
⌉QS

}

β̂l
CBS(γ)

def
= min

{

βl
S(γ), ⌈γ−2(PS−QS)

PS
⌉QS

}

. (4.7)

In case of hard CBS, at most QS resource will be given at the beginning of each period
PS.

Lemma 4.2.8 (CBS Guarantees). β̂S =
(

β̂u
CBS(γ), β̂l

CBS(γ)
)

are the server CBS guar-

antees.

Proof. The demonstration is based on the same one applied for Lemma 4.2.3.

The CBS implements a budget mechanism, contrary to the TBS one, which allows
it not to overcome the promised budget in case of something not correct in the task
modeling such as overrunning tasks with respect to the assumed worst case execution
time.

Scheduler

?

?

CBS

TBS
α1

α2

(CS1, TS1)

(CS2, TS2)

Figure 4.10: Servers view and their applications. A CBS together with a TBS to
manage input applications. The application once handled by the servers are passed to
the dynamic priority scheduler changed in their parameters according the server behavior
(deadline and budgeting mechanisms).

100

Pictures/Servers/CBS-TBS.eps

4.2 Resource Guarantee

Scheduler

β βsched

βS1

αS1

βS2

αS2βSn

αSn

Figure 4.11: A resource reservation system architecture with n generic server models
with guaranteed (continuous lines) and not guaranteed (dashed arrows) interfaces. The
resource for the servers is partitioned with respect to the one for the scheduler.

4.2.7 Server guarantees

In the previous section we have defined the models for the set of servers considered.
Some more comments are required to deeply understand the guarantee of those models.
In the Table 4.1 we resume the bounds of the resource service curve β̂S each server S
guarantee to its application.

An accurate investigation of the server behavior denotes that they are represented,
in their best cases and worst cases, as periodic resource model; but an on-line scheduling
algorithm uses some rules for dynamically allocating the resource. Therefore, an on-line
algorithm may produce different partitions every time it is executed, depending on the
arrival times and execution times of the application tasks. This results in partitions
that are not necessarily periodic. Comparing the guarantee obtained for the static and
dynamic version of the servers we can notice that in case of static servers, the bounds
are more tight because it i possible to know in advance the available resource, and then
derive better bounds. The bounds for the dynamic servers are instead derived in the
worst possible conditions, hence only large bounds are available.

Although DS and SS servers have different algorithms, it is remarkable how the DS
and SS offer the same guarantees. The periodic nature of both servers results in the
common worst case and best case analysis previously presented.

DS, SS and CBS servers, as well as TBS are work conserving, according their
definition, because of at any time there is a resource request and the budget is not
expired; then the request is provided from the server at last. The PS instead, it is not
work conserving because only requests ready at the beginning of the server period are
served, not those that arrived within the period. This results in large bounds for PS
servers coming from worst-case conditions.

101

Pictures/ServersGuarantee.eps

4.2 Resource Guarantee

Server β̂S = (β̂u
S , β̂l

S)

DPS
(

min
{

βu(γ), ⌈ γ
PS
⌉QS

}

,min
{

βl(γ), ⌈γ−2(PS−QS)−PS

PS
⌉QS

})

SPS
(

min
{

βu
S(γ), ⌉ γ

PS
⌉QS

}

,min
{

βl
S(γ), ⌋γ−PS

PS
⌊Q⌋S

})

DDS
(

min
{

βu(γ), ⌈ γ
PS
⌉QS

}

,min
{

βl(γ), ⌈γ−2(PS−QS)
PS

⌉QS

})

SDS
(

min
{

βu
S(γ), ⌈ γ

PS
⌉QS

}

,min
{

βl
S(γ), ⌊ γ

PS
⌋QS

})

DSS
(

min
{

βu(γ), ⌈ γ
PS
⌉QS

}

,min
{

βl(γ), ⌈γ−2(PS−QS)
PS

⌉QS

})

SSS
(

min
{

βu
S(γ), ⌈ γ

PS
⌉QS

}

,min
{

βl
S(γ), ⌊ γ

PS
⌋QS

})

TDMA
(

min
{

βu
S(γ),

⌈

γ−(PS−QSi
)

PS

⌉

QS

}

,min
{

βu
S(γ),

⌊

γ
PS

⌋

QS

})

TBS -

CBS
(

min
{

βu(γ), ⌈ γ
PS
⌉QS

}

,min
{

βl(γ), ⌈γ−2(PS−QS)
PS

⌉QS

})

Table 4.1: Server interfaces: service guarantees.

The TBS server model, according its algorithm analysis, does not offer any guar-
antee in terms of resource applied, so the resuming table does not show bounds in the
TBS row, see Table 4.1.

Table 4.2 exploits how the reclaiming mechanism can be implemented with servers.
Basically, throughout the feedback between the server, which provides the resource,
and the application, which demands for such a resource, it is possible to evaluate the
resource unused by the server application. That resource is the portion βr

S of the
resource reserved by the server that its application α does not need. The feedback is
implemented a the minimum among the resource provision and the resource demand,
respectively applying the lower and the upper bounds. The unused resource can then
be recovered and passed to other components of the system architecture.

The reclaimed resource is then given as the difference among the provided resource
and the used one, βr = β ⊘ αd(0) in case of EDF scheduling. In case of FP ones, the
reclaimed resource is more complex to compute, but can be obtained as the residual
resource at the end of the fixed priority scheduling hierarchy among the task composing
the server application.

Reasoning with dynamic priority scheduling policies, in case of PS, the resource
demand is bounded by the demands of the tasks available at the beginning of the
server period. Besides, in the interval domain and with the non-deterministic analysis
it is impossible to derive better bounds than the worst-case. With traces instead (not
the curves but the real trace of the task arrival stream in the interval domain) it could
be possible to define correctly the workload amount at the beginning of each server
period. But in this way the powerfulness of the RTC analysis is lost. For the work
conserving servers the application demand is given by

αd(γ) =

m
∑

i=1

αd
i (γ)

102

4.2 Resource Guarantee

as the cumulative resource demand of an application Γ. Intuitively, the resource de-
mand for PSs is smaller than the one for the other server. Furthermore, the guaranteed
bounds of PSs are larger with respect to the other server mechanisms. This allows to
conclude that the reclaimed resource in case of a polling server is larger than what the
rest of the server can do.

Server β̂S

DPS (min{β̂u
DPS, α̌du}, min{β̂l

DPS, α̌dl})

SPS (min{β̂u
SPS, α̌du}, min{β̂l

SPS, α̌dl})

DDS (min{β̂u
DDS, αdu}, min{β̂l

DDS, αdl})

SDS (min{β̂u
DDS, αdu}, min{β̂l

DDS, αdl})
DSS (min{βAu

DSS, αdu}, min{βAl
DSS, α̂dl})

SSS (min{β̂u
SSS, αdu}, min{β̂l

SSS, αdl})
TBS (αu, αl)

CBS (min{β̂u
CBS , αdu}, min{β̂l

CBS , αdl})

Table 4.2: Server service guaranteed for the applications and the reclaiming mechanism.
The EDF case is described.

Scheduler

β

βS1

βS2

βSm

α1,1

α1,2

α1,k1

α2,1

α2,2

α2,k2

αm,1

αm,2

αm,km

S1

S2

Sm

Scheduler

β

α1,1

α1,2

α1,k1

α2,1

α2,2

α2,k2

αm,1

αm,2

αm,km

S1

S2

Sm

Figure 4.12: Server composition with the fixed priority and dynamic priority scheduling
policy respectively.

Since β is equivalent to the supply bound function (both described in the interval
domain), the guarantees obtained as service curves β are exactly equivalent to those
in terms of sbf.

4.2.8 Service Guarantee Improvements

The bounds derive in Section 4.2 can be improved by reasoning under different per-
spectives. Those bounds are step-wise curves, driven by the floor operator applied.

103

./Pictures/layerFP.eps
./Pictures/layerEDF.eps

4.2 Resource Guarantee

Instead, applying linear curves it is possible to tighten the bounds of the server service
provisioning as follows.

Considering the case of CBS, the amount of completed computation in the time
interval (t1, t1 + γ) is guaranteed to be no less than

⌊
γ

PS
⌋QS + max{γ − ⌊

γ

PS
⌋PS − (PS −QS), 0},

otherwise, there exists some time t in time interval (t1, t2) such that the server is not
active and qS

DS−t
≥ QS

PS
. Than the corresponding lower bounded of the server guarantees

is obtained as a periodic function shifted by 2(PS−QS) from the origin. Such a function
after 2(PS − QS) has a linear increase of QS, then an holding period of PS − QS and
the it repeats.

In case of polling server with the highest priority (SPS), the guarantees are

{

0 γ ≤ l

⌊γ−l
PS
⌋QS + max{γ − l + ⌊γ−l

PS
⌋PS − (Ps −QS), 0}. otherwise

by defining the interval I as l = PS −QS. If there is no available service in l then the
linear periodic function starts with available service for QS and unavailable service for
PS −QS.

The static priority version of the deferrable server with highest priority (worst-case
analysis) guarantees

⌊
γ

PS
⌋QS + max{γ − ⌊

γ

PS
⌋PS − (Ps −QS), 0}.

The sporadic server, in the same conditions, offers the same guarantees than the
deferrable one

⌊
γ

PS

⌋QS + max{γ − ⌊
γ

PS

⌋PS − (Ps −QS), 0},

which is the same as the deferrable one.
To conclude, the TDMA server guarantees per slot is defined following the other

servers. In the interval domain, in case of the first slot QSi
it is

⌊
γ

PS
⌋QSi

+ max{γ − ⌊
γ

PS
⌋PS − (Ps −QSi

), 0},

The former bounding are shifted version of the TDMA curve, recalling the similarities
among the service guarantee and the periodicity of them.

That linear functions improve the former guarantees by considering the linear in-
crease of the resource provisioning, and not just stair-case function. In Figure 4.9 it
has been shown the differences among the two bounding: the linear one (called TDMA
curve) and the stair-case one. This way we have better bounds by which obtain better
schedulability analyses.

104

4.2 Resource Guarantee

4.2.9 Greedy Shapers

Another modeling for servers is possible with as the greedy shapers whenever applied
to service resource curves. Indeed a greedy shaper with a shaping curve σ delays events
of an input event stream, so that the output event stream has σ as an upper arrival
curve, and it outputs all events as soon as possible (168). Generally it is considered a
greedy shaper with shaping curve σ, which is sub-additive and with σ(0) = 0. Assume
that the shaper buffer is empty at time 0, and that it is large enough so that there
is no event loss. In (93), Le Boudec and Thiran proved that for an input event trace
R to such a greedy shaper, the output event trace R is given by R = R ⊗ σ. In
practice, a greedy shaper with a shaping curve σ(γ) = minibi + riγ with σ(0) = 0
can be implemented using a cascade of leaky buckets (93). Every leaky bucket i has a
bucket size bi and a leaking rate ri, and the leaky buckets are arranged with decreasing
leaking rate within the cascade. Initially all buckets are empty. When an event arrives
at a leaky bucket stage, a token is generated. If there is enough space in the bucket,
the token is put into the bucket and the event is sent to the next stage immediately.
Otherwise, the event is buffered until the bucket emptied enough to put the token in.

Wandeler et al. in (168) have derived the properties of an abstract greedy shaper.

Proposition 4.2.9 (Abstract Greedy Shapers). Assume an event stream that can be
modeled as an abstract event stream with arrival curves (αu, αl) serves as input to a
greedy shaper with a sub-additive shaping curve σ with σ(0) = 0. Then, the output of
the greedy shaper is an event stream that can be modeled as an abstract event stream
with arrival curves

αu
G = αu ⊗ σ

αl
G = αl ⊗ (σ⊘σ)

Further, the maximum delay and the maximum backlog at the greedy shaper are bounded
by

dmax,G = Del(αu,)

bmax,G = Buf(αu,)

S G
αα α′ α′

β β

β′

Figure 4.13: Server S and greedy shaper G implementation of resource reservation
mechanisms applied to the application α.

In Figure 4.13 it is represented the duality among servers and greedy shapers. The
server receives the resource and partition that for the applications, while the greedy
shaper acts directly on the arrival curve shaping the them according to its function,
that in this case is the rule of the server. The shaper consider the total service available
as part of the shaping function.

105

./Pictures/Servers/greedy.eps

Chapter 5

Dynamic Systems

In this chapter we first define a generic model for mode changes and then we apply
such a model to analyze mode-changing systems as we details in the last part of the
thesis.

Actual real-time systems are dynamic because they can change their behavior at
runtime. Pedro et al. in (128) define an operating mode as the behavior of the system
which is described by a series of functionalities and their temporal restrictions. Com-
plex real-time systems can have different working modes that alternate during their
execution. A mode change request is the event that triggers a mode change transition.
This event can be produced by any task with the necessary knowledge of the internal
and external state. A mode change request (MCR) can be initiated by the environment
or by the system; it is asynchronous and can happen at any time during a mode execu-
tion. The request may occur during the system execution in a particular mode, in the
ready state, or other situations. The system has to either avoid simultaneous requests
or to provide the mechanism required to deal with this situation. In future develop-
ments this assumption will be released allowing to develop a more general analysis. We
denote the instant as tMCR.

The mode change request starts a mode change from an origin mode or old mode,
mode I, to the destination mode or new mode which is mode II. In order to exclude
interference of multiple mode changes, we assume that a new MCR cannot occur during
a transition between modes. We will refer to the mode and the parameters at the mode
in which a change is initiated with the index I. The target mode of a change, which is
named mode II will be referred with II. Each mode comprises a set of tasks to execute.

The mode change become effective when the new mode can restart; tMCO is the
minimum instant when the new mode is operative.

tMCR

modeI modeIITransition

Figure 5.1: Mode change: stable modes and transition stage.

106

Pictures/Servers/casesMCR.eps

Figure 5.1 depicts the mode transition stage. The transition among two steady
states is intended as the condition where the system is affected by both the two steady
states: the systems is changing its parameters. The transition can be considered
concluded once the old mode does not affect anymore the system behavior. Which
means that the new mode is effective as it has been since the first activation of the
system with no interferences from other situations. Such a status could be extremely
hard to verify, especially because it requires specific metrics to evaluate the end of the
transient. Such metrics have not been derived so far due to the complexity of the actual
real-time systems. Thus, it will be investigate in future works. For the moment, we
assume the transition ending once the new mode can safely restart, so at time tMCO.
The delay δ is then defined as the time interval from the mode change request until the
mode change become effective δ = tMCO − tMCR. The task set or parameters of single
tasks can change only at mode switches.

A component which changes its mode can have different behaviors from the mode
change request. Broadly we can classify them into a) a transition where at the tMCR

the component is aborted. This means that all the activities of that component are
aborted as soon as the mode change request appears. The second possible transition is
b) a transition where the component continues to provide its service till the end of the
transition stage. In that period the component continue to work with its old settings.
The instant when the component is aborted is tab. In case a) tab = tMCR while in case
b) it is tab = tMCO, but in general the abortion can take place any time in between
[tMCR, tMCO] tMCR ≤ tab ≤ tMCO. The component abortion can depend on many other
situations included schedulability reasons. In this dissertation we consider only the
two possible transitions as the most representative ones. The generic one (abortion
any time in between) will be accurately detailed in future works, but its a special case
of the ones tackled with this work.

C1

C2

C3

Cm

· · ·

· · ·

· · ·

· · ·

tMCR

Figure 5.2: Mode change: transition stage. m components of a real-time system are
represented with their curves in the steady states condition. During the mode transition
the curves have to be derived.

In any mode change the following properties must be satisfied:

107

Pictures/modechange1.eps

5.1 Motivational Examples

1. Schedulability: Given that each mode is schedulable in steady state conditions,
all deadlines must be met during the transition; that is the case of hard real-time
systems. In general we could say that a certain QoS has to be maintained.

2. Promptness: The mode change has to occur within a bounded interval of time,
that is the new mode has to reach its steady state as early as possible.

3. Periodicity: All periodic tasks must be executed periodically, even in the presence
of a mode change. The activation pattern of these tasks should remain unaltered
during the transition.

4. Consistency: Shared resources must be used in a consistent way in order to avoid
data corruption.

For the sake of simplicity, consistency will be neglected at this stage of the work,
considering the hypothesis of independent tasks.

In the rest of the chapter we will analyze what happens during a mode change
transition, Figure 5.15 illustrates our objective: deriving guarantees for resource de-
mand and resource provisioning of the changing components. In this way we are able
to details what happens during all the stages of the system: old mode, new mode and
mostly during the transition stage.

5.1 Motivational Examples

The next motivational examples illustrates different situations in which the system is
feasible within each of his modes, but during the mode transition either a reservation
server cannot use all their available budget within its period or the served application
cannot meet its timing constraints.

The idea of those examples is to show real cases where dynamic systems require
accurate changing policies in order to keep up the determinism degree the real-time
systems require.

The first example show the problems with multi-moded applications.

Example 5.1.1. A multi-mode real-time system is composed by two servers, SA and
SB, that are scheduled with a fixed priority policy, where SA has higher priority than
SB. Each Si is characterized by a budget Qi and a period Pi every which the budget
is provided; Si is denoted as Si(Qi, Pi). Mode I consists of SA(2, 4) and SB(3, 7), and
mode II consists of SA(3, 7) and SB(3, 7).

The servers can be seen as periodic tasks which budget has to be scheduled. The
application made by servers is schedulable by Rate Monotonic in each mode. However,
if a mode transition occurs at time t = 4 from mode I to mode II, SB is not able
to provide its budget on time due to the interference of the changing server SA, as
illustrated in Figure 5.3.

108

5.1 Motivational Examples

0 2 4 6 8 10 12

SA

SB

Figure 5.3: Fixed priority scheduling: unfeasible mode change at t = 4 from
(SA(2, 4), SB(3, 7), to (SA(3, 7), SB(3, 7)).

Example 5.1.2. A multi-moded real-time system is composed by two servers which
are scheduled by the Earliest Deadline First with relative deadline equal to the server
period. In mode I {SI

A(5, 10) and SI
B(3, 6)}, while in mode II {SII

A (4, 8) and SII
B (3, 6)}.

The first server SA changes its mode at time t = 8.
The two servers are equivalent to tasks that have to be scheduled and although the

task set is feasible in both the modes (total utilization less than or equal to 1 so that the
servers can provide their budget on time), during the mode change the second server
cannot provide entirely its budget during a transition period, as showed in Figure 5.4.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

SA

SB

Figure 5.4: EDF scheduling: unfeasible mode change at t = 6 from SA = (5, 10), SB =
(3, 6) to SA = (4, 8), SB = (3, 6).

These two examples illustrate that reconfiguring a server at runtime may cause
capacity miss of other servers: the budget is not fully delivered to the applications.
The required changes need an appropriate changing strategy.

Example 5.1.3. In a partitioned architecture a set of servers manage applications.
One polling servers SA with the lower priority among the rest of the servers can operate
in two modes. In the first mode it has a budget of 3msec and a period of 10msec,
SI

A(3, 10). In the second mode SA has parameters SII
A (1, 4). The mode change happens

at time t = 10msec. Since the server SA is assumed the lowest-priority server, it is
able to provide its budget just at the end of its period.

Figures 5.5 and 5.6 show two peculiar cases where the server SA manages an appli-
cation made by an aperiodic task τA. The aperiodic task is assumed to activate at time
t = 5msec and execute at the end of each server period for the amount of the budget
available at that time instant. In the first case depicted by Figure 5.5, the application
τA with computation time of 5msec and period 15msec (τA(3, 15)) is not feasible when-
ever scheduled by a mode changing SA in the condition described formerly. Instead, In
the second case on Figure 5.6, a slightly different application τA(3, 17) is schedulable in
case of mode changing server.

109

5.1 Motivational Examples

This third example shows the application problems in case of changing servers:
The example details how a proper design of the application to a mode changing server
maintain the real-time requirements of the system.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

SA

Figure 5.5: Unfeasible server and task scheduling with τ = (3, 15), SI = (3, 10) and
SII = (1, 4); mode change at tMCR = 10.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

SA

Figure 5.6: Feasible server and task scheduling with τ = (3, 17), SI = (3, 10) and
SII = (1, 4); mode change at tMCR = 10.

t

Old Mode New Mode

t

t

t

SA: Slot 1 ms SB: Slot 5 ms SC: Slot 1 ms

 Cycle 10 ms

SA: Slot 3 ms SB: Slot 6 ms SC: Slot 1 ms

Cycle 12 ms
τA:

Period 20 ms

WCET 2 ms

Old Mode

WCRT = 7 ms

Transition

WCRT = 9 ms

New Mode

WCRT = 8 ms

Transition

WCRT = 13 ms

τB:

Period 5 ms

WCET 2 ms

τC:

Period 16 ms

WCET 1 ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Figure 5.7: TDMA servers reconfigured at t = 20ms (dashed line) causes longer WCRTs
for tasks τB and τC .

To illustrate the different problems that may occur during systems reconfigurations,
we have chosen three more examples of systems with TDMA servers (167), static polling
servers (140), and CBSs (5). Similar examples can be derived with other kinds of servers
and show that a naive online change of parameters is not able to guarantee the system
schedulability in hard real-time scenarios.

Example 5.1.4. Consider Figure 5.7. Three TDMA servers, SA, SB, and SC can
operate in two modes, denoted as Old Mode and New Mode. We suppose that given an
operating mode, all TDMA servers operate with the same period which equals the cycle
of the TDMA. When there is a mode change, the allocated slots in the TDMA and the

110

fig/figureTdma.eps

5.1 Motivational Examples

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

τA

τB

SA

SB

Figure 5.8: Polling server SA reconfigured at t = 28ms (dashed line) causes a deadline
miss for task τB and a capacity miss for server SB .

cycle of the TDMA may change. When a server slot becomes available, it is available
regardless of whether there is workload to use it.

Server SA serves a single task τA with worst-case execution time (WCET) of 2ms
and period of 20ms which we will denote as (2, 20). In Old Mode, server SA has a
reserved slot of 1ms in a TDMA cycle of 10ms denoted as (1, 10). In New Mode, server
SA has parameters (3, 12). Server SB serves a single task τB with parameters (2, 5).
The server in Old Mode has parameters (5, 10) and in New Mode (6, 12). Server SC

serves a single task τC with parameters (1, 16). The server in Old Mode has parameters
(1, 10) and in New Mode (1, 12).

Figure 5.7 shows a server reconfiguration performed at time t = 20ms. For task τB

this means that it suffers longer worst-case response time (WCRT) of 9ms during the
reconfiguration whereas its WCRT is 7ms in Old Mode and 8ms in New Mode. Similarly
task τC has a longer WCRT during the reconfiguration equal to 13ms, whereas in Old
Mode it is 10ms and in New Mode 12ms.

Hence, a reconfiguration of TDMA servers may cause several tasks to miss dead-
lines.

Example 5.1.5. Consider Figure 5.8. Two polling servers, SA and SB, are scheduled
with the fixed priority policy. Server SA has higher priority. It can operate in two
modes. In Old Mode it has a budget of 2ms and a period of 7ms, denoted as (2, 7). It
serves a single task τA with WCET of 2ms and deadline equal to period of 7ms, denoted
as (2, 7). In New Mode SA and τA have parameters (6, 24) and (6, 24), respectively.
Server SB and its task τB operate in a single mode and their parameters are (40, 59)
and (40, 59), respectively. The system is schedulable separately in both modes.

Figure 5.8 shows a server reconfiguration without a proper transition algorithm.
Server SA and task τA simultaneously enter Mode II at time t = 28ms which leads to
a capacity miss for server SB and a deadline miss for task τB at time t = 59ms even
though the mode change was performed at the end of the periods for server SA and task
τA.

The example illustrates that reconfiguration of a server may cause other servers to
not be able to deliver their guaranteed budgets.

Example 5.1.6. Consider Figure 5.9. CBS SA can operate in two modes. In Old Mode
it has a budget of 4ms with a period of 5ms denoted as (4, 5). It serves a single task τA

111

5.2 Application Mode Change

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

τB

SA

SB

Figure 5.9: CBS SA reconfigured at t = 15ms (dashed line) causes a missed deadline
for task τA.

with WCET of 8ms and deadline equal to period of 10ms denoted as (8, 10). In New
Mode, the parameters for SA are (8, 10) and τA is unchanged. CBS SB serves a single
task τB with parameters (2, 10) and (2, 10), respectively. The system is schedulable
when server SA is either in Old Mode or in New Mode as U = USA

+ USB
= 1.

Figure 5.9 shows a reconfiguration for server SA at the end of a server deadline at
time t = 15ms which leads to a missed deadline for task τA at time t = 20ms.

The example illustrates that reconfiguration of a server may cause the application
that it serves to miss deadlines.

In summary, the problems observed during online reconfiguration of servers and
application fall in two classes:

1. Isolation violation: a reconfiguration of one server may cause other servers to
not be able to deliver their guaranteed capacities.

2. Deadline violation: a reconfiguration of a server may affect the application
that it serves by making it miss deadlines.

Safe reconfiguration algorithms will have to address both problems in order to be
suitable for hard real-time systems.

5.2 Application Mode Change

To detail the scheduling in case of multi-moded applications we consider a generic
application consisting of a set Γ of n periodic tasks. Each task τi is characterized by
the model τi = (Oi, Ci, Ti, Di). The parameters are not fixed, but can be modified by
the application at any instant in time. Even the computation time is allowed to change
for those tasks that can be executed in different versions. In particular, when Ci = 0
we assume that task τi is suspended, until some explicit activation is triggered by some
other task.

Some tasks can be useless at a certain point due to no more use of a certain func-
tionality; either new requirements can come out during the life-cycle of the system.

From a scheduling point of view, the application mode changing operations can be
classified into two types:

112

5.2 Application Mode Change

1. Operations that increase the task set utilization:

• Activating a new task;

• Increasing the execution time of an active task;

• Increasing the activation frequency of an active periodic task.

2. Operations that decrease the task set utilization:

• Suspending an active task;

• Decreasing the execution time of an active task;

• Decreasing the activation frequency of an active periodic task.

Without loss of generality, we start considering the elementary case of a mode
change involving two periodic tasks, one to be suspended and one to be activated.
Note that more general cases involving more tasks can be seen in a compositional
manner from the basic scenarios.

The critical time interval that need to be analyzed is the mode change window,
where the schedulability of the whole task set has to be guaranteed.

More formally, we consider a real-time application that experiences a transition
from a task set ΓI to a task set ΓII , where ΓII is derived from ΓI by deleting task τ I

and adding task τ II . We assume that both task sets are schedulable in their steady
state condition, under a given scheduling algorithm. The schedulability of the third
condition, the transition one in between the two steady state, has to be analyzed.

Two are the extreme conditions for the task behavior in case of mode changes we
are considering. Each one affecting the phase transition in different ways.

• transitionA: at tMCR the the old mode aborts interrupting the its execution till
the new mode is operative.

• transitionB : the old mode application keeps on executing and requesting service
until the new mode is operative.

The two cases result in a different behavior of the application, and hence different
requirements for the system. The differences will be exploited in the next sections.
Mostly, for application mode changes, it is considered the case where the deleted task
τ I is immediately terminated at the time instant in which the mode change is requested.
We investigate this case with the intent of finding the earliest time at which task τ II

can be activated without jeopardizing the schedulability of the system.

System Assumptions The operating mode is the behavior of the system, described
by a series of functionalities, their temporal restrictions and a schedule, consisting of a
set of tasks. This definition allows to deal with modes at different levels of abstraction.
The lowest level, defined as a set of tasks and associated temporal restrictions.

In single-mode, a task τi behaves unchanged for the whole life of the system; this
means that its parameters are never changed. In multi-mode systems, these parameters
may vary between different modes, thus leading to a task being described by tuples of

113

5.2 Application Mode Change

II mode

tMCR tMCO

δ

τ I

modeI

modeII

Figure 5.10: Three time intervals in a mode change; in black the tasks that remain
unchanged, while in gray the ones that are going to change (the old and the new task).

(Oi, Ci, Ti, Di), one for each mode in the system. In particular, in a system with m
modes of operation, M1 to Mm a task τi can be seen as a set of tuples like

τi = {τM1
i , τM2

i , · · · , τMm

i },

where

τM1
i = (OM1

i , CM1
i , TM1

i , DM1
i , P M1

i)

τM2
i = (OM2

i , CM2
i , TM2

i , DM2
i , P M2

i)

τMm

i = (OMm

i , CMm

i , TMm

i , DMm

i , P Mm

i).

A task may even not exist in a particular mode; this condition can be modeled with
Cj

i = 0. Other parameters can compose the task model. Important in our analysis
framework are ri, the arrival time of each job of task τi which is necessary to describe
the task in case of mode changing. Moreover we require sj,i as the exact starting time
of the j-th job instance.

The simplest and more significative case is the one where the old task set is
ΓI = {τ1, τ2, · · · , τ

I , · · · , τn}, and the new one, after the transition interval, is
ΓII = {τ1, τ2, · · · , τ

II , · · · , τn}, where τ II substitutes τ I that has to be aborted during
one of its instances. Few more variables are needed by the model we are building up.
The time at which the mode change is initiated tMCR, the time at which the old task
is aborted tab (that in general could be tab ≥ tMCR), see Figure 5.11.

5.2.1 Schedulability Analysis

We can give our definition of system stability with relation to the mode change, and
that can be easily translated in system schedulability.

Definition 5.2.1. The system is stable if the three task sets ΓI , Γmode−change, and ΓII

in their respective activation time interval, are schedulable.

