
Real-Time Schedulability Analysis with

Formal Techniques

Youcheng Sun

Scuola Superiore Sant’Anna, Pisa

Dissertation submitted to Scuola Superiore Sant’Anna for the degree of Doctor of Philosophy.

Supervisor: Committees:

Giuseppe Lipari Enrico Bini

University of Lille Scuola Superiore Sant’Anna

Giorgio Buttazzo

Scuola Superiore Sant’Anna

Marko Bertogna

University of Modena

Marco Di Natale

Scuola Superiore Sant’Anna

Gilles Geeraerts

Université Libre de Bruxelles

Contents

1 Introduction 1

2 Preliminary Definitions 6

2.1 System Model . 6

2.2 Linear Hybrid Automata . 7

3 Parametric Schedulability Analysis 12

3.1 Introduction . 12

3.2 The Inverse Method . 13

3.3 A Modular Framework for Modeling Real-Time Systems 13

3.4 Applying the Parametric Analysis . 15

3.4.1 Convergence problem . 15

3.4.2 An improved model of the system . 15

3.5 Applicability of the Idle-Time Scheduler . 17

3.6 Toward Timed Interfaces . 18

3.7 The Timed Interface . 19

3.8 Conclusion . 21

4 Component-Based Schedulability Analysis 22

4.1 Introduction . 22

4.2 State of the Art . 23

4.3 The Hierarchical System . 24

4.4 Server Algorithm . 24

4.5 Periodic Server Model in LHA . 26

4.5.1 Proof of correctness . 27

4.6 Schedulability Analysis in the Hierarchical System . 28

4.6.1 Scheduler automaton . 28

4.6.2 Hierarchical composition . 30

4.6.3 Decidability . 30

4.7 Evaluation . 32

4.7.1 Comparison with the Lipari-Bini test . 32

4.7.2 External service test . 34

4.7.3 A real case study of an avionics system . 35

4.7.4 Scalability of the analysis . 36

4.8 Conclusion . 38

3

Contents

5 Exact G-FP Schedulability Analysis 39

5.1 Introduction . 39

5.2 Related Work . 41

5.3 Multiprocessor Schedulability in LHA . 42

5.3.1 The task automata . 42

5.3.2 Scheduling automaton . 43

5.4 Weak Simulation Relation in SA . 46

5.4.1 Weak simulation in concrete state space . 46

5.4.2 Weak simulation in symbolic state space . 47

5.4.3 Optimising the slack-time pre-order relation . 49

5.4.4 Schedulability analysis in SA . 50

5.5 The Decidability Interval . 51

5.5.1 System statuses and the dominance relation . 51

5.5.2 The decidability interval for G-FP scheduling . 53

5.5.3 Decidability for SA-SA algorithm . 56

5.6 Evaluation . 56

5.6.1 SA-SA algorithm with and without slack-time pre-order relation 57

5.6.2 Run-time complexity of SA-SA algorithm . 57

5.6.3 Comparison with state-of-the-art over-approximate approach 58

5.6.4 Exact schedulability analysis for periodic tasks in G-FP 58

5.7 Conclusion . 62

6 Multiprocessor Global Scheduling 63

6.1 Introduction . 63

6.2 Basic Notations . 64

6.3 Tests for G-EDF . 65

6.3.1 BC . 65

6.3.2 Bar . 66

6.4 Tests for G-FP . 67

6.4.1 BC-FP . 67

6.4.2 RTA-LC . 68

6.4.3 DA-LC . 69

7 Improving the RTA for G-FP Scheduling 70

7.1 Critical Instants for G-FP Scheduling . 70

7.1.1 Pessimism and optimism in RTA-LC . 72

7.2 RTA-CE: RTA with Carry-in Enumeration . 73

7.2.1 New workload upper bound . 73

7.2.2 New iterative analysis procedure . 75

7.2.3 Improving the efficiency . 77

7.3 Evaluation . 77

7.3.1 Performance tests . 78

7.3.2 Efficiency tests . 79

7.4 Conclusion . 80

4

Contents

8 New Techniques for G-EDF Schedulability Analysis 81

8.1 An Improved Schedulability Test for G-EDF . 81

8.1.1 Interference in a sub problem window . 82

8.1.2 RTA-LC-EDF . 84

8.1.3 Upper bound to Ak . 85

8.1.4 RTA-LC-EDF-B . 86

8.2 Suspension-Aware Schedulability Analysis . 88

8.2.1 Self-suspending tasks . 88

8.2.2 Suspension-aware schedulability: prior results . 88

8.2.3 RTA-LC-EDF(-B) with suspension-awareness . 89

8.3 Evaluation . 90

8.3.1 Tasks without self-suspension . 90

8.3.2 Tasks with self-suspension . 91

8.3.3 Run-time efficiency . 91

8.4 Conclusion . 92

9 Task Parameter Scalability Problem 95

9.1 Task Parameter Scalability . 95

9.1.1 Uniprocessor FP scheduling . 96

9.1.2 Multiprocessor G-FP scheduling . 96

9.1.3 Uniprocessor FP scheduling of self-suspending tasks 97

9.2 The Schedulability Analysis for non P-Scalable Scheduling 97

9.2.1 Certain and uncertain tests . 97

9.2.2 The schedulability analysis for G-FP: prior results 98

9.2.3 Certain schedulability analysis for G-FP . 100

9.3 Conclusion . 101

10 Conclusion 102

Acknowledgments 103

5

List of Figures

1.1 A possible schedule of two tasks in the time interval [0, 10) 1

1.2 The worst-case scenario in the single processor FP scheduling 2

2.1 The LHA model for a water tank: h = 5,H = 10,delay = 2,min = 1 and max = 12 8

2.2 A committed location . 9

3.1 The modeling framework for a real-time system . 14

3.2 Schedule of the first busy period of the example task set 16

3.3 Constraints on T1 and T2 obtained by the behavioural cartography 17

3.4 Arrival curve automaton . 17

3.5 A component with three tasks and one method in the provided interface. 18

3.6 Parameter space (green) for Nu, P and D2 . 20

4.1 An example of hierarchical scheduling system. 23

4.2 The Server automaton. 26

4.3 Model of a FP scheduler for two periodic tasks τ1, τ2. 29

4.4 Feasible server parameters. Crosses are the schedulable pairs (Q,P) found by the Lipari-

Bini test [LB04]; triangles are the ones found by our analysis. 33

4.5 The service request automaton . 34

4.6 Feasible server parameters for external service test . 35

4.7 Feasible (P,Q) space for each component of the avionics case study. 36

4.8 Run-time of FORTS on a 8 task model . 37

4.9 Run-time of FORTS on a 10 task model . 37

5.1 Example of schedule of sporadic tasks (a) jobs arrive as soon as possible (b) second job of

τ1 is delayed. 40

5.2 Task Automaton . 42

5.3 Scheduler for 3 tasks on 2 processors . 44

5.4 A convex region C and its windening ∇(C) . 48

5.5 Both τ1 and τ2 are active . 55

5.6 SA-SA v.s. SA-SA-WoS . 57

5.7 Run-time complexity of SA-SA for m = 2 and n = 5 . 59

5.8 Run-time complexity of SA-SA for m = 2 and n = 6 . 60

5.9 Comparison between RTA-CE and SA-SA . 61

5.10 The exact analysis for periodic tasks . 62

6.1 Maximum CI interference under G-EDF . 65

6.2 Maximum workload in a problem window . 66

6

List of Figures

7.1 The CI workload of a task. 74

7.2 The worst-case workload of a task with Ci = 2, Ti = 4 and Ri = 3 75

7.3 RTA-CE v.s. RTA-LC . 78

7.4 RTA-CE v.s. RTA-LC (Ti ∈ [10, 1000], DiTi ∈ [0.7, 2]) . 78

7.5 Efficiency improvement tests . 79

7.6 The scalability test (m = 8, n = 80, U = 4) . 80

8.1 Different problem windows . 81

8.2 The worst-case arrival pattern for WCI
i (x,L) . 82

8.3 Run-time comparison between new tests . 91

8.4 Tests on 2 processors (without self-suspension) . 92

8.5 Tests on 4 processors (without self-suspension) . 92

8.6 Tests on 8 processors (without self-suspension) . 93

8.7 Tests on 2 processors (with self-suspension) . 93

8.8 Tests on 4 processors (with self-suspension) . 94

8.9 Tests on 8 processors (with self-suspension) . 94

9.1 The scheduling of self-suspending tasks is not p-scalable 97

9.2 The worst-case arrival pattern for WCI
i (x) . 99

7

Chapter 1

Introduction

Scheduling is the art of distributing the capacity provided by a resource to competing entities. In

particular, real-time scheduling deals with deterministically distributing time to (real-time) tasks subject

to temporal constraints. In the context of real-time scheduling, the time typically refers to the processing

time in modern computing systems.

The simplest, yet expressive, characterisation for a real-time task is of the form τi = (Ci, Di, Ti),

where Ci is the task’s Worst-Case Execution Time (WCET), Di is the relative deadline, and Ti regulates

τi’s activations. A task can release an infinite sequence of task instances called jobs. Ji,k denotes the

k-th job of τi, which is further characterised by the release time (or arrival time) ri,k and the absolute

deadline di,k = ri,k +Di such that a job Ji,k must execute up to Ci time units no later than di,k. For a

periodic task τi, Ti is its period and for any k, ri,k+1 − ri,k = Ti; for a sporadic task τi, Ti measures the

minimum time distance between two successive jobs of τi: for any k, ri,k+1 − ri,k ≥ Ti. The finishing

time of Ji,k is denoted by fi,k and fi,k − ri,k is a job’s response time. Then, the Worst-Case Response

Time (WCRT) of a task τi can be defined as Ri = max
∀k
{fi,k − ri,k}. A task is said to be schedulable if

for its every job there is fi,k ≤ di,k, that is, Ri ≤ Di.

The scheduler is another entity in charge of deciding which tasks to execute at each time instant. A

real-time system refers to the tasks, the single processor or multiprocessor platform and the scheduler.

The fundamental problem in a real-time system is to verify the schedulability of each task under the

scheduling algorithm, and this is called real-time schedulability analysis.

Assume that there are two periodic tasks τ1 = (2, 4, 4) and τ2 = (5, 10, 10) executing on a single

processor. Roughly speaking, τ1 requests 2 time units every 4 time units, and τ2 requests 5 time units

every 10 time units. According to the Rate Monotonic (RM) scheduling policy [LL73], a higher priority

is assigned to the faster task that is with shorter period. As a result, τ1 enjoys a higher priority than τ2,

and the arrival of τ1 can preempt the execution of τ2. The snapshot of one possible schedule of the two

tasks by RM scheduling policy, in the time interval [0, 10), is shown in Figure 1.1.

τ2

τ1 τ1 τ1

100

Figure 1.1: A possible schedule of two tasks in the time interval [0, 10)

1

The history of real-time scheduling can be traced back to the work of Liu and Layland in 1973 [LL73],

which is the first important paper in real-time scheduling theory. In [LL73], the Fixed Priority (FP)

scheduling and the Earliest Deadline First (EDF) scheduling of real-time tasks upon a single processor

platform are proposed. After more than 40 years, the FP policy and the EDF policy are still today’s

most popular real-time scheduling algorithms.

In the FP scheduling, each task is statically assigned a fixed priority in advance and the arrival of

a higher priority task can preempt the execution of a lower priority task. In the EDF scheduling, the

priority of each job is dynamically adjusted given its absolute deadline and an earlier deadline corresponds

to a higher priority.

More importantly, Liu and Layland contribute the fundamental insight for single processor real-time

schedulability analysis, which is known as the Critical Instant Theorem. A critical instant for a task is

the release time that results in the worst-case scenario for its execution. Under the FP scheduling, the

critical instant is the time point at which all tasks are simultaneously activated. For the simple two-task

FP system discussed above, the worst-case scenario for τ2’s execution is shown in Figure 1.2, and τ2 is

not schedulable.

τ2

τ1 τ1 τ1

100

Figure 1.2: The worst-case scenario in the single processor FP scheduling

As a matter of fact, the critical instant depicts a special moment when scheduling a set of real-time

tasks, and it is enough to analyse the schedulability from this particular moment concerning temporal

constraints. By focusing on the worst-case scenario resulted from the critical instant and instead of

considering each possible task activation pattern, the schedulability analysis is then greatly simplified.

Additionally, even if the critical instant never happens, analyses can consider the pessimistic assumption

of the critical instant as a sufficient condition for the schedulability. In fact, many existing tests are only

sufficient, for reducing the complexity.

Liu and Layland’s observation of the critical instant and the worst-case scenario is simple but fun-

damental. Since then, a large body of research literature has addressed the problem of schedulability

analysis of real-time tasks, by looking for the worst-case scenario in a real-time system. However, the de

facto truth about real-time schedulability analysis is that there is only one task activation pattern that

is well studied and recognised: all tasks are simultaneously activated, and the subsequent task instances

are released As Soon As Possible (ASAP)!

Due to successful application of the ASAP task activation pattern in a variety of real-time systems,

the majority of schedulability tests make the effort to derive ”efficient enough” mathematical formulas

from this pattern for checking the schedulability. As a result, these formulas fall into certain forms. In

the following, this family of schedulability tests is regarded as the analytical approach for schedulability

analysis, and the analytical schedulability analysis represents the main results in the literature of real-

time scheduling theory in the past 40 years.

Details on the analytical schedulability analysis can be found in textbooks like [Liu00] and [But11].

As an example, the Response Time Analysis (RTA) [ABR+93] is one fundamental methodology for

schedulability analysis and it has been applied to every well-known real-time system. The RTA employs

2

Chapter 1. Introduction

an iterative procedure to compute a task’s worst-case response time so as to decide whether the task is

schedulable or not. Its basic form is as follows.

X = Ci +

i−1∑
j=1

⌈
X

Tj

⌉
Cj (1.1)

Indeed, Equation 1.1 corresponds to the RTA procedure for a task τi subject to single processor FP

scheduling, where a lower task index denotes a higher priority. It is derived by analysing the ASAP

task release pattern starting from the critical instant. The computational complexity for this RTA test

is pseudo polynomial. It is widely accepted that a schedulability test is ”efficient enough” if it has the

complexity that is not worse than pseudo polynomial time.

On the other side, there exist real-time systems such that they do not have the critical instant or

worst-case scenario for the exact/sufficient schedulability analysis. Along with the trend of switching from

the single processor architecture to the multiprocessor architecture, more and more real-time scheduling

problems cannot be naively explained by a worst-case scenario like the ASAP pattern. For example,

upon the multiprocessor platform, a task may be allowed to migrate among different processors. This is

called the global scheduling of real-time tasks, and the schedulability analysis of multiprocessor global

scheduling is still an open problem.

When in a real-time system the worst-case scenario does not exist, or is too pessimistic, or is too

difficult to find, the classic analytical approach is not the niche for schedulability analysis any more.

Nowadays, finding new solution techniques becomes the major challenge for advancing the theory of

real-time schedulability analysis. This thesis’s main effort is to integrate the analytical approach and the

use of formal methods for real-time schedulability analysis.

Besides the analytical approach, real-time schedulability analysis can be also done by using formal

methods, based on Timed Automata [AD94] or Linear Hybrid Automata [ACHH93]. The schedulability

problem is usually encoded as a reachability problem on the state space of the formal model: bad states

that represent a violation of the temporal guarantee should never be reached. Generally speaking, the

reachability analysis in many formal models is not decidable, that is, the analysis procedure cannot be

guaranteed to terminate. However, as shown in this thesis, most schedulability problems are decidable

when formally modeling them.