114

./Pictures/schedulingModeChange.eps

5.2 Application Mode Change

τ I

τ II

tMCR = tMCO

Figure 5.11: The abortion of a task and the starting time of a new task in case the
new execution can start immediately after the old one. In white the unused execution
time of the old task. The case depicted is a case with deadlines less than the periods.

By Γmode−change we intend the task set during the transition phase, where one task
is going to be aborted and a new one is activated at its place; the mode change task set
Γmode−change includes the two tasks that interfere during the mode transition, τ I , τ II .

Considering that ΓI is well defined (each task has a pre-defined model, where com-
putation time and all the composing parameters are known in advance), the only degree
of freedom we have is about the new task. In particular we can modify only its offset,
because its other parameters are fixed at design time.

The goal of our schedulability analysis, is to model the new task offset as a function
of the transition parameters,

OII = f(ΓI , tMCR, tab, C
II , T II , DII), (5.1)

and then find the smallest possible value that keep the system feasible. For all offsets
larger than OII the application remain feasible. As a reminder, the offset of the new
task is equivalent to the transition delay δ we are looking for as the parameter describing
the transition. The main concern is to keep the system feasible but the transition has
to be quick for QoS matters: the quicker it is the sooner the system will start providing
the expected functionalities encoded in the new mode.

5.2.1.1 Utilization Approach

Before going into more complex results, we improve a proposal from by Buttazzo et al.
in (34) where they developed a sufficient condition to compute a delay δ (δ ≡ OII) after
which the new task can start execution leaving the system stable. The idea is that,
aborting the task at tab with eI(tab) computation time executed so far, Figure 5.12, it
will last

δ = dI − eI(tab)/U
I , (5.2)

before the old task releases all the utilization hired at its job arrival time. That would
be the safe interval to let the new mode start. As previously said, tab + δ expresses
the starting time of τ II , tMCO, so is the offset of such new task δ ≡ OII . Instead, by di

we intend the absolute deadline of the i-th task depending on the actual task instance.
This solution can cope with any kind of transition since tab is generic.

115

./Pictures/schedulingModeChange1.eps

5.2 Application Mode Change

tMCR = tMCO

τ I

τ II

eI cI

Figure 5.12: Remained and executed computation at abortion time tab

U I =
CI

T I
=

eI

T ′II
; T

′II =
eI

CI
T I =

CI − cI(tab)

Ci
Ti = T I −

cI(tab)

CI
T I = T I −

cI(tab)

U I

Starting from the utilization that the task under execution is going to free, Buttazzo
et al. in (34), postulate the possibility to enter and start a new task only after an
amount of time in which the remained utilization (the one left unused or still hired
but not “applied ”by the specific task) is completely refilled. In other words, the new
task can start only after it has freed the whole bandwidth requested to execute. An
improvement to the approach briefly described, come from not only reasoning with just
a couple of task (the couple (τ I , τ II) affected by the mode change), but considering
the whole system with the entire utilization applied. The new task can start once it
has enough band to hire and not when its substitute task τ Ihas release enough for it.
In the EDF case, the total utilization a feasible system can offer is 1 (106) whenever
the deadlines are equal to the periods. It means that the new task can start since the
system computational bandwidth, with the old task set at time tab UΓI , plus the band
required by τ II , U II , is less than or equal to 1. Is enough that the old task frees Ux

given by

UΓI − Ux + U II ≤ 1,

to have the system feasible during the mode change as well as during the modes. This
means that it is not the whole Ui band, but less if there is spare utilization from the
application,

Ux ≥ UΓI + U II − 1.

When the old task has freed enough bandwidth Ux, the new task can safely start, the

Figure 5.13: Utilization still ”hired” by the task during its execution

116

./Pictures/schedulingModeChange2.eps
./Pictures/ModeChange5a.eps

5.2 Application Mode Change

least amount is then Ux = UΓI + U II − 1, which means

Ux =

{

UΓI + U II − 1 if UΓI + U II ≥ 1
0 otherwise

(5.3)

It is then possible to compute the new starting time δ′ obtained when there is enough
band left free considering the whole task set, and not after all the utilization of the old
task τ I has been freed. It become

δ′ = dI −
eI(tab)

Ux
.

δ′ = −∞ is possible according to the previous equation in case of Ux = 0. A more
correct expression would be

δ′ =

{

dI − eI(tab)
Ux

if Ux 6= 0 ∨ dI ≥ eI(tab)
Ux

δ otherwise,
(5.4)

with δ the delay obtained from Equation 5.2. The new result improves the solution
in (34) since U I ≥ Ux, is immediate to prove that δ ≥ δ′. The method proposed
so far offers a necessary and sufficient condition and is extremely easy to be applied
on-line because has a very low computational overhead. Its main drawback is that
it works well only in case of deadlines equal to the period. Otherwise, the necessary
and sufficient utilization condition we can build for an EDF scheduling would be too
much pessimistic. That can also be applied as sufficient condition with fixed priority
scheduling by considering the hyperbolic bound, (26; 27).

5.2.1.2 Fixed-Priority Scheduling Scheme

The former utilization based approach has many advantages, but with more general
conditions (deadlines different than the period) the results offered are not accurate
anymore. The scheduling theory suggests other solutions to be applied to this class of
problems and in order to find a better starting time for the new task. That will lead
to a more prompt system, hence, able to reach the next steady state after the mode
transition, in a reduced time interval. The rest of the methods proposed require to
consider a specific scheduling algorithm. In this section we refer to any of the fixed-
priority scheduling paradigms. The classic literature knows well that the schedulability
test for FP scheduling policy applies the response time analysis. However its is well
known the complexity of such a test based on RTA; the pseudo-polinomial complexity
of the RTA does not allow to apply it on-line, as we are claiming to do in any transitions.
Recently are came out works that reduces the complexity of the RTA deriving bounds:
the objective is to apply them only as acceptance test. Since our target is to find the
best new task starting point, it could be seen as a sort of acceptance test (delay the
task till the system can afford to let it execute). We can apply the same techniques
already discussed in the introduction with significative modifications. Indeed, in (55)
the response time bound has been applied as a sufficient schedulability test that we
are going to review.

117

5.2 Application Mode Change

Davis et al. in (55) and Bril et al. in (32) have derived the schedulability test in
case of jitter by considering the upper bound of the response time Rub,

∀i Rub
i ≤ Di − Ji Rub

i =
Bi+Ci−Fi+

P

∀j∈hp(i)[UjJj+Cj(1−Uj)]

1−
P

∀j∈hp(i) Ui
+ Fi

This exploits the worst-case analysis of the response time which gives just a sufficient
condition. So far, the offset of task has not been considered. We can add it integrating
the bound with the task offset obtaining:

Rub
i =

Bi + Ci − Fi +
∑

∀j∈hp(i)[Uj(Jj −Oi) + Cj(1− Uj)]

1−
∑

∀j∈hp(i) Ui
+ Fi,

as a rather incremental version of the one derived by Davis et al. in (55). According
to our premises, only one task, the new one, has an offset, hence we can divide the
analysis into parts, as follows. We consider all the tasks with an higher priority than
the new task, all those tasks that can interfere with τ II .

∀i ∈ hp(II) Rub
i =

Bi + Ci − Fi +
∑

∀j∈hp(i)∧6=new[UjJj + Cj(1− Uj)]

1−
∑

∀j∈hp(i) Ui
+

U II(JII − OII)

1−
∑

∀j∈hp(i) Ui
+ Fi,

which is equivalent to

∀i ∈ hp(II) Rub
i = R′i +

U IIJII

1−
∑

∀j∈hp(i) Ui

−
U IIOII

1−
∑

∀j∈hp(i) Ui

,

with R′i =
Bi+Ci−Fi+

P

∀j∈hp(i)∧6=new[UjJj+Cj(1−Uj)]

1−
P

∀j∈hp(i) Ui
+ Fi. Furthermore

∀i ∈ hp(II) RUB
i = R′′i −

U IIOII

1−
∑

∀j∈hp(i) Ui
,

has been obtained through R′′i = R′i + + UIIJII

1−
P

∀j∈hp(i) Ui
. Applying the feasibility criteria,

is then easy to derive a set of constraints to what we are looking for. Indeed, imposing
Ri ≤ Di − Ji as schedulability condition for all the tasks of our task set, including the
old task and the new task, we obtain

∀i Ri ≥ (R′′i −Di + Ji)
1−

∑

∀j∈hp(i) Ui

U II
.

The value of OII that satisfies all the previous conditions is carried out as the minimum
among all the ones obtained with high priority tasks than τ II .

OII = min{∀i|OII , RII + JII −DII}0,

118

5.2 Application Mode Change

and δ ≡ OII ≥ RII + JII − DII derives from the schedulability condition of the new
task τ II . The 0 operator denotes the non negative function f+(x) = max{0, f(x)}.

In case of fixed-priority scheduling policies even the concept of workload can be
applied to verify the schedulability of task sets. For a task τi its level-i workload wi(t)
is the total amount of time the processor is busy to serve τi and its high priority tasks
in any interval length of t. By extension, w0(t) = 0 for all t. It can be computed as

wi(t) = Ci +
∑

τj∈hp(i)

⌈

t

Tj

⌉

Cj , (5.5)

where hp(i) is the set of high priority tasks with respect to τi. The same reasoning for
RTA can be applied to the workload case and obtain the offset or delay for the new
mode.

Task Modeling In terms of workload demand we can find a bounding function able
to model the new macro task. The idea is to model the couple of tasks affected by the
mode change (τ I , τ II) with only one but having a different set of parameters to describe
its behavior. In this way to afford the single task mode-change problem implies, for
FP scheduling algorithms, to consider the couple of tasks adjacent in term of priority.
No other tasks than τ I and τ II can fall in the priority interval given by (τ I , τ II).
That reduce the generality of application of such method, but it still represents a good
starting point to develop a general approach. Considering the upper bound of the
level-i workload as a linear curve, which is the combination of linear upper bounds of
each task, we have

wub
i (t) =

∑

∀j∈hp(i)

Ujt + Oj ≡

∑

∀j ∈ hp(i)Ujt +
∑

∀j∈hp(i)

Oj,

where Uj = Cj/Tj is the slope of each composing linear curve, while offsetj is its offset.
O =

∑

∀j∈hp(i) Oj. It still remains to check if exist a t that satisfies the scheduling
condition. The solution

Li = min0≤t≤Ti
wub

i (t)/t

L = max1≤i≤nLi,

in accordance to (31; 32; 55), is given as a pseudo-polinomial problem with two dimen-
sions (n, t).

As a sufficient condition, the FP scheduling algorithm schedules τi if Li ≤ 1. The
whole task set Γ is schedulable if L ≤ 1. Even if is possible to apply the reduced set
by Bini et al (25) to have the number of checks reduced, but still the complexity order
remains.

119

5.2 Application Mode Change

5.2.1.3 Dynamic Scheduling Scheme

In case of dynamic priority scheduling policies we can apply the processor demand
criteria to verify the schedulability of multi-moded applications. Again, we have to
figure out which is the best starting time for the new task. That leads to a system more
prompt system, hence able to reach the next steady state after the mode transition, in
a smaller amount of time.

The hypothesis we are considering imply tasks no more synchronous, due to the new
task activation time. Hence, busy period has to be found between any interval (t1, t2),
with t1 ≤ t2, along the system evolution. The classical processor demand formula (21)
comes from two main parts. The number of instance of task τk with activation time
bigger or equal than t1 and deadline less or equal than t2 is given by

ηk(t1, t2)0 = (⌊
t2 − Ok −Dk + Tk

Tk

⌋ − ⌈
t1 −Ok

Tk

⌉)0,

The processor demand criteria, according to (21), is

∀t1, t2 g(t1, t2) =
∑n

i=1 η(t1, t2) ≤ (t2 − t1).

The computational demand of a task set can be precisely described by the demand
bound function, introduced by Baruah et al. (21) to express the total computation that
must be executed by the processor in each interval of time when tasks are scheduled
by EDF. For any given periodic task τi activated at time t = 0, its demand bound
function dbfτi

(t) in any interval [0, t] is given by

dbfτi
(t) = max

{

0,

(⌊

t−Di

Ti

+ 1

⌋

Ci

)}

.

Hence, the computational demand of a task set Γ of periodic tasks synchronously
activated at time t = 0, can be computed as the sum the individual demand bound
functions of each task, that is:

dbfΓ(t) =
∑

τi∈Γ

dbfτi
(t).

By definition, the demand bound function provides an upper bound of the resource
requested by the task set in each interval of time coming from τ1, τ2, . . . τn and mostly
τ I and τ II both contributing to the resource demand during the transition. While
τ1, . . . τn and τ I are synchronous, τ II has an offset OII which is also the delay of the
transition of the mode change request OII = tab + δ. The whole set of contributions
to the processor demand, during a mode change, is listed below. Considering the
task model given, we have two caes, two different resource demand and two different
schedulability guarantees.










[dlast,∞], gΓ\{τI}(t1, t2) + ⌊ t2−t1−DI+T I

T I ⌋CI − cI(tab) + ⌊ t2−DII+T II

T II ⌋

−⌈ t1−OII

T II ⌉C
II ≤ t2 − t1

(0, dlast), gΓ\{τI}(t1, t2) + ⌊ t2−t1−DI+T I

T I ⌋CI + ⌊ t2−DII+T II

T II ⌋ − ⌈ t1−OII

T II ⌉C
II ≤ t2 − t1,

(5.6)

120

5.2 Application Mode Change

where the contribution depends on where the measuring interval is considered as we
have detailed in the formulas. dlast is the last deadline of the old task τ I after its
abortion. The first part of demand gΓ\{τI}(t1, t2) is the contribution of all the tasks

composing the old task set without τ I . τ I deserves a particular attention according the
specific interval the processor demand is going to be computed; indeed it is going to be

aborted to its resource demand it is affected by tab. The quantity ⌊ t2−t1−DI+T I

T I ⌋Ci ≡
g∗τI (t1, t2) is the resource amount of task τ I that after the abortion time does not offer
contribution to the processor demand, so the actual resource demand is given as:

g∗τI (t1, t2) =







⌊ t2−t1−DI+T I

T I ⌋CI if t1 ≤ t2 ≤ tab;

⌊ tab−t1−DI+T I

T I ⌋CI if t1 ≤ tab, t2 > tab;
0 otherwise

(5.7)

This contribution has to be subtracted with the remained computation time of τ I at its
abortion time, demand unused by the task itself. The quantity of processor resource
demanded by a generic task τk can be approximated, bounding the number of jobs
that the task execution fits in the time window [t1, t2]. Increasing such a number, the
processor demand increases, leading to an upper bound of the processor demand. A
only sufficient condition, that can be used to guarantee the feasibility of a task set, can
be obtained from the previously described approximation, and now described in detail.
If we limit the offset of a task to its period, considering indeed, tasks where Ok ≤ Tk

we can have the following

ηk(t1, t2)0 ≤ (⌊
t2 − Ok −Dk

Tk
⌋ − ⌈

tk − Tk

Tk
⌉)0 ≤ ((

t2 − Ok −Dk

Tk
+ 1)−

tk − Tk

Tk
)0

by removing even the floor and ceiling functions. We might find many bounds to
transform the open formula in a closed one, and to extract the values we need to set up
a significative analysis. A good bound is defined according the following assumptions:

⌈
t1 −OII

T II
⌉ ≥ ⌈

t1 − T II

T II
⌉;

in case of OII ≤ T II . Otherwise, with T II ≤ OII ≤ 2T II the bound is given by

⌈ t1−2T II

T II ⌉ and continuing with the trend, is always possible to define a lower bound for
the number of jobs with arrival time less than or equal to t1. The expression results in

OII ≥
gΓ\{τi} + gτI − (t2 − t1)−DIIU II − ⌈ t1−T II

T II ⌉C
II + CII + t2U

II

U II
, (5.8)

removing the ceiling and floor functions through out the specific bounds in case of
[0, dlast]. Instead, in case of [dlast,∞) it is

OII ≥
gΓ\{τi} + gτI − (t2 − t1)−DIIU II − ⌈ t1−T II

T II ⌉C
II + CII + t2U

II − cI(tab)

U II
, (5.9)

The main idea is to find the better bound in order to have a close result to the exact
value.

121

5.2 Application Mode Change

A new task set ΓII differs from the old one ΓI by only one task, the old version
that expires before the new one starts executing. During the mode transition the task
set can be represented with Γmode−change, and includes the old task and the new one.
We recall that the new task is the only one having an offset OII different than 0. The
other tasks are synchronous.

Theorem 5.2.2. Given a task set of n tasks ΓI feasible, a mode change requests at
time tMCR ≡ tab, and the new feasible task set ΓII with n − 1 simultaneous old tasks
and a new one not synchronous (with an offset OII), works safely (without missing any
deadline even while the mode change happens), even during the transition, if the mode
changes as an offset

OII =







































maxt1,t2

g
Γ−{τI}

+g
τI−(t2−t1)−DII ·UII−⌈

t1−2TII

TII ⌉CII+CII+t2·UII

UII

if t1 ≤ t2 < dlast

IS FEASIBLE

maxt1,t2

g
Γ−{τI}

+g
τI−(t2−t1)−DII ·UII−⌈

t1−2TII

TII ⌉·CII+CII+t2·UII−cI(tab)

UII

if t1 ≤ t2 ∧ t2 ≥ dlast ∧ t2 ≤ D∗

IS FEASIBLE

(5.10)

Proof. By definition of processor demand and the theorem regulating the guarantee
test, (21), the demonstration immediately comes. Considering the offset OII as indef-
inite variable, the results derives from the exploitation of the unknown variable. For
the moment we consider

D∗ = max{dk|dk ≤ tab + min(L∗, H)}

where H is the task set Γmode−change hyper-period and

L∗ =

∑n
i=1(Ti −Di)Ui

1− U
,

like especially specified in (21). In order to verify the task set schedulability during
the transition, the resource demand in such a phase, gΓmode−change

, has to be less than
or equal to the computational resource available t

∀t gΓmode−change
≤ t.

From Equation 5.8 and Equation 5.9 the two offset conditions are obtained as a function
of t1 and t2. The schedulability has to be guaranteed for any t1 and t2, hence the
maximum of the offsets that demonstrates the theorem.

OII as in Equation 5.10 makes the mode change safe. The value of k and the
number of values to be verified in Equation 5.10 depends on how big is the new task
offset with respect the new task period. The resulting formula is very easy to be
solved; it is sufficient to do few tries to tune the right offset and the right bound.
That can be even done in parallel. It is also possible to carry out the error made

122

5.2 Application Mode Change

using such a bound, respect to the possible optimal value (the smaller instant possible
in which the new task can restart). The error in the new task offset is due to the
approximation applied to obtain Equation 5.10 in a closed form. The error is at max
2T II/U II ; indeed, removing the floor, that rounds to the lower integer, we can have
at max 2T II/U II more to be considered into the processor demand. Furthermore, the
second bound adds uncertainty, less than or equal to 2T II/U II to be considered for an
exact analysis.

τ I

τ II

tMCR = tab

t

g(τ I , τ II

Figure 5.14: Processor demand: an example of the processor demand of two tasks
where first one is aborted after one instance, and the second one taking place of the first.

Since the former theorem gives us two possible results according the case that could
be considered, we have to define a unique result.

The procedure we have built-up comes from considering the two cases as

• t1, t2 < dlast CaseA,

• t1, t2 ≥ dlast CaseB

and obtain

OII = min{OII
A if feasible, OII

B if feasible}

including even the case where both of the two are unfeasible. In that scenario the mode
change is unfeasible.

The error we commit can be the starting point for a refinement sequence step toward
the optimal value; reducing the offset one unit at the time till the task set (in the mode
change progress, the whole task set the system schedules) remains feasible.

In some applications is possible to leave the result as it comes out from Equa-
tion 5.10. There are systems than can effort such a time interval where the new task
does not start, and complete its functionality only after such a delay. Such systems
privilege the possibility to compute on-line the offset, even a non precise offset. On
the other hand, there are systems that needs the the optimal value to be as much
prompt as possible and let the new task start as soon as possible. Since the optimal
value requires the refinement step, hence more computation time, is more likely usable
off-line, without degrading much the system real-time performance. With a certified
uncertainty, the offset can range in between, it could happen that it assumes values
bigger than its period; a bound tuning could be required with the formula seen right
before.

123

./Pictures/schedulingMCdemand.eps

5.2 Application Mode Change

Optimality The possibility to reduce the time interval where to check schedulability
allows to speed up the computation of the new task offset. Since the value obtained
above is not optimal because derived through bounds we can improve such a result
toward the optimality. First of all we have to define what we consider by an optimal
result.

Definition 5.2.3. The optimal offset of the new task is the smallest offset between the
set of feasible offsets.

O∗II def
= min{Ok|Ok ∈ ΨΓmode−change

}

While by feasible offsets we mean the offsets that leave the task set feasible during
the transition phase. With ΨΓmode−change

we intend region described by all the new task
offsets that guarantee the feasibility of mode changing application during the mode
transition. The value computed with the previous formula can be a good enough as
a starting point for an algorithm exploring the solution space seeking for an optimal
result. Starting from that, one unit of time at the time and testing the schedulability
of the new task set with the offset analysis, we can reach the optimal offset via an
exhaustive search, as outlined by the Algorithm 7.

Algorithm 7 Optimal algorithm

Input: offsetBound
Output: optimal
1: offsetOptimal = offsetBound− 1;
2: while ΓII(offsetOptimal) is feasible do
3: check feasibility of ΓII(offsetOptimal);
4: offsetOptimal–;
5: end whilereturn offsetOptimal − 1;

5.2.1.4 Real-Time Calculus and Application Mode Change

With real-time calculus it is possible to carry out the analysis of mode transition for
multi-moded applications. Perathoner et al. (153) have developed an upper bound to
the resource demand of an application during the transition stage. Even in that case
it has been considered the old task aborted at time tMCR, while the new one starts at
tMCO. The case in which the old task continues to execute after tMCR has not been
taken into account. They have proposed solutions both in case of fixed and dynamic
priority scheduling by considering the transition arrival curve αT as the curve that
upper bounds the task workload. In particular it has been studied the mode changing
task and its workload.

Theorem 5.2.4 (Transition Demand Bound Function). Given an application and its
demand bound functions at the old mode dbf

I , and at the new mode dbf
II , its transition

demand bound function dbfT during a mode change with a delay δ is

dbf
T (t) = sup0≤λ≤t{dbf

I(t− λ) + dbf
II(λ− δ)}. (5.11)

124

5.3 Server Mode Change

Proof. The proof of the transition demand bound function comes straight from (129),
where the resource demand is upper bounded by dbf

T in the interval domain analysis.
The demand bound function is exactly the demand curve αd.

The resulting dbf
T at the transition stage obtained with Equation 5.11 is safe and

offers a necessary and sufficient condition to study the mode transitions. The upper
bounding linear approximation of the transition resource demand is given by ∆T =
max{∆I , ∆II}+ δ and slopeT = min{slopeI , slopeII}. The scheduling conditions that
applies the transition bounded-delay approximations of the transition demand bound
functions is just sufficient.

The transition demand bound function has been derived in order to have all the
possibility covered. Once known the demand bound function in all the possible condi-
tions of the application (steady states and mode transitions) it is possible to set up a
complete schedulability analysis for multi-moded applications in order to derive δ with
the RTC framework too. As a reminder δ is equivalent to the offset of the new task
OII , and with the real-time calculus such a delay represents a shift left for the arrival
curve, in particular for the arrival curve of the new task.

5.3 Server Mode Change

In the previous section it has been studied the case with mode changing application.
Consistent results have been proposed with a minimum δ that has to be waited for a
feasible transition. In this section is the server component to be analyzed. We analyze
multi-moded servers which could change their parameters because of changing appli-
cations or due to external reasons. We analyze the capacity of changing operational
mode at run-time affecting the resource reservation of the servers and consequently the
application schedulability.

?

tMCR

S1

S2

Sm

βI
S1

βI
S2

βI
Sm

βII
S1

βII
S2

βII
Sm

Figure 5.15: Server mode change: transition stage with undefined guarantees.

5.3.1 System Model and Backgrounds

From the platform side, computational resources are provided by reservation servers.
As already stated, we consider the class of server algorithms that can be described by
a periodic server abstraction, S = (QS, PS).

125

Pictures/Servers/modechange.eps

5.3 Server Mode Change

A Servers can change its parameters at run-time to cope with changing condi-
tions. Whenever a server S switches from an old mode SI = (QI , P I) to a new mode
SII = (QII , P II), the corresponding supply bound function changes from sbf

I
S(t) to

sbf
II
S (t). The supply bound function that describes the computational resource pro-

vided by the server across the mode transition is denoted by sbf
T
S (t). The bounded-

delay approximations are denoted by bdf
I = (slopeI , ∆I), bdf

II = (slopeII , ∆II), and
bdf

T = (slopeT , ∆T), respectively. The bounded-delay function lower bounds the ser-
vice provisioning.

From tMCR on, all the required changes in the system are initiated, while the new
mode begins at tMCO after a delay δ ≥ 0 from the mode change initiation, tMCO =
tMCR + δ. The mode transition is the stage between the two steady modes, starting at
time tMCR and ending when the new mode become effective. Since tMCR and tMCO are
not always the same, the mode change analysis has to work ∀ tMCR and tMCO such that
tMCR ≤ tMCO. In case of multi-moded servers the application schedulability has to be
guaranteed during the mode change transition and in order to set up a schedulability
criterion that works in any possible condition for the server and the applications, it is
important to identify the minimum resource amount provided in any possible interval.
This includes the transition between different modes where the service provisioning is
affected from the old and the new mode.

Two can be the server behavior in case of mode change, which means that two can
be the different transition phases.

• transitionA: at tMCR the the old mode aborts interrupting the service provisioning
until the new mode is operative. This leave a hole in the service provisioning equal
to the delay δ that has to be waited.

• transitionB : the old mode server keeps on providing its service until the new
mode is operative. The service provisioning is kept with the same parameters
until tMCO.

The two cases results in a different behavior of the server and then of the whole system.
The differences will be explained in the next sections. All the intermediate cases,
with abortion time tab such that tMCR < tab < tMCO can be easily inferred from the
transitionB case.

We assume that the system is feasible in each mode, that is in both steady states
conditions, and wants to derive the condition in which feasibility can also be preserved
during mode transitions.

The computational resource the server provides is used by the application by the
server.

Definition 5.3.1 (Server Schedulability). A server is said to be schedulable if its budget
is provided on time within each period.

Definition 5.3.2 (Application Schedulability). An application is said to be schedulable
by a server if all its tasks are able to meet their deadlines.

Definition 5.3.3 (System Schedulability). A system consisting of multiple applications
managed by a set of reservations said to be schedulable if both servers and applications
are schedulable.

126

5.3 Server Mode Change

5.3.2 Server Transitions

tMCR tMCO

δmodeI modeII

(a) TransitionA

tMCR tMCO

δmodeI modeII

(b) TransitionB

Figure 5.16: TransitionA and transitionB. The service provision aborts or continues
after the mode change tMCR respectively.

Since the server behaves differently either in case of transitionA or transitionB the
service provisioning will be different accordingly. Given a delay of δ for the new mode,
it is possible to derive guarantees to the transition supply bound functions as follows.

tMCR tMCO

δ
modeI modeII

η

(a) TransitionA

tMCR tMCO

δ
modeI modeII

η

(b) TransitionB

Figure 5.17: Server mode change and mode transition cases.

With multi-moded servers it is important to identify the minimum amount of re-
source provided in any stage of the server. This includes the transition between differ-
ent modes, where the service provisioning is affected from both the old and the new
mode. The transition supply bound function sbf

T is the resource provisioning during
the transition stage, while the transition bounded-delay function bdf

T lower bounds
the transient service provisioning.

5.3.3 Transition Guarantees

The following theorems provide the sbf
T functions for the two types of transitions

introduced in Section 6.2.1 (transitionA and transitionB).

127

./Pictures/Servers/caseA.eps
./Pictures/Servers/caseB.eps
./Pictures/caseNewNewNewA.eps
./Pictures/caseNewNewNewB.eps

5.3 Server Mode Change

Theorem 5.3.4 (Mode Change sbf - transitionA). Let S be a periodic server with
steady states parameters (QI , P I) and (QII , P II) and with corresponding supply bound
functions sbf

I and sbf
II . Let tMCR be the time at which the mode change is requested

and let tMCO be the time at which the new mode is started, after a delay δ, such that
tMCO = tMCR + δ. If the server aborts the old mode at time tMCR (transitionA case),
then the resource provisioning during the transition stage is lower bounded by

sbf
T (t) = inf

0≤λ≤t
{sbf

I(t − λ − η + P I − QI) + sbf
II(λ + P II − QII)}, (5.12)

being η = tMCR − tlast + δ and tlast the initial of the last period of the old mode.

Proof. Since the mode change can occur any time during the period interval of the first
mode, the worst-case service provisioning occurs when the tMCR is at the beginning of
P I . The worst-case resource supply is when the old mode provides its budget at the
beginning of the last period before the change, while the new mode provides resources
at the end of the subsequent periods. This leaves a hole of η + P I −QI + P II −QII in
the service provisioning. If R(t) is the amount of computation that has been delivered
up to time t, we are looking upon a bound of such a resource in a generic interval [r, s)
with s = r + t centered in [tMCR, tMCO].

R[r, s) = RI [r, tMCO) + RII [tMCO, s)

λ := s− tMCO

= RI [r, s− λ) + RII [s− λ, s)

= RI [s− t, s− λ) + RII [s− λ, s)

and each R is lower bounded by its sbf. In this case,
RI [s− t, s − λ) ≥ sbf

I
(

t− λ− (η + P I −QI − 2(P I −QI))
)

where the service provi-
sioning has a delay of η + P I −QI . Instead,
RII [s−λ, s) ≥ sbf

II
(

λ− (P II −QII − 2(P II −QII))
)

with a delay of P II−QII . Both
cases are represented in Figure 5.17(a). Thus

R[r, s) ≥ sbf
I(t− λ− η + P I −QI)

+sbf
II(λ + P II −QII) ∀λ

≤ inf
0≤λ≤t

sbf
I(t− λ− η + P I −QI)

+sbf
II(λ + P II −QII),

that proves the theorem.

Theorem 5.3.5 (Mode Change sbf - TransitionB). Let S be a periodic server with
steady states parameters (QI , P I) and (QII , P II) and with corresponding supply bound
functions sbf

I and sbf
II . Let tMCR be the time at which the mode change is requested

and let tMCO be the time at which the new mode is started, after a delay δ, such that

128

5.3 Server Mode Change

tMCO = tMCR + δ. If the server continues to provide its old mode service until time tMCO

(transitionB case), then the resource provisioning during the transition stage is lower
bounded by

sbf
T (t) = inf

0≤λ≤t
{sbf

I(t− λ− η + 2P I −QI)

+ sbf
II(λ + P II −QII)}, (5.13)

being η = tMCR − tlast + δ and tlast the initial of the last period of the old mode.

Proof. The worst-case service provisioning occurs when the old mode provisions its
resource at the beginning of its last period, while the new mode provisions at the end
of its period. This leaves a hole in the service provisioning of δ + P II −QII . For any
interval [r, s) such that r ≤ tMCR ≤ tMCO ≤ s the amount of computational resource
provided R(t) is

R[r, s) = RI [r, tMCO) + RII [tMCO, s)

λ := s− tMCO

= RI [r, s− λ) + RII [s− λ, s)

= RI [s− t, s− λ) + RII [s− λ, s)

and each R is lower bounded by its sbf. In this case
RI [s− t, s− λ) ≥ sbf

I
(

t− λ− (η −QI − 2(P I −QI))
)

where the service provisioning
has a delay of η −QI . Instead,
RII [s−λ, s) ≥ sbf

II
(

λ− (P II −QII − 2(P II −QII))
)

with a delay of P II−QII . Both
cases are represented in Figure 5.17(b). Thus

R[r, s) ≥ sbf
I(t− λ− η + 2P I −QI)

+sbf
II(λ + P II −QII) ∀λ

≤ inf
0≤λ≤t

sbf
I(t− λ− η + 2P I −QI)

+sbf
II(λ + P II −QII),

that proves the theorem.

The obtained sbf
T s can be used to guarantee the service provisioning during the

mode change transitions.
With Equation 5.12 and Equation 5.13 it has been derived the transition supply

bound function as a function of η and consequently of the delay δ, sbf
T = f(δ).

In case on no delays among the ending of one mode and the beginning of the new
one, δ = 0 and tMCO = tMCR, it is

sbf
T (t) = inf0≤λ≤t{sbf

I((t− λ) + sbf
II(λ + P II −QII)},

in both the transition cases.

129

5.4 Server Schedulability

Transition Bounded-Delay Function With the bounded-delay modeling it is pos-
sible to derive the transition bounded-delay functions for servers for the transition sup-
ply bound functions. First, the same idea of Equation 5.12 and Equation 5.13 can be
applied with bounded-delay functions obtaining

bdf
T
A(t) = inf0≤λ≤t{bdf

I((t− λ− η + P I −QI) + bdf
II(λ + P II −QII)}, (5.14)

in case of transitionA, while

bdf
T
B(t) = inf0≤λ≤t{bdf

I((t− λ− η + 2P I −QI) + bdf
II(λ + P II −QII)}, (5.15)

in case of transitionB.
In the bounded-delay model the transition resource supply results in a represen-

tation with (slopeT , ∆T), where ∆ is the largest interval of time with no resource
provisioning during the transition. It happens, during the transition, that the delay δ
contributes to the worst-case conditions for the service provisioning from the servers.

For transitionA cases it is

slopeT
A = min{slopeI , slopeII}

∆T
A = η + P II −QII . (5.16)

TransitionB cases instead, results in

slopeT
B = min{slopeI , slopeII}

∆T
B = η −QI + P II −QII . (5.17)

We can observe how ∆T
A ≥ ∆T

B, which is reasonable because of the nature of the transi-
tionA: the service provisioning is interrupted before the transitionB case, so less service
is provided during the transition. Furthermore, depending on η, hence δ, the transi-
tion bounded-delay function can be larger than the mode bounded-delay functions.
Case by case bdf

I , bdf
II and bdf

T can have different relationship. In particular, given
η = P I , which is one of the possible conditions, we have many possibilities to order
the 3 bounded-delay functions depending on the parameters before and after the mode
change of the server.

Both the transition supply bound function and the transition bounded-delay func-
tions depends on the transition delay δ, sbf

T (t, δ) and bdf
T (t, δ).

Equation 5.16 and 5.17 define the relationship between the transition delay δ and
the transition service provisioning delay ∆T .

5.4 Server Schedulability

We have verified that both the applications and servers can change their parameters
at run-time. Mostly we know how to model their transitions.

Once defined the demand and supply bound function that bound the resource de-
mand and supply in all the server-application conditions (either old mode or new mode

130

5.4 Server Schedulability

or the transition stage), it is possible to generalize the schedulability criteria to multi-
moded systems.

WIth the dbf and sbf representation developed so far we can model each component,
server and application, in any of its state (mode I, mode II and transition). This means
that we can setup schedulability conditions in any component state applying the model
that better abstract the component status. Allowing both the applications and the
servers to change many can be the combinations that has to be verified in order to
guarantee the system schedulability in any possible scenario.

• stable conditions: application in its mode I or mode II and the server in its mode
I or mode II. The schedulability guarantee applies the demand and supply bound
functions in steady conditions.

– Both the server and applications in their mode I status: ∀ t dbf
I ≤ sbf

I .

– Both the server and applications in their mode II status: ∀ t dbf
II ≤ sbf

II .

– The server is in mode I and the application in mode II: ∀ t dbf
II ≤ sbf

I .

– The server is in mode II and the application in mode I’: ∀ t dbf
I ≤ sbf

I .

• During the transitions: one of the two component is in transition, which means
that either the demand or the supply bound functions are represented with the
transition model, or both in case of simultaneous transitions of the servers and
their applications.

5.4.1 Transition Schedulability

In case of transitions (which is the most interesting case) the schedulability has to be
guaranteed. Supposing that both the application and the server are changing it follows
following.

Lemma 5.4.1 (Mode Change EDF Schedulability). Given a server S handling an
application Γ that is feasible in each in a steady state condition, if both S and Γ change
their at the same time, then the application is feasible during the transition phase if

∀ t dbf
T
Γ(t) ≤ sbf

T
S (t). (5.18)

Using the the bounded-delay linear approximation, the feasibility condition be-
comes:

∀ t dbf
T
Γ(t) ≤ bdf

T
S (t), (5.19)

Note that when the application increases its resource request, a short transition
delay in the server adaptation is good for the application. However, a too short delay
could result in a service over-provisioning that would steel bandwidth from the other
servers, so jeopardizing the schedulability of the other applications during the transient.
On the other hand, a large delay in the server adaptation would affect the schedulability

131

5.4 Server Schedulability

of the application itself. In general, there is a trade-off between schedulability of the
application and the schedulability of the servers.

In case of fixed priority scheduling such as Rate Monotonic (RM), the schedulability
condition applies the workload and becomes as follows.

Theorem 5.4.2 (Mode Change RM Schedulability). An application Γ and a server S
are schedulable in mode I, mode II and during mode transition if

∀ τi ∈ Γ ∃ t wT
i (t) ≤ sbf

T
S (t). (5.20)

where wT is the transition level-i workload. The transition level-i workload can be
obtained in the same way as the transition demand bound function. Considering the
bounded delay model it is

∀ τi ∈ Γ ∃ t wbfT
τi

(t) ≤ bdf
T
S (t), (5.21)

with the workload bound function, wbf to bound the level-i workload.
The supply bound function that can be guaranteed in all the stages a server pass

trough can be more pessimistic than the single mode guarantees. Though, it depends
on the interval δ that has to be awaited before letting the new mode start. The bdf

T

lower bounds all the possible transition service supply, and δ is given as a parameter
for that change. From the application point of view, the earliest the mode can change
the better it is. The problem is that such a resulting bound function has to cope,
together with the rest of the servers, with the resource provided by the upper layers.
Then, the delay δ comes from both the schedulability analysis of the application-server
sub-system and the schedulability analysis of the set of servers composing the whole
system.

Inter-Server Schedulability Analyzing the schedulability of the application with
respect to the service provided by its server we can derive a maximum delay δ♭ in the
service provisioning that can be afforded by the application and its timing requirements.
The delay is obtained by comparing the sbf (or its relate bdf) and the dbf. In case of
EDF scheduling policy we obtain δEDF,♭ as the maximum δ that guarantee dbf

T (t) ≤
sbf

T (t, δ). In case of bdf it is δ′EDF,♭ = max{δ | dbf
T (t) ≤ bdf

T (t, δ)}.
In case of FP scheduling δFP,♭ is the maximum among the δ delays that satisfies

wT
i (t) ≤ sbf

T (t, δ) for all task i. By wi we intend the workload bound function as defined
in Chapter 2. With bounded-delay functions it is δ′FP,♭ = maxi{max{δ | wT

i (t) ≤
bdf

T (t, δ)}}.
By intra-server schedulability we refer to the schedulability of the application based

on the resources provided by the server. From the analysis performed by applying
either Condition (5.18), Condition (5.19), Condition (5.20), or Condition (5.21) , we
can derive a maximum delay δ♭ after which the new mode can safely start. For all
δ ≤ δ♭ the server mode change is feasible for the application because it will result in
a larger resource supply. With the bounded-delay functions it is obtained δ′♭ which
is larger than the one from the sbfs because of the bounding of the bounded-delay
functions to the supply bound ones.

132

5.4 Server Schedulability

Inter-Server Schedulability By inter-server schedulability we refer to the schedu-
lability of the servers when they adapt their parameters, independently of the behavior
of the served applications. Such an analysis can be performed using the results achieved
for multi-mode task sets, which is well known in the real-time literature. The analysis
can easily be applied to periodic servers by considering them as periodic tasks that
must receive Q units of computational resource every period P . Therefore, the effect
of a mode change in a server has to be investigated with respect to the entire set of
servers composing the system.

Crespo et al. (133) have surveyed solutions to the mode-change problem together
with proposing new solutions in case of fixed priority servers. Guanming (71) instead,
proposed a solution for EDF scheduling policies. Perathoner et al. (153) have inves-
tigated the task mode change problem applying both the scheduling paradigm and
came out with sustainable solutions. By applying Equation 5.11 to the mode changing
server resource request and considering Equations 5.18 and 5.20 with respect to the
specific scheduling paradigm applied, the task-wise analysis results in a minimal delay
δ♯ that does not affect the schedulability of other servers. By schedulability of a server
it is intended the possibility of provide its periodic budget on time together with the
schedulability of the applications each server manages. ∀δ ≥ δ♯ the set of server re-
mains schedulable because a larger δ in this case results in a lower resource request for
the resource scheduler.

Any change after a delay δ ≥ δ♯ keeps the system feasible, but reduces the amount
of resource provided to the application managed by the changing server.

With the help of one examples it is possible to show how the mode change analysis
of applications applies to servers to derive the minimum delay δ♯ for the changing server
by considering a set of server composing the system.

Example 5.4.3. Considering two servers such that SI
1 = (5, 10) and SI

2 = (2, 4) in
their first mode, and SII

1 = SI
1 = (5, 10) and SII

2 = (4, 8). The first server does
not change its mode. Requested a mode change at tMCR = 2 the set of server results
unfeasible during the transition with a δ = 0, so SII

2 starting at tMCR. Through the
utilization-based approach the minimum that has to be waited is δ = 2 from Equation 5.2
which has been applied instead of Equation 5.4 because the total utilization of the servers
is 1. δ = 2 is the delay δ♯ the second server has to wait. For all the delay larger than
δ♯ the server set results feasible, while ∀δ < δ♯ the server set suffer a deadline miss.

A real-time system with servers and applications is feasible during mode transitions
if the delay is less than or equal to a threshold derived from the intra-server analysis
and greater than or equal to a threshold δ♭ derived from the inter-server analysis; that
is, δ ≤ δ♭ ∧ δ ≥ δ♯. The resulting feasibility region for δ is then

Φ =

{

0 if δ♯ > δ♭

∀δ | δ♯ ≤ δ ≤ δ♭ if δ♯ ≤ δ♭ (5.22)

This result is stated in the following theorem.

133

5.5 Resource Reservation Analysis

Theorem 5.4.4. Consider a multi-mode system with m servers Si, each managing an
application Γi, such that the system is feasible in any of its working mode. If server
Si performs a mode transition with a delay δ, the system remains feasible if δ ∈ Φi,
where Φi is the feasibility region of server Si from Equation (5.22). If Φi is empty, the
transition is unfeasible under any condition.

Proof. The theorem directly comes form the construction of the region Φi, since the
δs in Φi have been obtained by guaranteeing the feasibility of the set of servers in the
system.

Algorithm 8 describes how to compute a transition delay that keeps the system
feasible.

Algorithm 8 Algorithm to compute the transition delay for the mode changing server
Si. The policy is the strategy adopted by the system to handle mode transitions.

Input: Γ, ΓS = {S1, . . . , Sm} and the mode changing server Si, Si ∈ ΓS;
Output: transition delay δ ∈ Ψ;

δ♭ = intra-serverSchedulability(Γi, Si);
δ♯ = inter-serverSchedulability(ΓS , Si);
δ = policy(δ♭, δ♯);

5.5 Resource Reservation Analysis

The server and the application requirements during a mode transition are encoded
into the feasibility region Φ in terms of transition delays that the set of servers and the
applications can tolerate.

5.5.1 (slope, ∆)-Space

Formerly we have derived a (slope, ∆) representation of servers where each tuple
(slopei, ∆i) represents a resource supply. Even applications can be mapped into the
(slope, ∆)-space. Indeed, depending on the scheduling policy, it is possible to derive
the application representation in the (slope, ∆)-space as the feasibility region of the
application itself according to the scheduling paradigm.

The feasibility region of an application is intended as all the service supply (slope, ∆)
spots that enforce the timing constraints of the application itself. Such a region is
obtained by referring to the whole computational resource available for the application.
Besides, a single (slope, ∆) spot bounds many applications and their demand bound
function, and an application resource demand can be bounded by different (slope, ∆)
tuples.

The FP schedulability criteria with workloads (24) is

∀i ∃t ∈ schedPi : wi(t) ≤ slope(t−∆),

134

5.5 Resource Reservation Analysis

in terms of (slope, ∆) means that

∀i ∃t ∈ schedPi : ∆ ≤ t−
wi(t)

slope

∀i ∆ ≤ maxt∈schedPi
{t−

wi(t)

slope
}

∆ ≤ minimaxt∈schedPi
{t−

wi(t)

slope
} (5.23)

Equation 5.23 defines the application feasible region under FP. Each application Γ
has its own depending on the tasks composing the application, both in terms of their
parameters and their timing requirement.

For an EDF scheduling policy the application feasible region is more easy to find.
The application feasibility region is defined as

∀t ∈ D : dbf(t) ≤ slope(t−∆),

with

dbf(t) =
∑

i

max{0, ⌊
t− Ti −Di

Ti
}Ci.

It means that

∀t ∈ D : δ ≤ t−
dbf(t)

slope

∆ ≤ mint∈D{t−
dbf(t)

slope
} (5.24)

Equation 5.24 defines the application feasible region as the minimum among curves in
the (slope, ∆) domain. In the (slope, ∆)-space such a region represents the application
Γ and its scheduling algorithm sched.

As we already stated, the scheduling criteria compares the supply bound function
of servers and the demand bound function of applications. It allows also to translate
the usual schedulability criteria in the interval domain into the (slope, ∆)-space, as we
have showed.

Figure 5.18 depicts the feasible region of an application when is scheduled by EDF
or by FP. The two feasibility regions are represented by the bold curves while the
intermediate curves which are used to derive the regions are the normal curves. It is
remarkable that the EDF region superpose the FP one.

A servers applied to the applications limit the service provisioning with respect
to the whole resource available. So server bounded-delay functions are spots in the
(slope, ∆)-space affecting the application feasible region by cutting some part as not
allowed anymore because of the new service provisioning of the server applied. It is
important to note how a larger bdf increases the feasibility region of the applications.
By larger bdf it is intended a provisioning with reduced delay ∆ and/or and increased
slope slope, see Figure 5.20. Figure 5.20 depicts the feasibility region of an application

135

5.5 Resource Reservation Analysis

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First vs Fixed Priority

Figure 5.18: Feasibility region in the (slope,∆)-space: EDF vs FP feasibility regions
in bolt. The application Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

scheduled with fixed-priority, and a server with slope = 0.8 and ∆ = 1. The colored
rectangle describes all the service provisioning lower than the amount provided by the
server. In that case it is the resource smaller than bdf = (0.8, 1). The intersection
among the two regions defines the new feasibility region for the application.

In case of multi-moded servers, a mode change is equivalent of having three different
servers, one at mode I and the second at mode II with two different constraints on the
feasibility region of the application. As demonstrated in the previous section, the
transition stage affects the application region by changing the resource provisioning. It
is then such as having another server sbf

T affecting the application feasibility region.
This is the third server.

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First vs Fixed Priority

Ι

Figure 5.19: Feasibility region in the (slope,∆)-space: EDF vs FP with different feasi-
bility regions. A feasible application under EDF not feasible under FP in case of server
applied. The application Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

136

fig/edf-fp.eps
fig/edf-fpServer1.eps

5.5 Resource Reservation Analysis

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Fixed Priority and Servers

FP feasible region Server

Figure 5.20: Feasibility region with FP in the (slope,∆)-space: feasibility region bounds
and a server at (0.8, 1). The colored region describe a lower resource provisioning by
servers with respect to 0.8, 1). The application Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

5.5.2 Space Solution Analysis

From the analysis of the application feasible region it is possible to infer both the
server/service requirements of a feasible multi-moded application and the application
requirements to cope with multi-moded servers.

1

SI

SII

ST

slope
slope1 slope2

∆

∆1

∆2

1

SI

SIIST

slope
slope1 slope2

∆

∆1

∆2

Figure 5.21: Mode transition in the (slope,∆)-space: an example of unfeasible tran-
sition together with an example of a feasible transition. The application Γ = {τ1 =
(0.5, 3), τ2 = (2, 8)}.

Difference among scheduling policies, in the (slope, ∆)-space are mapped into dif-
ferent feasibility region for the application as previously detailed. Equation 5.23 and
5.24 describe the feasibility regions for the applications in the (slope, ∆)-space Ω, as a
function of the application and the scheduling algorithm, Ω = f(Γ, sched). In particu-
lar, EDF has a bigger region than fixed priority; which means a well known concept to

137

fig/fpServerNew.eps
Pictures/Servers/space.eps
Pictures/Servers/space1.eps

5.5 Resource Reservation Analysis

the real-time community: applications feasible under EDF could not be feasible under
FP.

The server partitions the resource that has to be passed to the application, hence
it reduces the whole resource according to the server parameters and the scheduling
applied to the servers. It is then true that a server reduces the feasibility region
of an application which is obtained in the case of unlimited resources available. An
application which is feasible with the whole computational resource available could not
be feasible anymore once managed by a server. Moreover, the effect of a server applied
to an application are different with respect to the scheduling policies applied. A server
applied to a EDF scheduling could affect less the schedulability of an application, by
still keeping the application feasible. In case of FP feasibility regions, a server has more
chances to turn a feasible application into an unfeasible one; see Figure 5.19, where the
server applied keeps the application feasible in the EDF case, but not in the FP one.

A server that makes an application unfeasible has to be studied in order to see what
could be the countermeasure that would make the application feasible again i.e., the
use of other possible servers or changing its parameters, in order to keep the application
feasible, which is the main objective of our analysis.

Concerning multi-moded servers, the schedulability in the two steady states con-
ditions (old and new modes) does not guarantee the schedulability of the transition.
This means that the server mode change transition could result in a tuple (slope, ∆)
outside the feasibility region of the application even though the service guarantee of the
two steady states are inside that region. It is then an analysis of the feasibility region
and the transition guarantees to conclude about the feasibility of the application and
a multi-moded server. Figure 5.21 shows examples of feasible transition and an un-
feasible one with respect to a real-time application; because of the changing resource
reservation applications cannot be feasible anymore. We remind that the usual as-
sumption about mode change transition is that the component is feasible in its steady
states conditions. Which, in the server case, means that the server service guarantees
in stable conditions are inside the feasibility region of the server application.

The problem addressed in this dissertation considers the case in which the two
points corresponding to the server steady state modes fall in the feasibility region,
and the proposed analysis allows verifying the feasibility of the application also during
the transition phase, assuming it is performed with a given delay δ. In the case the
transition point falls outside the feasibility region, the delay delta can be used as a
design parameter to reach feasibility during the transition, if that is possible.

The servers provides service in a stair-case manner and not with straight lines as
with the bdf models. This means that the sbf extends the space of feasible solutions
making more cases feasible. The analysis with bounded-delay functions is pessimistic
because the bdf approximates the sbf with a linear lower bound. Thus, it results in
only sufficient conditions. A more accurate analysis would require a more complex
space solution. The feasibility region would be larger than the (slope, ∆) one but more
difficult to be managed. With a tighter bound the space of feasible solution (feasible
applications) increases, reducing the unfeasible region. Moreover, an application de-
rived within that space is assured to be feasible since sbf ≥ dbf. Instead, an application

138

5.5 Resource Reservation Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Earliest Deadline First and multi-moded Servers

Ι

ΙΙ

Τ

EDF feasible region
Mode I

Mode II
Mode transition

Figure 5.22: Feasibility in the (slope,∆)-space: application scheduled with EDF and
server changing from SI = (1, 2.5) to SII = (0.45, 0.5). The mode transition is unfeasible
with a maximum possible delay in the resource supply ∆ = 1.5. The application Γ =
{τ1 = (0.5, 3), τ2 = (2, 8)}.

outside that region is not feasible during the mode change, while it has to be chosen
to be feasible in the two mode as the main assumption.

Despite the more accuracy by analyzing the supply bound function, the slope, ∆)-
space resulting from the application of the bounded-delay approximation, is more easy
to investigate.

5.5.3 (slope, ∆)-space Sensitivity Analysis

Sensitivity analysis projects the distance from the feasibility region border to the com-
ponent parameters and describes metrics to evaluate the sensitivity of the feasibility
concept with respect to the parameter changes.

By applying the concepts form (28) the sensitivity analysis can be considered for
the (slope, ∆)-space. Once defined an application it is possible to take decisions about

• how much the feasibility is affected by the parameters?

• The parameters of the server mode by checking the feasibility requirements in
terms of slope and ∆. Which are feasible parameters for the server?

• Given a server, how far is an unfeasible server from the application feasibility
region?

• Exploited the differences among the server mechanism in terms of service provi-
sioning, which is the best mechanism for the assigned application and the assumed
scheduling policy?

Those are the main questions that the sensitivity analysis aim to answer. In the next
chapter we will give a particular example related to adaptive conditions.

Since the (slope, ∆) representation is an approximation of the supply bound func-
tion, the sensitivity analysis will offer only sufficient conditions. An accurate analysis

139

fig/edfServerMC.eps

5.5 Resource Reservation Analysis

can be done on the (slope, ∆)-space to see what are the differences between a precise
schedulability analysis with supply-bound function and an approximated one with the
help of bounded-delay functions.

With a partitioned system it is also possible to reason in the other-way-around:
choose an application or improve the one available on order to be feasible with respect
to the developed server. Once defined the space (representation space and feasible
region inside), a multiple approach is then possible: a) define the applications with a
given server through its feasible region; b) how far is an unfeasible application form
the given server?

In this dissertation we are interested in the server transitions among two working
modes. Once defined the server properties in terms of supply bound function and even
bounded-delay function at the steady states and along the mode transition; our interest
is to evaluate the feasibility or not of the server transition. Another interesting aspect
of the analysis is to define a feasible real-time application that copes with a changing
server. We leave this aspects to future works.

In the previous section we have derived the bounded-delay model of a server as
a function of the interval δ that the new mode has to wait before it can start. The
transition guarantees models a third server (the transition server) which bounded-delay
function (and consequently the supply-bound function) depends on such δs. We con-
sider the delay as the parameter where to apply sensitivity analysis; thus we investigate
the effects of mode transitions with another abstraction: the (slope, ∆)-space. This
way we can also derive feasible solutions for mode changing server.

The (slope, ∆)-space allows to model the application in terms of its feasibility re-
gion. With the dbf modeling it is possible to map each state of the application (mode
I, mode II and transition) in the space. The mode transition application is a fake ap-
plication, but since its resource demande is bounded by the transition demand bound
function dbf

T , it can be represented and studied in the (slope, ∆)-space. There will be
mode I, mode II and mode transition feasibility regions for an applications allowing to
verify in that space all the application conditions.

Concerning the servers, it exist the server in mode I and mode II which are two
spots in the (slope, ∆)-space, but also the mode transition which is represented by the
supply bound function, and consequently the bounded-delay function during the mode
transition.

5.5.3.1 Mode Changing Delay

Intra-server and inter-server analysis provides two bounds (δ♭, δ♯) for the delay δ. Both
those bounds have to be satisfied. A partitioned system with servers and applications
is feasible during mode transitions if δ ≤ δ♭ ∧ δ ≥ δ♯; the resulting in the region
Φ formerly defined. That region applies to the (slope, ∆)-space, and with that it is
possible to consider sensitivity analysis to the parameter δ in such space.

A server representing a point inside the feasibility region of an application means
that the application is feasible with such a server providing resource to it. This means
that the service provisioning slope slope is enough for the application and the delay
∆ does not affect the timing guarantees of the application. In case of multi-moded

140

5.5 Resource Reservation Analysis

servers, the assumption that the application is feasible in both the modes (mode I and
mode II) implies that (slopeI , ∆I) and (slopeII , ∆II) are inside the feasibility region
of the application. Instead, the bdf

T = (slopeT , ∆T) can reside outside that region
which means that too less resource is provided by the server during the transition
to guarantee the application timing requirements. This would make the application
unfeasible during the mode change. We have already seen how ∆T results from the
given delay δ and the server configurations (the servers involved by the mode change
as detailed by Equations 5.16 and 5.17).

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First vs Fixed Priority

Figure 5.23: Feasibility in the (slope,∆)-space: EDF vs FP and server with mode
change. 4 mode changes are represented with delay ∆T = 1, 1.5, 2, 3. The application
Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

Figure 5.19 shows an interesting case where the mode change is feasible in case of
EDF scheduling, while not for FP. In particular is the bdf

T that does not guarantee the
application, while the modes do as expected. Figure 5.23 instead, has represented 4
possible transitions. Given an application, the first with ∆T = 1 keeps the application
feasible for both FP and EDF scheduling policies applied. Both the second and the
third cases, ∆T = 1.5 and ∆ = 2 leave the application feasible only for EDF. The
fourth, ∆ = 3 is an unfeasible situation for both the scheduling cases.

Through the framework proposed we can also investigate the difference among
the possible transitions. Figures 5.24 and 5.25 show the differences among the two
transitions (in terms of ∆T) respectively with an EDF and a FP scheduling policy
applied. We notice how the delay ∆T is less in case of transitionB, as expected. It is
noticeably how ∆T does not depend on the scheduling policy applied.

Given an application, from the graphical analysis of Figure 5.24 and Figure 5.25 it
is possible to conclude less strict bounds to the server parameters in case of EDF with
respect to the FP case. The conclusion is general and does not depend on the kind of
the application provided.

We comment also the fact that the transition guarantee depends on the transition
order and not only on the two states (modes) involved. In case of transition from SI

to SII the effect is different than the transition form SII to SI thus resulting into two
different bdf

T . The order of the mode change (which mode is first) also affects the
delay it has to be waited by an application in order to receive the service.

141

fig/edf-fpServer.eps

5.5 Resource Reservation Analysis

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First and Servers

Ι

ΙΙ

ΤΑ

ΤΒ

EDF feasible region
Mode I

Mode II
Mode transition A

Mode transition B

Figure 5.24: Feasibility with EDF in the (slope,∆)-space: bounds to the server pa-
rameters in the two modes SI = (1, 2) and SII = (2.5, 3) and during the with η = 2.5.
TransitionA and transitionB are. The application Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Fixed Priority and Servers

Ι ΙΙ

ΤΑ

ΤΒ

FP feasible region
Mode I

Mode II
Mode transition A

Mode transition B

Figure 5.25: Feasibility with FP in the (slope,∆)-space: bounds to the server pa-
rameters in the two modes SI = (1.5, 2) and SII = (2.5, 3) and during the tran-
sition with η = 2.5. TransitionA and transitionB are represented. The application
Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

Example 5.5.1. Given a server S with possible periods PS (2.8, 3) and possible budgets
QS (2, 2.5). Assuming the server changing with a transition of kind transitionA and a
delay such that η = 1.3 time unit assigned by the intra-server and inter-server analysis.
The application is given and scheduled by EDF scheduling algorithm. The possible
transitions are

1. SI = (2, 2.8) and SII = (2.5, 3). In that case the transition is ruled by a bdf
T

with slopeT = min{0.71, 0.83} = 0.71, and ∆T = η + 3− 2.5 = 1.8.