In contrast to the analytical approach, the formal approach for schedulability analysis is able to detect

each possible state when scheduling a set of real-time tasks, and can be applied to general systems with

or without the worst-case scenario. Moreover, for real-time systems that cannot be simply represented

by a worst-case scenario, the formal approach provides an alternative to help understand what indeed

happens in the system.

However, to explore all states in a formal model can be expensive regarding time complexity and

memory cost, and the state space explosion problem is so notorious that the adoption of formal methods

for real-time schedulability analysis is resistant. The state space explosion is the fact that the number

of states in a model can be so large and it is beyond the power of modern computing devices to conduct

the reachability analysis (even in case the procedure is decidable). For example, the reachable states

in a Linear Hybrid Automata model are typically computed using polyhedra [HPR97], but the size of

polyhedra representations can be exponential in the number of variables in the model.

To mitigate the state space explosion problem, domain knowledge and experience, largely resulted

from the analytical reasoning, on real-time scheduling can be utilised. Every state in the state space

encodes a particular moment for the scheduling of tasks, and it is the responsibility of algorithm designers

to investigate if there are some states that are more critical than others regarding the violation of temporal

constraints or to cut off states that are not useful for schedulability analysis. In the extreme case, the

3

so-called worst-case scenario results in a series of system states that are enough for deciding a task’s

schedulability. By continually complicating a real-time system (e.g. increasing the number of tasks or

processors), the formal schedulability test will eventually fail to apply. Nevertheless, it is meaningful to

study to which extent an integration of the analytical approach and the formal approach works.

After Liu and Layland’s initial work and due to the somewhat heuristic worst-case scenario appearing

in many single processor real-time systems, the analytical approach has been dominating the real-time

schedulability analysis and the way people interpret a real-time scheduling problem. The message con-

veyed in this thesis is that advanced results by different solution techniques should be integrated for

better real-time schedulability analysis and better understanding of real-time scheduling problems.

Organisation of the thesis At first, Chapter 2 introduces the common notations and concepts that

will be used in the context of this thesis. In Chapter 3, a formal framework for modeling the single

processor schedulability analysis is proposed. Then, the parametric schedulability analysis and the

generation of timed interfaces for compositional system design are discussed. Chapter 4 focuses on

component-based schedulability analysis in hierarchical systems such that the schedulability test of tasks

within a component does not rely on other parts of the system. After Chapter 4, the platform under

schedulability analysis moves from the single processor to the multiprocessor; more specifically, the

multiprocessor global scheduling will be considered. In Chapter 5, an exact global FP schedulability

analysis based on an automaton model is proposed. On one side, empirical knowledge from real-time

scheduling helps reduce the complexity of the exact analysis; on the other side, inherent features of

global FP scheduling are obtained when applying formal analysis on the model. Chapter 6 recalls general

knowledge and state-of-the-art results regarding global schedulability analysis based on the analytical

approach. Then, Chapter 7 and Chapter 8 present new analytical techniques for global FP scheduling

and global EDF scheduling respectively. Chapter 9 presents the challenges for schedulability analysis in

discrete time domain and a methodology is developed to tackle them. Finally, the thesis is concluded in

Chapter 10.

This thesis is based on the following articles.

1. Youcheng Sun, Giuseppe Lipari, Étienne André, and Laurent Fribourg. Toward Parametric

Timed Interfaces for Real-Time Components. Proceedings of the 1st International Workshop

on Synthesis of Continuous Parameters (SynCoP), 2014.

2. Youcheng Sun, Giuseppe Lipari, Romain Soulat, Laurent Fribourg, and Nicolas Markey.

Component-Based Analysis of Hierarchical Scheduling using Linear Hybrid Automata.

Proceedings of the 20th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2014.

3. Youcheng Sun and Giuseppe Lipari. A Pre-Order Relation for Exact Schedulability Test of

Sporadic Tasks on Multiprocessor Global Fixed-Priority Scheduling. Real-Time Systems.

4. Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. Improving the Response Time

Analysis of Global Fixed-Priority Multiprocessor Scheduling. Proceedings of the 20th

IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2014.

5. Youcheng Sun and Giuseppe Lipari. Response Time Analysis with Limited Carry-in for

Global Earliest Deadline First Scheduling. Proceedings of the 36th IEEE Real-Time Systems

Symposium (RTSS), 2015.

4

Chapter 1. Introduction

6. Youcheng Sun and Giuseppe Lipari. The Task Parameter Scalability Problem in Real-Time

Systems.

5

Chapter 2

Preliminary Definitions

This chapter presents the common concepts and notations that will appear in the rest of the thesis.

2.1 System Model

A real-time task is denoted by τi and is characterised by the tuple (Ci, Di, Ti).

• Ci is the Worst-Case Execution Time.

• Di is the relative deadline of τi.

• In case τi is a periodic task, Ti represents the period of the task such that two successive task

activations are strictly separated by Ti; or, if τi is a sporadic task, Ti measures the minimum time

distance between two successive activations of τi. With an abuse of notation, we also call Ti the

period even for a sporadic task τi.

A task τi is said to have an implicit deadline if Di = Ti; A constrained-deadline task τi refers that

Di ≤ Ti; similarly, an unconstrained-deadline task means Di > Ti; in the end, if we say a task has an

arbitrary deadline, then its relative Di may be less than, equal to, or larger than Ti.

A task τi periodically or sporadically activates. Each task activation is denoted by a job Ji,k, where

the index k refers to the k-th instance of τi. Each job Ji,k is further characterised by its release time

(or arrival time) ri,k and absolute deadline di,k such that di,k = ri,k + Di. The finishing time fi,k of a

job is the time Ji,k finishes the requested computation and the difference between fi,k and ri,k is called

the response time of Ji,k. The Worst-Case Response Time (WCRT) Ri of a task τi is the maximum

response time among all its jobs such that Ri = max
∀k
{fi,k − ri,k}. A task is schedulable if every of its

jobs finishes execution no later than the corresponding absolute deadline, that is, Ri ≤ Di. A job is said

to be active if it has been released by it has not finished the execution. For an unconstrained-deadline

task, there may be more than one active job at the same time and it is required that all jobs from the

same task must execute sequentially, that is, a job can start executing only after all its precedent jobs

from the same task finish the execution.

The utilisation of a task τi is defined Ui = Ci
Ti

and for simplicity, it is required that Ci ≤ min{Di, Ti}.
A task set T = {τi, . . . , τn} contains n real-time tasks. The total utilisation of the task set is denoted

as Utot =
∑

1≤i≤n Ui. The hyperperiod of a task set is the least common multiple of all task periods:

H = lcm(T1, . . . , Tn). By default, a task is not allowed to self-suspend its execution, and tasks are

independent from each other such that they do not share mutual exclusion resources.

This thesis mainly focuses on two kinds of scheduling policies: the Fixed Priority (FP) scheduling

and the Earliest Deadline First (EDF) scheduling. Under the FP policy, each task is assigned a fixed

6

Chapter 2. Preliminary Definitions

priority in prior and all its jobs inherit this priority. By convention, a lower task index refers to a higher

priority; that is, τi has a higher priority than τj if i < j. As for the EDF policy, the priority of each

job is decided by its absolute deadline and a shorter deadline corresponds to a higher priority. In both

cases, the task preemption is allowed. A preemption means that an executing task gives up the processor

because that a higher priority job is released.

When it comes to the multiprocessor platform, we assume there are m (≤ n) identical processors. The

global scheduling policy features the facts that a job may execute upon any processor and a preempted

job may later resume execution upon the same processor as, or upon a different processor from, the one

it had been executing. Thus, the FP and EDF scheduling policies are then adapted as Global FP (G-FP)

and Global EDF (G-EDF).

Other task models A task τi with explicit initial offset is denoted as τi = (Oi, Ci, Di, Ti) such that

Oi specifies the release time of the first job from τi, and Ci, Di, and Ti keep their original meanings.

Still, τi can be a periodic task or sporadic task.

The arrival curve [TCN00] is a generalisation of the sporadic arrival model. In this case the pattern

of arrival must respect a certain function called arrival curve αi(t) : R→ N. The arrival curve constrains

the number N of task arrivals in any interval of a given length ∆:

∀k ≥ 0,∀N > 0 : ∆ ≤ αi(ri,k+N−1 − ri,k)

In other words, the number of jobs from a task τi in any interval must not exceed the value of the arrival

curve for that interval1. In particular, a periodic arrival curve is of the form:

αNu,P (t) = Nu +

⌊
t

P

⌋
(2.1)

where Nu denotes the initial burstiness and P denotes the period. A generic arrival curve can always be

upper bounded by a periodic arrival curve of the form (2.1).

2.2 Linear Hybrid Automata

Throughout the thesis, when it refers to formal techniques, in principle it means modeling the schedul-

ing problem or schedulability analysis in hybrid automata and then applying modeling checking tech-

niques for verifying certain property related with the task system’s schedulability. A hybrid automaton

[ACHH93,HPR97] is a finite automaton associated with a finite set of variables continuously varying in

dense time. In this section, the basic terminology and the definition of Linear Hybrid Automata will be

introduced.

Let Var = {x1, . . . , xn} be a set of continuous variables (sometimes called clocks) and ˙Var = {ẋ1, . . . , ẋn}
be the set of variables’ derivatives (also called rates) over time. A linear constraint atom over Var is

of the form
∑n
i=1 cixi ∼ b, where ci (1 ≤ i ≤ n) and b are rational numbers and ∼∈ {<,≤,=,≥, >}.

A linear constraint C is the conjunction of a finite number constraint atoms. A valuation ν over Var is

a function that assigns a real value to each element in Var. The set of all possible valuations over Var

is denoted as V (Var). We write ν |= C to represent that ν satisfies C. The same notations can also be

defined for ˙Var.

Definition 1. A Linear Hybrid Automaton (LHA) A = (Var, Loc, Init, Lab,Trans, D, Inv) consists of

seven components:

1In the original paper [TCN00], a lower bound on the number of arrival events is also considered.

7

2.2. Linear Hybrid Automata

• a finite set Var of continuous variables;

• a finite set Loc of locations including an initial location l0;

• a labeling function Init that specifies the initial linear constraint over continuous variables;

• a finite set Lab of synchronisation labels including a stutter label ε;

• a finite set Trans of transitions;

• a labeling function D that assigns to each location l ∈ Loc a linear constraint over variables’

derivatives;

• and a labeling function Inv that assigns each location l ∈ Loc a linear constraint, called invariant,

over variables.

The automaton can be in a location l as long as the current valuations of the variables satisfy Inv(l).

A transition (also called edge) is a tuple (l, γ, a, α, l′) consisting of a source location l, a target location

l′, a guard γ that is a linear constraint over Var, a synchronisation label a ∈ Lab, and the transition

relation α which is used to update the values of the variables in Var. By default, it is required that on

each location, there is a stutter transition (l, true, ε, Id, l), where Id = {(ν, ν)|ν ∈ V (Var)} is the identical

transition relation.

Figure 2.1 depicts a LHA model for a water tank monitor ([HPR97]): Var = {w, t}, Loc = {pump is on,

stop pump,pump is off, start pump, error} with l0 = pump is on, Init(pump is on) = t = 0 ∧ h ≤
w ≤ H, and Lab = {stop, off, start, on, overflow,underflow}; as an example for the invariant, there is

Inv(pump is on) = w ≤ H.

pump is on
ẇ = 1, ṫ = 1

w ≤ H

pump is off
ẇ = −2, ṫ = 1

w ≥ h

stop pump
ẇ = 1, ṫ = 1

t ≤ delay

start pump
ẇ = −2, ṫ = 1

t ≤ delay

error
true

t = 0∧
h ≤ w ≤ H

stop
w = H
t := 0

off
t = delay

start
w = h
t := 0on

t = delay

overflow
w > max

underflow
w < min

Figure 2.1: The LHA model for a water tank: h = 5,H = 10,delay = 2,min = 1 and max = 12

Committed locations A committed location is a special location within which the time elapsing is

not allowed. Figure 2.2 shows the graphical representation (with double circles) of a committed location

with name locx.

8

Chapter 2. Preliminary Definitions

locx· · · · · ·

Figure 2.2: A committed location

For convenience, we allow to put two synchronisation labels on the same transition. This means that

the two synchronisation actions must be triggered without time elapsing, which can be implemented by

inserting a committed location in between.

LHA is very expressive and in fact most real-time scheduling problems can be modeled by a subclass

of LHA. The Timed Automaton [AD94] is a special kind of LHA such that continuous variables always

have derivatives equivalent to 1 and if a variable is updated along with a transition, it can only be

reset to 0. The Timed Automaton with Stopwatches (or Stopwatch Timed Automaton) [CL00] extends

the Timed Automaton such that a continuous variable can be stopped in some locations, that is, the

corresponding variable rate equals to 1.

Let A1 and A2 be two LHA over a set of variables Var. Their parallel composition A1 × A2 is the

LHA (Var, Loc1 × Loc2, Init, Lab1 ∪ Lab2,Trans, D, Inv) as follows.

• Init(l1, l2) = Init(l1) ∧ Init(l2).

• ((l1, l2), γ, a, α, (l′1, l
′
2)) ∈ Trans iff

1. (l1, γ1, a1, α1, l
′
1) ∈ Trans1 and (l2, γ2, a2, α2, l

′
2) ∈ Trans2;

2. γ = γ1 ∧ γ2;

3. either a1 = a2 = a, or either a1 = a 6∈ (Lab1 ∪ Lab2) and a2 = ε or a1 = ε and a2 = a 6∈
(Lab1 ∪ Lab2);

4. α = α1 ∧ α2.

• D(l1, l2) = D1(l1) ∧D2(l2);

• Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2).

Semantics in the LHA A concrete state s of the LHA is of the form (l, ν), where l is a location and

ν ∈ V (Var). A state can change by the following two ways.

• A discrete step: (l, ν)
a→ (l′, ν′) which means there exists a transition (l, γ, a, α, l′) and

ν |= γ ∧ ν′ = α(v) ∧ ν′ |= Inv(l′).

• A time step: (l, ν)
t→ (l, ν′), where t is a real value represents the time elapsed.

ν |= Inv(l) ∧ ν′ ∈ ν ↑tD(l) ∧ν
′ |= Inv(l) ∧ t ≥ 0.

ν ↑tD(l) represents the set of valuations that can be reached by letting variables continuously evolve

for t time units, according to derivatives constrained by D(l), and starting from the valuation ν.

When t =∞, for simplicity, we use ν ↗ D(l) to denote ν ↑tD(l).

A generic step is denoted as → and it can be either a discrete step or time step. A sequence of steps

is represented as ⇒, and
t⇒ means that the accumulated time during the sequence of steps is t.

A symbolic state S of the LHA is a pair (l, C), where l is a location and C is a linear constraint over

variables in Var. Geometrically, a linear constraint can be mapped to a convex region; the notation C is

also used to denote this convex region. The concepts of a step and a sequence of steps can also be defined

9

2.2. Linear Hybrid Automata

for the symbolic state by lifting the definitions for concrete states. When it comes to symbolic states,

the corresponding operations are performed on convex regions instead of concrete valuations. Given a

sequence of symbolic states, by abstracting away the constraints on variables, the result is an alternating

sequence of locations and synchronisation labels and this is called a trace.