2. SI = (2, 3) and SII = (2.5, 2.8). In that case the transition is ruled by a bdf
T

with slopeT = min{0.6, 0.89} = 0.6, and ∆T = η + 2.8− 2.5 = 1.6.

3. SI = (2.5, 3) and SII = (2, 2.8). In that case the transition is ruled by a bdf
T

with slopeT = min{0.83, 0.71} = 0.71, and ∆T = η + 2.8− 2 = 2.1.

142

fig/edfServer1.eps
fig/fpServer1.eps

5.5 Resource Reservation Analysis

4. SI = (2.5, 2.8) and SII = (2, 3). In that case the transition is ruled by a bdf
T

with slopeT = min{0.89, 0.6} = 0.6, and ∆T = η + 3− 2 = 2.3.

Figure 5.26 show the example with the four possible combination of the two server
parameters in case of tranitionA.

The same example can be obtained in case of transitionB, of course with a lower
∆T for each case due to the transition itself.

As we already mentioned, there are two main problems related to a server mode
change which concerns the application the server manages and the rest of the parti-
tioned system. A quick mode change could not affect much the application real-time
constrains, while it can violate the resource isolation created by the partitioned system
and jeopardize the scheduling of other servers. The solutions of the server mode change
problem cames from a trade-off among the two concurrent conditions, where the server,
the application and the whole system schedulability has to be guaranteed. As a re-
minder, by feasibility of the system in this case it is intended both the schedulability of
the servers in the sense we gave previously, and the schedulability of the applications
the server manages.

From the intra-server and inter-server feasibility analysis it has been derived how
the delay affects the system schedulability. The relation 5.22 defines the bounds for the
delay. The resulting interval represents the feasibility regionΦ for δ as all the posible
delays that keep the system feasible during the mode change. The region depends
on the set of servers composing the system, the applications and the servers directly
involved in the mode change.

The solutions to the mode changing problems require to find Φ and select there the
best δ according to certain requirements of the system. If is required a quick mode
change, it is chosen the smallest value within Φ, or in case it is required to apply less
resource possible during the change, than δmax in Φ is the solution to that problem.

The differences among the transitions determines different delays. It is then possible
to apply different kind of transitions in order to accomplish the delay requirements
of a system. In particular, if the allowed delays are small enough it is possible to
apply transitionB in case of server mode changes. If that is not possible (intra-server
analysis does not allow such a small delay) then the solution is a kind of transition like
transitionA.

The server mechanism is another degree of flexibility in the mode changing problem.
The mechanisms have different resource provisioning resulting in different Φ regions for
the delay. The appropriate server can be chosen in order to keep the system feasible
during the transition and satisfy the constraints of the problem, hence obtaining δ.

At last also the applications can be modified in order to find better Φ regions (better
in the sense of the problem which has to be solved), and fit better those regions.

All of these solution have to be applied in a mode change problem framework.

143

5.5 Resource Reservation Analysis

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First and Servers - case 1

Ι

ΙΙ

Τ

EDF feasible region
Mode I

Mode II
Mode transition

(a) Case 1

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First and Servers - case 2

Ι

ΙΙ

Τ

EDF feasible region
Mode I

Mode II
Mode transition

(b) Case 2

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First and Servers - case 3

Ι

ΙΙ
Τ

EDF feasible region
Mode I

Mode II
Mode transition

(c) Case 3

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Earliest Deadline First and Servers - case 4

Ι

ΙΙ
Τ

EDF feasible region
Mode I

Mode II
Mode transition

(d) Case 4

Figure 5.26: Four possible cases in the (slope,∆)-space depending on the combination
of the old mode and new mode of a mode changing server. The application Γ = {τ1 =
(0.5, 3), τ2 = (2, 8)}.

144

fig/edfServer1a.eps
fig/edfServer1b.eps
fig/edfServer1c.eps
fig/edfServer1d.eps

5.5 Resource Reservation Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Earliest Deadline First and multi-moded Servers

Ι

ΙΙ

Τ

EDF feasible region
Mode I

Mode II
Mode transition

Figure 5.27: Feasibility region in the (slope,∆)-space: maximum affordable delay for
a feasible transition in case of a server changing from SI = (1, 2.5) to SII = (0.45, 0.5)
and scheduled with EDF. The application Γ = {τ1 = (0.5, 3), τ2 = (2, 8)}.

5.5.4 Mode Change Resource Reservation

An example of mode change is illustrated in Figure 5.28 and Figure 5.29 for an ap-
plication with two periodic tasks, τ1 = (0.5, 3) and τ2 = (1, 8), handled by a server
changing from SI = (slopeI , ∆I) = (0.9, 2) to SII = (slopeII , ∆II) = (0.45, 0.5). The
EDF scheduling policy is applied. Supposing that the inter-server schedulability anal-
ysis proves a minimum transition delay δ♯ = 0, which means ∆♯

A = 1.25 and ∆♯
B = 0

respectively for transitionA and transitionB. From the feasibility analysis of the server
and its application we obtain ∆♭ = 1.88 that in case of transitionA correspond to
δ♭
A = 0.63, while for transitionB is δ♭

B = 10.63. The transitionA case results in a region
ΦA = [0, 0.63] while, the transitionB has ΦB = [0, 10.63]. Figure 5.28 shows the case of
transitionA and the feasible region for the delays δ in terms of bounded-delay function
delays ∆. Figure 5.29 shows the case of transitionB together with the fact that transi-
tionB is the best possible transition because it provides the widest interval of feasible
δ inside the application feasibility region. As a matter of fact the whole ΦB in terms
of ∆s stays inside the application feasibility region.

The figure also reports the two values ∆♭ and ∆♯ (derived from δ♭ and δ♯ through
Equation 5.16 or 5.17) which identify the range of transition delays that make the
application feasible. For this application, the maximum ∆ that can guarantee a feasible
transition is ∆ = 1.88, corresponding to a maximum transition delay of either δ =
0.63 or δ = 10.63, respectively for transitionA or transitionB . The delays have been
computed considering a mode change starting at the beginning of old mode period,
tMCR = tlast.

The proposed analysis can be used to find the best δ in accordance to a desired
policy that reflects the requirements of the system. The policy included in Algorithm 8
affects the selection of δ in Ψ. In particular, if the goal is to minimize the application
response time, then the minimum delay can be selected as δ = min{δ | δ ∈ Ψ}. If the
goal is to minimize the resource required during the transition (which could be relevant
for saving energy), then the maximum delay can be selected as δ = max{δ | δ ∈ Ψ}.

145

fig/edfServerMC1.eps

5.5 Resource Reservation Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

α

Earliest Deadline First and Multi-Moded Servers

I

II

∆♭
A

∆♯
A

Figure 5.28: Feasibility region: application scheduled with EDF and server changing
from SI = (slopeI ,∆I) = (1, 2.5) to SII = (slopeII ,∆II) = (0.45, 0.5). The application
has two tasks τ1 = (0.5, 3) and τ2 = (1, 8). The transitionA is represented, and the
segment describes ΦA for the ∆s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

α

Earliest Deadline First and Multi-Moded Servers

I

II

∆♭
B

∆♯
B

Figure 5.29: Feasibility region in the (slope,∆)-space: application scheduled with
EDF and server changing from SI = (slopeI ,∆I) = (1, 2.5) to SII = (slopeII ,∆II) =
(0.45, 0.5). The application has two tasks τ1 = (0.5, 3) and τ2 = (1, 8). The transitionB
is represented, and the segment describes ΦB for the ∆s

146

PicturesPaper/edfServerMC1.eps
PicturesPaper/edfServerMC2.eps

5.5 Resource Reservation Analysis

Summarizing, a mode change framework for resource reservations has different de-
grees of freedom for making feasible an unfeasible transition.

• Resource reservation parameters: the resource reservation parameters before and
after the transition affect the transition itself and can be set to make an unfeasible
transition feasible.

• Kind of transition: the different transition types determine different transition
delays because of their resource supply. In particular, transitionB provides a
larger service than transitionA, which means that a larger delay can be afforded
by the application when transitionB is applied. By selecting the abortion time
during the transition it is possible to modulate the solution in order to satisfy
the delay requirements of a system: if the allowed delays are small enough, then
transitionA has to be preferred; otherwise (if intra-server analysis does not allow
such small delays) transitionB has to be applied.

• The server mechanism: the particular server mechanism adopted for implement-
ing a reservation affects the resource provisioning, thus affecting the Φ region for
the delay. Hence an appropriate server can be chosen to keep the system feasible
during the transition and satisfy the constraints of the problem.

5.5.5 Case Study

We now present a case study of a multi-moded resource reservation with the EDF
scheduling policy applied. Let us consider two periodic servers S = (Q, P) charac-
terized by the following initial modes: SI

1 = (2, 4) and SI
2 = (5, 10). The first server

manages an application Γ1 composed by two tasks τ1,1 = (2, 20), τ1,2 = (5, 30) with rela-
tive deadlines equal to periods. The second server manages a single task τ2,1 = (6, 12).
At time t = tMCR = 2, S1 is required to change its parameters from SI

1 = (2, 4) to
SII

1 = (4, 8), while S2 remains unchanged SII
2 = SI

2 . In this case, the system is asking
server S1 to provide more resource with a larger period, but with the same bandwidth.
The second server guarantees the same resource provisioning to its application during
the system changes.

The transition bounded-delay functions for the server S1 result to be bdf
T
B =

(0.5, γ + 2) with ∆T
B = γ + 2 for transitionB, and bdf

T
A = (0.5, γ + 2) with ∆T

A = γ + 6
in case of transitionA applied.

The inter-server analysis provides a minimum delay δ♯ = 2 for guaranteeing the
feasibility of the other server S2, see Example 5.4.3 for more details about the compu-
tation of δ♯. In other words, adapting S1 no earlier than 2 time units from the mode
change request, the second server is not affected by the mode change and its resource
provisioning is guaranteed also during transitions. This translates into bounded-delay
functions with a delay ∆♯

B = 6 and ∆♯
A = 10, respectively for transitionB and transi-

tionA.
The intra-server analysis provides the maximum transition delay δ♭ that keeps the

served application feasible during the transition. That is, δ♭ = max{γ | bdf
T (t, γ) ≥

dbf
T (t)}−tMCR+tlast. For a transitionB it is δ♭

B = 12, while for transitionA it is δ♭
B = 8.

147

5.5 Resource Reservation Analysis

Hence, the feasibility regions is ΦB = [2, 12] for transitionB and ΦB = [6, 8] for
transitions of type transitionA. The optimal transition delay δ can then be chosen
within these intervals, based on the adopted system policy. In terms of ∆ the interval
is [6, 16] for transitions like transitionB, as represented by Figure 5.31. Figure 5.32
shows the case of transitionA with the region Φ translated into the segment for the
∆s, [10, 16]. Figure 5.30 shows that Γ1 is feasible in both modes of server S1 and the
bounded-delay functions requirements during the transitions.

0

5

10

15

0 10 20 30 40 50 60 70 80

dbf1

bdf
I
1

bdf
♯
A,1

bdf
♯
B,1

bdf
♭
A,1 = bdf

♭
B,1 = bdf

II
1

t

resource

Figure 5.30: Demand curves (dbf) of the application Γ1 and resource curves (bdf) for
both the transitions (transitionA and transitionB) and the steady states of server S1.

 0

 5

 10

 15

 20

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

α

Multi-Moded Server and Application

I

II
∆♭

B

∆♯
B

Figure 5.31: Feasibility region in the slope,∆)-space with EDF: bounds to server S1

parameters in case of transition from mode I, SI = (2, 4) to mode II, SII = (4, 8). The
feasibility region for the delay δ is derived from the maximum ∆T allowed, represented
by the segment. TransitionB is represented.

148

PicturesPaper/edfTestCaseB.eps

5.5 Resource Reservation Analysis

 0

 5

 10

 15

 20

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

α

Multi-Moded Server and Application

I

II
∆♭

A

∆♯
A

Figure 5.32: Feasibility region in the slope,∆)-space with EDF: bounds to server S1

parameters in case of transition from mode I, SI = (2, 4) to mode II, SII = (4, 8). The
feasibility region for the delay δ is derived from the maximum ∆T allowed, represented
by the segment. TransitionA is represented.

149

PicturesPaper/edfTestCaseA.eps

Chapter 6

Resource Adaptation

Static, expert-intensive approaches to real-time resource allocation have a proven track
record for programming embedded real-time control systems. They have a number
of drawbacks that make them inappropriate for programming applications in more
dynamic real-time environments such as multimedia workstations or home multimedia
systems. In particular, the underlying assumptions that the available resources are
fixed and known and that only a single application or set of cooperating applications
are being run do not hold.

Nowadays, dynamic real-time applications ask for real-time systems that can adapt
their behavior at run-time by changing their operating mode. In particular, our sce-
nario assumes that servers, who manages applications by supplying the resource they
requires, need to be reconfigured dynamically to adapt the resource reservations and
reflect the changes in the system or its environment. Such reconfigurations need to
be performed online without jeopardizing schedulability. It is therefore essential to
develop appropriate resource reconfiguration criteria and algorithms to manage the
criticality of the transition phase.

The limitation in the resource makes it impossible to concurrently execute large
task sets in the system. It is therefore desirable to apply strategies that can optimally
allocate the computational resource to the most demanding applications. In addition,
a static allocation of resources may not be the right solution in many dynamic sce-
narios. In certain cases it is desirable to manage computational resource in order to
dynamically adapt the system behavior to the application which are being executed.
For instance, static TDMA-based resource allocation allocates each application by the
same resource amount with no privileges for those applications which could require
more resources because executing in an high quality (or high consuming) mode. If the
resource allocation is adaptively reconfigured at the occurrence of application mode
changes, instead, those application will be privileged only when really needed.

As we will show in the rest of the thesis the idea is to develop resource reservation
mechanisms that allow system adaptation to changing conditions. What has been
investigated so far are distributed (see Section 6.2) and global (Section 6.1) solutions.

In case of distributed (or local) solutions each server decides when to activate its
new version evaluating its proper conditions. The rest of the system and its conditions
are not taken into account apart for schedulability conditions. This is equivalent of

150

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

having a server monitor (SM) that once a server requires a change, it provides the
server with the new set of parameters obtained guaranteeing the schedulability of the
whole system. The other server/component of the system remain unchanged. With
distributed solutions there are only active component, those that request to change.
Figure 6.1 depicts a server monitor. In this case the server monitor can apply an
acceptance test in order to see if the mode or transition is safe for the whole system
and the application the server manages. If it is not, the transition will not not allowed.

Global solutions instead, account for the whole system status and look for a global
optimal (or sub-optimal) solution to adapt the resource distribution to the new condi-
tions. The system components can change (event those not directly interested by the
change) to let the main change be possible. The system feasibility, even in this case,
is the major guarantee with the global solutions. We distinguish among

• active components, as those that require the change because their changing con-
ditions;

• passive components, as those that are required to change to let the active once
change;

• and the inactive component, as the components that remains unchanged.

In the future, we will investigate deeper cooperative solutions, where more complex
SMs will drive the transition by changing passive components in order to let the active
once change more promptly. The improvements in the mode transition stage come form
the resource that can be reclaimed form the passive components. That is the way we
intend cooperative solutions. There will be comparative study among the two possible
solutions in order to verify the performances of global and distributed methods. Finally
trade off solutions can be required depending on the specific scenarios. In this case the
SM will explore more complex transitions (with intermediate steps) to let any king of
transition and new mode be reachable.

In this last part of the thesis we outline adaptive resource reservation mechanisms
presented as an example of adaptive TDMA server and a global resource distribution
mechanism for wireless sensor networks. The solutions proposes two adaptive resource
reservation mechanisms which applies to specific scenarios.

6.1 Adaptive Bandwidth Allocation in Wireless Sen-

sor Networks

Wireless Sensor Networks are natural candidates for pervasive monitoring applications.
A common scenario consists of tens or hundreds of nodes that monitor environmental
phenomena of interest on large and scarcely accessible areas. Generally, WSN nodes are
powered by batteries and communicate through limited-bandwidth wireless protocols
such as IEEE 802.15.4 (92). Therefore, energy and bandwidth are scarce resources that
must be controlled to keep the system operational for as long as it is possible.

151

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

CPU

Server Manager

Manager

S1

S2

S3

α1

α2

α3

β̂S1 β̂S2 β̂S3

(QS1
, PS1

)

(QS2
, PS2

)

(QS3
, PS3

)

β̂ ′S1

β̂ ′S2

β̂ ′S3

Figure 6.1: Server monitor that manages server mode changes. The feedback from
the servers describes the new condition for the servers, in this case the new resource
requirements.

Recent advances in technology have made it possible to use WSN for more com-
plex resource demanding applications such as multimedia streaming. In such context,
low quality audio and video data are captured by the nodes, elaborated locally and
even transmitted through the network. For instance, Kulkarni et al. (91) proposed
a multi-tier heterogeneous camera based surveillance network called SensEye; Sensor
Andrew (1) is a campus wide infrastructure deployment of heterogeneous WSN motes
for sensing and control at Carnegie Mellon University. They make use of CMUcam3
(42) vision sensors for computer vision applications like human tracking.

However, the limitation in bandwidth and energy makes it impossible to concur-
rently transmit large amount of data in the network. It is therefore desirable to apply
strategies that can optimally allocate bandwidth to the most demanding nodes. In
addition, a static allocation of bandwidth may not be the right solution in many dy-
namic scenarios. In certain cases it is desirable to manage energy and bandwidth to
dynamically adapt the system behavior to the phenomena which are being monitored.
For instance, static TDMA-based transmission allocates each potential transmitter by
the same bandwidth amount with no privileges for those nodes close to the occurring
phenomena. If the bandwidth allocation is adaptively reconfigured at the occurrence
of interesting events, instead, those nodes will be privileged only when really needed.
For energy matters the same considerations apply: it is useless to let a device node
transmit high data volumes without any event notification content. A node very far
from the event can be kept in sleep mode without any disruption of the global appli-

152

./Pictures/ModeChangeManager.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

cation whereas the closer nodes must be kept on and transmitting at the maximum
resolution. Dynamic nodes exhibit different operative modes where the mode change
is forced by the occurrence of events.

With the paper (136) we propose a component-based architecture for WSN. The
network consists of a set of components organized in a hierarchical structure that
mimics the underlying cluster-tree network topology. A component can either be a node
or a cluster of nodes. Each component is able to automatically reconfigure itself and the
underlying nodes upon the occurrence of events, such as detection of an environmental
situation of interest, the low-battery level of a node, the insertion of a new component,
or the removal of an existing component. We develop reconfiguration algorithms which
seek to optimize the overall quality level provided by the WSN.

The IEEE 802.15.4 protocol is the most popular standard for WSNs and specifies
the Medium Access Control (MAC) sub-layer and the Physical Layer of Low-Rate
Wireless Personal Area Networks (LR-WPANs) (92). According to the protocol, a
WSN can be operated in the so-called beacon-enabled mode, with the nodes connected
in a star topology. In this mode the star makes use of a superframe that enables the
real-time capabilities of the standard by using a dynamic TDMA.

Although a lot of work has been carried out in real-time communications over
the IEEE 802.15.4, the proposed approaches mainly tackle the problem of point-to-
point communication within the star. Relevant examples are: iGAME (89), where the
authors propose a network calculus methodology to study the bandwidth allocation
problem and provide analysis in case of Round-Robin policy; optimal GTS schedul-
ing (GSA) (122) that try to minimize the total number of unallocated time-slots by
applying an EDF-based strategy.

An important issue for WSNs is the capability to cope with reactive paradigms, i.e.
change the bandwidth allocation according to the event appearing in the environment.
An Adaptive GTS Allocation Scheme has been proposed in (80) to dynamically adapt
the bandwidth assigned by the coordinator to other nodes in order to match their
actual requirement. This algorithm is focused on fairness and minimum average latency
and does not consider any real-time communication constraints. Another example of
adaptive systems is BACCARAT (50), where the authors propose an adaptive solution
designed to provide real-time constraints and maximize event detection efficiency under
variable network load conditions.

Starting from the star topology it is possible to create more complex scenarios.
This is the case of the so called cluster-tree topology, where different coordinators
interconnect each other in a hierarchical way.

The IEEE 802.15.4 protocol supports the cluster-tree topology, nevertheless it is
not clear how to accomplish this in case of beacon-enabled Personal Area Networks
(PANs). Among the works addressing this problem we mention (90) where Koubaa
et al. present a time division mechanism and propose a methodology to achieve fair
distribution of bandwidth. An adaptive beacon scheduling scheme has been proposed
by Cho et al. (49), making use of power control and cluster grouping.

Other works moved their focus on the real-time routing problem for the cluster-tree
topology. Trdlička et al. (164), gave an optimal solution for the off-line problem.

153

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

6.1.1 System Model

In (136) we consider a classical WSN monitoring application with real-time require-
ments. The system consists of a set of sensor nodes that collects data about events
appearing in a large area. The collected data are therefore packed in messages and
sent towards a single collection point called sink, with bounded transmission delay.

Among the several possible network configurations adopted in WSNs, we consider
hierarchical structure for its flexibility and scalability. At the lowest level we consider
star topologies where a Control Coordinator (CC) manages either End-Devices (EDs)
to form a leaf cluster or other coordinators at the lower levels; in the latter they are
named PAN coordinators. In order to obtain larger scale networks, the star topology
can be extended by interconnecting clusters in a hierarchical way, thus creating what
is called a cluster-tree topology.

In Figure 6.2 the leaves of the tree represent the EDs (ndi) with sensing capabilities
that are monitoring the environment. All the other nodes are CCs Ck, and have the
main functions of maintaining the topology and allocating the bandwidth that was
assigned by its upper layers to its children in a hierarchical structure. The bandwidth
allocated to the leaf nodes will be used to transmit data messages. To simplify the
presentation, and without loss of generality, we assume that the CCs are not sensing,
thus their assigned bandwidth can be entirely redistributed to the children. This
hierarchical topology results in a hierarchical bandwidth allocation problem.

To properly react to external events, the ED may operate in one of M different
operating modes. Each mode involves a different requirement in terms of energy and
bandwidth. The operating mode of an ED is controlled by its CC. In (136) we assume
that all nodes execute the same application code. Therefore, all of them can operate
in one of the M possible modes.

We denote by Γk the k-th leaf cluster; Γ = {Γ1, · · · , ΓLC} is the set of all leaf
clusters, with LC the total number of leaf clusters. Finally, Π is the set of all control
coordinators. The notation is illustrated in Table 6.1.

We are addressing the problem of dynamically allocating and reconfiguring the
bandwidth assigned to each cluster in the hierarchy. The corresponding software mod-
ule is part of the MAC layer. We also focus our analysis at the cluster level not
addressing the node details. How the bandwidth is distributed among the single nodes
and the policies applied within the clusters is left to the next works.

In this case study we consider adaptive resource reservation mechanisms (the com-
munication resource) and the analysis take care of the retrievement and the adaptation
of the resource whenever the system conditions change. The transitions are not specif-
ically considered so that the real-time guarantee cannot be explicitly assured, but we
have developed methods in order to keep the transition interval at the minimum possi-
ble. This reduces the effects of the transition on the predictability of the system. Such
a solution can still offer real-time guarantees in case of systems with large latency such
as the wireless sensor networks with message communication.

To mention that, in (50) we have also addressed the transition problems with band-
width allocations in case of WSNs. In that situation (at a lower abstraction level than
(136)) the real-time constraints are guaranteed during any phase of the system.

154

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

Sink

Coordinator Coordinator

cluster

level0

level1

nd1 nd2 ndN

Figure 6.2: WSN hierarchical architecture with end devices, control coordinators and
clusters elements.

6.1.2 Real-Time Components

The network nodes can be seen as basic computational units that implement services
with temporal requirements. In the same way, clusters are aggregation of units that
can be seen as a unit. Therefore, it is natural to apply a component-based approach
to the network model.

In our scenario, the network components implement functional services with tem-
poral requirements, expressed by a Real-Time Interface (RTI) (57; 74). Figure 6.3
depicts the component and the component interface abstraction. To model RTI we
make use of an approach similar to the Real-Time Calculus (RTC) (159): a Real-Time
Interface of a generic network component has input and output variables related to
event streams (arrivals) and resource availability (services).

Arrival Curves. The RTC describes the trace of an event stream by means of
a cumulative function R(t), defined as the workload amount of the event stream in
the time interval [0, t). While R describes a concrete trace of an event stream, a
tuple α(∆) = [αu(∆), αl(∆)] provides an abstract event stream model of bounds on
admissible traces of an event stream. The upper arrival curve αu(∆) is the upper bound
on the workload of events monitored in any time interval of length ∆, and the lower
arrival curve αl(∆) is the lower bound. We refer to (159) for a detailed discussion.

The concept of arrival curve α(∆), unifies many common timing models of event
streams. In our case α models the transmission event stream of each ED node, where
the workload is intended as the payload of each transmission event. The timing re-
quirements D of such a transmission arrival curve is the maximum delay affordable by
a transmission.

Service Curves. the concrete resource availability can be described by a cumula-
tive function S(t), that is defined as the number of available resources, e.g., processor
cycles or bus capacity, in the time interval [0, t). A tuple β(∆) = [βu(∆), βl(∆)] of
upper and lower service curves provides an abstract resource model. βu and βl are

155

Pictures/hier2.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

Ci Control Coordinator node
ndi End Device node
Γk k-th leaf cluster
Γ set of all the leaf clusters
Π set of all control coordinators
α component transmission arrival curve
αd component resource demand curve
β component service curve
µj j-th operating mode of an ED
Ek cluster k energy level
Ek,j cluster k mode j energy level
qndi

ED ndi quality level
qj mode j quality level

xk,j number of nodes of cluster k in mode µj

Nk total number of nodes of cluster k
M number of modes per node
LC number of leaf clusters

Table 6.1: System notation

respectively the upper and lower bound to the available resources in any time interval
of length ∆.

The service curve abstraction β(∆) models any possible resource supply in the
interval domain, including the bandwidth provisioning by the control coordinators in
WSNs.

Real-Time Calculus throughout transmission arrival and service curves is able to
model the classical WSN non-determinism by providing bounds to the transmission
event stream and the service provisioning. By guaranteeing the bound the analysis is
feasible for all the possible value within the bounds themselves.

ParagraphReal-Time Interfaces The RTIs, as applied in (136), are special instances
of assume/guarantee interfaces tailored towards guarantees on the delays of events
(57; 161; 169). In our framework, an ED ndi of the k-th cluster is described by an
input/output interface which specifies in input (αni

, Dndi
) as the node transmission rate

and its timing requirement, and βA
ndi

to define the node bandwidth request as the service
output interface to other components. Leaf-cluster CC Ck, together with upper layers
coordinators, have βA

Ck
and (βCk

, βG
Ck

), with βCk
the actual bandwidth provided and

βG
Ck

the guaranteed bandwidth level, as the input and output interfaces respectively. A

leaf-cluster coordinator is connected with many nodes; βA
Ck

and (βCk,ndi
, βG

Ck ,ndi
) are the

interfaces of Ck respectively to upper layer coordinators and ndi. Figure 6.3 shows the
abstraction of a generic component and its real-time interface where time requirements
are translated into bandwidth requirements.

156

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

α, D

β

αA, DA

α, D

αG, DG

βA β βG

Figure 6.3: Generic (ED or CC) real-time component and its interface abstraction.

6.1.2.1 Component Model

In the component-based WSN system we are modeling, the components are the ED
nodes and the CC nodes. The parameters describing the i-th ED ndi are

• the energy Endi
, that measures the actual energy level of the node, e.g. trans-

mission energy or other models;

• the quality qndi
, describing a quality index of the node services, e.g., transmission

quality or other metrics; this is a scalar number, for example in interval [0; 100],
with 0 denoting the minimum and 100 the maximum satisfaction for the end-user;

• αndi
and Dndi

which is the transmission arrival curve and its maximum delay;

• βndi
, as the allocated bandwidth for transmission.

The component model is affected by the actual ED component operative mode.
Thus, the node ndi at its j-th mode µj has

αndi
(µj) = αndi,j

= (αu
ndi,j

, αl
ndi,j

)

βndi
(µj) = βndi,j = (βu

ndi,j
, βl

ndi,j
)

Endi
(µj) = Endi,j

qndi
(µj) = qndi,j,

with the resulting node model (ndi, j) = (Endi,j, qndi,j, αndi,j, βndi,j
) as a function of the

mode µj .
A reasonable WSN multi-mode problem could be the one in which the ED can

operate in 3 different modes: µ3 corresponds to a low quality and energy consump-
tion operating mode; µ2 as medium-quality working mode which means medium rate
sensing, transmission and energy consumption; µ1 for high-quality node functionality
which means high transmission rate and consequently high energy consumption.

q(µ1) ≥ q(µ2) ≥ q(µ3)

E(µ1) ≥ E(µ2) ≥ E(µ3)

α(µ1) ≥ α(µ2) ≥ α(µ3)

β(µ1) ≥ β(µ2) ≥ β(µ3).

157

Pictures/nodeComponent.eps
Pictures/componentInterface.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

The CC model is simpler than the ED one and does not depend on the component
mode. The k-th control coordinator component Ck is described by the bandwidth it
receives from the upper layer βk, and the one it passes to the lower level components
{βk,v : ∀v ∈ all the CC nodes composing the k-th cluster}.

6.1.2.2 Composability Criteria

In real-time systems, the composability of temporal interfaces is equivalent to the
classical feasibility concept: two real-time components are composable if the time re-
quirements of the two components are guaranteed after their composition.

Node composability A sensing node ndi with an transmission event stream re-
quires a certain amount of bandwidth βA

ndi
to transmit the output messages on time.

The minimum resource amount required to satisfy the node transmission request is

αd
ndi

def
= αndi

(∆−Dndi
) = βA

ndi
, which is also the minimum feasible stream transmission

rate which represents also the minimum resource amount required to satisfy the node
transmission request. βA

ndi
is the resource demand of node ndi. The node ndi receives

βndi
(∆) bandwidth amount from its coordinator Ck: βndi

(∆) = βCk,ndi
.

Lemma 6.1.1 (Node Composability Criteria). A generic node ndi is composable to a
generic coordinator Ck if

∀ ∆ βA
ndi

(∆) ≤ βG
Ck ,ndi

(∆)

Proof. The proof is a straightforward application of the composability definition by
Wandeler et al. (160).

The composability condition of Lemma 6.1.1 guarantees the components service
compliance together with the transmission event deadlines.

In the same way, it is possible to state a composability criteria for the coordinators.

Lemma 6.1.2 (Coordinator Composability Criteria). A control coordinator Cg is com-
posable to an upper level control coordinator Ck if

∀ ∆ βA
Cg

(∆) ≤ βG
Ck

(∆)

Proof. The demonstration comes from the former Lemma 6.1.1 and the component
composability definition (160) for RTIs.

The bandwidth composability guarantees the real-time properties of the compo-
nents after their composition.

Figure 6.4 shows an example of interface composition of components with hierar-
chical architecture.

158

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

ndi

αndi

βA
ndi

βG
Ck

βA
Ck

βG
Ck

Ck Cg

Figure 6.4: Interface composability between a node ndi, its coordinator Cg and the
coordinator of the coordinator Ck.

6.1.3 Optimization Problem

The problem of allocating bandwidth to the clusters and assigning a mode to each ED
can be modeled as an optimization problem. The goal is to maximize a global quality
index that depends on the operating modes of the ED. Constraints are on energy and
on the bandwidth requirements of the components, as described in Section 6.1.2.2.

An optimization problem maximizing a generic quality index in a WSN has to
consider both topological and functional aspects of the application to be executed.
These aspects are coded in the optimization problem as a set of constraints. In our
case, we consider dynamic constraints: whenever the system has to react to an external
event, the set of constraints needs to be updated due to parameter changes (energy
and quality); a new problem must be solved to find a solution consistent with the new
conditions.

In terms of notation, we define xk,j as the number of nodes of cluster k operating in
the j-th mode, M = 3 as the number of possible modes; xk = [xk,1, xk,2, xk,3] describes
the distribution of the nodes of the cluster among the modes. Nk is the number of
nodes of the cluster k and βk as the bandwidth received by the k-th cluster. We
assume also that each cluster has the same quality index q = [q1, q2, q3], with qj the
quality associated to the j-th mode.

Our proposal formulates the bandwidth allocation and mode assignment as two
separate single-objective optimization problems, instead of a single problem with two
objectives.

6.1.3.1 Bandwidth allocation

First, we start with the bandwidth allocation problem that considers the part of the
system topology without the EDs.

We introduce the concept of cluster weight to calculate the proportion of bandwidth
to allocate, thus accommodating design preferences based on the geographic location
of the clusters. This results in the cost function

c · β
T
, (6.1)

with each component ck of c = [c1, . . . , cN] being the weight of cluster k and β =
[β1, . . . , βN]. By ()T it is intended the transposition operation; in particular it applies
to arrays and transposes a row array into a column array.

159

Pictures/composability2.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

Constraints. At the coordinator level enforcing the network topology requires the
incoming bandwidth for each cluster to be the sum of the incoming bandwidths of the
child clusters/nodes. Given a cluster k, the topology constraint is

∀∆

Nk
∑

g=1

βk,g(∆) ≤ βk(∆). (6.2)

In order to operate all the nodes of the kth-leaf cluster, it demands a minimum
bandwidth requirement of Nkα

d
k,3 when all of its nodes are in lowest operating mode

µ3. On the other hand, the maximum bandwidth demand of the kth-leaf cluster is
bounded by Nkαk,1 where all the nodes operate in the highest operating mode µ1. As a
remainder, αd

k,3 and αd
k,1 denote respectively the low-mode and high-mode bandwidth

resource demand of any ED node of the k-th leaf cluster, assuming the node bandwidth
requests equal for any node within the cluster. This second topology constraint has to
bound the leaf cluster bandwidth to the minimum and maximum bandwidth amount
requested by the ED nodes composing the cluster

∀k ∈ Γ Nkα
d
k,3 ≤ bk ≤ Nkα

d
k,1. (6.3)

6.1.3.2 Mode Assignment

In order to seek for the optimal mode assignment at any leaf cluster, the bandwidth
assigned to the leaf cluster has to be known first.

At the leaf cluster level we associate to each mode a quality, and we want to
maximize the number of nodes in the higher quality modes, so our value function is:

q · xT . (6.4)

Constraints. For any leaf cluster, the topology constraints define the number of
EDs per cluster and enforce a feasible solution for the hierarchical topology of the
cluster itself. For the k-th leaf cluster, the number of nodes is given by the topology
of the network, so that the sum of the components of x is constrained to be equal to
the number of nodes in the cluster:

M
∑

j=1

xk,j = Nk. (6.5)

Since an ED component transmits its information upwards in the logical network topol-
ogy, it requires bandwidth from its CC. The bandwidth constraints describe within the
leaf cluster, the dependency among the bandwidth request and availability as:

∀∆ αd
k(∆) · xT

k ≤ βk(∆), (6.6)

where for a generic leaf cluster k each mode j has its proper transmission demand
curve αd

k,j, and βk is the bandwidth provided by the cluster coordinator; αd
k =

[αd
k,1, α

d
k,2, α

d
k,3].

160

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

To take into account the energy consumption of the EDs and to control the energy
assigned to each cluster we introduce an additional constraint:

Ek · x
T
k ≤ Ek, (6.7)

where Ek = [Ek,1, Ek,2, Ek,3] models the energy consumption per mode of all the nodes
and Ek is the maximum amount of energy that the k-th cluster is allowed to consume.

6.1.3.3 Linearization

Using αd and β curves as constraints, requires a substantial amount of computation
to solve a non-linear optimization problem. In order to obtain a linear problem we
approximate Constraints (6.2), (6.3), and (6.6) using linear bounds to the arrival and
service curves.

In case of arrival curves, the bounds are a∗∆ ≤ αd(∆) ≤ a♯∆; and b∗∆ ≤ β(∆) ≤
b♯∆ for the service curve. In a conservative approximation, we use a∆ with a = a♯ to
bound the transmission bandwidth requirement αd, and b∆ with b = b∗ or b♯ to bound
service curves. In particular, b∗ is applied to approximate the β at the right hand side
of Equation 6.2, while b♯ is applied to the left hand side βs.

The linearized bandwidth constraints are a · xT ≤ b, and
∑Nk

g bk,g ≤ bk.
The solution obtained with the simplifications above becomes an approximated one,

but makes the problem solvable with standard linear optimization techniques. See (68)
for a discussion on the loss introduced by this simplification.

Referring to the topology notation in Section 6.1.1 the bandwidth allocation opti-
mization problem, with the bandwidth constraint linearization becomes:

max c · b
T

(6.8)

subject to

∀h ∈ Π

Nh
∑

g=1

bh,g ≤ bh.

∀k ∈ Γ Nkak,3 ≤ bk ≤ Nkak,1

The linearized mode assignment optimization problem ∀ Γk ∈ Γ is

max qk · x
T
k (6.9)

subject to

M
∑

j=1

xk,j = Nk

ak · x
T
k ≤ bk

Ek · x
T
k ≤ Ek.

We first solve the global bandwidth allocation problem (6.8), then we solve the mode
assignment problem (6.9) for every leaf cluster.

161

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

The flexibility obtained by decoupling the problem into two sequential optimization
problems allows to model an increased set of WSN applications. Nevertheless, our
approach can be easily extended by applying other objective functions taking into
account different WSN conditions.

6.1.4 Optimization Algorithms

We broadly classify the algorithms to find a solution to the problem into design (off-
line) and execution (on-line) algorithms.

1. The off-line or design stage algorithm computes an optimal initial condition for
the WSN system; the initial mode per each node is obtained by using the simplex
algorithm on the optimization problem. The initial problem at the design stage
is not constrained by energy or quality requirements, since we assume that at the
beginning all the nodes have the same battery level and quality index.

2. The on-line or execution stage algorithm is employed upon occurrence of any
dynamic event: whenever there is an occurrence of an event at a location mon-
itored by a leaf cluster, it could trigger a change in the quality requirement of
the nodes attached to that cluster, thus asking for a change in the demanded
bandwidth. The on-line problem has to quickly provide a sub-optimal feasible
solution allowing the WSN to promptly change mode within a short delay.

6.1.4.1 Off-line Optimization

The off-line solution for mode assignment is solved using the two single objective func-
tions, one for the bandwidth allocation and the other for mode assignment as explained
in Section 6.1.3. The Global Mode Assignment (GMA) algorithm is based on the lin-
earized equations of the optimization model and it is described below.

Algorithm 9 Global Mode Assignment (GMA) Algorithm: off-line optimal feasible
configuration assignment of the WSN

Input: System as nodes architectures, node modes, node constraints.
Output: Run-time initial feasible configuration of the WSN: (x0

k, b
0
k) ∀Γk ∈ Γ.

1: Solve bandwidth allocation optimization problem (6.8).

2: b
0

= [b0
1, · · · , b

0
LC].

3: for Γk ∈ Γ do
4: Solve mode assignment optimization problem (6.9) for Γk.
5: x0

i .
6: end for

The solution is obtained with the help of the simplex algorithm. The result of the
GMA algorithm is used as an initial configuration to set up the WSN. At this stage,
all the leaf clusters have equal importance and the bandwidth assignment is based on
the number of nodes within each cluster which determines the lower and upper bound
for the incoming bandwidth.

162

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

6.1.4.2 On-line Problem

Since it is not feasible to run the optimal bandwidth and mode assignment problem
on-line, we have developed algorithms to quickly achieve feasible sub-optimal solutions
to the optimization problem.

We consider two types of transitions that can trigger the request for on-line op-
timization. The first transition is the occurrence of a physical event that increases
the importance of that specific leaf cluster. The second transition is due to a de-
crease/increase in the available energy, which forces the nodes to work in a low operat-
ing mode, thus consuming less energy. In both cases, the event can request a change to
a higher quality mode (which requires more bandwidth), or a change to a lower quality
mode (which frees some bandwidth).

We propose two on-line algorithms for bandwidth reallocation and two on-line al-
gorithms for mode reassignment. We start by describing the bandwidth reallocation
algorithms.

6.1.4.3 Bandwidth Re-Allocation Algorithms

The on-line algorithm is invoked by occurrence of an external event. In this case, the
system has to decide the importance of the event and accordingly increase the weight
(which can also be considered as priority) assigned to that leaf cluster. Depending on
the coverage of the search for bandwidth reclamation we propose two algorithms.

The Local Bandwidth Re-Allocation Algorithm (LBRA) tries to reallocate
the bandwidth among the sibling clusters according to the new weight assigned to each
of its child cluster. The weight assigned to the child cluster determines the fraction
of the parent’s bandwidth assigned to that particular cluster. Since the bandwidth is
reclaimed locally within the sibling clusters, this is a local reclaiming algorithm. The
complexity of the search is reduced at the expense of a potential loss of overall system
quality.

The Global Greedy Bandwidth Reclaiming Algorithm (GGBRA) is an on-
line global bandwidth search algorithm. Any occurrence of an external event triggers
the algorithm, which in turn updates the weight assigned to each child cluster. The
algorithm considers weight as a cluster importance. Instead of reallocating the band-
width among the sibling clusters, this algorithm first tries to update the mode for a
certain number of nodes.

The event can trigger a request for a higher quality mode or for a lower quality
mode. The algorithm has to find a way to obtain more bandwidth from the sibling
clusters. If it is not possible to do so, the algorithm goes up in the hierarchy triggering
a request for more bandwidth to the upper layers.

6.1.4.4 Mode Re-assignment Algorithms (MRA)

The mode reassignment algorithms try to update the modes of the nodes attached to
those specific leaf clusters which were affected due to on-line bandwidth reclamation
algorithms. In case the cluster gains more bandwidth due to higher importance, the
nodes must be moved to higher quality mode and vice-versa. The mode assignment

163

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

Algorithm 10 Local Bandwidth Re-Allocation Algorithm (LBRA)

Input: System: parent cluster, leaf cluster.
Output: Bandwidth Re-allocation βk ∀k ∈ Π, Mode Re-assignment.
1: if Energy drops below certain threshold then
2: Change the nodes to lower mode
3: Calculate available bandwidth at the parent cluster
4: Propagate the available Bandwidth and buffer it at the PAN Coordinator
5: else if Occurrence of an important event and buffered bandwidth available at the

PAN Coordinator then
6: Increase the weight and priority of the leaf cluster
7: Calculate the required energy to move the nodes to higher mode
8: Reclaim the buffered energy from the PAN Coordinator
9: else if Occurrence of an important event and no buffered bandwidth at the PAN

Coordinator then
10: Increase the weight of the leaf cluster
11: Divide bk among the sibling clusters such that it satisfies constraints (6.2), (6.3).
12: Assign new bk.
13: end if
14: Call Mode Re-assignment Algorithm - MRA

during the off-line configuration was managed by solving the simplex algorithm at every
leaf cluster. Due to the high computation complexity of simplex algorithm we propose
two alternative on-line algorithms for this purpose.

This problem is similar to a bin packing problem. In this case, we need to distribute
bk bandwidth among Nk nodes of a leaf cluster Γk in order to achieve the maximum
quality. Since the total system quality depends on the local quality, we solve this
problem as a local problem. However, an optimal solution to this local mode assignment
problem does not mean that we have a global optimal mode assignment. We show this
fact in Section 6.1.6 by comparing the total quality achieved by this algorithm with
the GMA algorithm.

The GReedy Mode Assignment Algorithm (GRMA) is based on the greedy
solution similar to the bin packing problem. We first try to allocate as many nodes
as possible in the higher quality mode, such that the required bandwidth is less than
the reallocated bandwidth. Any remaining bandwidth is then assigned to lower quality
modes in a greedy manner.

The Optimal Hyper-plane based Mode Assignment Algorithm (OHMA)
provides an optimal solution to the local mode assignment problem. Instead of solving
the simplex algorithm, this algorithm considers the intersection of the total number
of nodes constraint (6.10), with the available bandwidth, the energy constraints (6.11)
and (6.12) respectively. The intersection is a hyper-plane, which in case of three-
dimensional (three modes) problem is a line segment, and the solution is one of the
two end points of the intersecting line segment as shown in Figure 6.5. The algorithm

164

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

Algorithm 11 Global Greedy Bandwidth Reclaiming Algorithm (GGBRA)

Input: System: parent cluster, leaf cluster.
Output: Bandwidth Re-allocation. bk ∀Γk ∈ Γ.
Output: Mode Re-assignment.
1: if Energy drops below certain threshold then
2: Change the nodes to lower mode
3: Calculate available bandwidth at the parent cluster
4: Propagate the available Bandwidth and buffer it at the PAN Coordinator
5: else if Occurrence of an important event and buffered bandwidth available at the

PAN Coordinator then
6: Increase the weight and priority of the leaf cluster
7: Calculate the required energy to move the nodes to higher mode
8: Reclaim the buffered energy from the PAN Coordinator
9: else if Occurrence of an important event and no buffered bandwidth at the PAN

Coordinator then
10: Increase the priority of the leaf cluster
11: Calculate requiredb required to move n nodes to higher quality mode.
12: while parentNode 6= PAN do
13: for Γk ∈ Γ & reclaimed bk ≤ required bk do
14: if theni nodes in high quality modes available
15: move i nodes to lower quality mode.
16: Calculate reclaimedbk

17: end if
18: end for
19: end while
20: end if
21: if reclaimedbk ≥ requiredbk then
22: Move n nodes of leaf cluster to higher mode.
23: end if
24: Call MRA

selects one of the two vertices depending on the quality vector, which would point
towards higher total quality vertex.

The constraints of each three-dimensional problem (local or composed one) are

x1 + x2 + x3 = N (6.10)

E1x1 + E2x2 + E3x3 ≤ E (6.11)

a1x1 + a2x2 + a3x3 ≤ b. (6.12)

In particular, equation x1 + x2 + x3 = N states that the solution has to be a point on
that plane, while E1x1+E2x2 +E3x3 ≤ E represents an upper bound to the bandwidth
constraint a1x1 + a2x2 + a3x3 ≤ b as detailed by Figure 6.5.

The intersections among the constraints is a set of vertexes v where the optimal
solution can be found. In v the solution vertex has to be chosen by comparing the cost

165

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

a1x1 + a2x2 + a3x3 ≤ b

E1x1 + E2x2 + E3x3 ≤ E

x1 + x2 + x3 = N
b

E

q

x1

x2

x3

Figure 6.5: Cluster optimization problem: hyper-planes representation.

function q · xT computed for each of the vertexes. The vertex with the maximum cost
function is the optimal solution and (x1, x2, x3) are the optimal mode assignments for
the cluster.

As an example Figure 6.6 shows the case with the x1 + x2 + x3 = N and a1x1 +
a2x2 + a3x3 ≤ b constraints. The intersection among them and the planes x1 = 0,
x2 = 0 and x3 = 0 (x1, x2, x3 ≥ 0 are implicit constraints of the problem) results in 3
vertices

P1(x1 = 0)







x1 = 0
x2 = N − b−Na2

a3−a2

x3 = b−Na2

a3−a2

P2(x2 = 0)







x1 = N − b−Na1

a3−a1

x2 = 0
x3 = b−Na1

a3−a1

P3(x3 = 0)







x1 = N − b−Na1

a2−a1

x2 = b−Na1

a2−a1

x3 = 0

The set of vertexes v is

v = (v1, v2, v3) = (P1, P2, P3).

In v there are the solution candidates from which extract the optimal one.
We have shown that by the analysis of the solution space together with the vector

directions it is possible to express the admissible solutions of the leaf cluster optimiza-
tion problem in a closed formula and apply it on-line.

166

Pictures/3Denergy.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

a1x1 + a2x2 + a3x3 ≤ b

x1 + x2 + x3 = N
b

q

x1

x2

x3

Figure 6.6: Optimal hyper-plane-based mode assignment.

6.1.5 Example

In order to explain the bandwidth allocation and mode assignment with respect to dif-
ferent algorithms, we exemplify a simple dynamic topology reactive to physical events.
This configuration is set up for the WSN topology as shown in Table 6.2. The leaf node
C3 to C7 are the coordinators of WSN which communicate with the EDs responsible
for monitoring the physical events. In order to assign the initial bandwidth allocation
and modes, we run the off-line GMA algorithm. At this stage we consider that all
the clusters Ck have equal importance and set the weights ck equal to one. In this
case study we have µ1 as a high quality mode and µ2 , µ3 as medium and low quality
operation mode respectively. The α [4 2 1], E [4 2 1] and q [8 4 1] coefficients are set
according to the mode quality.

Step 1: off-line optimization. We allocate an initial root bandwidth of 800
units for the entire system and run the off-line GMA algorithm. Every leaf cluster is
assigned a maximum energy of 8000 units so that we can ignore the bandwidth and
mode constraints arising due to limited energy.

The results of GMA are shown in Table 6.2. The total quality for this configuration,
i.e

∑

Γk∈Γ
ckq · x

T
k , is 1429.

Step 2 (GGBRA Algorithm). The configuration obtained by GMA algorithm is
deployed in a physical environment with mode settings and network bandwidth values
set according to the results obtained in Step 1. At this stage, there is an important
event at leaf cluster 3, which triggers a change in the system state. According to
the importance of the event, we increment the weight assigned to cluster 3 by one:
c3 = c3+1 = 2. The system either initiates the GGBRA algorithm or LBRA algorithm.
Table 6.3 shows the change in configuration, i.e bandwidth reallocation and mode
reassignment, according to GGBRA.

167

Pictures/3Dnoenergy.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

b1,c1:1 b2,c2:1

b3,c3:1

b4,c4:1

b5,c5:1 b6,c6:1 b7,c7:1

C0

C1 C2

C3 C4 C5 C6 C7

50 50 150 100 50

Mode C3 C4 C5 C6 C7

µ1 16 16 41 0 0
µ2 33 33 108 0 0
µ3 0 0 0 100 49

b1 b2 b3 b4 b5 b6 b7

649 150 133 133 383 100 50

Table 6.2: Offline GMA Algorithm; initial weights ck = 1

The GGBRA moves 10 nodes in C3 from µ2 to µ1. This is because C3 has gained
more importance due to the occurrence of an external physical event. The GGBRA
reclaims this bandwidth from cluster C4 which is a sibling cluster with lower weight.
Since it was possible to reclaim the required bandwidth from a sibling cluster, the
GGBRA exited without moving up in the topology and searching for more complex.
The total quality for this configuration is 1718. This increase in quality with respect
to the initial total quality reflects the fact that a cluster with more importance has
received more bandwidth.

Step 3 (LBRA Algorithm).
Similar to GGBRA, LBRA modifies the weight assigned to C3, c3 = 2. Now LBRA

reallocates the bandwidth among the sibling clusters according to its weight. Then, it
executes the mode reassignment algorithm to reassign the modes according to the new
bandwidth. Since, this algorithm is local, the reconfiguration only affects the sibling
clusters, whereas the other cluster components within the topology remains unaffected
by this change. The result of LBRA algorithm is shown in Table 6.5. The bandwidth
reallocation moves more bandwidth to cluster C3 by reclaiming it from C4 and C5.
The total quality as a result of LBRA algorithm is 1752 which is greater than the total
quality achieved by GGBRA algorithm.

Step 4 (GMA Algorithm)
Only for comparison, we show the result of GMA algorithm by assigning the same

weight assigned to C3 as in case of LBRA and GGBRA algorithm. Table 6.5 shows

168

Pictures/case2.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

b1,c1:1 b2,c2:1

b3,c3:2

b4,c4:1

b5,c5:1 b6,c6:1 b7,c7:1

C0

C1 C2

C3 C4 C5 C6 C7

50 50 150 100 50

Mode C3 C4 C5 C6 C7

µ1 26 16 41 0 0
µ2 23 16 108 0 0
µ3 0 17 0 100 49

b1 b2 b3 b4 b5 b6 b7

649 150 150 116 383 100 50

Table 6.3: Online GGBRA Algorithm as a result of an event at C3

Mode C3 C4 C5 C6 C7

µ1 49 16 41 0 0
µ2 0 33 41 0 0
µ3 0 0 67 100 49

b1 b2 b3 b4 b5 b6 b7

649 150 200 133 316 100 50

Table 6.4: Online LBRA Algorithm as a result of an event at C3

this bandwidth reallocation and mode reassignment with off-line GMA algorithm at
the instance of physical event at cluster C3.

Mode C3 C4 C5 C6 C7

µ1 49 12 11 0 0
µ2 0 36 138 0 0
µ3 0 0 0 100 49

b1 b2 b3 b4 b5 b6 b7

649 150 200 133 316 100 50

Table 6.5: Offline GMA Algorithm as a result of an event at C3

The GMA algorithm runs an off-line simplex algorithm which globally re-distributes
the bandwidth in order to get an optimal result. In this case the bandwidth is re-

169

Pictures/case2.eps

6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks

distributed among the sibling clusters of C3 without effecting other clusters, due to the
effect that C6 and C7, which have lower importance, are already having all its nodes
in lowest operating mode. The total quality obtained by GMA is 1813 which is higher
than the quality obtained by the on-line algorithms.

6.1.6 Simulations

In this section we describe the performance of different algorithms with respect to the
total quality of the WSN. By the total quality we mean the aggregate of number of
nodes in each mode for every leaf cluster Γk.

∑

Γk∈Γ
ckq ·x

T
k where ck is the importance

of the k-th cluster. The total quality function is quite general and with its parameters
allows to model most of the quality function that real applications want to pursue.

The simulation study was performed in MATLAB. A topology data structure was
modeled in a matrix form to hold the WSN topology. The topology structure included
the coordinator to end-device relationships and the number of end devices assigned
to each subcluster. The structure maintained the energy levels, weights and quality
parameters for the leaf clusters. The global optimization algorithm for bandwidth and
mode assignment was developed to dimension the WSN topology for different available
bandwidth, energy and total number of end devices. These initial results were then
used by online algorithms described in Section 6.1.4 to run the simulation and study its
effect on the total system quality by redistributing the assigned bandwidth and modes
according to an occurrence of a simulated event.

We show the analysis for a fixed topology as described in Section 6.1.5. We compare
the online algorithms with the global optimal algorithm as described in Section 6.1.4.
The graph in Figure 6.7 compares all three algorithms against the total number of
sensing nodes in the WSN. We keep the energy assigned to each cluster and total
bandwidth of the network fixed. The energy value is selected such that it does not
affect the bandwidth constraints, i.e, all the nodes can operate in maximum mode
with sufficient available energy. In each of three algorithms the total quality increases
with the number of nodes up to a certain point. This is because the total available
bandwidth is more than sufficient for all the nodes to operate in the highest mode
and we have maximum quality. There after the mode selection depends on the applied
algorithms up to a certain point. In this range, it can be seen from the figure that
the global optimal algorithm always gives better total quality compared to the on-line
algorithms. After a saturation point, increasing the total number of nodes does not
increase the total quality. This is due to the fact that our analysis helps us to determine
the maximum number of nodes with which we can guarantee a minimum bandwidth
to every node within the network.

Figure 6.8 shows the comparison among the total network quality values obtained
with different algorithms. The total bandwidth and the number of nodes in the system
is fixed; we can see how increasing energy allows nodes to operate in higher modes and
hence use more bandwidth. Energy directly affects the maximum allowed bandwidth
for every cluster, so as the energy increases the bandwidth increases and more nodes
can operate in higher modes. This can be seen in the figure where increasing energy
results in increasing total quality. This trend can be observed up to a certain point

170

6.2 Resource Adaptation with TDMA Servers

0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

Total Number of Nodes

T
o

ta
l Q

u
al

it
y

Online LBRA
Online GGBRA
Offline GMA
Online LBRA
Online GGBRAOffline GMA

Energy per Cluster=8000
PAN Bandwidth = 1800

Quality [9 5 4]

Quality [8 4 1]

Figure 6.7: Number of Nodes vs Total Quality.

200 400 600 800 1000 1200 1400
1000

1500

2000

2500

3000

3500

4000

Energy per Leaf Cluster

T
o

ta
l Q

u
al

it
y

Online LBRA
Online GGBRA
Offline GMA
Online LBRA
Online GGBRA
Offline GMA

Quality [9 5 4]

Quality [8 4 1]

PAN Bandwidth = 1800
Total End Devices = 400

Figure 6.8: Energy per Cluster vs Total Quality.

where any further increase in cluster energy cannot increase the assigned bandwidth
due to the constraint of Equation 6.6 constraint. After this saturation point the total
quality remains almost unchanged.

The results illustrated clearly show the complexity of adaptive resource management
in case of large systems. Those systems can be even the case of nowadays hierarchical
embedded systems. Besides, with the work in (136) it has been proposed efficient
solutions to complex problems and mostly it has been shown the direction to be taken
in order to get even more efficient solutions.

The work here presented has been published in (136).

6.2 Resource Adaptation with TDMA Servers

The server architecture paradigm has been seriously considered in the past years for
its ability to separate the scheduling concerns between the system and the application

171

Pictures/NodesVsQuality.eps
Pictures/EnergyVsQuality.eps

6.2 Resource Adaptation with TDMA Servers

levels.
A server mechanism is strictly connected with the resource partition idea, where a

shared resource, e.g. CPU computation time, is used by several applications. Servers
are used to isolate the temporal behavior of real-time tasks through resource reserva-
tions (116). Abeni and Buttazzo (5) introduced a bandwidth reservation mechanism
(the Constant Bandwidth Server - CBS) that allows real-time tasks to execute in dy-
namic environments under a temporal protection mechanism, so that the server never
exceeds a predefined bandwidth, independently on the actual requests of the server
tasks.

Server models can be classified into event-driven servers: the servers are driven by
the application requirements. The CBS and sporadic server (147) are typical examples.
And time-triggered servers: the server resource supply is driven by a predefined timing
pattern that depends only on the server properties. An example is the Time Division
Multiple Access (TDMA) server where the resource is periodically partitioned (167).
In particular, a TDMA server assigns time slots to its applications that repeat each
cycle.

Nowadays, dynamic real-time applications ask for real-time systems that can adapt
their behavior at run-time by changing their operating mode: the computing envi-
ronment and the available resource of a system may change over time. For example,
adding a new task into the system at runtime may result in a reduction of the comput-
ing resources being allocated to the existing tasks. Moreover a change in the operating
mode of an application, e.g., from start-up to normal, or from normal to shut-down,
may also demand re-allocation of the computing resources among the tasks. That and
many other scenarios require flexible workload management and resource allocation.

Whereas a server manages an application by supplying the resource it requires,
adaptive applications must rely on adaptive servers to meet their changing resource
requirements. Servers need to be reconfigured dynamically to adapt the resource reser-
vations and reflect the changes in the system or its environment. Such reconfigurations
need to be performed online without jeopardizing schedulability. It is therefore essen-
tial to develop appropriate resource reconfiguration criteria and algorithms to manage
the criticality of the transition phase.