Algorithm 1: Reachability Analysis in a LHA

1: R← {S0}
2: while true do
3: P ← Post(R)
4: if P ∩ F 6= ∅ then
5: return No
6: end if
7: R′ ← R ∪ P
8: R′ ← Max⊇(R′)
9: if R′ = R then

10: return Yes
11: else
12: R← R′

13: end if
14: end while

The initial state S0 of a LHA can be defined as (l0, C0) with

C0 = Init(l0)↗ D(l0) ∧ Inv(l0).

Given an arbitrary state S = (l, C), we say it is reachable in LHA if there exists a sequence of steps from

S0 to S and C is not empty, and the corresponding trace is said to be admissible.

One fundamental problem in LHA is to check if certain locations or states, e.g., representing the

deadline miss conditions, are reachable. The basic procedure of reachability analysis is as in Algorithm

1.

R denotes the set of reachable states in SA and F is the set of states that should be not reached.

The Post operation returns the set of states that can be reached in a single transition from states in R.

If some state in F is reachable, then the whole procedure terminates.

Max⊇(R′) is defined as

∀S ∈ Max⊇(R′) :6 ∃S′ ∈ R′ s.t. S′.l = S.l ∧ S′.C ⊃ S.C

∀S, S′ ∈ Max⊇(R′) : ¬(S′.l = S.l ∧ S′.C ⊇ S.C)

In fact, for two states S and S′ such that S.l = S′.l ∧ S.C ⊇ S′.C, the reachable states from S′ would be

a subset of the reachable states from S.

In general, the reachability analysis in LHA is not decidable: if it terminates, then it returns correct

results, but there is no guarantee that the analysis procedure will terminate. Nevertheless, as we are going

to see in the following content of the thesis, the schedulability analyses in LHA are usually decidable.

LHA with parameters The parametric LHA extends LHA with a finite set U of parameters. A

parameter has a constant value but the exact value is unknown. Or, a parameter can be regarded as

a special kind of continuous variable that is always with derivative 0. In this sense, a parametric LHA

is in fact also a LHA. However, it is meaningful to distinguish parametric LHA from plain LHA as it

specialises in certain problems. For example, if in the LHA model as in Figure 2.1 values of min and max

become unknown, then people may be interested in asking if there exist parameter valuations of min

10

Chapter 2. Preliminary Definitions

and max such that the location error is not reachable, or finding all possible parameter valuations that

keep the error not reachable. Given a parametric LHA A and a parameter valuation π, A[π] denotes the

LHA by instantiating parameters in A with π.

11

Chapter 3

Parametric Schedulability Analysis

In this chapter, a framework in Stopwatch Timed Automata to model single processor Fixed Priority (FP)

scheduling of real-time tasks will be presented. The framework is modular, so as to be easily adapted

to different schedulers and task models. By parameterising the model, the parametric schedulability

analysis can be conducted. We first show that such an analysis does not provide satisfactory results when

task periods are considered as unknown parameters. After identifying and investigating the problem, a

solution is proposed by adapting the model to take into account the worst-case scenario in schedulability

analysis. The parametric analysis in the modified model can always converge when the task set total

utilisation is strictly less than 100%. Then, we show how to use our parametric analysis for the generation

of timed interfaces in compositional system design. Finally, we discuss how to more efficiently perform

parametric analysis.

The content in this chapter is based on [SLAF14].

3.1 Introduction

It is possible to address the problem of schedulability analysis of real-time tasks by both using analytical

approach (e.g. [Liu00, But11]) and formal methods (e.g. [AM02, FPY02, FMPY03]). However, in these

works, the task parameters (e.g. the execution time, relative deadline or period) are required to have

explicit values. By admitting some task parameters to be unknown, parametric schedulability analysis

synthesises parameter valuations such that the task set is guaranteed to be schedulable. This permits to

explore the design space parameters, and to assess the robustness of the system.

Analytical parametric analysis of real-time systems using mathematical equations has already been

done in the past. Bini et al. [BDNB08] proposed a method for parametric analysis of real-time peri-

odic tasks where unknown parameters can be either WCETs or task periods. [SSL+14] extended the

parametric analysis in [BDNB08] to tasks with arbitrary deadlines and the distributed real-time system.

However, with such approaches, changing the task model requires the development of a new methodology.

Also, such methods do not apply to the case of arbitrary unknown parameters; for example, a task’s

WCET and period can be unknown parameters at the same time.

It is possible to perform an exploration of the parameter space using Timed Automata, as in

[LPPR13]. However, their approach is not fully parametric: the analysis is repeated for all combinations

of the discrete values of the parameters.

Fully parametric analysis can be performed using specific formalisms. For example, formalisms such

as parametric Timed Automata [AHV93] and parametric PEtri nets [TLR09] have been used to model

parametric schedulability problem (e.g. [CPR08,SSL+14]). Particularly, thanks to the generality of these

modeling languages, it is possible to perform fully parametric analysis on arbitrary task parameters.

12

Chapter 3. Parametric Schedulability Analysis

The Inverse Method (IM) [AS13] can be used for exploring the space of parameters of a parametric

Stopwatch Timed Automata in the proximity of a valuation point of parameters. In this chapter, we will

utilise this method for the parametric schedulability analysis.

A similar approach has been used in [SSL+14], where a distributed real-time system has been modeled

using parametric Stopwatch Timed Automata. However, in [SSL+14] the methodology is limited to

consider tasks’ computation times as unknown parameters. Here, tasks’ periods and relative deadlines

can also be unknown.

Moreover, our generic modular approach can be seen as contract-based methodology where ”provided”

and ”required” interfaces are instances of (assumption, guarantee) pairs in the contract terminology. An

interface-based approach to the design and analysis of real-time systems using assume/guarantee has al-

ready been proposed in the literature [LPT13,SL08], but their approach is not parametric. Compositional

verification of timed systems, using assume/guarantee reasoning, has also been considered in [LAL+14]

for Event-Recording Automata, a subclass of Timed Automata; again, this approach is non-parametric.

3.2 The Inverse Method

The Inverse Method (IM) for parametric Stopwatch Timed Automata exploits the knowledge of a specific

valuation of parameters, called the reference point, for which the behaviour of the system is known. The

method synthesises automatically a dense space of valuations around the reference point, for which the

discrete behaviour of the system, that is the set of all the admissible traces, is guaranteed to be the same.

Given a reference point π, the IM proceeds by exploring iteratively the state space from the initial

state. When a π-incompatible state is met (that is a state (l, C) such that π 6|= C), a π-incompatibility

inequality J is selected within the projection of C to parameters U . The inequality is then negated,

and the analysis restarts with a model further constrained by ¬J . When a fixed-point is reached, that

is when no π-incompatible state is found and all states have their successors within the set of already

reachable states, the intersection of all the constraints onto parameters is returned.

IM proceeds by iterative state space exploration, and its result comes under the form of a fully

parametric constraint. By repeatedly applying the method, we are able to decompose the parameter

space into a covering set of ”tiles”, which ensure a uniform behaviour of the system: it is sufficient to

test only one point of the tile in order to know whether or not the system behaves correctly on the whole

tile. This is known as the behavioural cartography [AF10]. Both IM and behavioural cartography are

semi-algorithms; that is they are not guaranteed to terminate (i.e. to converge) but, if they do, their

result is correct. However, compared with the more traditional Counter-Example Guided Approach

(CEGA) for parameter synthesis [FJK08], IM is earlier to converge.

3.3 A Modular Framework for Modeling Real-Time Systems

Here we refer to a real-time system as a set of real-time tasks scheduled by a FP preemptive scheduler on

a single processor. Our model of a real-time system consists of three kinds of components in Stopwatch

Timed Automata: the task automata, the activation automata and the scheduler automaton. We refer

to the composition of these automata through synchronisation as system automaton. The complete

framework is shown in Figure 3.1. By default, clock variables in the model have rate 1.

Each task is modeled using a task automaton. Such a task automaton is shown in Figure 3.1a. Each

task automaton contains two continuous clock variables c and d. Clock c counts the execution of the task

and clock d counts the time passed since last job arrival. As we consider the generic activation pattern

(periodic, sporadic or arrival curves), a new instance may be activated while the previous ones have not

13

3.3. A Modular Framework for Modeling Real-Time Systems

IdleActEvent

Waiting
ċ = 0
d ≤ D

Running
c ≤ N · C∧

d ≤ D

Deadline
Missed

arrival event
d := 0, c := 0,N := 1

arrival

dispatch

d = D

preemption
c < N · C

c < N · C∧
d = D

end
c = N · C

arrival event
d < D

d := 0,N := N + 1

arrival event

arrival event
d < D

d := 0,N := N + 1

arrival event

(a) Task automaton

ArrEvent
p ≤ T

arrival event
p = T
p := 0

(b) Task activation
automaton

Idle

At1

At2

Rt1

Rt2

Et1Wt2 Et

At1Rt2

Rt1Wt2

arrival1

arrival2

dispatch2

dispatch1

end1

arrival2

end2

arrival1

preemption2,
dispatch1

end1

dispatch2

(c) Scheduler automaton

Figure 3.1: The modeling framework for a real-time system

yet completed. Hence, there can be several active jobs from the same task at the same time. A discrete

variable 1 N is used to count the number of simultaneous active instances for the task.

Initially, a task is in location Idle. The synchronisation label arrival event notifies that a new instance

from this task is activated and triggers a transition to a committed location ActEvent, where time elapsing

is not allowed. The label arrival is used between a task and the scheduler. The task will then go to

location Waiting and wait there for the scheduler’s decision whether to occupy the processor. If a task is

the highest priority among all active tasks in the system, the scheduler will send dispatch to trigger the

transition from Waiting to Running. While a task is in Running, the scheduler can revoke the processor

for a higher priority task through the synchronisation label preemption.

The clock d always progresses and the execution time clock variable c is stopped if a task is waiting.

When a task is waiting for the processor or running on the processor, to react to new activations, it will

non-deterministically choose to increase the counter N of active instances by 1. When a job misses its

deadline (d = D) before completing its execution, it will go to DeadlineMissed. When a task finishes its

execution (c = N · C), it will go back to the initial location Idle.

There can be many different activation patterns for a task, such as periodic, sporadic or according

to arrival curves. We only require that the activation automaton synchronises with the task automaton

on label arrival event. As a demonstration, Figure 3.1b shows the activation model for a periodic task.

Every period T, the automaton sends the signal arrival event to inform the arrival of a new job.

1Discrete variables are not part of the original LHA formalism, but can be seen as syntax sugar to increase the number
of discrete states (locations). Such discrete variables are supported by most tools for LHA.

14

Chapter 3. Parametric Schedulability Analysis

In this chapter, we assume tasks are scheduled according to a FP preemptive scheduler. The scheduler

automaton synchronises with the tasks and decides which task will occupy the processor at each time.

The structure of the automaton is completely fixed given a number of tasks.

Figure 3.1c shows a scheduler for two tasks. The scheduler automaton can be expanded in a similar

form to deal with a task set with more tasks. In the scheduler automaton, the label arrival, dispatch,

preemption and end are the same as in task automaton; we append a label with index i, e.g. endi, to

denote that this label synchronises with task i. The convention we use for naming the location encodes

the status of the tasks: Rtx means that the task τx is running; Atx means that task τx is just activated;

Wtx means that τx is waiting; Et is saying the task just finished execution. For simplicity, along with

the transition from Rt1Wt2 to At1Rt2 there are two synchronisation labels.

3.4 Applying the Parametric Analysis

3.4.1 Convergence problem

By configuring certain constants in the model by Figure 3.1 as unknown parameters, we obtain a pa-

rameterised model and parametric analysis algorithms as IM can be applied. However, we first show

that the application of the IM to a system with parametric task activations does not yield satisfactory

results. Consider a task set with two periodic tasks τ1 = (31, T1, T1) and τ2 = (49, T2, T2) with implicit

deadlines. If we apply IM with initial values T1 = 60 and T2 = 120, respectively, the final constraints

obtained will be T1 = 60 and T2 = 120. That is, the result produced by IM is a single point, the initial

valuation.

Such a result is caused by an important property of the scheduling problem. The IM synchronises a

constraint that delimits the valuations of parameters that result in the same traces as the initial valuation.

The schedule generated by a set of periodic real-time tasks is itself periodic with the hyperperiod H.

In particular, the sequence of scheduling events (i.e., synchronisation labels in Figure 3.1) repeats itself

every H, and different H will result in different traces of task execution. When task periods are unknown

parameters, and since lcm is highly non linear, a small variation on one period can cause very large

variations in the hyperperiod. For example, consider the two previous tasks with initial valuation of

task periods T1 = 60 and T2 = 120, respectively. Their hyperperiod is 120. When we increase T1 to

121, the hyperperiod becomes 7260. Clearly, in the second case, the traces are much longer and contain

many more events. This explains why IM only converges to the initial valuation. Similarly, if we apply

counter-example guided approach to find parameter valuations such that the DeadlineMissed location is

not reached, the parameter synthesis cannot even terminate (in reasonable time and memory cost).

Of course, things become even more complex when considering generic arrival patterns. The next

part solves this convergence problem by exploiting the well-known concept critical instant from classic

scheduling theory.

3.4.2 An improved model of the system

As we just discussed, it is infeasible to apply IM directly to a system model with parametric arrival

patterns. We will try to avoid this situation by adapting the system automaton (Figure 3.1) by exploiting

the concept of critical instant.

For FP scheduling of periodic or sporadic tasks in a single processor, it is possible to define a critical

scenario, which is the situation that arises when all tasks are simultaneously activated (critical instant)

and every task τi generates subsequent jobs as soon as it is allowed. According to the work by Liu and

Layland [LL73], the WCRT of a task can be found in the busy period (i.e. interval in which the processor

15

3.4. Applying the Parametric Analysis

Figure 3.2: Schedule of the first busy period of the example task set

is continuously busy) that starts at the critical instant.

This means that, if we want to check the schedulability of a set of periodic or sporadic tasks, it is

sufficient to activate all tasks at time zero and check that if there is deadline miss in the first busy period.

Therefore, as soon as the processor becomes idle we can stop the search.

In the system automaton as in Figure 3.1, each trace corresponds to a possible schedule of the task

set. However, we now know that to check the schedulability of a task set, it is sufficient to analyse

traces starting from the critical instant till the first idle time in the processor. So, we adapt the system

automaton as follows.

• The task activation automaton is required to release its first job at time 0 and it will emit the

subsequent jobs as fast as possible.

• In the scheduler automaton, after all tasks complete their execution, instead of going back to Idle,

it will transit from Et to a new location Stop, where there is no outgoing transition.

The first point is used to simulate the worst-case behaviour of tasks starting from the critical instant.

Rather than going to Idle and waiting for new task releases, the scheduler automaton (also the system

automaton) simply stops. We call this adapted scheduler model as idle-time scheduler automaton.

The idle-time scheduler automaton actually simulates the longest busy period, which starts from the

critical instant and ends at the first idle time of the processor. The length of this busy period depends

both on the execution time and activation periods of the tasks. However, its dependence from the

periods is not as strong as the hyperperiod. Let us consider again the previous set of two periodic tasks

τ1 = (C1 = 30, D1 = T1 = 60) and τ2 = (C2 = 49, D2 = T2 = 120). The schedule for the longest busy

period is shown in Figure 3.2. Task τ1 executes twice before the first instance of τ2 can complete.

The length of the busy period in this case is 1C1 + C2 = 111. By doing some simple calculation, it

is easy to see that changing T1 in to any value in [56, 79] does not change the sequence of events in the

busy period: in facts, for any value of T1 in that interval, τ1 will still execute two times before the first

instance of τ2 completes. Also, changing T2 to any value T2 ≥ 112 does not change the busy period.

Hence, we can apply IM on the new model and avoid the convergence problem as in Section 3.4.1.

Let us assume T1 ∈ [40, 120], T2 ∈ [80, 200] and let us apply the behavioural cartograph to obtain the

constraint space of T1 and T2 that keeps the task set schedulable. The result in given in Figure 3.3 in a

graphical form. The red part (on the left side) is the constraint space on T1 and T2 in which τ2 misses

deadline, whereas the green part (on the right side) is where no deadline is missed.

When applying the behavioural cartography to the model with idle-time scheduler automaton, there

may exist a combination of parameter valuations that cause the system go into overload, i.e. there will

be no idle time in the schedule.

To solve this case, we put an upper bound on the maximal depth of the traces computed by IM.

This bound is always computable in case of periodic or sporadic tasks, and corresponds to computing

an upper bound to the time a deadline miss will happen. A method for computing such a bound can be

built by using the concept of demand bound function [BRH90].

16

Chapter 3. Parametric Schedulability Analysis

Figure 3.3: Constraints on T1 and T2 obtained by the behavioural cartography

3.5 Applicability of the Idle-Time Scheduler

It is possible to prove that the concepts of critical instant and the maximal busy period are valid also

when considering tasks activated by generic arrival curves. In particulr, the critical scenario corresponds

to the time instant in which all tasks are activated with their initial burstness (critical instant), and their

successive instances arrive as soon as possible without violating their arrival curves. Then, the WCRT

can be found in the busy period starting at the critical instant and corresponding to the critical scenario.

Therefore, we can apply idle-time scheduler also for generic arrival curves. Let us assume a periodic

arrival curve of the form as in Equation (2.1).

BurstingN := 0
ArrEvent

p ≤ P

arrival event
N < Nu − 1
N := N + 1

arrival event
N = Nu − 1

p := 0

arrival event
p = P
p := 0

Figure 3.4: Arrival curve automaton

In Figure 3.4 we show the corresponding Stopwatch Timed Automaton model for a periodic arrival

curve. Initially, the arrival curve automaton is in a committed location Bursting with N = 0, where N

is a discrete variable counting the number of initial requests. The automaton emits Nu activations for a

task within 0 time elapsing and then move to location ArrEvent where it starts behaving as a periodic

activation automaton as in Figure 3.1b, and produces activation events every P.

For other different task models there may be no critical instant. For example, when considering

periodic tasks with initial offset different from zero, there is no worst-case scenario in the schedule.

Instead, it is necessary to analyse all busy periods in the interval [0, 2H + Φmax], where Φmax is the

largest initial offset [LW82].

Given a task set T of periodic tasks with offsets, we can build a task set T ′ that contains the same

tasks with the same parameters except that their initial offsets are all set to zero. In this case, if T ′ is

schedulable, then also T is schedulable. However, the reverse does not hold. Therefore, it is possible

to perform a parametric analysis of T ′ using idle-time scheduler, and the set of values of the unknown

parameters produced by the analysis is a subset of all valid parameters for the original task set T .

17

3.6. Toward Timed Interfaces

3.6 Toward Timed Interfaces

For complex distributed real-time systems, a component-based methodology may help reduce the com-

plexity of the design and analysis phases. We define a distributed real-time system as a set of real-time

components. Each component runs on a dedicated single processor node, and all components are con-

nected to each other by a local network. A component consists of a provided interface, a required interface,

and an implementation (see e.g. [Has12]). In the following, we describe our notions of the timed interface.

The provided interface is a set of methods that a component makes available to other components

of the system. Each method is characterised by: (i) the method signature, which is the name of the

method and the list of arguments, and (ii) a worst-case activation pattern, which describes the maximum

number of invocations the method is able to handle in any interval of time. We will describe the worst-

case activation pattern by an arrival curve. The semantic of invocation of a method can be synchronous

(the caller waits for the method to be completed) or asynchronous (the caller continues to execute without

waiting for the completion of the operation).

The required interface is a set of methods that the component requires for carrying out its services.

Each method is characterised by its signature and a worst-case invocation pattern.

The implementation of a component is the specification of how the component carries out its work.

In our model, a component is implemented by a set of concurrent real-time tasks and by a scheduler.

A graphical representation of a component is shown in Figure 3.5. In this example, the component

provides one single method in the provided interface (pictorially represented by the red rectangle), and

does not specify any method in the required interface. The component is implemented by three tasks:

τ1 and τ3 are time triggered (the green clocks in the picture), whereas τ2 implements the method in the

provided interface, and hence it is triggered by invocations from external clients.

Client A

Client B

Component C

Figure 3.5: A component with three tasks and one method in the provided interface.

In a component-based design methodology, components are independently designed and developed,

and then integrated in the final system by connecting them together through their interfaces. It is clear

that the interface specification plays an important role in this methodology: for a real-time component,

the interface should contain not only the functional specification (i.e. method signature, constraints on

its arguments, etc.) but also the timed behaviour of the component. In particular, we enhance the

specification of the interface by adding parameters on the activation pattern and on the response delay

of a method.

Given a component, its provided interface is thus defined as:

• a set of method signatures m1,m2, . . .;

• a parametric arrival curve αi(t) for each method mi, which represents the activation pattern that

the corresponding implementing task will receive;

• a worst-case response time Di parameter for each method mi.

18

Chapter 3. Parametric Schedulability Analysis

Similarly, the required interface of a component is defined as:

• a set of method signatures m1,m2, . . .;

• a parametric arrival curve αi(t) for each methodmi that represents the activation pattern generated

by this component;

• for every synchronous method call, a maximum allowed delay Ri in receiving the response.

Finally, the component is characterised by a set of constraints on the parameters: for all valuations

of the parameters satisfying the constraints, the component is guaranteed to be correct both from the

functional point of view (i.e. the component produces correct values) and from the timing point of view

(i.e. all tasks complete before their deadlines, and all provided functions return their values within the

desired maximum response delay).

The road to realise such a component-based design methodology is long and many theoretical and

practical problems need to be solved before the methodology can be used in practice. One important

problem is how to compute the set of constraints that define the correct behaviour of a component.

In the process of designing and analysing a component in isolation, it is necessary to use parametric

arrival curves for describing the activation patterns for tasks, and parametric deadlines for bounding

their response times. Performing a parametric analysis aims at deriving a set of constraints for these

parameters that make the component schedulable. During integration, the correctness of the system is

checked by intersecting the constraints of the communicating components to see if there is some feasible

assignment of parameters that makes all components schedulable.

For the sake of simplicity, we focus only on the provided interface of a component; that is, we

investigate on the parametric analysis of a component with respect to the patterns of activations. The

analysis of the required interface is the subject of future work.

3.7 The Timed Interface

Now we show how it is possible to define a timed interface of a real-time component using parametric

analysis.

Consider the system of Figure 3.5: it consists of three tasks τ1, τ2 and τ3 running on a single processor

with FP preemptive scheduling. τ1 and τ3 are periodic tasks with τ1 = (C1 = 2, D1 = 8, T1 = 8) and

τ3 = (C3 = 20, D3 = 50, T3 = 50). Task τ2 has C2 = 5 and implements the method provided in the

interface. We assume that this component is linked to a local networks, and task τ2 receives the requests

from clients running on other nodes of the network. We would like to know how many clients can ask

requests to the system, with which frequency, and the maximum delay that is going to pass from the

request to response. Therefore, we need to study the possible activation patterns of task τ2 and its

WCRT. For modeling te activation patterns, we use a parametric arrival curse. For example, Nu = 2

and P = 100 means that we can connect at most 2 independent clients, and that between any two

successive requests after the first two there must at most 100 units of time.

Both Nu and P are parameters we are going to synthesise with our parametric analysis. Another

parameter is the delay (deadline) D2 of τ2. We are interested in the parameter space that guarantees all

the tasks schedulable.

First, we construct the activation automaton for α(t) as in Figure 3.4. Following the method described

in Section 3.4.2, and using the idle-time scheduler automaton, we then compose the final automaton.

Given that C2 = 5, it is easy to see that the burst (Nu) of the arrival curve automaton cannot

be larger than 3, otherwise τ3 will be doomed to miss its deadline, because D3 < C3 + 4C2 + 5C1.

19

3.7. The Timed Interface

(a) Nu = 1 (b) Nu = 2 (c) Nu = 3

Figure 3.6: Parameter space (green) for Nu, P and D2

Nu = 1 when (20 ≤ P ≤ 26) ∨ (27 ≤ P ≤ 34) ∨ (35 ≤ P ≤ 50)→ Dmin
2 = 10

Nu = 2 when (24 ≤ P ≤ 26) ∨ (27 ≤ P ≤ 34) ∨ (35 ≤ P ≤ 50)→ Dmin
2 = 14

Nu = 3 when (P = 47) ∨ (48 ≤ P ≤ 50)→ Dmin
2 = 21

Table 3.1: The final interface

Additionally, we assume P and D2 lie in the following intervals:

P ∈ [20, 50], D2 ∈ [10, 50].

Nu is a discrete parameter that must be treated separately from P and D2. Our strategy is to

instantiate Nu with 1, 2 and 3 individually and apply IM to each case in order to synthesise constraints

over P and D2 that keep the system schedulable. The resulting parameter space for the three cases are

visualised in Figure 3.6.

We can use these values to build a timed interface specification for the component.

• The number of distinct independent clients that can be connected to the service must respect the

constraint 1 ≤ Nu ≤ 3.

• Depending on the number of clients, the relationship between the minimum period P and worst-case

response time D2 is specified in Table 3.1.

Reducing the number of regions As it is possible to see in Figure 3.6 and Table 3.1, the parameter

space obtained by IM consists of a set of disjoint tiles. Each tile is a convex region and the resulting

interface is the union of (maybe a large number of) these convex regions. Such an interface may not be

easy to use due to the large number of disjoint regions.

To obtain a more portable interface, we can make an effort from two different directions.

In some cases, it is possible to perform a ”merge” operation between tiles, as explained in [AFS13],

in order to reduce the number of convex regions composing the final interface. Two convex regions

are mergeable if their convex hull equals to their union. Given tiles returned by IM, we repeatedly

replace mergeable tiles with their union till there are no mergeable tiles. Moreover, another parameter

synthesis algorithm based on reference point has been developed in [ALNS15] such that it guarantees the

resulting constraint preserves the system to have the same reachability property with respect to certain

location (e.g. DeadlineMissed) and compared with IM, it can return a larger constraint consisting of

more parameter valuations.

20

Chapter 3. Parametric Schedulability Analysis

On the other hand, according to the result from real-time scheduling theory, single processor FP

scheduling is fully sustainable [BB06]. That means, given a schedulable task set under FP scheduling, if

we increase the value of a task’s inter-arrival time or relative deadline, the resulting task set is schedulable

by FP scheduling. By applying this result, the IM can be applied more efficiently: as long as a reference

point is decided by IM as a good (bad) point for schedulability, all points with a larger (smaller) value

with respect to any parameter will be also a good (bad) point; thus, the number of disjoint tiles can be

dramatically reduced.

3.8 Conclusion

In this chapter, we have presented a Stopwatch Timed Automaton model for a real-time system scheduled

by FP on a single processor. We have shown how to perform a parametric analysis using IM with a

specific model of the scheduler that stops at the first idle time. Finally, we have shown how to use

parametric analysis for the design and the specification of the interface of a real-time component.

On one side, parametric analysis based on formal models can deal with situations where the analytical

approach cannot be applied. On the other side, to make the formal method feasible or efficient, we need

to utilise classic results and domain knowledge from real-time scheduling. In our case, we apply the

critical instant based worst-case scenario to improve the automaton model and force the parametric

analysis to terminate, and we propose to use the sustainability property of FP scheduling to achieve

more portable interface design.

21

Chapter 4

Component-Based Schedulability

Analysis

Formal methods (e.g. Timed Automata or Linear Hybrid Automata) can be used to analyse a real-time

system by performing reachability analysis on the model. The advantage of using formal methods is that

they are more expressive than classic analytical models used in schedulability analysis. For example, it

is possible to express state-dependent behaviour, arbitrary activation patterns, etc.

In this chapter we use the formalism of Linear Hybrid Automata (LHA) to encode a hierarchical

scheduling system. In particular, we model a dynamic server algorithm and the tasks contained within,

abstracting away the rest of the system, thus enabling component-based schedulability analysis. We prove

the correctness of the model and the decidability of the reachability analysis for the case of periodic tasks.

Then, we compare the results of our model against classic schedulability analysis techniques, showing

that our analysis performs better than analytical methods in terms of resource utilisation. We further

present two case studies: a component with state-dependent tasks, and a simplified model of a real

avionics system. Finally, through extensive tests with various configurations, we demonstrate that this

approach is usable for medium-size components.

The content of this chapter is based on [SLS+14]. Though Chapter 3 also mentions the concept of

”component”, its emphasis is in interface design, and in this chapter the component is used for temporal

isolation and the main result is on testing the schedulability of real-time tasks inside a component

independently from other components in the system.

4.1 Introduction

The complexity of modern embedded real-time applications, like automotive and avionics systems, is

steadily increasing. Until recently, complexity was addressed by using physical separation: each different

functionality was implemented by a different application module on a different ECU (Electronic Control

Unit) and all ECUs were connected by a real-time control network.

The pressure to reduce the design cost and the number of ECUs is forcing developers to integrate

different applications on the same platform. The IMA (Integrated Modular Avionics) [WW07, Spe91]

is a set of standard specifications for simplifying the development of avionics software; among other

requirements, it allows different independent applications to share the same hardware and software

resources [ARI96].

To avoid the interference among independently developed applications that share the same processor,

the underlying RTOS (Real-Time Operating System) must support the concepts of temporal partitioning

22

Chapter 4. Component-Based Schedulability Analysis

T3
T4

T5
T7

T6

Global Scheduler

Server S1 Server S2 Server S3

Local
Scheduler

RM

Local
Scheduler

POSIX

T2
T1

Local
Scheduler

EDF

Application A2 Application A3Application A1

Figure 4.1: An example of hierarchical scheduling system.

and hierarchical scheduling [FM02,SL03,LB04]. Hierarchical scheduling consists in using two (or more)

levels of scheduling: the global one performs the temporal partitioning among the applications; whereas

the local ones are specific for each application and dedicate which task to execute. In Figure 4.1 we show

a pictorial representation of a hierarchical system consisting of three applications that coexist in the same

single processor system, each one with its own scheduler. Each application and its corresponding local

scheduler are ”wrapped” into an entity that we denote as scheduling server (or simply server) which acts

as a mediator between the global scheduler and the application. The global scheduler ”sees” the entire

application as it were a single task to be scheduled according to its specific scheduling parameters; the

application ”sees” the platform on which it is executing as a virtual processor of slower speed.

Therefore, the combination of temporal partitioning and hierarchical scheduling makes it possible

to define a virtual processor for each application, and to perform schedulability analysis on the virtual

processor rather than on a single dedicated processor.