6.2.1 Models

In this section, we introduce the basic modeling techniques that will be used for the
analysis of the proposed scheduling server. Our techniques are based on the framework
for Modular Performance Analysis with Real-Time Calculus (MPA-RTC) (43; 159).
This is a compositional framework for system-level performance analysis of distributed
real-time systems based on Network Calculus (51; 93). It analyzes the flow of event
streams through a network of processing and communication resources in order to
compute worst-case backlogs, end-to-end delays, and throughput.

172

6.2 Resource Adaptation with TDMA Servers

A General Event Stream Model Application tasks are activated by the arrivals
of events. The timing characteristics of event arrivals from the input streams are
described abstractly with arrival curves. The tuple α(∆) = [αu(∆), αl(∆)] of upper
and lower arrival curves provides an upper and a lower bound on the number of events
that arrive in any time interval of length ∆. If R[s, t) is the cumulative function that
denotes the number of events that arrive in the time interval [s, t) , then the following
inequality holds

αl(t− s) ≤ R[s, t) ≤ αu(t− s) ∀s < t,

where αu(∆) = αl(∆) = 0 for ∆ ≤ 0. Arrival curves substantially generalize tradi-
tional event stream models such as periodic, periodic with jitter, and sporadic. Often
the domain of arrival curves are workload units. Event-based arrival curves can be
converted to workload-based arrival curves by scaling with the best-case/worst-case
execution demand of events. In (136), we make use of the workload-based interpreta-
tion and assume that each event has a fixed execution demand. More general concepts
for characterization of these units are discussed in (115).

A General Resource Model Processing and communication resources are also
represented abstractly. Their availability is described by a tuple β(∆) = [βu(∆), βl(∆)]
of upper and lower service curves which provide an upper and a lower bound on the
available service in any time interval of length ∆. The service is expressed in a suitable
workload unit that match the one of the arrival curve, such as number of cycles for
computing resources or bits for communication resources. If C[s, t) denotes the amount
of workload units available from a resource in the time interval [s, t), then the following
inequality holds:

βl(t− s) ≤ C[s, t) ≤ βu(t− s) ∀s < t,

where βu(∆) = βl(∆) = 0 for ∆ ≤ 0. In the next sections service curves will be
used to express the resources supplied by a server to an application, and the resources
demanded by an application from a server.

Processing Model and Analysis In real-time systems, event streams are typically
processed by a sequence of HW/SW components. In the framework of MPA-RTC such
processing or communication components are modeled by abstract performance compo-
nents that act as curve transformers in the domain of arrival and service curves, where
the transfer function depends on the modeled processing semantics. By connecting the
inputs and outputs of components and constructing a network of abstract performance
components, MPA-RTC can model complex applications and analyze them for worst-
case backlogs, end-to-end delays, and throughput, for details see (43). The framework
supports analysis for various scheduling policies such as fixed priority, EDF, first-in
first-out, generalized processor share, TDMA, scheduling servers, and others.

173

6.2 Resource Adaptation with TDMA Servers

Schedulability of an Application An application is schedulable if its real-time
requirements are satisfied by the system. Using MPA-RTC it is possible to compute
the minimum resource demand of an application as a single service curve βl, for details

see (172; 173). Then, the system needs to provide a resource supply βl that is greater
or equal to the demanded one, in order for the application to be schedulable. This can
be expressed as:

βl(∆) ≥ βl(∆) ∀∆ ∈ R
≥0. (6.13)

This is the schedulability condition of an application with a single operating mode. Dur-
ing runtime however, adaptive applications change between different operating modes
which have different resource demands. Therefore, for each operating mode i of an
application, the system needs to satisfy a different schedulability condition:

βl,i(∆) ≥ βl,i(∆) ∀∆ ∈ R
≥0 ∀i. (6.14)

6.2.2 Framework for Adaptive Servers with Guarantees

In this section, we give an overview of a framework with adaptive resource reserva-
tions. There are many scenarios for the use of such a framework and many different
ways to realize it. We focus on the scheduling servers and their properties. In our
framework, applications share a common processor using servers and we refer to them
as Adaptive Servers with Guarantees (ASG) as they guarantee resource reservations
and can be reconfigured dynamically while still providing a guarantee even during the
reconfiguration.

We consider a uniprocessor system that runs a set of applications. Each application
is scheduled on an individual ASG server. The servers provide resource reservations and
guarantee isolation between applications. Applications can be of arbitrary complexity
and they may even have their own schedulers, as in hierarchically scheduled systems
(170). An ASG server is only concerned with guaranteeing a minimum service supply to
its application. The system has a single Server Manager that can control the parameters
of all servers (such as their budgets and period) and is able to communicate with the
applications in order to accommodate their changing resource requirements.

The overall system framework is illustrated in Figure 6.9.

The Adaptive Server with Guarantees Servers are scheduled statically by a
TDMA scheme. For each server a slot of fixed size Q called budget is reserved in
the TDMA time-wheel. A server is activated, i.e., its budget becomes available, when
the slot of the server arrives in the TDMA time-wheel. All servers in the system
are activated periodically with the same period P which equals to the cycle of the
TDMA. Servers can have different budgets but always a common period. An ASG
server is denoted with the tuple (Q, P). A schedule of four ASG servers is illustrated
in Figure 6.10.

Budgets are always given to applications regardless of whether they use them or
not, like in a traditional TDMA schedule. In the following discussion, we assume

174

6.2 Resource Adaptation with TDMA Servers

ASG 1 ASG 2 ASG N

APPL. 1 APPL. 2 APPL. N

EDF FPFIFO

CPU

Server Manager

. . .

Figure 6.9: Overview of a system where the CPU is shared by applications through
multiple ASG servers.

ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1

t

period P

budget for server ASG 1

Q1

free budget

QF

Figure 6.10: Schedule for four ASG servers.

that context switch overheads take negligible time but they can be trivially added to
our analysis. The description of an ASG server can be summarized in the following
definition.

Definition 6.2.1. An ASG server (Q, P) guarantees to an application access to a
shared resource for Q > 0 time units every P > 0 time units, where Q ≤ P .

The total utilization for a system with N ASG servers is defined as:

U =

∑N
i=1 Qi

P
, (6.15)

as the sum of the single server utilizations Qi/P . Such a system is schedulable when
the total utilization is smaller or equal to 1:

U ≤ 1. (6.16)

When the total utilization is less than 1, there is some unused budget in the system,
QF , called the free budget. We suppose that all ASG servers are scheduled from the
beginning of every period one after the other, and the free budget is always at the
end, as illustrated in Figure 6.10. The free budget may be given to non real-time
applications on the basis that it can always be reclaimed by the system. The free
budget is essential in our framework during reconfigurations as it will be shown in
Section 6.2.3.

175

Pictures/systemOverview.eps
Pictures/schedulingASG.eps

6.2 Resource Adaptation with TDMA Servers

Resource Supply of an ASG An ASG server (Q, P) may not have access to the
CPU for a time interval ∆ that is upper bounded by P − Q. After this interval, the
server will have guaranteed access to the resource for Q time units. Therefore, an
ASG server cannot guarantee resource access for any interval of size 0 ≤ ∆ ≤ P − Q.
However, it guarantees service of S(∆− (P − Q)), in any interval (P −Q) ≤ ∆ ≤ P ,
where S is CPU speed, e.g. cycles per time unit. Without loss of generality, we assume
that S = 1, as, all parameters in the system can be normalized according to this speed.
Then the minimum resource supply of an ASG server (Q, P) in any time interval ∆
can be lower bounded by the following function:

βQ,P (∆) = max

(⌊

∆

P

⌋

Q, ∆−

⌈

∆

P

⌉

(P −Q)

)

, (6.17)

or more compactly as:

βQ,P (∆) = sup
0≤λ≤∆

{

λ−

⌈

λ

P

⌉

(P −Q)

}

. (6.18)

The minimum resource supply for an ASG server (Q, P) is illustrated in Figure 6.11.

ASG(Q,P)

t

period

P

budget

Q

QP - Q
βQ,P

∆

#
 p

ro
ce

ss
o

r
cy

cl
e

s

ASG(Q,P) ASG(Q,P)

Figure 6.11: Resource supply of an ASG server (Q,P).

The minimum resource supply function in (6.18) is actually a lower service curve
as known from Network and Real-Time Calculus (51; 93; 159). Service curves are
abstract representations for the availability of processing and communication resources.
A service curve β(∆) gives a lower bound on the available service in any time interval
of length ∆ > 0 where for ∆ ≤ 0, β(∆) = 0. The service is usually expressed in a
suitable workload unit such as number of cycles for computing resources or bits for
communication resources.

Performance Analysis Application tasks are activated by the arrivals of events.
The timing characteristics of event arrivals are described abstractly with arrival curves
as known from Network and Real-Time Calculus. The arrival curve α(∆) denotes an
upper bound on the number of events that arrive in any time interval of length ∆ > 0
where for ∆ ≤ 0, α(∆) = 0. Arrival curves substantially generalize traditional event
stream models such as periodic, periodic with jitter, and sporadic. Often the domain
of arrival curves are workload units. Event-based arrival curves can be converted
to workload-based arrival curves by scaling with the best-case/worst-case execution

176

Pictures/betaASG.eps

6.2 Resource Adaptation with TDMA Servers

demands of events. The units of the arrival and service curves used in an analysis need
to be the same. In (155), we use the workload-based interpretation and assume that
each event has a fixed execution demand. More general concepts for characterization
of these units are discussed in (115).

Now given the minimum resource supply of an ASG server and a characterization
of the activation stream of the task, we can compute the worst-case response time
(WCRT) for the task. To this end, we use results from Network and Real-Time Calculus
where for a resource supply characterized with a service curve β and an input stream
characterized with an arrival curve α, the WCRT of an event from the stream is the
maximum horizontal distance between the arrival and the service curves computed as
follows:

sup
λ≥0
{inf{τ ≥ 0 : α(λ) ≤ β(λ + τ)}} , Del(α, β). (6.19)

Example 6.2.2. To illustrate this let us consider Example 5.1.4 from Section 5.1.
Consider server SB in Old Mode which is an ASG server with budget Q = 5 msec and a
period P = 10 msec. The respective service curve can be computed with equation (6.18).
It serves a single periodic task τB with a period of 5 msec and WCET of 2 msec.
The WCRT of the task computed with equation (6.19) is shown in Figure 6.12a. The
computed WCRT is equal to the one observed on the trace in Figure 5.7.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

∆ [msec]

#
 p

ro
ce

ss
o

r
cy

cl
e

s

τ
B

 : α

S
B

 : β
5,10

WCRT = 7 msec

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

∆ [msec]

#
 p

ro
ce

ss
o

r
cy

cl
e

s

S
B

 : β
5,10

τ
B

 : α(∆−D)
D = 7 msec

a)

b)

Figure 6.12: Server SB and task τB WCRT analysis (a) and schedulability condition
(b).

Schedulability An application is schedulable if its real-time requirements are satis-
fied by the system. If we consider the case of a single task, we may have the requirement
that all activations are processed within a relative deadline D. Given (6.19), this is
expressed as Del(α, β) ≤ D. Inverting it w.r.t. β, we can compute a lower bound

177

Pictures/wcrtDemandCombined.eps

6.2 Resource Adaptation with TDMA Servers

on the minimum resource demand required to meet the deadline requirement. This is
expressed as follows:

β(∆) ≥ α(∆−D) ∀∆ ∈ R
≥0. (6.20)

In other words, the minimum resource demand has a lower service curve that equals
to β(∆) = α(∆−D).

By using previous results on demand bound functions by Baruah et al.(17) and
interface-based design by Wandeler et al.(170) such a task is schedulable if a resource
can supply service that is larger or equal to the demanded one. For an ASG server
(Q, P), schedulability would mean that:

βQ,P (∆) ≥ β(∆) ∀∆ ∈ R
≥0 (6.21)

where βQ,P is computed with (6.18).
In the case of task τB from Example 5.1.4, it is schedulable with a relative deadline

D = 7 msec by server SB with Old Mode parameters (5, 10). This can be seen in
Figure 6.12b where the service curve of server SB is above the shifted arrival curve of
task τB which expresses the resource demand of the task.

The same schedulability condition applies not only for single tasks, but even for
complex applications as we can compute the minimum resource demand of an applica-
tion as a single service curve β, for details see (170).

Schedulability during a Reconfiguration A reconfiguration may change the server
parameters such as their budgets and period from one mode to another. We consider
a single reconfiguration. For a system with N ASG servers before a reconfiguration
they operate with parameters (QO

i , P O), 1 ≤ i ≤ N , (for Old Mode), and after the
reconfiguration with parameters (QN

i , P N), 1 ≤ i ≤ N , (for New Mode). We assume
that the system is schedulable in Old Mode and New Mode separately, i.e., condition
(6.21) is satisfied by assumption for all servers in Old Mode:

βQO
i ,P O(∆) ≥ βi(∆) ∀∆ ∈ R

≥0 ∀i,

and for all servers in New Mode:

βQN
i ,P N (∆) ≥ βi(∆) ∀∆ ∈ R

≥0 ∀i.

During a reconfiguration or the changing from one set of server parameters to
another, the system should not suffer a degraded performance. Let us consider the two
problems described in Section 5.1. To prevent isolation violations each server should
be able to guarantee a service curve during a reconfiguration. To prevent deadline
violations each server should be able to guarantee a service curve that is sufficiently
large during a reconfiguration.

Let us denote as β̃i(∆) the service provided by an ASG server during time intervals
∆ that span Old Mode, the Reconfiguration, and New Mode. In order to prevent a
degraded performance during a reconfiguration we need to have for all servers that:

β̃i(∆) ≥ min{βQO
i ,P O(∆), βQN

i ,P N (∆)} ∀∆ ∈ R
≥0 ∀i. (6.22)

178

6.2 Resource Adaptation with TDMA Servers

The above condition ensures that each server guarantees during a reconfiguration at
least the minimum of the services guaranteed in Old and New Modes. This implies
that each application served by an ASG server during a reconfiguration is guaranteed
that it will not violate the larger of the deadlines from Old and New Modes.

To illustrate this, consider server SB from Example 5.1.4. During the transition
from Old Mode to New Mode if it were able to meet condition (6.22), then the WCRT
of task τB would have been at most the maximum of the WCRTs from the two modes
which is 8 msec, and it would not have experienced the WCRT of 9 msec. This is
illustrated in Figure 6.13.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

∆ [msec]

p

ro
ce

ss
o

r
cy

cl
es

β
5,10

β = min{β
5,10

,β
6,12

}
WCRT = 8 msec

β
6,12

τ
B
: α

~

Figure 6.13: Condition (6.22) can guarantee a WCRT of 8 msec for task τB during the
reconfiguration in Example 5.1.4.

6.2.3 Algorithms and Analysis

In this section, we classify the scenarios for feasible resource reconfigurations and pro-
vide schedulability analysis for each of them to show that they meet condition (6.22)
with proofs available in (154). The proposed algorithms are implemented in the server
manager and executed by it. Initiation of a reconfiguration can be done by an applica-
tion in order to request a different resource reservation, or by the system manager in
order to achieve better resource allocation. The proposed algorithms work regardless
of what the reason for reconfiguration is.

Reconfigurations that do not require change of period have simple feasibility condi-
tions and they do not require any pre-computed information except budgets and period
as the decision for performing them can be made online. For the case of changing pe-
riods, conditions are much more involved as we will see, and some parameters need to
be pre-computed and stored in the Server Manager to be used online.

We differentiate between reconfigurations that do not change the period of the
servers, i.e., P O = P N , and those that do, i.e., P O 6= P N . The possible reconfiguration
scenarios are summarized in Table 6.6.

Notation. The time of the k-th activation of server (Qi, P) is denoted as si,k.
The time when the free budget starts is sF,k. An activation frame k contains the k-th
activations of all servers and the free budget. The time when activation frame k starts
is the activation time of the first scheduled server (Q1, P) denoted as s1,k and it ends
when the same server is scheduled again s1,k+1. When we would like to differentiate
between any of the parameters and indicate that they belong to the Old Mode, or the

179

Pictures/reconfConditionExample.eps

6.2 Resource Adaptation with TDMA Servers

Table 6.6: Reconfiguration Scenarios

Remove a server
Decrease of a budget

P O = P N Add a server
Increase of a budget

Increase of period P O < P N

P O 6= P N Decrease of period P O > P N

New Mode, we will add the superscripts O or N , respectively. In the Old Mode, all
activation frames have the same length which equals to the period, P O = sO

1,k+1 − sO
1,k

for frames k in the Old Mode, unless otherwise stated. Similarly for the New Mode.
Algorithms that change the period of servers will require an intermediate phase

called Reconfiguration where budgets and period will be different than the ones in
Old and New Modes. Parameters belonging to the Reconfiguration will carry the
superscript R when necessary. The notation is illustrated in Figure 6.14.

t

PO

Old Mode

PR

Reconfiguration

QN
F

sN
1,k+2

New Mode

sN
i,k+2 sN

F,k+2

QN
iQR

i

sR
F,k+1sR

i,k+1sR
1,k+1

QR
FQO

FQO
i

sO
1,k sO

i,k sO
F,k

PN

......

Figure 6.14: Notation. Three activation frames where activation frame k belongs to
the Old Mode, frame k + 1 to the Reconfiguration, and frame k + 2 to the New Mode.

No Change of Period Here for brevity we do not differentiate between P O and P N

but refer to the period as P . In these scenarios the last activation frame of the Old
Mode which we denote as k is followed immediately by the first activation frame of the
New Mode denoted as k + 1.

Removing an Existing ASG Removing a server from the schedule means that in
the Old Mode, it has budget QO > 0, and in the New Mode, its budget is QN = 0.
The budgets of all other servers are unchanged. This is an operation that can always
be performed since it decreases the utilization of the system by QO/P , and increases
the free budget, QN

F = QO
F + QO.

Algorithm 12 describes removing server (QO
i , P) from a schedule with N servers.

When the server is removed, activations of all preceding servers are unchanged while
activations of succeeding servers are shifted earlier by the removed budget. This is
illustrated in Figure 6.15 where the activation times of servers (QN

3 , P) and (QN
4 , P)

have been shifted to the left by QO
2 in New Mode, and QO

2 has been used to increase

180

Pictures/notation.eps

6.2 Resource Adaptation with TDMA Servers

the free budget. The dashed boxes show where servers (QO
3 , P) and (QO

4 , P) would
have been scheduled if there were no reconfiguration.

Algorithm 12 Removing an ASG

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: P ⊲ Current period
Input: (QO

i , P) ⊲ Server to be removed

Output: sN
j,k+1, 1 ≤ j ≤ N − 1 ⊲ Schedule in first frame (k + 1) of New Mode

1: for j ← 1 to N do

2: if j < i then

3: sN
j,k+1 ← sO

j,k + P

4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P −QO
i

6: end if

7: end for

Q1

t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2

Old Mode New Mode

Figure 6.15: Removing server (QO
2 , P) from a schedule of four ASG servers.

Theorem 6.2.3. Removing server (QO
i , P) from a schedule of N servers using Al-

gorithm 12 satisfies condition (6.22) for all other servers in the system as each of
them gets at least a guaranteed service during the reconfiguration of β̃j ≥ βQj ,P ,
1 ≤ j ≤ N, j 6= i.

Proof. All proofs are omitted and can be found online in a technical report (154).

Decreasing the Budget of an Existing ASG Decreasing the budget of a server
means that in Old Mode, the server has budget QO > 0, and in New Mode, its budget
is 0 < QN < QO. The budgets of all other servers are unchanged. This is an operation
that can always be performed since it decreases the utilization of the system by (QO−
QN)/P , and increases the free budget, QN

F = QO
F + (QO −QN).

Algorithm 13 describes decreasing the budget of server (Qi, P) from QO
i in Old Mode

to QN
i in New Mode in a schedule of N servers. In the first frame when the budget

is decreased, activations of all preceding servers are unchanged while activations of
succeeding servers are shifted earlier by the amount of decrease of budget. This is
illustrated in Figure 6.16 where the activation times of servers (Q3, P) and (Q4, P)
have been shifted earlier in New Mode by (QO

2 −QN
2), and (QO

2 −QN
2) has been used

to increase the free budget. The dashed boxes show where servers (Q3, P) and (Q4, P)
would have been scheduled if there were no reconfiguration.

181

Pictures/removingASG.eps

6.2 Resource Adaptation with TDMA Servers

Algorithm 13 Decreasing the budget of an ASG

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: P ⊲ Current period
Input: (QO

i , P) ⊲ Server to be modified with Old Mode parameters

Input: (QN
i , P) ⊲ Server to be modified with New Mode parameters

Output: sN
j,k+1, 1 ≤ j ≤ N ⊲ Schedule in first frame (k + 1) of New Mode

1: for j ← 1 to N do

2: if j ≤ i then

3: sN
j,k+1 ← sO

j,k + P

4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P − (QO
i −QN

i)

6: end if

7: end for

Q1

t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2 - QN

2
Old Mode New Mode

QN
2

Figure 6.16: Decreasing the budget from QO
2 to QN

2 in a schedule of four ASG servers.
The activation times of servers (Q3, P) and (Q4, P) have been shifted earlier in New
Mode by (QO

2 − QN
2), and (QO

2 − QN
2) has been used to increase the free budget. The

dashed boxes show where servers (Q3, P) and (Q4, P) would have been scheduled if there
were no reconfiguration.

Theorem 6.2.4. Decreasing the budget of a server from (QO
i , P) to (QN

i , P) in a
schedule of N servers using Algorithm 13 satisfies condition (6.22) for all servers in the
system. Unchanged servers get at least a guaranteed service during the reconfiguration
of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j 6= i. For the decreased server, this is β̃i ≥ βQN

i ,P .

Adding a New ASG Adding a server to the schedule means that in Old Mode, it
has budget QO = 0, while in New Mode, its budget is QN > 0. Budgets of all other
servers are unchanged. This is an operation that is feasible if there is sufficient free
budget in the system:

QN ≤ QO
F .

The reconfiguration decreases the free budget in the system, QN
F = QO

F − QN , and
increases the utilization by QN/P .

Algorithm 14 describes adding server (QN
N+1, P) to a schedule of N servers. In the

first frame where the server is added, it is scheduled at the beginning of the free budget
slot. This is illustrated in Figure 6.17 with the activation times of existing servers not
changing as the added server is scheduled after all other servers in New Mode. Free
budget has been decreased by the budget of the server, QN

F = QO
F − QN

5 . The dashed
box shows where the free budget QO

F would have been if there were no reconfiguration.

182

Pictures/decreasingASG.eps

6.2 Resource Adaptation with TDMA Servers

Algorithm 14 Adding an ASG

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: sO
F,k

⊲ Start of free budget in frame (k) in Old Mode

Input: P ⊲ Current period
Input: QO

F ⊲ Free budget in Old Mode

Input: (QN
N+1, P) ⊲ Server to be added in New Mode

Require: QN
N+1 ≤ QO

F

Output: sN
j,k+1, 1 ≤ j ≤ N + 1 ⊲ Schedule in first frame (k + 1) of New Mode

1: for j ← 1 to N do

2: sN
j,k+1 ← sO

j,k + P

3: end for

4: sN
N+1,k+1 ← sO

F,k
+ P

Q1

t

Q2 Q3 Q4 QO
F Q1 Q3 Q4 QN

F Q1

Old Mode New Mode

Q2 QN
5

QO
F

Figure 6.17: Addition of server (Q5, P) to a schedule of four ASG servers.

Theorem 6.2.5. Adding server (QN
N+1, P) to a schedule of N servers using Algo-

rithm 14 satisfies condition (6.22) for all other servers in the system as each of them
gets at least a guaranteed service during the reconfiguration of β̃j = βQj ,P , 1 ≤ j ≤ N .

Increasing the Budget of an Existing ASG Increasing the budget of a server
means that in Old Mode it has budget QO > 0, and in New Mode it has budget
QN > QO. Budgets of all other servers are unchanged. This is an operation that is
feasible if there is sufficient free budget in the system:

QN −QO ≤ QO
F .

The reconfiguration decreases the free budget in the system, QN
F = QO

F − (QN −QO),
and increases the utilization of the system by (QN −QO)/P .

Algorithm 15 shows increasing the budget of a server from (QO
i , P) to (QN

i , P) in
a schedule of N servers. In the first frame where the budget is increased, all preceding
servers are activated earlier in the free budget of the previous frame by the amount of
the increase of budget, and all succeeding servers are activated without change. This is
illustrated in Figure 6.18; last frame of Old Mode has a decreased length, P−QN

2 +QO
2 .

This causes the activation times of server (Q1, P) to be shifted earlier. Activation
times of server (Q3, P) do not change as the shorter activation frame cancels with the
increased budget for all New Mode activations. Free budget has been decreased by
the increase of server budget, QN

F = QO
F − QN

2 + QO
2 . The dashed boxes show where

the activations of servers (Q1, P), (Q2, P), (Q3, P) and the free budget QF would have
been if there were no reconfiguration.

183

Pictures/addingASG.eps

6.2 Resource Adaptation with TDMA Servers

Algorithm 15 Increasing the budget of an ASG

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: P ⊲ Current period
Input: QO

F ⊲ Free budget in Old Mode

Input: (QO
i , P) ⊲ Server to be modified with Old Mode parameters

Input: (QN
i , P) ⊲ Server to be modified with New Mode parameters

Require: QN
i −QO

i ≤ QO
F

Output: sN
j,k+1, 1 ≤ j ≤ N ⊲ Schedule in first frame (k + 1) of New Mode

1: for j ← 1 to N do

2: if j ≤ i then

3: sN
j,k+1 ← sO

j,k + P − (QN
i −QO

i)

4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P

6: end if

7: end for

%vspace*-0.2cm

QO
FQ3

Q1

t

QO
2 Q3 QO

F Q1 Q3

Old Mode New Mode

QO
2

Q1

Q1 QN
2 Q3QN

F QN
F

QO
2

Q1

P - QN
2 + QO

2

Figure 6.18: Increasing the budget of server (QO
2 , P) to QN

2 in a schedule of three ASG
servers.

Theorem 6.2.6. Increasing the budget of a server from (QO
i , P) to (QN

i , P) in a
schedule of N servers using Algorithm 15 satisfies condition (6.22) for all servers in the
system. Unchanged servers get at least a guaranteed service during the reconfiguration
of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j 6= i. For the increased server this is β̃i ≥ βQO

i ,P .

Change of Period We perform analysis given the configuration of the system (such
as budgets and period) in Old and New Modes. The results of the analysis are whether
a transition is feasible with the given configurations, and in the case of feasibility with
what parameters it can be executed online.

Increase of Period We suppose that there are N servers in the system. In the Old
Mode they operate with parameters (QO

i , P O), 1 ≤ i ≤ N , and in the New Mode with
(QN

i , P N), 1 ≤ i ≤ N , where P O < P N . Assume that for every server we have that

t

Old Mode New Mode

Violation: Interval of 60 msec, server SB delivers budget of 29 msec when Old Mode guarantees 30 msec and New Mode guarantees 30 msec.

SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Reconfiguration K = 2

Figure 6.19: Violation of condition (6.22) when increasing period with K = 2 for server
SB from Example 5.1.4.

184

Pictures/increasingASG.eps
Pictures/violationTdma.eps

6.2 Resource Adaptation with TDMA Servers

QO
i ≤ QN

i . If this is not the case, namely there is a server that requires a smaller budget
in the bigger period, QO

i > QN
i , we can reduce its budget first by using the algorithms

proposed in Section 6.2.3 as we can be sure that schedulability is satisfied with the new
budget in the smaller period, and then perform the reconfiguration involving increase
of period.

The proposed reconfiguration algorithm is subject to the feasibility condition that
the sum of all New Mode server budgets is smaller than the Old Mode period which is
expressed as follows:

N
∑

i=1

QN
i ≤ P O. (6.23)

The condition ensures that the increase of budgets does not lead to service guarantee
violations in intervals of time beginning P O time units before the reconfiguration and
ending P O time units after the reconfiguration. It can be related to the feasibility
condition for Algorithm 15,

∑N
i=1(Q

N
i −QO

i) ≤ QO
F .

If condition (6.23) is not satisfied for a set of Old Mode and New Mode parameters,
the reconfiguration algorithm would need to go through intermediate modes (budgets
and periods) where for each successive pair of them condition (6.23) holds. We will
not discuss this further and assume that the feasibility condition is met.

The algorithm for performing safely the increase of period can be summarized in
three steps: (1) Increase to New Mode budgets following Algorithm 15. (2) Schedule
the ASG servers for K ≥ 1 activation frames using the New Mode budgets and Old
Mode period. (3) Increase to New Mode period by increasing free budget. The second
step of the algorithm we denote as the Reconfiguration phase which is K activation
frames long. We suppose that it has Old Mode period but it can actually have a shorter
period which would require a small modification of our analysis. At the moment we
assume that K is given as input to the algorithm, later we will show how to compute
it. Algorithm 16 describes the details for performing the increase of period. It is
illustrated in Figure 6.20.

QO
1

t

QO
2 QO

F

Reconfiguration (K=2)

PN

QO
1 QO

2 QN
1 QN

2 QN
F

PO

PO - ∑(QN
i-QO

i)

≤ PO
condition

QN
1 QN

2 QN
1 QN

2

POPO

New ModeOld Mode

Figure 6.20: Increase of period with K = 2.

The following theorem gives a lower bound for the guaranteed resource supply of
an ASG server during an increase of period reconfiguration.

185

Pictures/increasingPeriod.eps

6.2 Resource Adaptation with TDMA Servers

Algorithm 16 Increase of Period

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: P O ⊲ Old Mode period
Input: P N ⊲ New Mode period
Input: (QO

i , P O), 1 ≤ i ≤ N ⊲ Servers in Old Mode

Input: (QN
i , P N), 1 ≤ i ≤ N ⊲ Servers in New Mode

Input: K ⊲ Number of activation frames during the Reconfiguration
Require:

PN
i=1 QN

i ≤ P O

Output: sN
j,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K ⊲ Schedule in all frames during the Reconfiguration

Output: sN
j,k+K+1, 1 ≤ j ≤ N ⊲ Schedule in first frame (k + K + 1) of New Mode

(* First frame of Reconfiguration - increase budgets *)

1: sR
1,k+1 ← sO

1,k + P O −
PN

i=1(QN
i −QO

i)

2: for j ← 2 to N do

3: sR
j,k+1 ← sR

j−1,k+1 + QN
j−1

4: end for

(* All subsequent frames of Reconfiguration *)
5: for p← 2 to K do

6: for j ← 1 to N do

7: sR
j,k+p ← sR

j,k+p−1 + P O

8: end for

9: end for

(* First frame of New Mode - increase period *)
10: for j ← 1 to N do

11: sN
j,k+K+1 ← sR

j,k+K
+ P N

12: end for

Theorem 6.2.7. Reconfiguring a server from (QO
i , P O) to (QN

i , P N) in a schedule of
N servers using Algorithm 16 provides at least a guaranteed service of:1

β̃i(∆) = min
˘

βQO
i ,P O (∆), βQN

i ,P N (∆),

(βQO
i ,P O ⊗ βQN

i ,P N)(∆ −K · P O + P O −QO
i) (6.24)

+ βQN
i ,P O (K · P O)

¯

(6.25)

which satisfies condition (6.22) when K ≥ 1 is found as:

K = max
1≤i≤N

n

min
n

κ | ∀∆ ∈ R
≥0, κ ∈ Z

+,

(βQO
i ,P O ⊗ βQN

i ,P N)(∆ − κ · P O + P O −QO
i) + βQN

i ,P O (κ · P O)

≥ min{βQO
i ,P O (∆), βQN

i ,P N (∆)}
oo

The guaranteed service in the above theorem can be explained informally as follows.
It is computed as the minimum of the services from Old Mode, New Mode, and an
expression which describes the service in time intervals that span Old Mode, Recon-
figuration, and New Mode. The last one consists of two subexpressions. Expression
(6.24) lower bounds the service guaranteed in the time window part that is outside
of the Reconfiguration time window and hence the service curve depends only on the
Old and the New Modes parameters, and it is ’shifted to the right’ by the size of the

1The ⊗ is the min-plus convolution operator which is defined as: (a⊗ b)(s) = inf0≤λ≤s{a(s−λ)+
b(λ)}

186

6.2 Resource Adaptation with TDMA Servers

Reconfiguration time window which is at most K · P O time units. Expression (6.25)
lower bounds the service guaranteed only in the Reconfiguration time window which
uses New Mode budgets with Old Mode period, and the service is defined for a fixed
length interval of size K · P O.

In expressions (6.24) and (6.25), we can increase the size of the Reconfiguration
phase by increasing the number of activation frames in it K. In order to meet con-
dition (6.22) for each server, we have to find the minimum K that will make the

guaranteed service β̃i greater or equal to the minimum of the Old and New Modes
services. After doing this for all servers, we have to take the maximum K which will
make the reconfiguration feasible for the whole system.

We can find the minimum K for a server efficiently by starting with an initial value
of K = 1. If this is not feasible, we choose successive values of K by using binary
search until the smallest one is found that is feasible. With bigger K we are increasing
the service guaranteed in the Reconfiguration which is service greater than Old Mode
and New Mode services (it has the larger New Mode budget and the smaller Old Mode
period), therefore we are guaranteed to find a finite value which will make condition
(6.22) satisfied.

We can illustrate this by considering server SB from Example 5.1.4. It will need
K = 3 to perform a safe reconfiguration from (5, 10) to (6, 12). This is illustrated in
Figure 6.21 as well as the violations of condition (6.22) for K = {1, 2}. The trace
showing the violation for K = 2 for server SB is in Figure 6.19.

0 10 20 30 40 50 60 70
0

10

20

30

40

∆ [msec]

p

ro
ce

ss
o

r
cy

cl
es

min { β
5,10

, β
6,12

 }

~
β for K=1

β for K=2
~

~
β for K=3

Figure 6.21: Effect of K = {1, 2, 3} for server SB from Example 5.1.4. Only K = 3 is
feasible.

Decrease of Period This scenario is very similar to the one for increasing the period.
Because of the lack of space, we only give the main points. In the Old Mode servers
operate with parameters (QO

i , P O), 1 ≤ i ≤ N , and in the New Mode with (QN
i , P N),

1 ≤ i ≤ N , where P O > P N . We assume that for every server we have that QO
i ≥ QN

i .
It is subject to the feasibility condition that the sum of Old Mode budgets is smaller

than the New Mode period which is expressed as
∑N

i=1 QO
i ≤ P N .

The algorithm can be summarized in three steps: (1) Decrease to New Mode period
by decreasing free budget. (2) Schedule the ASG servers for K ≥ 1 activation frames
using Old Mode budgets and New Mode period. (3) Decrease budgets by using Algo-
rithm 13. Algorithm 17 describes the details for performing the decrease of period. It
is illustrated in Figure 6.22.

187

Pictures/varyKExample.eps

6.2 Resource Adaptation with TDMA Servers

Algorithm 17 Decrease of Period

Input: sO
j,k, 1 ≤ j ≤ N ⊲ Schedule in last frame (k) of Old Mode

Input: P O ⊲ Old Mode period
Input: P N ⊲ New Mode period
Input: (QO

i , P O), 1 ≤ i ≤ N ⊲ Servers in Old Mode

Input: (QN
i , P N), 1 ≤ i ≤ N ⊲ Servers in New Mode

Input: K ⊲ Number of activation frames during the Reconfiguration
Require:

PN
i=1 QO

i ≤ P N

Output: sN
j,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K ⊲ Schedule in all frames during the Reconfiguration

Output: sN
j,k+K+1, 1 ≤ j ≤ N ⊲ Schedule in first frame (k + K + 1) of New Mode

(* First frame of Reconfiguration - decrease period *)
1: for j ← 1 to N do

2: sR
j,k+1 ← sO

j,k + P O

3: end for

(* All subsequent frames of Reconfiguration *)
4: for p← 2 to K do

5: for j ← 1 to N do

6: sR
j,k+p ← sR

j,k+p−1 + P N

7: end for

8: end for

(* First frame of New Mode - decrease budgets *)
9: sN

1,k+K+1 ← sR
1,k+K + P N

10: for j ← 2 to N do

11: sN
j,k+K+1 ← sN

j−1,k+K+1 + QN
j−1

12: end for

QN
1

t

QN
2 QN

F

Reconfiguration (K=2)

QO
1 QO

2

PN

≤ PN
condition

QO
1 QO

2

PNPN

New ModeOld Mode

QO
1 QO

2 QO
F

PO

Figure 6.22: Decrease of period with K = 2.

Theorem 6.2.8. Reconfiguring a server from (QO
i , P O) to (QN

i , P N) in a schedule of
N servers using Algorithm 17 provides at least a guaranteed service of:

β̃i(∆) = min
˘

(βQO
i ,P O ⊗ βQN

i ,P N)(∆ −K · P N + P N −QN
i)

+ βQO
i ,P N (K · P N), βQO

i ,P O (∆), βQN
i ,P N (∆)

¯

which satisfies condition (6.22) when K ≥ 1 is found as:

K = max
1≤i≤N

n

min
n

κ | ∀∆ ∈ R
≥0, κ ∈ Z

+,

(βQO
i ,P O ⊗ βQN

i ,P N)(∆ − κ · P N + P N −QN
i) + βQO

i ,P N (κ · P N)

≥ min{βQO
i ,P O (∆), βQN

i ,P N (∆)}
oo

188

Pictures/decreasingPeriod.eps

6.2 Resource Adaptation with TDMA Servers

6.2.4 Case Study

Here, we consider a multi-mode real-time system that executes two applications. Ap-
plication 1 can run in two modes denoted as Mode 1 and Mode 2. In mode 1, there is
a single task which processes a single event stream described by a period p = 5 msec,
jitter j = 10 msec, and minimum inter-arrival time between two events d = 1 msec.
Each event has a worst-case execution time of c = 2 msec, and it needs to be processed
within a relative deadline of D = 9 msec. Similarly, in mode 2 there is a single task but
it processes an event stream with parameters p = 40 msec, j = 20 msec, d = 20 msec,
c = 7 msec, and D = 25 msec. Application 2 is a single mode application, it has a single
task that processes one event stream with parameters p = 20 msec, j = 15 msec, d = 5
msec, c = 1 msec, and D = 30 msec. The system schedules the two applications using
two servers (Q1, P) and (Q2, P). We suppose that each context switch takes 0.3 msec.
The utilization of the system, U , can be computed as U = (Q1 + 0.3 + Q2 + 0.3)/P .

The designer of this system needs to select the configuration parameters of the
ASG schedule such as the minimum required budgets that make the two applications
schedulable, and the size of the servers period. The design objective is to minimize
utilization because other soft real-time applications use the unused resources while
guaranteeing the real-time requirements. Then the solution depends on the mode that
application 1 is currently in. Figure 6.23 shows the total utilization of the system as a
function of the period of the servers considering the two modes of application 1, where
the period varies from 1 msec to 50 msec. When application 1 is in mode 1, the system
has the minimum utilization (U = 0.768) with servers period P = 12.5 msec, and
allocated budgets for application 1 and application 2, Q1 = 8 msec and Q2 = 1 msec,
respectively. When application 1 is in mode 2, however, the system has the minimum
utilization (U = 0.427) achieved for period P = 22.5 msec, and budgets Q1 = 7 msec
and Q2 = 2 msec.

Since the mode of application 1 changes dynamically during runtime, it is not
possible to fix the parameters of the scheduler at design time. If the parameters are
set to the optimal ones for mode 1, when operating in mode 2 the system would have
15% utilization overhead. Similarly fixing the parameters optimally for mode 2, the
utilization overhead would be 14% when the system is in mode 1.

We can solve the above problem by using the algorithms proposed in (155). Let us
consider two scenarios.

Scenario 1: When application 1 is in mode 1, we run the two ASG servers cor-
responding to the two applications with parameters (8, 12.5) and (1, 12.5) which give
us the lowest system utilization. When application 1 switches to mode 2, it notifies
the Server Manager (SM) and it requests a switch to the minimum budget for mode
2 of (4.7, 12.5). The SM can grant this budget using Algorithm 13. Afterwards the
SM manager can reconfigure the two ASG servers and increase their period to the one
which makes the system utilization the smallest. The SM can use Algorithm 16 with
K = 1 to reconfigure the system from (4.7, 12.5) and (1, 12.5) to (7, 22.5) and (2, 22.5).

Scenario 2: When application 1 has to switch back to mode 1, it first notifies the
SM which by using Algorithm 17 with K = 1 reconfigures the two servers from (7, 22.5)
and (2, 22.5) back to (4.7, 12.5) and (1, 12.5). Then the SM increases the budget for

189

6.2 Resource Adaptation with TDMA Servers

5 10 15 20 25 30 35 40 45 50

0.4

0.6

0.8

1

1.2

1.4

TDMA Period P [msec]

T
o

ta
l U

ti
liz

at
io

n
 U

Application 1 in mode 1
Application 1 in mode 2

Figure 6.23: Total utilization for period varying from 1 msec up-to 50 msec considering
the two different modes of application 1. The circles on the graphs denote the points of
minimum utilization.

application 1 using Algorithm 15 from 4.7 to 8. Afterwards, application 1 is notified
and can safely switch to mode 1.

Note that the SM takes advantage of the fact that mode 1 is more heavily loaded
than mode 2 for application 1. Therefore, the SM optimizes the server period when
the application is in the lightly loaded mode. This means that in Scenario 1, the
application mode change is done before the resource optimization. And in Scenario 2,
it is done after the resource optimization. This is feasible with our algorithms as they
are completely deterministic and the time needed for a reconfiguration can be safely
and accurately upper bounded in advance. It is also possible to perform the resource
optimization when the system is more heavily loaded however, the reconfiguration
process will take longer.

In summary, we can guarantee an optimal resource allocation in environments where
applications are added or removed dynamically, or perform mode-changes. With the
proposed algorithms the schedulability of the applications is never compromised during
the reconfiguration process.

Setup: The servers and applications have been modeled with the Matlab Real-Time
Calculus Toolbox (172). The exploration of the minimum required budgets for different
periods in Figure 6.23 has been done with the Real-Time Interfaces methodology as
described in (167). The exploration took less than 15 sec to perform on a commodity
laptop considering discretization of the period with steps of 0.1 msec. The feasibility
check for the value of K took less than 1 sec.

The work in this last section has been presented at the EMSOFT 2010 conference,
(155).

190

Pictures/utilPlotMotExample.eps

Chapter 7

Conclusions

The main focus of this dissertation are the requirements of complex embedded systems.
Nowadays systems are formed by dynamic components, which means that they require
adaptive components able to cope with changing conditions of the system itself and/or
the environment.

At the beginning, we have presented the adaptive resource problem with examples
of complex and dynamic real-time systems. In order to provide real-time guarantees
to those systems adaptivity techniques have to be implemented. Adaptivity in terms
of adaptive service provisioning but also in terms of adaptive resource demand. Since
most the literature considers dynamic applications, we have considered the case of
changing resource reservations, hence mostly addressing the adaptive resource reserva-
tion problem.

We have investigated some server mechanisms deriving the guarantees in the re-
source provisioning to their real-time applications. Those guarantees has been first
obtained in steady state conditions as the description of the minimum amount of re-
source the application can rely on in order to execute whatever is the scheduling policy
applied.

The next step has been toward the analysis of the behavior of those servers along
changing conditions. Whenever a server changes one of its parameter, the service
provisioning changes. The application may then suffer those changes, so that the
real-time schedulability is no more guaranteed. Thus, we have provided an analysis
framework by which detail what happens to the server guarantees along any of it
possible operational mode: steady states and changing conditions. Most important is
the mode transition phase, where old mode effects and new mode effects are mixed up
resulting in complex conditions. To guarantee the predictability of the systems even the
transition have to be studied.

Through abstraction and approximated models we have investigated the transition
phase in order to provide the transition guarantees necessary. Transition guarantees
that are in terms of service provided by the servers to their applications. The analysis
of the transition guarantees allows also to verify at design time the schedulability of
component-based real-time systems in any condition and transition.

Finally, it has been considered two representative examples where to efficiently
apply adaptive resource reservation mechanisms. Both are extreme cases which outline

191

the complexity but also the powerfulness of adaptive solutions. Powerfulness which has
been measured in terms of efficient resource allocation and mostly, the responsiveness
hence, the predictability degree, of the adaptive system.

That framework exploited by the dissertation represents a first solution toward
efficient adaptive resource reservation mechanisms. A lot of interesting work has to be
done in different directions.

• Extending the set of modeled servers. This way the set of modeled resource
reservation mechanisms increases consequently extending the cases where to ap-
ply adaptive solutions. Exploring such a set would allow to find optimal solutions
scenario by scenario and transition by transition.

• The investigation of multi-moded servers and applications concurrently acting
on a real-time system. A complete dynamic system which resource requirements
change during time, and which analysis combines the two presented in Chapter 5.

• The definition of a server monitor which applies complex solutions to rule the
transition phase of servers. A central monitor that case by case

• The consequent final step would be the introduction of collaborative solutions
where the adaptivity involves the whole systems and not just those components
that require the modifications. This would open the possibilities for adaptive
mechanisms leading toward complex but even more efficient solution to the adap-
tive resource reservation problem.

192

References

[1] Sensor Andrew. http://www.ices.cmu.edu/censcir/sensor-andrew/. 152

[2] Luca Abeni and Giorgio Buttazzo. Integrating Multimedia Applica-
tions in Hard Real-Time Systems. In Proceedings of the 19th IEEE Real-Time
Systems Symposium, pages 4–13, Madrid, Spain, dec 1998. 5, 16, 86, 99

[3] Luca Abeni and Giorgio Buttazzo. Adaptive Bandwidth Reservation
for Multimedia Computing. In RTCSA ’99: Proceedings of the Sixth Interna-
tional Conference on Real-Time Computing Systems and Applications, page 70,
Washington, DC, USA, 1999. IEEE Computer Society. 10

[4] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS Management for
Time Sensitive Applications. In RTAS ’01: Proceedings of the Seventh Real-
Time Technology and Applications Symposium (RTAS ’01), page 63, Washington,
DC, USA, 2001. IEEE Computer Society. 10

[5] Luca Abeni and Giorgio Buttazzo. Resource Reservation in Dynamic
Real-Time Systems. Real-Time Syst., 27(2):123–167, 2004. 6, 7, 9, 10, 110,
172

[6] Luca Abeni, Claudio Scordino, and Giuseppe Lipari. Serving non
real-time tasks in a reservation environment. In Real-Time Linux Work-
shop, 2008. 90

[7] APC (American Power Conversion). Determining Total Cost of
Ownership for Data Center and Network Room Infrastructure,
http://www.apcmedia.com/salestools/CMRP-5T9PQG R2 EN.pdf,
2003. 37

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying New Scheduling Theory to Static Priority Pre-
Emptive Scheduling. Software Engineering Journal, 8:284–292, 1993. 14

[9] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
Real-Time Scheduling: The Deadline-Monotonic Approach. In in Proc.
IEEE Workshop on Real-Time Operating Systems and Software, pages 133–137,
1991. 14

193

http://www.ices.cmu.edu/censcir/sensor-andrew/

REFERENCES

[10] John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal Power-
down Strategies. In 45th Symposium on Foundations of Computer Science
(FOCS), pages 530–539, October 2004. 37, 38

[11] Todd Austin, David Blaauw, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Wayne Wolf. Mobile Supercomputers.
IEEE Computer, 37:81–83, 2004. 36

[12] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez. Dynamic and
Aggressive Scheduling Techniques for Power-aware Real-time Systems.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS), pages
95–105, 2001. 37

[13] Scott Banachowski, Timothy Bisson, and Scott A. Br. Integrating
best-effort scheduling into a real-time system. In Proceedings of the 25th
IEEE Real-Time Systems Symposium (RTSS 2004, 2004. 89

[14] Scott A. Banachowski, Timothy Bisson, and Scott A. Brandt. In-
tegrating Best-Effort Scheduling into a Real-Time System. In RTSS,
pages 139–150, 2004. 84

[15] Philippe Baptiste. Scheduling Unit Tasks to Minimize the Number
of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic
Power Management. In Proceedings of the 17th annual ACM-SIAM sympo-
sium on Discrete algorithm (SODA), pages 364–367, 2006. 37, 38

[16] S. Baruah. Feasibility Analysis of Recurring Branching Tasks. Real-
Time Systems, Euromicro Conference on, 0:138, 1998. 6

[17] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized Multi-
frame Tasks. Real-Time Systems, 17(1):5–22, 1999. 178

[18] S. Baruah, G. Lipari, and L. Abeni. Shrub: Shared Reclamation of
Unused Bandwidth. Technical report, RetisLab Scuola Superiore Sant’Anna,
Pisa, 2008. 89

[19] Sanjoy K. Baruah. Dynamic- and Static-priority Scheduling of Recur-
ring Real-time Tasks. Real-Time Syst., 24(1):93–128, 2003. 4, 71

[20] Sanjoy K. Baruah and Jayant R. Haritsa. Scheduling for Overload
in Real-Time Systems. IEEE Trans. Computers, 46(9):1034–1039, 1997. 90

[21] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemp-
tively Scheduling Hard-Real-Time Sporadic Tasks on One Processor.
In IEEE Real-Time Systems Symposium, pages 182–190, 1990. 15, 16, 34, 70, 71,
120, 122

194

REFERENCES

[22] Guillem Bernat and Alan Burns. Combining (/sub m//sup n/)-hard
deadlines and dual priority scheduling. In IEEE Real-Time Systems Sym-
posium, pages 46–57, 1997. 84

[23] Guillem Bernat and Alan Burns. Multiple Servers and Capacity
Sharing for Implementing Flexible Scheduling. Real-Time Systems, 22(1-
2):49–75, 2002. 84

[24] Enrico Bini and Giorgio C. Buttazzo. Biasing Effects in Schedulabil-
ity Measures. In Proceedings of the 16th Euromicro Conference on Real-Time
Systems, Catania, Italy, June 2004. 32, 79, 134

[25] Enrico Bini and Giorgio C. Buttazzo. Schedulability Analysis of Pe-
riodic Fixed Priority Systems. IEEE Transactions on Computers 53 (11),
pp. 1462-1473, November 2004, pages 1462–1473, 2004. 15, 22, 119

[26] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Buttazzo. A Hy-
perbolic Bound for the Rate Monotonic Algorithm. Proc. of the IEEE
Euromicro Conference on Real-Time Systems, pages 59–66, 2001. 117

[27] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Buttazzo. Rate
Monotonic Scheduling: the Hyperbolic Bound. IEEE Transactions on
Computers 52 (7), pp. 933-942, July 2003, pages 59–66, 2003. 117

[28] Enrico Bini, Marco Di Natale, and Giorgio C. Buttazzo. Sensitivity
analysis for fixed-priority real-time systems. Real-Time Systems, 39(1-
3):5–30, 2008. 139

[29] B. Bouyssounouse and J. Sifakis. Embedded Systems Design - The
ARTIST Roadmap for Research and Developemnt. Lecture Notes in
Computer Science, Springer Verlag, 2005. 2

[30] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy
Bisson. Dynamic Integrated Scheduling of Hard Real-Time, Soft Real-
Time and Non-Real-Time Processes. Real-Time Systems Symposium, IEEE
International, 0:396, 2003. 89

[31] Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Verhaegh. Worst-
Case Response Time Analysis of Real-Time Tasks under Fixed-Priority
Scheduling with Deferred Preemption Revisited. In ECRTS ’07: Proceed-
ings of the 19th Euromicro Conference on Real-Time Systems, pages 269–279,
Washington, DC, USA, 2007. IEEE Computer Society. 119

[32] Reinder J. Bril, Elisabeth F. M. Steffens, and Wim F. J. Verhaegh.
Best-Case Response Times and Jitter Analysis of Real-Time Tasks. J.
of Scheduling, 7(2):133–147, 2004. 118, 119

195

REFERENCES

[33] G. Buttazzo and L. Abeni. Adaptive rate control through elastic
scheduling. In Decision and Control, 2000. Proceedings of the 39th IEEE Con-
ference on, 5, pages 4883–4888 vol.5, 2000. 10

[34] G C. Buttazzo, G Lipari, M. Caccamo, and Abeni L. Elastic Schedul-
ing for Flexible Workload Management. IEEE Transactions on Computers,
51:289–302, 2002. 90, 115, 116, 117

[35] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Cac-
camo. Soft Real-Time Systems: Predictability vs. Efficiency. Plenum Publishing
Co. (Series in Computer Science), 2005. 89

[36] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer, 1998. 3, 4, 6, 7, 16

[37] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer, 2005. 90

[38] Giorgio C. Buttazzo and Fabrizio Sensini. Optimal Deadline Assign-
ment for Scheduling Soft Aperiodic Tasks in Hard Real-Time Environ-
ments. IEEE Trans. Comput., 48(10):1035–1052, 1999. 85

[39] Giorgio C. Buttazzo, John A. Stankovic, Scuola Superiore, and
S. Anna. RED: Robust Earliest Deadline Scheduling. In Proc. of 3rd
International Workshop on Responsive Computing Systems, pages 100–111, 1993.
4, 90

[40] Marco Caccamo, Giorgio Buttazzo, and Lui Sha. Capacity Sharing
for Overrun Control. In IEEE Real-Time Systems Symposium, pages 295–304,
2000. 88, 89

[41] Marco Caccamo, Giorgio C. Buttazzo, and Deepu C. Thomas. Effi-
cient Reclaiming in Reservation-Based Real-Time Systems with Vari-
able Execution Times. IEEE Transactions on Computers, 54:198–213, 2005.
88, 89

[42] Carnegie Mellon Univ., Pittsburgh, PA. CMUcam3 datasheet version 1.02, Sep.
2007. 152

[43] S. Chakraborty, S. Künzli, and L. Thiele. A General Framework for
Analysing System Properties in Platform-Based Embedded System
Designs. In DATE, pages 190–195, 2003. 22, 26, 172, 173

[44] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler.
Interface-Based Rate Analysis of Embedded Systems. In RTSS, pages
25–34, 2006. 30

196

REFERENCES

[45] Jian-Jia Chen and Tei-Wei Kuo. Procrastination for Leakage-Aware
Rate-Monotonic Scheduling on A Dynamic Voltage Scaling Processor.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 153–162, 2006. 38

[46] Jian-Jia Chen and Tei-Wei Kuo. Procrastination Determination for
Periodic Real-time Tasks in Leakage-aware Dynamic Voltage Scaling
Systems. In International Conference on Computer-Aided Design (ICCAD),
pages 289–294, 2007. 37, 38

[47] Jian-Jia Chen and Tei-Wei Kuo. Procrastination determination for
periodic real-time tasks in leakage-aware dynamic voltage scaling sys-
tems. In ICCAD ’07: Proceedings of the 2009 International Conference on
Computer-Aided Design, pages 289–294, New York, NY, USA, 2007. ACM. 66

[48] Hui Cheng and Steve Goddard. Online energy-aware I/O device
scheduling for hard real-time systems. In Proceedings of the 9th Design,
Automation and Test in Europe (DATE), pages 1055–1060, 2006. 60

[49] Jaejoon Cho and Sunshin An. An Adaptive Beacon Scheduling Mech-
anism Using Power Control in Cluster-Tree WPANs. Wirel. Pers. Com-
mun., 50(2):143–160, 2009. 153

[50] Nastasi Christian, Marinoni Mauro, Santinelli Luca, Pagano
Paolo, Lipari Giuseppe, and Franchino Gianluca. BACCARAT: a
Dynamic Real-Time Bandwidth AllocationPolicy for IEEE 802.15.4. In
Proceedings of IEEE Percom 2010, International Workshop on Sensor Networks
and Systems for Pervasive Computing (PerSeNS 2010), Mannheim, Germany,
2010. 66, 153, 154

[51] R. Cruz. A Calculus for Network Delay, Parts 1 & 2. IEEE Transactions
on Information Theory, 37(1), 1991. 172, 176

[52] Tommaso Cucinotta, Luigi Palopoli, and Giuseppe Lipari. FRES-
COR Delivarable D-AQ2v2: Control Algorithms for Coordinated
Resource-Level and Application-Level Adaptation v2, 2008. 10

[53] R. I. Davis and A. Burns. Hierarchical Fixed Priority Pre-emptive
Scheduling. In Proc. of the 26th IEEE International Real-Time Systems Sym-
posium (RTSS’05), 2005. 7

[54] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in
Fixed Priority Pre-emptive Systems. In Proceedings of the 14th IEEE Real-
Time Systems Symposium (RTSS 1993, 2004. 84

[55] Robert I. Davis and Alan Burns. Response Time Upper Bounds for
Fixed Priority Real-Time Systems. In Proceedings of the 29th IEEE Real-
Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3 De-
cember 2008, pages 407–418. IEEE Computer Society, 2008. 117, 118, 119

197

REFERENCES

[56] Robert I. Davis and Andy J. Wellings. Dual Priority Scheduling. In
IEEE Real-Time Systems Symposium, pages 100–109, 1995. 84

[57] L. de Alfaro and T. Henzinger. Interface Theories for Component-
base Design. In In EMSOFT’01: Embedded Software, Lecture notes in Com-
puter Science 2211, pages 148–165. Springer Verilag, 2001. 28, 155, 156

[58] L. de Alfaro and T. Henzinger. Interface-Based Design. In To appear
in the proceedings of the 2004 Marktoberdorf Summer School, 2005. 28

[59] Augusto Born de Oliveira, Eduardo Camponogara, and George
Lima. Dynamic Reconfiguration in Reservation-Based Scheduling: An
Optimization Approach. In 15th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 173–182, 2009. 10

[60] Z. Deng and J. W. s. Liu. Scheduling Real-Time Applications in an
Open Environment. In in Proceedings of the 18th IEEE Real-Time Systems
Symposium, IEEE Computer, pages 308–319. Society Press, 1997. 6, 85, 90

[61] Zhong Deng, Jane W.-S. Liu, Lynn Y. Zhang, Mouna Seri, and Alban
Frei. An Open Environment for Real-Time Applications. Real-Time
Systems, 16(2-3):155–185, 1999. 17, 90

[62] Vinay Devadas and Hakan Aydin. On the Interpaly of Dynamic
Volatage Scaling and Dynamic Power Management in Real-Time Em-
bedded Applications. In EMSOFT’08: Proceedings of the 8th ACM Confer-
ence on Embedded Systems Software, pages 99–108, New York, NY, USA, 2008.
ACM. 66

[63] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental Schedu-
lability Analysis of Hierarchical Real-Time Components. In Proceedings
of the 6th ACM & IEEE International Conference on Embedded Software (EM-
SOFT 2006), pages 272–281, October 2006. 7

[64] X. Feng and Al. Mok. A Model of Hierarchical Real-Time Virtual
Resources. In Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS 2002), pages 26–35, December 2002. 5, 6

[65] Gerhard Fohler. Changing Operational Modes in the Context of Pre
Run-Time Scheduling (Special Issue on Responsive Computer Sys-
tems). IEICE transactions on information and systems, 76(11):1333–1340, 1993.
9