If the applications running on a system are independent of each other, then it is possible to analyse

each of them in isolation; in fact, the ability of an application to meet its deadlines depends on the

worst-case computation times and the arrival patterns of its tasks, and on the temporal partition that

the global scheduler (and the server) allocate to it, but it does not depend on the presence of other

applications in the system.

Such a property enables component-based schedulability analysis, a research topic largely investigated

in recent years.

4.2 State of the Art

The ARINC 653 standard [ARI96] defines temporal partitioning for avionics applications. The global

scheduler is a simple Tim Division Multiplexing (TDM), in which the time is divided into slots and

each slot is assigned to one application. Besides TDM, more dynamic time partitioning algorithms are

possible: for example the periodic resource model [SL03] and the periodic server [LB04].

Dynamic server algorithms have advantages over TDM. First of all, the temporal interface of a

periodic server consists only of two parameters: the budget Q and the period P ; the server guarantees

that the application will receive Q time units every P , but unlike the TDM, it does not specify at which

precise instants the application will receive the allocation. This means that, once the application has

been guaranteed feasible on a server with certain parameters Q and P , during the integration phase the

designer has much more freedom in the allocation of the budget. The second advantage is that a dynamic

23

4.3. The Hierarchical System

server algorithm can better take advantage of the dynamic behaviour of the application and adapt itself

at run-time to different conditions.

Hierarchical scheduling and component-based real-time scheduling algorithm have been studies exten-

sively in the past years. Feng and Mok [FM02] proposed the resource partition model and schedulability

analysis for it. Shih and Lee [SL03] introduced the concept of temporal interface and the periodic re-

source model. Lipari and Bini [LB04] proposed the periodic server model to abstract many different

temporal partitioning algorithms, and an algorithm to compute the values of the parameters to make

the application schedulable. Davis and Burns [DB05] proposed a method to compute the response time

of tasks running on a local fixed priority scheduler when task periods are synchronised with the server

period.

In [APN11], a formal model of hierarchical scheduling systems using Timed Automata has been

proposed. The goal of the authors is to verify the correctness of the two-level scheduler and generate C

code for the scheduler and the tasks. Moreover, their analysis is global in the sense that they verify the

correctness of the whole system rather than a single application. Instead, we aim at component-based

schedulability analysis of a single application. Another formal model of hierarchical scheduling using

parametric Timed Automata has been proposed in [AFKS12,FLMS12]. The authors restrict themselves

to a TDM global scheduler and perform a global analysis (rather than a component-based one).

A component-based analysis of hierarchical real-time systems is proposed in [CLPV11,CPV13]. The

authors use the model of Preemptive Timed Petri Nets (pTPN), to model a hierarchical systems, and

perform analysis of independent applications. They show that component-based analysis considerably

reduces the complexity of analysing a system. The main difference with the work here is that they model

a TDM global scheduler, whereas we model a dynamic periodic server algorithm.

4.3 The Hierarchical System

In this chapter we assume that an application is a set of periodic real-time tasks with explicit initial offsets

A =< τ1, τ2, . . . , τn >. The system consists of a set of applications to be scheduled using hierarchical

scheduling and temporal partitioning on a single processor system. We assume that all applications are

independent of each other thus that we can analyse them in isolation.

Each application is executed upon a virtual processor platform, which is provided by a server. In this

chapter we consider the periodic server proposed in [LB04]. Each server is assigned a budget Q and a

period P , and the global scheduler guarantees that the application will receive Q units of execution time

every P time units. The global scheduler performs Earliest Deadline First (EDF) among the servers: each

server is considered as a periodic task with period and relative deadline P , and worst-case computation

time Q. Therefore, it must hold true that
∑
i
Qi
Pi
≤ 1.

As for the local scheduler, we assume the Fixed Priority (FP) preemptive scheduler.

4.4 Server Algorithm

In this section we present the server algorithm that is used to provide the temporal partition necessary

for an application to execute. We use the same algorithm proposed in [LB04], which is a particular case

of the Constant Bandwidth Server [AB98]. We summarise the algorithm here for convenience.

A server S is assigned two parameters: Q is the server maximum budget, and P is the server period.

In addition, the server maintains three internal variables: q represents the current remaining budget, and

d is the current scheduling deadline, and an internal state which can be one of the following:

• Idle: the initial state; it represents the situation in which no task is active in the application;

24

Chapter 4. Component-Based Schedulability Analysis

• Active: when there is at least one active task, but the server is not executing because other servers

(for other applications) with earlier scheduling deadlines have been selected by the global EDF

scheduler;

• Executing: when the server has been selected by the global EDF scheduler, and it is running an

application task;

• Recharging: when there is at least one active task in the application, but the server cannot execute

because the current budget is zero;

• Empty: when there is no active task, but the server has already consumed part of its budget, so it

has to wait before it can become Idle again.

The server variables and the server state are updated according to the following rules.

1. Initially, q = 0, d = 0 and the server is Idle.

2. When a task is released at time t, if the server is Idle, then q := Q and d := t+ P , and the server

becomes Active; if the server is already Active, then nothing needs to be done.

3. At any time t, the global scheduler selects an Active server, and a task inside it will be chosen to

run subject to local scheduling policy. The chosen server moves to the Executing state.

4. While some task in the server is running, the current budget q is decremented accordingly.

5. The global scheduler can preempt a server to execute another server. The preempted server moves

back to the Active state.

6. If q reaches 0 and some task has not completed execution, then the server will move to Recharging

and be suspended till time d. During the suspended interval, it cannot be chosen by the global

scheduler. At time d, q is recharged to Q and d is set to d+ P and the server moves to the Active

state.

7. When, at time t, the last task in the server has finished its execution, if t ≥ d − q PQ , the server

becomes Idle; otherwise, it remains Empty, and will become Idle at time d − q PQ , unless another

task arrives before that time point.

The global scheduler performs the Earliest Deadline First policy using the scheduling deadlines of

the servers. The following two results are direct consequences of Theorem 1 and Lemma 1 of [AB98]:

Theorem 1. Consider a system consisting of n servers, {S1, . . . , Sn}, with Si = (Qi, Pi), such that∑n
i=1

Qi
Pi
≤ 1. Then, no server misses its scheduling deadlines.

Theorem 2. Given a server Si = (Qi, Pi), let ts be an instant in which the server moves from the idle

state to the active state, and let tf be the first instant after ts such that the server becomes idle again.

Then the server receives in interval [ts, tf] an amount of execution time ∆exe which is bounded by:⌊
tf − ts
Pi

⌋
Qi ≤ ∆exe ≤

⌈
tf − ts
Pi

⌉
Qi

25

4.5. Periodic Server Model in LHA

4.5 Periodic Server Model in LHA

In this section, we introduce a LHA for modeling the periodic server algorithm described in Section 4.4.

In the model, we need to stop the clocks, since our servers and tasks can be preempted. Also, we need

to use arbitrary linear constraints on clock variables. For convenience, we decided to rely on the more

general model of LHA rather than restrict ourselves to Stopwatch Timed Automata.

If we want to precisely model a system of n applications {A1, . . . ,An}, each one served by a server

Si with parameters (Qi, Pi), we have to build:

• n automata, one per server;

• one automaton for modeling the global EDF scheduler;

• one automaton per task;

• and finally, one automaton per local FP scheduler.

The final system can be represented by the parallel composition of all such automata. However, this

approach has two main inconveniences: first of all, it is specific for one single system, and it would

be necessary to build a new model for each different system; second, the resulting automaton is very

complex even for a small number of applications and tasks (state-space explosion problem).

We assume that applications are independent of each other, thus we can analyse each application

in isolation. It is important to underline that such assumption is basically the same used in avionics

real-time applications that have been designed according to the IMA architecture: tasks belonging to

different applications can only communicate through non-blocking communication primitives. Therefore,

we can use appropriate abstractions to build the model of one single server: in particular, we will abstract

away the presence of the other servers and the global scheduler.

We make a one-to-one correspondence between states of the algorithm and locations of the LHA. In

particular, we use:

• one location for each state of the algorithm;

• two different continuous clock variables: variable x represents the consumed budget, whereas vari-

able y represents the time passed since the beginning of the server period.

Idle
ẋ = ẏ = 0

x = y = 0

Active
ẋ = 0, ẏ = 1

y − x ≤ P−Q

Executing
ẋ = ẏ = 1

x ≤ Q

Recharging
ẋ = 0, ẏ = 1

y ≤ P

Empty
ẋ = 0, ẏ = 1
x · P ≥ y ·Q

active

x := y := 0 x < Q

x = Qy = P
x := y := 0

empty
x · P > y ·Q

activex · P = y ·Q

empty
x · P ≤ y ·Q

Figure 4.2: The Server automaton.

26

Chapter 4. Component-Based Schedulability Analysis

The Server linear hybrid automaton is depicted in Figure 4.2. Idle is the initial location. The

application tasks served by this server are modeled with two synchronisation labels: active notifies a

task’s activation and empty means that the last task in the server has finished its execution.

If a task arrives when the Server automaton is in Idle, the model goes to location Active. The transition

from Active to Executing happens when the global scheduler picks the server to execute. The reverse

transition from Executing to Active models server preemption. Notice that these two transitions have

no synchronisation labels because we want to abstract away the presence of other servers in the system

and of the global scheduler.

Since we abstracted away the description of the global EDF scheduler and of the other servers, we

need to add some constraints to guarantee that the model behaves correctly. We take for granted that

Theorem 1 holds, and that therefore the server will meet all its scheduling deadlines. We impose such

property by adding invariant y−x ≤ P−Q to location Active. This invariant states that, while in Active,

there is still enough time to complete the execution of Q units before the end of the period. Therefore,

no later than the time when y − x = P−Q the automaton has to move to location Executing.

When the currently used budget reaches x = Q, the Server automaton moves from Executing to

Recharging. It will stay in location Recharging until the start of a new period, at which point the

current consumed budget is reset to x := 0. Location Empty models Rule 7 of the algorithm in Section

4.4: if the server tasks finish executing too early (x · P ≤ y · Q), then the automaton directly moves to

location Idle. If it is too late (x ·P > y ·Q), the automaton first moves to location Empty where it waits

for the time y to reach the appropriate value before moving to Idle and resetting the model.

4.5.1 Proof of correctness

We now prove that the proposed Server automaton correctly models the server algorithm. In particular,

we are going to prove that, under the assumption of Theorem 1, the automaton also respects Theorem 2.

Theorem 3. Let Server be an automaton with parameters (Q,P) that models a dynamic periodic server,

and let ts be an instant in which the automaton moves from location Idle to location Active. Let tf be

the first instant after ts such that the automaton enters again location Idle. Let ∆exe(ts, tf) be the total

amount of time that the server spends in location Executing in interval [ts, tf]. Then,⌊
tf − ts
P

⌋
Q ≤ ∆exe ≤

⌈
tf − ts
P

⌉
Q

Proof. To prove the theorem, we start by adding an extra Error location, and a transition from Executing

to Error with guard:

x < Q ∧ y = P.

To make the expression more compact, we denote variable valuations subject to a constraint like

x < Q ∧ y = P to be the form of {x < Q, y = P}.
Let us observe that variable x is incremented only when the automaton is in location Executing.

Also, x is reset to 0 after it reaches its maximum value Q (transition from Execution to Recharging),

and when y reaches P . Hence, ∆exe = nrQ + x, where nr is the number of times the automaton goes

through location Recharging in interval [ts, tf]. If the automaton does never reach location Error, then

nr = b tf−tsP c and both the lower bound and the upper bounds of ∆exe are trivially true.

Therefore, it remains to be proved that Location Error is unreachable for any values of Q and P with

Q ≤ P . We do this by computing symbolically the reachable valuations of all variables in all locations,

by using fixed point iterations: we start by the initial values of the variables in all locations, and we apply

the time elapsing operation. It is trivial to check Locations Idle and Recharging. For other locations, we

27

4.6. Schedulability Analysis in the Hierarchical System

apply the iterative method used in [HPR97].

First step,

RAct = (({x = y = 0})↗ {ẋ = 0, ẏ = 1}) ∩ {y − x ≤ P −Q}

= {x = 0, y ≤ P −Q}

RExe = ((RAct ∩ x ≤ Q)↗ {ẋ = ẏ = 1}) ∩ {x ≤ Q}

= {0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q}

REmp = ((RExe ∩ {xP ≥ yQ})↗ {ẋ = 0, ẏ = 1}) ∩ {xP ≤ yQ}

= {0 ≤ x ≤ Q, x ≤ y ≤ xP
Q
}

Second step,

RAct = ({0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q} ↗ {ẋ = 0, ẏ = 1}) ∩ {y − x ≤ P −Q}

= {0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q}

RExe = ({0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q} ↗ {ẋ = ẏ = 1}) ∩ {x ≤ Q}

= {0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q}

REmp = ({0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q} ↗ {ẋ = 0, ẏ = 1}) ∩ {xP ≥ yQ}

= {0 ≤ x ≤ Q, x ≤ y ≤ xP
Q
}

After two steps we have already found the fixed point for RExe and REmp. With the third iteration, we

compute the fixed point also for RAct. The final results are:

RAct = {0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q}

RExe = {0 ≤ x ≤ Q, x ≤ y ≤ x+ P −Q}

REmp = {0 ≤ x ≤ Q, x ≤ y ≤ xP
Q
}

The reachable valuation for Error is simply the intersection of Rexe with {x < Q, y = P} which is empty.

Therefore, location Error is unreachable.

4.6 Schedulability Analysis in the Hierarchical System

In this section, we use the Server automaton to perform the schedulability test of an application on a

periodic server. Without loss of generality, we adapted the encoding used in Chapter 3 to show how to

combine already existing schedulability model with our LHA model, in order to check if a task set in a

server will miss its deadline.

4.6.1 Scheduler automaton

We now show how to encode an application with a FP local scheduler using an example with two tasks

{τ1, τ2}. In Fig. 4.3 we show the Scheduler automaton that encodes the FP scheduler along with the task

execution, and the automaton Arri that models the activation of the two tasks.

Let’s start from the latter: each task arrival patterns is modeled with a timed automaton Arri with

28

Chapter 4. Component-Based Schedulability Analysis

Phasei

ṗi = 1
pi ≤ Oi

ArrEventi

ṗi = 1
pi ≤ Ti

arrivali
pi = Oi

ri := 0

arrivali
pi = Ti

pi := 0

(a) The activation automaton Arri

Idle
ċ1 = ċ2 = 0

ḋ1 = ḋ2 = 0

τ1 running

ċ1 = ḋ1 = 1, ċ2 = ḋ2 = 0
c1 ≤ C1 ∧ d1 ≤ D1

τ2 running

ċ1 = ḋ1 = 0, ċ2 = ḋ2 = 1
c2 ≤ C2 ∧ d2 ≤ D2

τ1 running τ2 released

ċ1 = ḋ1 = ḋ2 = 1, ċ2 = 0
c1 ≤ C1 ∧ d1 ≤ D1 ∧ d2 ≤ D2

Deadline
Missed

arrival1, active
c1 := 0

arrival2, active
c2 := 0

empty
c1 = C1

c1 := d1 := 0 arrival2

c1 < C1∧
d1 ≥ D1

empty
c2 = C2

c2 := d2 := 0

arrival1
c2 < C2∧
d2 ≥ D2

c1 = C1

c1 := d1 := 0

c1 < C1∧
d1 ≥ D1

c1 < C1∧
d2 ≥ D2

(b) The scheduler automaton Scheduler

Figure 4.3: Model of a FP scheduler for two periodic tasks τ1, τ2.

just two locations, and one clock pi which is always increasing. The first transition from location Phase

to ArrEvent models the first release time at the task offset; the second transition is a loop from ArrEvent

to itself that models subsequent releases. It is easily possible to model different arrival patterns by simple

changing the corresponding arrival automaton.