[66] Gerhard Fohler, Tomas Lennvall, and Giorgio Buttazzo. Improved
Handling of Soft Aperiodic Tasks in Offline Scheduled Real-Time Sys-
tems using Total Bandwidth Server. In In Proceedings of the 8th IEEE
International Conference on Emerging Technologies and Factory Automation,
2001. 90

198

REFERENCES

[67] Bryan Ford and Sai Susarla. CPU inheritance scheduling. SIGOPS
Oper. Syst. Rev., 30(SI):91–105, 1996. 90

[68] Lipari G. and E. Bini. Resource Partitioning among Real-Time Appli-
cations. In ECRTS’03, IEEE Computer Society, pages 151–158, 2003. 5, 6, 18,
19, 161

[69] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline
scheduling environment. Real-Time Syst., 9(1):31–67, 1995. 90

[70] Steve Goddard and Xin Liu. A Variable Rate Execution Model. In
ECRTS, pages 135–143, 2004. 90

[71] Qian Guangming. An earlier time for inserting and/or accelerating
tasks. Real-Time Systems, 2009. 10, 133

[72] Arne Hamann and Rolf Ernst. TDMA Time Slot and Turn Opti-
mization with Evolutionary Search Techniques. In Proceedings of the 8th
Design, Automation and Test in Europe (DATE), pages 312–317, 2005. 60

[73] Michael Gonzlez Harbour, Daniel Sangorrn, and Miguel Tellera
de Esteban. FRESCOR Delivarable D-AT2: Schedulability analysis
techniques for distributed systems, 2009. 10

[74] T.A. Henzinger and S. Matic. An Interface Algebra for Real-Time
Components. In Proceedings of the 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’06), pages 253–266, April 2006. 155

[75] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M.
Kirsch. Giotto: A Time-Triggered Language for Embedded Program-
ming. In Proceedings of the First International Workshop on Embedded Software
(EMSOFT), pages 166–184, 2001. 8

[76] R Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pin-
wheel: a real-time scheduling problem. In Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences, 1989. Vol.II: Soft-
ware Track,, pages 693–702, 1989. 5

[77] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and
Giorgio C. Buttazzio. Adaptive Dynamic Power Management for
Hard Real-Time Systems. In the 30th IEEE Real-Time Systems Symposium
(RTSS), pages 23–32, Washington D.C. U.S., 2009. 39, 47, 65, 66

[78] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and
Giorgio C. Buttazzio. Periodic Power Management Schemes for Real-
Time Event Streams. In the 48th IEEE Conf. on Decision and Control (CDC),
pages 6224–6231, Shanghai, China, 2009. 39, 40, 41, 60, 65, 66, 71

199

REFERENCES

[79] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and
Giorgio C. Buttazzio. Adaptive Power Management for Real-Time
Event Streams. In the 15th IEEE Conf. on Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 7–12, 2010. 39, 47, 65, 66

[80] Yu-Kai Huang, Ai-Chun Pang, and Hui-Nien Hung. An Adaptive GTS
Allocation Scheme for IEEE 802.15.4. IEEE Transactions on Parallel and
Distributed Systems, 19(5):641–651, 2008. 153

[81] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for
Power Savings. In Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 37–46, 2003. 38

[82] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic,
and periodic tasks with complex constraints. pages 207 –216, 2000. 90

[83] International Technology Roadmap for Semiconductors 2009 Edition:
System Drivers.
http://www.itrs.net/Links/2009ITRS/2009Chapters 2009Tables/2009 SysDrivers.pdf.
37

[84] R. Jejurikar, C. Pereira, and R. Gupta. Leakage Aware Dynamic
Voltage Scaling for Real-time Embedded Systems. In Proceedings of the
41st ACM/IEEE Design Automation Conference (DAC), pages 275–280, 2004.
36, 37, 38

[85] Ravindra Jejurikar and Rajesh K. Gupta. Procrastination Schedul-
ing in Fixed Priority Real-time Systems. In Proceedings of the ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 57–66, 2004. 38

[86] Ravindra Jejurikar and Rajesh K. Gupta. Dynamic Slack Reclama-
tion with Procrastination Scheduling in Real-time Embedded Systems.
In Proceedings of the 42nd ACM/IEEE Design Automation Conference (DAC),
pages 111–116, 2005. 38

[87] Michael B. Jones. Adaptive Real-Time Resource Management Sup-
porting Composition of Independently Authored Time-Critical Ser-
vices. In In Proceedings of the Fourth Workshop on Workstation Operating
Systems, pages 135–139, 1993. 2

[88] Gilad Koren and Dennis Shasha. Dover; an optimal on-line scheduling
algorithm for overloaded real-time systems. In IEEE Real-Time Systems
Symposium, pages 290–299, 1992. 90

[89] Anis Koubâa, Mário Alves, Eduardo Tovar, and André Cunha. An
implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive
wireless sensor networks: theory and practice. Real-Time Syst., 39(1-
3):169–204, 2008. 66, 153

200

REFERENCES

[90] Anis Koubaa, Andre Cunha, and Mario Alves. A Time Division
Beacon Scheduling Mechanism for IEEE 802.15.4/Zigbee Cluster-Tree
Wireless Sensor Networks. In ECRTS ’07: Proceedings of the 19th Euromicro
Conference on Real-Time Systems, pages 125–135, Washington, DC, USA, 2007.
IEEE Computer Society. 153

[91] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu. SensEye: a multi-tier
camera sensor network. In Proceedings of the 13th annual ACM international
conference on Multimedia, Singapore, 2005. 152

[92] LAN-MAN Standards Committee of the IEEE Computer Society.
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Press,
2006. 151, 153

[93] J. Y. Le Boudec and P. Thiran. Network calculus: A Theory of Determin-
istic Queuing Systems for the Internet. Springer-Verlag New York, Inc., 2001.
22, 26, 67, 91, 105, 172, 176

[94] Yann-Hang Lee, Krishna P. Reddy, and C. M. Krishna. Scheduling
Techniques for Reducing Leakage Power in Hard Real-Time Systems.
In 15th Euromicro Conference on Real-Time Systems (ECRTS), pages 105–112,
2003. 38

[95] John P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive systems.
In IEEE Real-Time Systems Symposium, pages 110–123, 1992. 7, 84

[96] John P. Lehoczky, Lui Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average Case Be-
havior. In IEEE Real-Time Systems Symposium, pages 166–171, 1989. 4, 14,
15, 16, 33, 34, 97

[97] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced Ape-
riodic Responsiveness in Hard Real-Time Environments. In Proceedings
of the IEEE Real-Time System Symposium (RTSS 1987), December 1997. 6, 16,
84

[98] J. Leung and J. W. Withehead. On the complexity of fixed priority
scheduling of periodic real-time tasks. Performance Evaluation, 2(4), 1982.
4, 14

[99] Caixue Lin and Scott A. Br. Improving soft real-time performance
through better slack reclaiming. In In Proc. of Real-Time Systems Sympo-
sium (RTSS, page 314, 2005. 89

[100] Giuseppe Lipari and Sanjoy Baruah. Greedy Reclamation of Unused
Bandwidth in Constant-Bandwidth Servers. Real-Time Systems, Euromi-
cro Conference on, 0:193, 2000. 89

201

REFERENCES

[101] Giuseppe Lipari and Sanjoy K. Baruah. Efficient Scheduling of Real-
Time Multi-Task Applications in Dynamic Systems. In IEEE Real Time
Technology and Applications Symposium, pages 166–, 2000. 17, 90

[102] Giuseppe Lipari and Sanjoy K. Baruah. A Hierarchical Extension to
the Constant Bandwidth Server Framework. In IEEE Real Time Technol-
ogy and Applications Symposium, pages 26–, 2001. 17, 90

[103] Giuseppe Lipari, Enrico Bini, and Gerhard Fohler. A Framework
for Composing Real-Time Schedulers. Electr. Notes Theor. Comput. Sci.,
82(6), 2003. 19

[104] Giuseppe Lipari and Giorgio Buttazzo. Scheduling Real-Time Multi-
Task Applications in an Open System. Real-Time Systems, Euromicro
Conference on, 0:0234, 1999. 17, 90

[105] Giuseppe Lipari, John Carpenter, and Sanjoy Baruah. A frame-
work for achieving inter-application isolation in multiprogrammed,
hard real-time environments. Real-Time Systems Symposium, IEEE Inter-
national, 0:217, 2000. 90

[106] C. L. Liu and James W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal of the ACM,
20(1):46–61, 1973. 3, 4, 5, 116

[107] J.W. S. Liu. Real-Time Systems. Kluwer Academic Publishers, Upper Saddle
River, New Jersey, USA, 2000. 6, 85

[108] Jose’ L. Lorente, Giuseppe Lipari, and Enrico Bini. A Hierarchical
Scheduling Model for Component-Based Real-Time Systems. In Proc.
of IPDPS’06, 2006. 18

[109] Spuri Marco and Buttazzo Giorgio. Scheduling Aperiodic Tasks in
Dynamic Priority Systems. Real-Time Systems, 10:179–210, 1996. 6, 7, 90,
98

[110] Shanmuga Priya Marimuthu and Samarjit Chakraborty
Chakraborty. A Framework for Compositional and Hierarchical
Real-Time Scheduling. Real-Time Computing Systems and Applications,
International Workshop on, 0:91–96, 2006. 7

[111] T. Martin and D. Siewiorek. Non-ideal Battery and Main Memory
Effects on CPU Speed-Setting for Low Power. IEEE Transactions on
VLSI Systems, 9(1):29–34, 2001. 69

[112] Luca Marzario, Giuseppe Lipari, Patricia Balbastre, and Alfons
Crespo. IRIS: A New Reclaiming Algorithm for Server-Based Real-
Time Systems. Real-Time and Embedded Technology and Applications Sympo-
sium, IEEE, 0:211, 2004. 89

202

REFERENCES

[113] Slobodan Matic and Thomas A. Henzinger. Trading End-to-End La-
tency for Composability. In RTSS ’05: Proceedings of the 26th IEEE Inter-
national Real-Time Systems Symposium, pages 99–110, Washington, DC, USA,
2005. IEEE Computer Society. 6

[114] Alexander Maxiaguine, Samarjit Chakraborty, and Lothar Thiele.
DVS for Buffer-constrained Architectures with Predictable QoS-
energy Tradeoffs. In the International Conference on Hardware-Software Code-
sign and System Synthesis (CODES+ISSS), pages 111–116, 2005. 38

[115] Alexander Maxiaguine, Simon Künzli, and Lothar Thiele. Workload
Characterization Model for Tasks with Variable Execution Demand.
In DATE ’04: Proceedings of the conference on Design, automation and test in
Europe, page 21040, Washington, DC, USA, 2004. IEEE Computer Society. 23,
173, 177

[116] C. Mercer, R. Rajkumar, and J. Zelenka. Temporal protection in
real-time operating systems. In Real-Time Operating Systems and Software,
1994. RTOSS ’94, Proceedings., 11th IEEE Workshop on, pages 79–83, May
1994. 6, 7, 9, 84, 172

[117] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Pro-
cessor Capacity Reserves for Multimedia Operating Systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, Pittsburg, May 1993. 5

[118] A. K. Mok. FUNDAMENTAL DESIGN PROBLEMS OF DIS-
TRIBUTED SYSTEMS FOR THE HARD-REAL-TIME ENVIRON-
MENT. Technical report, Cambridge, MA, USA, 1983. 3, 5

[119] Aloysius K. Mok and A. K. Feng. Towards Compositionality in Real-
Time Resource Partitioning Based on Regularity Bounds. In RTSS’01,
IEEE Computer Society, 2001. 31

[120] Aloysius K. Mok and A. K. Feng. A Model of Hierarchical Real-Time
Virtual Resources. In RTSS’02, IEEE Computer Society, pages 26–35, 2002.
6

[121] Aloysius K. Mok, Xiang (Alex) Feng, and Deji Chen. Resource Par-
tition for Real-Time Systems. In Real-Time Systems, 2001. 5, 6, 18

[122] Chewoo Na, Yaling Yang, and Amitabh Mishra. An optimal GTS
scheduling algorithm for time-sensitive transactions in IEEE 802.15.4
networks. Comput. Netw., 52(13):2543–2557, 2008. 153

[123] Vincent Nelis, Joel Goossens, and Bjorn Andersson. Two Protocols
for Scheduling Multi-mode Real-Time Systems upon Identical Multi-
processor Platforms. In ECRTS ’09: Proceedings of the 2009 21st Euromicro
Conference on Real-Time Systems, pages 151–160, Washington, DC, USA, 2009.
IEEE Computer Society. 8

203

REFERENCES

[124] Linwei Niu and Gang Quan. Reducing Both Dynamic and Leakage
Energy Consumption for Hard Real-time Systems. In Proceedings of the
international conference on Compilers, architecture, and synthesis for embedded
systems (CASES), pages 140–148, 2004. 38

[125] Lúıs Nogueira and Lúıs Miguel Pinho. Capacity Sharing and Stealing
in Dynamic Server-based Real-Time Systems. In IPDPS, pages 1–8, 2007.
90

[126] Luigi Palopoli, Luca Abeni, Fabio Conticelli, Marco Di Natale, and
Giorgio Buttazzo. Real-Time control system analysis: an integrated
approach. Real-Time Systems Symposium, IEEE International, 0:131, 2000. 5

[127] Luigi Palopoli, Luca Abeni, Tommaso Cucinotta, and Sanjoy K.
Baruah. Weighted feedback reclaiming for multimedia applications.
In In ESTImedia, pages 121–126, 2008. 89

[128] P. Pedro and A. Burns. Schedulability Analysis for Mode Changes in
Flexible Real-Time Systems. In ECRTS, pages 172–179, 1998. 8, 9, 106

[129] S. Perathoner, N. Stoimenov, and L. Thiele. Reliable Mode Changes
in Real-Time Systems with Fixed Priority or EDF Scheduling. TIK
Report 292, Computer Engineering and Networks Laboratory, ETH Zurich,
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-292.pdf, September 2008.
125

[130] Linh T. X. Phan, Insup Lee, and Oleg Sokolsky. Compositional Anal-
ysis of Multi-mode Systems. In ECRTS ’10: Proceedings of the 2010 22nd
Euromicro Conference on Real-Time Systems, pages 197–206, Washington, DC,
USA, 2010. IEEE Computer Society. 10

[131] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi
Oikawa. Resource kernels: A resource-centric approach to real-time
and multimedia systems. In Proceedings of the SPIE/ACM Conference on
Multimedia Computing and Networking, Vol. 3310, pages 150–164, 1998. 5

[132] S. Ramos-Thuel and J.P. Lehoczky. On-line scheduling of hard dead-
line aperiodic tasks in fixed-priority systems. pages 160 –171, dec. 1993.
84

[133] J. Real and A. Crespo. Mode Change Protocols for Real-Time Sys-
tems: A Survey and a New Proposal. Real-Time Systems, 26(2):161–197,
2004. 8, 10, 133

[134] John Regehr and John A. Stankovic. HLS: A Framework for Com-
posing Soft Real-Time Schedulers. In IEEE Real-Time Systems Symposium,
pages 3–14, 2001. 6, 90

204

REFERENCES

[135] Saowanee Saewong, Ragunathan (Raj) Rajkumar, John P.
Lehoczky, and Mark H. Klein. Analysis of Hierar hical Fixed-Priority
Scheduling. Real-Time Systems, Euromicro Conference on, 0:173, 2002. 6

[136] Luca Santinelli, Mangesh Chitnis, Christian Nastasi, Fabio Chec-
coni, Giuseppe Lipari, and Paolo Pagano. A Component-Based Ar-
chitecture for Adaptive Bandwidth Allocation in Wireless Sensor Net-
works. In IEEE Symposium on Industrial Embedded Systems (SIES), 2010. 153,
154, 156, 171, 173

[137] Luca Santinelli, Mauro Marinoni, Francesco Prosperi, Francesco
Esposito, Gianluca Franchino, and Giorgio Buttazzo. Energy-
Aware Packet and Task Co-Scheduling for Embedded Systems. In In-
ternational Conference On Embedded Software (EMSOFT), 2010. 66, 69, 71,
82

[138] Curt Schurgers, Vijay Raghunathan, and Mani B. Srivastave. Mod-
ulation Scaling for Real-Time Energy Aware Packet Scheduling. In
Global Telecommunications Conferance (GLOBECOMM 01), pages 3653–3657,
San Antonio, Texas (USA), 2001. 66

[139] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode
change protocols for priority-driven preemptive scheduling. Real-Time
Systems, 1(3):243–264, 1989. 9

[140] Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solutions
for Some Practical Problems in Prioritized Preemptive Scheduling. In
IEEE Real-Time Systems Symposium, pages 181–191, 1986. 84, 110

[141] I. Shin and I. Lee. Compositional Real-Time Scheduling Framework.
In Proceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS 2004), pages 57–67, December 2004. 6, 19, 31

[142] Insik Shin and Insup Lee. Periodic Resource Model for Compositional
Real-Time Guarantees. In RTSS ’03: Proceedings of the 24th IEEE Inter-
national Real-Time Systems Symposium, page 2, Washington, DC, USA, 2003.
IEEE Computer Society. 6, 16

[143] Insik Shin and Insup Lee. A Compositional Framework for Real-Time
Guarantees. In ASWSD, pages 43–56, 2004. 18, 31

[144] Insik Shin and Insup Lee. Compositional real-time scheduling frame-
work with periodic model. ACM Trans. Embed. Comput. Syst., 7(3):1–39,
2008. 6, 31, 70

[145] Youngsoo Shin, Daehong Kim, and Kiyoung Choi. Schedulability-
driven performance analysis of multiple mode embedded real-time sys-
tems. In DAC ’00: Proceedings of the 37th Annual Design Automation Confer-
ence, pages 495–500, New York, NY, USA, 2000. ACM. 8

205

REFERENCES

[146] Aviral Shrivastava, Eugene Earlie, Nikil Dutt, and Alex Nicolau.
Aggregating Processor Free Time for Energy Reduction. In Proceed-
ings of the 3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+ISSS), pages 154–159, 2005. 37

[147] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling
for Hard Real-Time Systems. Journal of Real-time Systems, 1989. 6, 7, 16,
84, 172

[148] Brinkley Sprunt. Aperiodic Task Scheduling for Real-Time Systems.
Technical report, Dept. of Electrical and Computer Engineering, Carnegie Mellon
University, 1990. 3, 7, 84

[149] Brinkley Sprunt, John P. Lehoczky, and Lui Sha. Exploiting Unused
Periodic Time for Aperiodic Service Using the Extended Priority Ex-
change Algorithm. In IEEE Real-Time Systems Symposium, pages 251–258,
1988. 84

[150] Marco Spuri, Giorgio C. Buttazzo, and Scuola Superiore S. Anna.
Efficient Aperiodic Service under Earliest Deadline Scheduling. pages
2–11, 1994. 85, 98

[151] J. A. Stankovic, K. Ramamritham, M. Spuri, and G. C. Buttazzo.
Deadline Scheduling for Real-Time Systems: Edf and Related Algorithms. Kluwer
Academic Publishers, Norwell, MA, USA, 1998. 4

[152] Liesbeth Steffens and Gerhard Fohler. Resource Reservation in
Real-Time Operating Systems- a joint industrial and academic posi-
tion, 2003. 2

[153] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable Mode Changes
in Real-Time Systems with Fixed Priority or EDF Scheduling. In DATE,
2009. 9, 124, 133

[154] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo. Re-
source Adaptations with Servers for Hard Real-Time Systems. TIK
Report 292, Computer Engineering and Networks Laboratory, ETH Zurich,
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-320.pdf, September 2010.
179, 181

[155] Nikolay Stoimenov, Lothar Thiele, Luca Santinelli, and Giorgio
Buttazzo. Resource Adaptations with Servers for Hard Real-Time
Systems. In International Conference On Embedded Software (EMSOFT), 2010.
11, 177, 189, 190

[156] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments. IEEE Trans. Comput., 44(1):73–91, 1995. 7, 16,
84

206

REFERENCES

[157] Vishnu Swaminathan and C. Chakrabarti. Energy-Conscious, Deter-
ministic I/O Device Scheduling in Hard Real-Time Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(7):847–858, 2003. 37

[158] Vishnu Swaminathan and Krishnendu Chakrabarty. Pruning-based,
Energy-optimal, Deterministic I/O Device Scheduling for Hard Real-
time Systems. ACM Transactions in Embedded Computing Systems, 4(1):141–
167, 2005. 37

[159] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In ISCAS, 4, pages 101–104, 2000. 22,
23, 45, 48, 91, 155, 172, 176

[160] L. Thiele, E. Wandeler, and N. Stoimenov. Real-Time Interfaces for
Composing Real-Time Systems. In EMSOFT, pages 34–43, 2006. 6, 22, 27,
41, 158

[161] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-
time Interfaces for Composing Real-time Systems. In International Con-
ference On Embedded Software (EMSOFT), pages 34–43, 2006. 48, 156

[162] Deepu C. Thomas, Sathish Gopalakrishnan, Marco Caccamo, and
Chang-Gun Lee. Spare CASH: Reclaiming Holes to Minimize Ape-
riodic Response Times in a Firm Real-Time Environment. In ECRTS,
pages 147–156, 2005. 90

[163] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in
priority pre-emptively scheduled systems. In RTSS, pages 100–109, 1992.
9

[164] J. Trdlička, M. Johansson, and Z. Hanzálek. Optimal Flow Routing
in Multi-hop Sensor Networks with Real-Time Constraints through
Linear Programming. In 12th IEEE International Conference on Emerging
Technologies and Factory Automation, pages –, Piscataway, 2007. Institute of
Electrical and Electronic Engineers. 153

[165] Marisol Garcia Valls, Alejandro Alonso, and Juan A. de la
Puente. Mode Change Protocols for Predictable Contract-Based Re-
source Management in Embedded Multimedia Systems. Embedded Soft-
ware and Systems, Second International Conference on, 0:221–230, 2009. 10

[166] E. Wandeler and L. Thiele. Real-Time Interfaces for Interface-Based
Design of Real-Time Systems with Fixed Priority Scheduling. In EM-
SOFT, pages 80–89, 2005. 27

[167] E. Wandeler and L. Thiele. Optimal TDMA Time Slot and Cycle
Length Allocation. In ASP-DAC, pages 479–484, 2006. 8, 110, 172, 190

207

REFERENCES

[168] Ernesto Wandeler, Alexander Maxiaguine, and Lothar Thiele.
Performance analysis of greedy shapers in real-time systems. In DATE
’06: Proceedings of the conference on Design, automation and test in Europe,
pages 444–449, 3001 Leuven, Belgium, Belgium, 2006. European Design and Au-
tomation Association. 105

[169] Ernesto Wandeler and Lothar Thiele. Real-time interfaces for
interface-based design of real-time systems with fixed priority schedul-
ing. In EMSOFT ’05: Proceedings of the 5th ACM international conference on
Embedded software, pages 80–89, New York, NY, USA, 2005. ACM. 48, 56, 59,
156

[170] Ernesto Wandeler and Lothar Thiele. Interface-Based Design of
Real-Time Systems with Hierarchical Scheduling. In RTAS ’06: Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 243–252, Washington, DC, USA, 2006. IEEE Computer Soci-
ety. 8, 22, 92, 174, 178

[171] Ernesto Wandeler and Lothar Thiele. Interface-Based Design of
Real-Time Systems with Hierarchical Scheduling. In 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages
243–252, April 2006. 47

[172] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox. http://www.mpa.ethz.ch/Rtctoolbox, 2006. Available from:
http://www.mpa.ethz.ch/Rtctoolbox. 60, 174, 190

[173] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul
Lieverse. System Architecture Evaluation Using Modular Perfor-
mance Analysis - A Case Study. Software Tools for Technology Transfer
(STTT), 8(6):649 – 667, October 2006. 39, 174

[174] Chuan-Yue Yang, Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo.
System-Level Energy-Efficiency for Real-Time Tasks. In the 10th IEEE
International Symposium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC), pages 266–273, 2007. 39, 69

[175] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced
CPU Energy. In Proceedings of the 36th Annual Symposium on Foundations
of Computer Science (FOCS), pages 374–382, 1995. 37

[176] Yumin Zhang, Xiaobo Hu, and Danny Z. Chen. Task Scheduling and
Voltage Selection for Energy Minimization. In Proceedings of the 39th
ACM/IEEE Design Automation Conference (DAC), pages 183–188, 2002. 37

[177] Baoxian Zhao and Hakan Aydin. Minimizing expected energy con-
sumption through optimal integration of DVS and DPM. In ICCAD
’09: Proceedings of the 2009 International Conference on Computer-Aided De-
sign, pages 449–456, New York, NY, USA, 2009. ACM. 66

208

http://www.mpa.ethz.ch/Rtctoolbox

REFERENCES

[178] Jianli Zhuo and Chaitali Chakrabarti. System-level Energy-efficient
Dynamic Task Scheduling. In Proceedings of the 42nd ACM/IEEE Design
Automation Conference(DAC), pages 628–631, 2005. 39, 69

209

	1 Introduction
	1.1 Real-Time
	1.2 The Resource Reservation Framework
	1.3 Dynamic Real-Time Systems
	1.4 Aim of the Thesis
	1.5 Overview of the Dissertation

	2 Real-Time System Modeling
	2.1 Real-Time Analysis
	2.1.1 Fixed-Priority Scheduling
	2.1.2 Dynamic-Priority Scheduling
	2.1.3 The Demand Function
	2.1.4 Server Mechanisms
	2.1.5 The Supply Function
	2.1.5.1 Linear Approximation: (slope,) model

	2.1.6 Classical Feasibility Analysis

	2.2 Real-Time Calculus
	2.3 Component and Interface-Based Real-Time Systems
	2.3.1 Abstract Components and Real-Time Interfaces
	2.3.2 Real-Time Composability

	3 Resource Reservation and Schedulability Analysis
	3.1 Power Management for Hard Real-Time Systems
	3.1.1 Periodic Power Management
	3.1.2 One Event Stream
	3.1.2.1 Finding the Minimal Ton
	3.1.2.2 Optimal and Approximated PPMs

	3.1.3 Multiple Event Streams
	3.1.4 Adaptive Energy Aware Scheduling
	3.1.4.1 Real-Time Calculus Routines
	3.1.4.2 Bounded Delay
	3.1.4.3 Future Prediction with Historical Information and Backlogged Demand
	3.1.4.4 Basic Algorithms for Single Stream
	3.1.4.5 Solutions for Multiple Streams
	3.1.4.6 FP Scheduling with Distributed Backlog
	3.1.4.7 EDF Scheduling with Distributed Backlog
	3.1.4.8 EDF Scheduling with Global Backlog
	3.1.4.9 Performance Evaluations
	3.1.4.10 Single Stream
	3.1.4.11 Multiple Streams

	3.2 Energy Aware Scheduling with Constrained Resource
	3.2.1 System Models
	3.2.2 Schedulability Analysis
	3.2.3 Energy Aware Scheduling
	3.2.4 Energy Aware Scheduling: implementation Details
	3.2.4.1 EAS Applicability

	3.2.5 Energy Minimization
	3.2.6 Simulations

	4 Reservation Mechanisms
	4.1 Survey
	4.1.1 Fixed Priority Servers
	4.1.2 Dynamic Priority Servers
	4.1.3 Resource Reclaiming
	4.1.4 Other Server Mechanisms

	4.2 Resource Guarantee
	4.2.1 Polling servers
	4.2.2 Deferrable servers
	4.2.3 Sporadic servers
	4.2.4 Time Division Multiple Access Server
	4.2.5 Total Bandwidth Server
	4.2.6 Constant Bandwidth Server
	4.2.7 Server guarantees
	4.2.8 Service Guarantee Improvements
	4.2.9 Greedy Shapers

	5 Dynamic Systems
	5.1 Motivational Examples
	5.2 Application Mode Change
	5.2.1 Schedulability Analysis
	5.2.1.1 Utilization Approach
	5.2.1.2 Fixed-Priority Scheduling Scheme
	5.2.1.3 Dynamic Scheduling Scheme
	5.2.1.4 Real-Time Calculus and Application Mode Change

	5.3 Server Mode Change
	5.3.1 System Model and Backgrounds
	5.3.2 Server Transitions
	5.3.3 Transition Guarantees

	5.4 Server Schedulability
	5.4.1 Transition Schedulability

	5.5 Resource Reservation Analysis
	5.5.1 (slope,)-Space
	5.5.2 Space Solution Analysis
	5.5.3 (slope,)-space Sensitivity Analysis
	5.5.3.1 Mode Changing Delay

	5.5.4 Mode Change Resource Reservation
	5.5.5 Case Study

	6 Resource Adaptation
	6.1 Adaptive Bandwidth Allocation in Wireless Sensor Networks
	6.1.1 System Model
	6.1.2 Real-Time Components
	6.1.2.1 Component Model
	6.1.2.2 Composability Criteria

	6.1.3 Optimization Problem
	6.1.3.1 Bandwidth allocation
	6.1.3.2 Mode Assignment
	6.1.3.3 Linearization

	6.1.4 Optimization Algorithms
	6.1.4.1 Off-line Optimization
	6.1.4.2 On-line Problem
	6.1.4.3 Bandwidth Re-Allocation Algorithms
	6.1.4.4 Mode Re-assignment Algorithms (MRA)

	6.1.5 Example
	6.1.6 Simulations

	6.2 Resource Adaptation with TDMA Servers
	6.2.1 Models
	6.2.2 Framework for Adaptive Servers with Guarantees
	6.2.3 Algorithms and Analysis
	6.2.4 Case Study

	7 Conclusions
	References