For simplicity, the Scheduler automaton here is actually the parallel composition of the task automaton

and the scheduler automaton as in Figure 3.1. In the Scheduler automaton, we use two kinds of clock

variables: executing variables, such as c1 and c2, for recording a task’s accumulating execution time; and

deadline variables (d1 and d2) for tracking if a task misses its deadline. The synchronisation label empty

and active are the same as the in Server automaton. We accept there exist more than one synchronisation

label on a transition in Scheduler automaton. Take the transition from Idle to τ1 running, which has

two labels arrival1 and active on it, as an example. In order to trigger this transition, the Scheduler

should first synchronise with Arr1 through arrival1, then (with no time elapsing) synchronise with Server

through active.

Each location in the Scheduler automaton models a different state of the ready queue of the scheduler.

Location Idle models an empty ready queue; location “τ1 running” models the case in which only task τ1 is

active and running; location “τ1 running τ2 released” models the case in which the ready queue contains

both τ1 and τ2, but τ1 is running because it has the highest priority. Location “τ2 running” models the

case in which only τ2 is active and running. Finally, location DeadlineMissed models the case in which

one of the two tasks misses its deadline. Schedulability can be checked by performing a reachability

29

4.6. Schedulability Analysis in the Hierarchical System

analysis for location DeadlineMissed.

Figure 4.3 only models the schedule of two tasks. Generating the model for more tasks can be done

automatically by generating all possible configurations of the ready queue. This means that the size

of the model is exponential in the number of tasks in the application. However, consider that in most

practical cases, the number of tasks inside one application is limited to a few units. Also, component-

based analysis abstracts away the rest of the system and hence it is much less complex than analysing

the entire system as a whole, as shown in [CLPV11].

4.6.2 Hierarchical composition

The automata of Figure 4.3 models an application consisting of two tasks running on a single processor.

We now describe how to compose such model with the LHA model of the server presented in Section 4.5.

Definition 2. A Hierarchical Scheduling Composition of a task set with a periodic server is defined

as the parallel composition of the server automaton Server, the scheduler automaton Scheduler and the

task arrival automata Arr1, . . . ,Arrn:

HSC = Server × Scheduler × Arr1 × . . .× Arrn

with the following additional rule:

• Let l ∈ Loc(HSC) be a location of the composed automaton, with l = (lSer, lSched, l1, . . . , ln), and

lSer ∈ Loc(Server), lSched ∈ Loc(Scheduler), and li ∈ Loc(Arri), for all i = 1, . . . , n. If lSer 6= Executing,

then the derivatives of all execution time variables are set to 0: ċi = 0, for all i = 1, . . . , n.

4.6.3 Decidability

Once again, schedulability analysis can be encoded as a reachability analysis over automaton HSC. We

now prove that such analysis is decidable for the case of independent periodic tasks.

Lemma 1. Given a HSC automaton that models a set of periodic tasks T = {τ1, . . . , τn} executing in

a periodic server. The task set is schedulable if, and only if, location DeadlineMissed is unreachable in

a time interval equal to [0, 2 × lcm{T1, . . . , Tn, P} + max{Oi}], where Ti and Oi is the period and the

initial offset of task τi.

Proof. The proof uses a well-known result by Leung and Whitehead [LW82]: “A set of periodic tasks

with deadlines less than or equal to the periods is schedulable if, and only if, there is no deadline miss

in the interval [0, 2H + max{Oi}]”, where H denotes the hyper period. Intuitively, the reason is that

the arrival pattern of a set of periodic tasks will repeat every hyperperiod after an initial transitory

2H + max{Oi}, so the schedule is periodic, and it is sufficient to check in the first periodic instance of

the schedule.

Now we also take the periodic server into account. We are interested in finding a similar period

such that not only task arrival patterns repeat themselves, but also all possible server behaviours will

be identical. For finding the upper bound of the length of such an interval, we regard the server as a

periodic task with period P , worst-case execution time Q and initial offset 0. Then we apply Leung

and Whitehead test on the extended task set including original task set and the server. Thus, to check

if a task misses its deadline in a server, it is sufficient to check all possible paths in the time interval

[0, 2 × lcm{T1, . . . , Tn, P} + max{Oi}]. Notice that, thanks to non-determinism, the HSC automaton

already models all possible generated schedules for the servers, therefore it covers all possible scheduling

behaviours in the considered interval.

30

Chapter 4. Component-Based Schedulability Analysis

From Lemma 1, it follows that our problem can be expressed as a problem of reachability in bounded

time, in particular, we need to analyse the system and see if a DeadlineMiss state is reachable in [0, 2×
lcm{T1, . . . , Tn, P}+ max{Oi}].

Reachability analysis in bounded time has been proved to be decidable for a particular sub-class of

LHA called Rectangular Automata [BDG+11]. Unfortunately, the HSC automaton does not fall in this

class, since the server automaton in Figure 4.2 uses diagonal constraints as invariant in locations Empty

and Active and as guard in the transitions between Empty and Idle, and between Executing and Idle.

In a nutshell, the problem is that in a LHA there can be an unbounded number of transitions in a

finite interval of time. This effect is sometimes referred to as Zeno effect [AD94], as the distance between

any two transitions can be made arbitrarily small, hence bounded time does not imply runs of bounded

lengths. Using techniques from [BDG+11], we will now prove that reachability analysis can be performed

on an HSC by only exploring paths of finite and bounded length, hence with a terminating algorithm.

We start by introducing a few necessary concepts and definitions that were used in [BDG+11].

Definition 3. A path in HSC is a finite sequence of edges e1, e2, . . . , en such that the source location of

ei+1 coincides with the destination location of ei.

A cycle is a path where the destination location of en coincides with the source location of e1. A cycle

is simple if ∀i 6= j the source location of ei is different from the source location of ej.

A timed path is a finite sequence of the form π = {(t1, e1), (t2, e2), . . . , (tn, en)}, where e1, e2, . . . , en

is a path in HSC, and ∀i, ti ∈ R+. We can similarly define timed cycles. We denote by π[i : j] the timed

path (ti, ei), . . . , (tj , ej).

A run is a sequence ρ = s0, (t1, e1), s1, (t2, e2), s2, . . . , (tn, en), sn+1 such that si are states of HSC,

(t1, e1), (t2, e2), . . . , (tn, en) is a timed path, and for each si there exist s′i such that si
ti+1−−→ s′i and

s′i
ei+1−−−→ si+1.

The duration of a run is defined as the total time spent executing the run: dur(ρ) =
∑
i ti.

The length of a run is defined as the number of discrete steps in the run: len(ρ) = n.

We now define the contraction operator, as in [BDG+11].

Definition 4. Let π = {(t1, e1), (t2, e2), . . . , (tn, en)} be a timed path. Let j, j′, k, k′ be four positions in

the path such that 1 ≤ j ≤ k < j′ ≤ k′ ≤ n and ej , . . . , ek and ej′ , . . . , ek′ two simple identical cycles. If

such 1 ≤ j ≤ k < j′ ≤ k′ ≤ n exists then

Cnt(π) = π[1/j − 1] · (tj + tj′ , ej) · · · (tk + tk′ , ek)

· π[k + 1 : j′ − 1] · π[k′ + 1 : n]

otherwise Cnt(π) = π.

We also denote with Cnt∗(π) the repetitive application of Cnt to π until a fixed point is reached.

Therefore Cnt∗(π) only contains one occurrence of each simple cycle.

Theorem 4. The problem of reachability analysis in bounded time of any instance of the HSC automaton

is decidable.

Proof. We prove that if the target location is reachable within the time bound, then there is a short

timed path (in terms of its number of locations) from the initial state to the target location. This is

achieved by looking for loops that can be performed in arbitrarily short delay.

First of all, let us focus on the scheduling automaton, an example of which is shown in Figure 4.3.

For instance, the loop ”Idle, τ1 running, Idle” needs at least C1 units of time to be completed. It is easy

to see that every loop in the automaton needs a minimum finite amount of time to be performed.

31

4.7. Evaluation

We now focus on the Server automaton of Figure 4.2. Observe that most transitions are guarded by

synchronisation labels, except:

• A) from Active to Executing

• B) from Executing to Active

• C) from Empty to Idle

• D) from Executing to Recharging

• E) from Recharging to Active

All synchronisation labels are ultimately triggered by events of the tasks and the scheduler. In particular,

scheduling events ”active” and ”empty” are finite in number over a finite interval of time. Therefore,

for every run of finite duration, the number of event transitions in the run that include synchronisation

labels is finite.

It remains to analyse the cycles which do not contain any synchronisation label; there are only two

of those, the cycle involving transitions A), D) and E); and the cycle containing transition A) and B).

Regarding the first one, notice that clock x is reset on E), and it is checked with an equality in D);

therefore, the duration of each cycle is at least Q instants, and the number of occurrences of these cycles

in any finite interval of time is finite.

Regarding the second one (A, B), we can have an unbounded number of consecutive occurrences of

the cycle in any bounded interval of time of length T . Let us fix an arbitrary large number N : then

it is possible to find a run ρ of length len(ρ) > N , by moving into location Active before T , and then

looping with N/2 cycles, using transitions A) and B), in an arbitrary small amount of time. Let π be the

timed path corresponding to ρ, and let sn be the last state visited by ρ. By applying operator Cnt∗(π)

we obtain an equivalent path, i.e. a path with the same duration of π and that reaches the same state

sn and that contains only one simple cycle between Active and Executing, and its length is equal to

len(ρ)−N + 2.

Clearly, the length of any path of bounded duration is also bounded. By applying combinatorial

arguments similar to the ones used in [BDG+11] we can upper bound the length of any run with

∀ρ, len(ρ) ≤ 2|Var|+ (2|Var|+ 1) · |Loc| · (2|Trans|+1 + 1).

The number of such paths is finite, so reachability is decidable.

4.7 Evaluation

We have implemented the HSC analysis in the software tool FOrmal Real-Time Scheduler (FORTS) [SL14a].

FORTS is a model checker targeting real-time scheduling problem and it accepts LHA models as input.

We use it here for reachability analysis in HSC.

4.7.1 Comparison with the Lipari-Bini test

We used the tool to compare the results of our analysis against the test proposed by Lipari and Bini

in [LB04]. We modeled the same application described and analysed in [LB04]. In Table 4.1 we report

the parameters of the task set, which has a total utilisation of 47%.

In this experiment, we checked the schedulability of the task set in servers with different values of

(Q,P). In particular, we tested all integer values of P ∈ [1, 27], and all values of Q ∈ [1, P]. The results

32

Chapter 4. Component-Based Schedulability Analysis

Task Oi Ci Di Ti pi

τ1 0 2 8 8 1

τ2 0 2 20 20 2

τ3 0 6 50 50 3

Table 4.1: Parameters of the example application.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Q

P

HSC approach
analytical approach

Figure 4.4: Feasible server parameters. Crosses are the schedulable pairs (Q,P) found by the Lipari-Bini
test [LB04]; triangles are the ones found by our analysis.

are shown in Figure 4.4: the crosses are the results of the Lipari-Bini test, whereas the green triangles

are the results of the HSC model. As you can see, the latter found many more schedulable points. In

particular, point (Q = 3, P = 6), which leads to an utilisation of 50% (only 3% larger than the task set

utilisation) was found by the HSC, while it was not found by the analytic model.

The reason for this difference is that the Lipari-Bini test makes worst-case assumptions on the max-

imum delay that an application task can experience. In particular, this test assumes that, when the

highest priority task is activated, it may have to wait up to 2(P − Q). Since the highest priority task

has computation time C1 = 2 and relative deadline D1 = 8, it necessarily follows that (P − Q) ≤ 3.

In Figure 4.4, it is possible to note that this is always true for the Lipari-Bini test. However, the worst

case initial delay may never happen: the HSC model shows that in many cases (P − Q) > 3, and for

large P s this can be as large as 6. How is it possible?

To understand what happens, consider the case of P = 22 and Q = 16. According to the analytic

method, the worst case happens when the highest priority task arrives and, at the same instant, the

server has just exhausted its budget. Apparently, this seems to be the case of time t = 16, when the

server budget Q = 16 has just been exhausted. However, notice that the first busy period starting at

time t = 0 lasts only for 12 units: therefore, at time 12 the server moves to location Empty, and from

there, it moves to location Active at time t = 16 (due to the arrival of τ1), where it can spend at most

two units of time before moving to location Executing and completing the requested C1 = 2 units of

execution time. In other words, it never happens that the application can completely deplete the budget

of the server. This fact is not taken into consideration by the analytic method, which then produces

pessimistic results.

33

4.7. Evaluation

4.7.2 External service test

As discussed in the previous sections, the LHA formalism has the advantage of being more expressive,

in the sense that it allows designers to model and analyse complex scheduling scenarios that cannot be

expressed easily as a set of independent periodic real-time tasks.

To demonstrate the expressiveness of the model, let us consider an application consisting of just two

real-time periodic tasks, whose parameters are reported in Table 4.2. Each task provides a service that

is requested by the external environment (i.e. by other applications, or by an interrupt). Each task τi

has an incoming queue of requests: at its periodic activation time it checks the contents of the queue:

if there is no request, it executes for very little time C ′i; if there is one request, it will execute for C ′′i ;

if there are two or more requests it will execute for C ′′′i . Therefore, the actual load generated by the

application depends on the number of external requests per task.

Task C ′i C ′′i C ′′′i Di Ti pi

τ1 1 2 3 12 12 1

τ2 1 3 5 15 15 2

Table 4.2: Parameters of the external service application.

In our example, we model the two request queues with simple counters w1,w2, both initialised to be

0. At its arrival time, each task reads its counter, sets its computation time to the corresponding value,

and resets the counter to 0. In the LHA formalism, a discrete variable like wi can be automatically

encoded in the location signature.

The arrival of external requests is modeled by the Service automaton shown in Figure 4.5. Initially,

the automaton waits non deterministically for an interval of time between 0 and its maximum initial

offset Or. Then, every Tr units of time, it produces one request for either τ1 or τ2, and the choice is

again non deterministic.

It is not easy to compute the worst-case load produced by the application: if we want to use classic

schedulability analysis, we need to analyse all possible combinations of requests to the two tasks. In fact,

the Service automaton can request only one service at time, and depending on the values of Tr, several

possible combinations of service requests may generate the worst-case load.

However, our HSC automaton does exactly this: it checks all possible combinations of service requests,

and verifies if the system is schedulable under all possible cases. By setting Tr = 10 and Or = 0 and

applying the analysis for different values of the pairs (Q,P), we obtained the results shown in Figure 4.6.

Notice that the worst-case utilisation of the task set, without considering the Service automaton, is
C′′′1

T1
+

C′′′2

T2
= 58.333%. However, the minimum fraction Q

P found by our analysis is 50%, corresponding

Phase
ṙ = 1

Request
ṙ = 1

r ≤ Or

r := 0
w1 := w1 + 1

r ≤ Or

r := 0
w2 := w2 + 1

r = Tr

w1 := w1 + 1
r := 0

r = Tr

w2 := w2 + 1
r := 0

Figure 4.5: The service request automaton

34

Chapter 4. Component-Based Schedulability Analysis

 0

 5

 10

 15

 20

 0 5 10 15 20

Q

P

Figure 4.6: Feasible server parameters for external service test

to the two pairs (Q = 1, P = 2) and (Q = 2, P = 4). In fact, by analysing all possible combinations of

service requests, the largest utilisation needed is indeed 50%, exactly equal to what our analysis found.

This value corresponds to the case when the first task τ1 executes for C ′′1 = 2 (serving one request),

whereas the second task τ2 executes for C ′′′2 = 5 (serving two requests).

Also, notice that the pair (Q = 8, P = 15) provides schedulability with server utilisation equal to

53.34% and a relatively large P . In general, a large P is desirable because it reduces the overhead of

switching between different applications. In this case, our analysis shows that we can set a period larger

than the smaller period in the application, and still achieve a relatively low resource utilisation.

4.7.3 A real case study of an avionics system

The case study we use here was originally described in [Dod06a] and [Dod06b]; it was later adapted

to hierarchical scheduling in [CPV13]. It consist of fifteen real-time tasks with very different values

of periods. Carnevali et al. [CPV13] partitioned the task set into five components and verified the

schedulability of each partition under TDM with a pre-defined pattern of time slot assignment. The

tasks and the components are reported in Table 4.3, where time is expressed in milliseconds.

Component Task O C T D p U

A1

τ11 0 1 10 5 1

0.2
τ12 0 1 40 40 2
τ13 10 2 40 40 3
τ14 20 1 40 40 4

A2

τ21 0 1 40 40 1

0.305
τ22 0 5 50 50 2
τ23 10 4 50 50 3
τ24 16 5 50 50 4

A3
τ31 2 4 80 80 1

0.06
τ32 15 1 100 100 2

A4
τ41 0 4 100 100 1

0.045
τ42 10 1 200 200 2

A5

τ51 10 1 200 200 1
0.019τ52 3 4 400 400 2

τ53 0 4 1000 1000 3

Table 4.3: Specification of the avionics case study

35

4.7. Evaluation

In our analysis, we used the same components as in [CPV13]. We modeled each partition using a

HSC automaton. Then, we performed the analysis of the entire system in two steps: we first analysed

each component individually. The profile of valid pairs (P,Q) for each component is shown in Figure 4.7,

and the pairs which lead to the minimal utilisation for each component are listed in the fourth column

of Table 4.4.

In the second step, we performed the “integration” by selecting the combination of pairs (P,Q) for

each component so that the overall utilisation is less than 100%. Notice that, by using dynamic periodic

servers, we can easily select different values for the periods and the budget of the different applications so

to minimise some cost function. For example, one objective can be to maximise the values of the servers

periods: in fact, small periods imply a more frequent switch between components, and hence a greater

overhead. One possible choice for each parameters is reported in the fifth and last column of Table 4.4.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

Q

P

(a) A1

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q

P

(b) A2

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Q

P

(c) A3

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Q

P

(d) A4

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Q

P

(e) A5

Figure 4.7: Feasible (P,Q) space for each component of the avionics case study.

Orig. Util. Min Utilisation Reduced Overhead

A1 0.2 (5,1) Q/P = 0.2 (5,1) Q/P = 0.2

A2 0.305 (50,16) Q/P = 0.32 (50,16) Q/P = 0.32

A3 0.06 (80,5) Q/P = 0.0625 (100,24) Q/P = 0.24

A4 0.045 (22,1) Q/P = 0.0455 (100,5) Q/P = 0.05

A5 0.019 (100,2) Q/P = 0.02 (200,9) Q/P = 0.045

Utot 0.629 0.648 0.855

Table 4.4: Server parameters for the avionics case study.

4.7.4 Scalability of the analysis

A full-fledged analysis of the run-time complexity of our model is out of the scope of this thesis. Nev-

ertheless, it is important to briefly discuss the scalability of our analysis with respect to the size of

the model. First of all, a few caveat. It is well-known that formal methods suffer from the so called

state-space explosion problem: the number of states to analyse is exponential in the size of the input.

36

Chapter 4. Component-Based Schedulability Analysis

Therefore, an exponential dependency from the number of tasks in the application is unavoidable. The

important issue here is to understand to which extent the analysis is still doable with modern computer

systems.

�0

�100

�200

�300

�400

�500

P=20 P=40 P=60

Ti
m
e�
(s
ec
on
ds
)

Figure 4.8: Run-time of FORTS on a 8 task model

�0

�500

�1000

�1500

�2000

�2500

P=20 P=40 P=60

Ti
m
e�
(s
ec
on
ds
)

Figure 4.9: Run-time of FORTS on a 10 task model

N 8 10

P 20 40 60 20 40 60

max time (s) 209 443 483 938 2120 2244

ave time (s) 63 85 104 245 371 384

max memory (M) 79 145 178 229 444 527

ave memory (M) 26 35 44 69 107 126

Table 4.5: Run-time results of HSC

The experiment was conducted on a common MacBook with Intel(R) Core(TM) i5 CPU @ 2.5GHz

37

4.8. Conclusion

and 8 GB of RAM. We run tests for different task sets and different values of the parameters. Each

test is specified by a tuple (N,U, P) , where N ∈ {8, 10} is the task set size, U is task set utilisation,

and P ∈ {20, 40, 60} is the period of a server. We also fix Q
P = 0.6. For each pair (N,P) 150 task

sets would be randomly generated according to the Randfixedsum algorithm [ESD10]. For a task set, its

utilization U is randomly sampled in the range [0.2, 0.6]. Task periods are selected in the range [10, 100]

using log-uniform sampling and the minimum granularity of periods is 10. Each task’s initial phase is

uniformly distributed between 0 and its period. We know that the complexity of reachability analysis in

a HSC is directly related to the hyperperiod length of tasks and server. We constrain this hyperperiod

length to be less than 2000. Task priorities are assigned by Rate Monotonic scheduling: a task with

shorter period will be given higher priority; the priority relation between two tasks with the same period

is randomly selected. Furthermore, we avoid the generation of task τi, with Di−Ci < P −Q, which will

trivially miss their deadline.

For each task set, we measured the time (in seconds) and memory (in MB) needed to decide schedu-

lability. The run-time results are reported in Figure 4.8 and Figure 4.9; more detailed statistical results

are in Table 4.5. A first observation is that larger P will result in higher cost of HSC analysis, due to

the non-determinism in the Server automaton. And we get the worst-case scenario when P = 60 and

N = 10, under which circumstance the longest running time for one HSC is around 37 minutes, whereas

the memory cost is always less than 530 MB. We believe that, by introducing parallelism in the analysis

tool and by carefully optimising the code we can achieve higher performance.

4.8 Conclusion

We presented a formal model of a dynamic server algorithm for hierarchical scheduling that can be used

for component-based analysis of hierarchical real-time systems. The model is based on the very expressive

formalism of Linear Hybrid Automata. We have shown that the model provides more precise results than

classic analytic schedulability formulas, and allows to model components with complex dependencies. We

have run extensive simulations to demonstrate that the model can be analysed efficiently for components

with 10 real-time periodic tasks.

The proposed model is very general but it does not account yet for the overhead of context switch

between components. Also, the impact of memory access and caches on the execution time of the tasks

has been neglected. We are currently working on a more accurate model that can account for the

scheduling overhead and the cache-related preemption delay caused by other components in the system.

38

Chapter 5

Exact G-FP Schedulability Analysis

In this chapter we present an exact schedulability test for sporadic real-time tasks scheduled by the Global

Fixed Priority (G-FP) Fully Preemptive Scheduler on a multiprocessor system. The analysis consists in

modeling the system as a Linear Hybrid Automaton (LHA), and in performing a reachability analysis

for states representing deadline miss conditions. To mitigate the problem of state space explosion, we

propose a pre-order relationship over the symbolic states of the model: states that are simulated by

others can be safely eliminated from the state space.

We also formulate the concept of decidability interval with respect to a set of constrained-deadline

sporadic tasks on multiprocessors. The decidability interval is a bounded time interval such that, if a

deadline miss occurs in the schedule, then it is possible to find a configuration of arrival times for the

tasks such that the deadline miss happens within the bounded interval. Vice versa, if no configuration

of arrival times produces a deadline miss in the bounded interval, then no deadline miss is ever possible

in the schedule. Hence we prove that the schedulability analysis problem is decidable, and we provide

a formula for computing the decidability interval. To our knowledge, this is the first time such a time

interval is proposed for sporadic tasks running on multiprocessors.

The proposed schedulability analysis has been implemented in our software tool FOrmal Real-Time

Scheduler (FORTS) [SL14a]. For the first time we assess the pessimism of the state-of-the-art approx-

imate schedulability test through experiments. Moreover, we show that the use of the proposed model

permits to analyse tasks with more general parameter values than other exact algorithms in the litera-

ture. Nevertheless, even with our approach the complexity remains too high for analysing practical task

sets with more than 7 tasks.

The content in this chapter is based on [SL14b] and [SLa].

5.1 Introduction

Since the seminal work of [LL73], the fixed-priority scheduling problem has been extensively studied.

The problem has been solved exactly for single processor systems by using a well known property: the

worst-case response time of a task happens when it is activated simultaneously with its higher priority

tasks, and all jobs are activated at their maximum frequency. Therefore, it suffices to simulate the system

starting from this critical instant and activating all subsequent jobs as soon as possible, until the first

idle time.

We consider the problem of checking the schedulability of a set of independent real-time sporadic

tasks on a multiprocessor platform when the scheduling algorithm is the Global Fixed Priority (G-FP)

Fully Preemptive scheduler. According to this scheduling algorithm, on a m-processor platform all jobs

39

5.1. Introduction

(a) (b)

Figure 5.1: Example of schedule of sporadic tasks (a) jobs arrive as soon as possible (b) second job of τ1
is delayed.

are ordered in one single ready queue by decreasing priority, and the m highest priority jobs are executed

at every instant.

Unfortunately, there is no easy solution for checking the schedulability of a task set scheduled by

G-FP. The difficulty comes from two facts.

• No single critical instant exists: the worst-case response time of a task can be found anywhere

in the schedule. Also, it is not true that the worst-case response time happens when all jobs are

activated as soon as possible. An example is presented in the following.

• On the other hand, the sporadic behaviour of the tasks increases the number of possible interleav-

ings.

To better understand the problem, consider the following example (from [Bar07]): the system consists of

3 tasks τ1 = (1, 1, 2), τ2 = (1, 3, 3) and τ3 = (5, 6, 6), to be scheduled by G-FP on a 2-processor platform.

Task τ1 has the highest priority and τ3 is the lowest priority task. The schedule obtained when all tasks

start at time 0 and arrive as soon as possible is shown in Figure 5.1a, where all tasks meet their deadlines.

However, if the second job of task τ1 arrives at time instant 3 instead of 2, task τ3 misses its deadline

(Figure 5.1b).

In fact, we cannot make any worst-case assumption on the arrival times of the jobs. In order to

find the exact combination of arrival times that leads to the worst-case response time of a task, it is

then necessary to explore all possible legal combinations of arrivals, and this number is so large that a

brute-force approach fails already for very small task sets.

Therefore, most of the research in the literature has been focused on finding upper bounds to the

response times (as we are going to see in Chapter 6). However, to assess the pessimism of such ap-

proximate analyses, it is necessary to solve the problem exactly, i.e. to obtain necessary and sufficient

conditions for the schedulability of a task set.

Contributions In this part, we address the problem of deriving an exact analysis for the schedulability

of a set of sporadic real-time tasks scheduled by G-FP on a multiprocessor platform. We model the

problem using the formalism of Linear Hybrid Automata to represent the tasks and the scheduler. In

particular, deadline miss conditions are modeled as error locations in the automata. The analysis consists

in performing a reachability analysis for such error states. Due to the non-deterministic sporadic task

activations, the analysis complexity explodes for very small task sets. To defer the state explosion,

we propose a weak simulation relation between symbolic states and prove its correctness. The relation

allows us to eliminate those states that are not useful for our reachability analysis, thus reducing the size

of the state space. Furthermore, we prove the decidability of the proposed analysis by demonstrating

that the schedulability test of a set of sporadic tasks under G-FP scheduling policy can be done in a

bounded time interval, called decidability interval. We present the implementation of our model in a

software tool, and we show that it can handle more complex task sets with respect to state-of-the-art

40

Chapter 5. Exact G-FP Schedulability Analysis

exact algorithms based on discrete time. Here, by “more complex” we mean that tasks’ parameters

can be generic values and, as we are going to see, this makes a critical difference between previous

work on exact multiprocessor schedulability analysis and our solution. Also, we evaluate the pessimism

of current state-of-the-art approximate schedulability analysis of G-FP scheduling over sporadic tasks.

Through extensive experiments, we investigate the factors that can affect the run-time performance of

the proposed schedulability analysis.

Limitations Unfortunately, as the number of sporadic tasks grows beyond 7, and for more than 4

processors, the complexity rises so much that all exact analysis techniques proposed so far can hardly

terminate on current desktop computers, even when using our weak simulation relation. This is due

to the exponential nature of the problem and it can only be mitigated by future improvements of the

simulation relation. Thus, we will continue to work in this direction in the hope to further enhance the

practicability of the method.

5.2 Related Work

The general properties of multiprocessor scheduling have been discussed in many previous works. [CG07]

and [GGCG13] proposed upper bounds to the feasibility interval of a set of periodic tasks scheduled upon

a multiprocessor (uniform or heterogeneous).

Regarding exact analysis of sporadic tasks, the first brute force approach to the problem was proposed

in [BC07a]: the test assumes discrete time parameters, and it consists in building a finite state machine

that represents all possible combinations of arrival times and execution sequences for a task set scheduled

by G-EDF. Unfortunately, the problem is so complex that the authors can analyse only tasks whose period

is in the range {3, 4, 5}; the tool produces an out-of-memory error for values of T = 6.

[CGG11] proposed an exact schedulability test for a set of periodic tasks, but they did provide neither

a tool, nor experiments with task sets. We believe that their algorithm is very complex and a naive

implementation would not scale to a large number of tasks. [GGD+07] proposed a Timed Automata

model for schedulability analysis of periodic tasks. However, periodic tasks are simpler to analyse than

sporadic tasks: we will provide a detailed comparison in Section 5.6.4.

Recently, [GGL13] improved over [BC07a] by using an antichain technique. In particular, they

proposed a simulation relation between states of the underlying finite automaton. An informal definition

of simulation relation is the following:

Given two states s1 and s2, we say that s1 simulates s2 (denoted as s1 � s2) if and only if:

1) for every state s′2 successor of s2, there exists a state s′1 successor of s1 and s′1 � s′2; 2) if

s2 is an error state (i.e. it models a deadline miss), then also s1 is an error state.

Thanks to this relation, when we find two states such that s1 � s2, we can avoid analysing all paths

starting from state s2: in fact, if the error state is not reachable from s1, then it is not reachable from s2

either. This produces a significant reduction on the number of states to be analysed in the reachability

analysis. The simulation relation proposed in [GGL13] is valid for any fixed job-level scheduling algo-

rithm, including G-FP and G-EDF. Besides, [BMS12] studied the feasibility problem of sporadic tasks

upon the multiprocessor by reducing it to a safety game, where the two players are the scheduler and the

set of the tasks respectively. As shown in [GGS14], the antichain technique in [GGL13] can be applied

to [BMS12] in order to improve the efficiency.

However, all such methods rely on explicit (discrete) techniques for time analysis and are limited to

tasks with very small discrete parameters. For example, in their experiments [GGL13] can analyse task

sets with maximum period equal to T = 8 on 2 processors.

41

5.3. Multiprocessor Schedulability in LHA

In this chapter we take a different approach. We model the system as a Linear Hybrid Automaton

(LHA) and then we perform our analysis on the corresponding symbolic state space. As in [GGL13], we

define a weak simulation relation over the symbolic states, and prove its correctness for G-FP scheduling.

This allows us to considerably reduce the analysis time, and thus to analyse more complex task sets.

Due to the different features between explicit and symbolic techniques for state space exploration, when

tasks are with small parameters, it is possible that existing works on exact multiprocessor schedulability

analysis are more efficient than our solution; however, our exact analysis is the only work that can handle

task sets with general configurations. Furthermore, as it will be shown in Chapter 9, the exact G-FP

schedulability analysis in discrete time domain is problematic.

5.3 Multiprocessor Schedulability in LHA

In this section we describe the automaton used for modeling our scheduling problem. In particular,

we use two different types of automata that synchronise with each other: the task automata and the

scheduler automaton. Indeed, the LHA model we are going to propose can be also encoded by using

Timed Automata with Stopwatches. As it will be clear in the next section, the only difference is that we

allow some variables to decrease at unitary rate, whereas in Stopwatch Timed Automata all variables are

either stopped or increasing at unitary rate. We think that using the LHA model is more straightforward

to understand our analysis scheme in Section 5.4.

5.3.1 The task automata

We start by presenting the LHA that models one single sporadic task. Such a LHA model for the sporadic

task is called task automaton. A concrete task automaton TA = (C,D,T) is depicted in Figure 5.2. It

has two continuous variables p and c, and four locations.

Idle
ṗ = 1, ċ = 0

Waiting
ṗ = 1, ċ = 0

p ≤ D

Running
ṗ = 1, ċ = −1
c ≥ 0 ∧ p ≤ D

Deadline
Missed

arrival
p ≥ T
p := 0
c := C

dispatch

p ≥ T
p := 0

c := c + C

p ≥ D

preemption
c > 0

c > 0∧
p ≥ D p ≥ T

p := 0
c := c + C

end
c = 0

Figure 5.2: Task Automaton

Variable p represents the time passed since the latest activation of the task, and its rate is always 1.

Every time a new job arrives, p is reset to 0. Variable c represents the remaining computation time of a

task. Its rate can be 0, when the task does not execute, or −1 when the task executes.

The automaton works as follows. Initially, it is in state Idle, where p ≥ 0 and c = 0; p ≥ 0 models the

fact that the first job release of a task can happen at any time. From there, when the guard constraint

p ≥ T is satisfied, i.e. at least T time units have been passed since latest activation of the task, it can

42

Chapter 5. Exact G-FP Schedulability Analysis

move non-deterministically to location Waiting. Along with this new job arrival transition, p variable is

reset to 0 and C is assigned to variable c. Also, it synchronises with the scheduler (see next section) on

the task arrival label. Notice that every task always executes for its WCET: G-FP is sustainable [BB09b]

and if the system is schedulable when every task always executes for its WCET, it is also schedulable

when a task is allowed to execute for less than its WCET.

While in Waiting, the rate of c will remain equal to 0. The automaton moves to location Running

after synchronising with the scheduler on label dispatch, which notifies that some processor is available

for the task to run. While a task is running, the rate of c is set to −1, so its remaining computation

time decreases. Its execution can be preempted by the arrival of a higher priority task, at which point

the task will move back to location Waiting after synchronising with the scheduler on label preemption.

We say a task is active if it is in location Waiting or Running. An active task must finish its

computation time before reaching its deadline. This means the c variable must reach 0 no later than the

time at which p reaches D. Otherwise, a task misses its deadline and goes (from Waiting or Running)

to the DeadlineMissed location. If a task finishes its execution before deadline, i.e. c = 0 and p ≤ D,

the task is forced to move to location Idle (transition from Running to Idle).

In case that a task has unconstrained deadline, there can be a new job arrival for an active task. This

is modeled as a non-deterministic transition from Waiting or Running to itself. Since the new instance

must wait for its precedence completes, variable c is incremented by C with the transition.

In the following we will denote as TAi the automaton corresponding to the ith task in the system,

with qi, ci,pi its location, left computation time and passed time, respectively, and with arrivali, endi,

dispatchi, preemptioni the corresponding synchronisation labels.

5.3.2 Scheduling automaton

Given a set of tasks T = {TA1, . . . ,TAn}, set A is defined as the set of active tasks that are in locations

Waiting or Running, and set R denotes the set of tasks that are in location Running.

Let Scheduler : 2T → 2T be a scheduling function that, given a set of active tasks, returns the set of

executing tasks: R = Scheduler(A).

We consider a G-FP Scheduler, which chooses the min{m, |A|} highest priority tasks to run.

The scheduling function can be modeled by a finite automaton synchronised with the task au-

tomata the system is composed of. More formally, the scheduling (or scheduler) automaton Sched =

{m, Loc, Lab} is characterised by:

• m is the number of identical processors in the system;

• Loc is the set of locations of the scheduler;

• Lab =
⋃
i Labi with Labi = {arrivali, endi, dispatchi, preemptioni} is the set of synchronisation

labels.

The responsibility of a scheduling automaton is to synchronise with the task automata, i.e. to decide

which tasks to run (staying in location Running) and which tasks to wait (staying in location Waiting).

Every time a task completes its execution or releases a new job, the active task set A changes to A′ and

a new running task set R′ is computed according to the scheduling function R′ = Scheduler(A′). Then,

for the task that is in R but was not in R′, the scheduling automaton informs its preemption from the

processor through synchronisation on the preemptioni label; and for the task that was not in R but is

now in R′, the scheduling automaton synchronises on the dispatchi label with it.

An example of scheduling automaton for n = 3 tasks on m = 2 processors is shown in Figure 5.3. In

the figure, nodes depict locations, and the name of the location encodes the state of the system queue,

43

5.3. Multiprocessor Schedulability in LHA

,dis2

,dis1

Figure 5.3: Scheduler for 3 tasks on 2 processors

and in some cases the event that just happened. For example, location E1E2W3 corresponds to the

execution of task τ1 and τ2 on the two processors, and the task τ3 waiting to be executed; location

E1 arr2 represents the fact that, while task τ1 is executing on one processor, task τ2 has just arrived.

Also, please note that all locations with names containing arr are assumed to be committed locations.

Finally, on the edges we show the synchronisation labels (in short form for graphical reasons), hence arr1

stands for arrival1, etc. For simplicity, when there is a preemption (e.g. τ3 is preempted by the arrival

of τ1), we put the two synchronisation labels (e.g. pre3 and dis1) on the same transition. This means

between the two synchronisations, no time will elapse (as we assume no context switch cost). This can

be realised by inserting a committed location in between the two. In the special case of one processor,

a formal modeling of the fixed-priority scheduler can be found in Chapter 3

The number of locations needed for representing the scheduler automaton is exponential in the number

of tasks. Such locations can be automatically generated by using function Scheduler() for computing

which task to execute and which task to suspend or preempt. Notice also that the location encodes

the same information that is contained in the task automata presented above; in particular, executing

tasks will be in location Running, whereas suspended tasks will be in location Waiting. Therefore, the

scheduler automaton does not add additional complexity to the problem; on the contrary, it restricts the

number of possible combinations of task locations: for example a lower priority task cannot be in the

Running location if there are m higher priority tasks that are active.

Finally, a system automaton SA = (T ,Sched), is the parallel composition of n task automata and

44

Chapter 5. Exact G-FP Schedulability Analysis

one scheduler automaton, where

• T = {TA1, . . . ,TAn} is a set of n task automata;

• Sched is the scheduler automaton.

The following theorem shows that SA models the real-time scheduling of a set T of sporadic tasks

with G-FP, including all legal task arrival and execution patterns.

Theorem 5. Given a task set T , all tasks in T are guaranteed to meet their deadlines if and only if

DeadlineMissed locations are not reachable in the system automaton SA.

Proof. We must demonstrate that, if there is a deadline miss for the set of tasks under G-FP scheduling,

there is a sequence of transitions in SA starting from the initial location until to the DeadlineMissed

location. Vice versa, if some DeadlineMissed locations can be reached using a sequence of transitions,

then there exists a configuration of arrival times for the sporadic instances such that one task will miss

its deadline.

Suppose that the task set is not schedulable under G-FP and the first deadline miss happens at time

t. We now build a sequence of transitions (i.e. a trace) in the SA that reproduces the schedule.

Suppose that the first instance of a task τi is released at time ri,1. Then, the corresponding TA

remains in the Idle location while p < ri,1, and the transition to location Waiting is taken when p = ri,1;

correspondingly p is reset to 0. The scheduling automaton Sched at each instant represents the state

of the ready queue, so it mimics the state of the schedule. For example, upon arrival of a high priority

task, a sequence of transitions synchronized by dispatch and/or preemption is triggered in zero time

so that the TA corresponding to the high priority task is moved to location Running, whereas the TA

corresponding to the preempted task is moved to location Waiting. If a task executes for ∆t units of

time, the corresponding variable c is decreased by the same amount, so the value of the variable always

represents the execution time.

Successive releases at ri,j are treated differently: if the task has already completed its execution, the

corresponding automaton is in location Idle, so they are treated as in the first release.

If at time ri,j the previous instance of τi has not yet completed, the TA may decide non-deterministically

to update c and p to account for the new instance or decide to ignore the new arrival and analyse the

previous one. In practice, in the analysis we need to consider both cases. If the instance that misses the

deadline is the (j−1)-th instance of task τi, we ignore the release of the j−th instance (which has no im-

pact on the current schedule), and continue the analysis of the current instance until the DeadlineMissed

location is reached.

If instead the deadline miss happens on a different instance of the same task or of another tasks, we

update variable c← c + C and variable p← 0 to account for the new instance.

Then, it is clear that each task arrival, execution, preemption and completion corresponds to a

transition in the task automaton TA. Therefore, a deadline miss for a task always corresponds to the

corresponding TA going into the DeadlineMissed location.

Vice versa, if there exists a sequence of transitions in SA that finally reaches the DeadlineMissed

location, following the same reasoning as above, we can find a corresponding task arrival and preemption

pattern in the scheduling of tasks that causes a deadline miss.

In conclusion, the task set is schedulable if and only if the location DeadlineMissed is not reachable

in the system automaton SA.

Given a state s in SA, A(s) and R(s) represent the set of active and running tasks in the system

respectively. We denote with q0 the current location of the scheduler automaton, and with qi (1 ≤ i ≤ n)

the location of the ith task automaton. The same notions are also applied to a symbolic state S.

45

5.4. Weak Simulation Relation in SA

5.4 Weak Simulation Relation in SA

In the previous section we proved that analysing the schedulability of a task set is equivalent to performing

a reachability analysis of DeadlineMissed locations in SA. Due to the non-deterministic and sporadic

behaviour of task arrivals, the exploration of SA’s (symbolic) state space will easily produce a “state

explosion”. To reduce the number of generated states, we propose a weak simulation relation for SA such

that, given two states S1 and S2, if S1 simulates S2 then S2 can be eliminated from state space without

interfering with the final schedulability analysis result.

5.4.1 Weak simulation in concrete state space

We first discuss the weak simulation relation in concrete state space of SA, then we will extend it for

symbolic states.

Definition 5. A weak simulation relation in the concrete state space of SA is a pre-order �⊆ space×space

such that the following two conditions are satisfied:

1. ∀s1, s2, s4 s.t. s1 � s2, s2 → s4: there exists s3 s.t. s1 ⇒ s3 and s3 � s4;

2. ∀s1, s2 s.t. s1 � s2 : ∀i s2.qi = DeadlineMissed implies s1.qi = DeadlineMissed.

If s1 � s2, we say that s1 simulates s2. If s1 � s2 but s2 6� s1, we write s1 � s2.

Roughly speaking, s1 � s2 means that the scenario in s1 is worse than in s2 for tasks to finish

execution before their deadlines.

The first condition in Definition 5 says that, given s1 � s2 and given s1 that performs a (discrete or

time) step to s4, there exists a state s3 reachable from s1 such that s3 � s4. The second condition says

that if some task in the simulated state (s2) misses its deadline, so does it in the simulating state (s1).

For these two reasons, during state space exploration, we can safely eliminate states that are simulated

by others without violating the reachability analysis result. Note that for two states s1 � s2 and s2 � s1,

we only need to keep one of them.

Now, we present a specific pre-order relation in space(SA) that satisfies the definition of a weak

simulation relation, thus it can be used to simplify the state space exploration in SA.

Definition 6 (Slack-time pre-order). For the SA automaton, the slack-time pre-order �st⊆ space×space

is defined as follows: ∀s1, s2, s1 �st s2 if and only if

∀τi : s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

For an active task, the difference between the time left before its deadline and the remaining com-

putation time is called the slack of the task. When the slack is less than 0, the task is doomed to miss

its deadline. Intuitively, a smaller slack corresponds to a more urgent scenario. In a task automaton

TAi, the slack can be computed by Di − pi − ci. Given two states s1, s2 such that s1 �st s2, there is

s1.pi ≥ s2.pi and s1.ci ≥ s2.ci. So, an active task’s slack in s1 is no larger than its slack (if in s2 it is

also active) in s2.

We now prove that �st satisfies the two conditions for a weak simulation relation in Definition 5.

Theorem 6. The pre-order relation �st is a weak simulation relation in space(SA).

Proof. To prove that �st is indeed a weak simulation relation, we must demonstrate that it satisfies the

two properties stated in Definition 5, where the second point trivially holds for �st. Therefore, in this

46

Chapter 5. Exact G-FP Schedulability Analysis

proof we address the first point: i.e. given s1 �st s2 and s2 → s4, we prove that there exists s3 such that

s1 ⇒ s3 and s3 �st s4.

s2 → s4 in SA can be a time step or a discrete step. The latter can be further differentiated, depending

on whether it is caused by a task arrival or by a task completion. In the following we will analyse these

cases one by one.

1. s2 → s4 is a time step with elapsed time t: s2
t−→ s4. Let us consider a timed step sequence s1

t⇒ s3

with the same t as accumulated time; and let us assume that there is no new task arrival during

this time interval. For any task τi, s3.pi = s1.pi + t ≥ s2.pi + t = s4.pi. If a task τi is not in

A(s2), then s2.ci = s4.ci = 0; certainly, there will be s3.ci ≥ s4.ci. Otherwise, a key observation for

the proof is that ∀i, s1.ci ≥ s2.ci implies A(s2) ⊆ A(s1); so task τi in A(s2) also belongs to A(s1).

Suppose from s1 to s3 (s2 to s4), the time that τi stays in location Running is t1 (t2). Since the

scheduler chooses tasks to run according to their fixed priority and A(s2) ⊆ A(s1), t1 will be no

larger than t2 and s3.ci = s1.ci − t1 ≥ s2.ci − t2 = s4.ci. So, we proved that s3 �st s4.

2. s2 → s4 is a discrete step caused by the arrival of a task τi. For such a step, only variables of the

arriving task will change. Because that s1.pi ≥ s2.pi, there exists also a discrete step from s1 to s3

triggered by τi’s new arrival job. We have s3.pi = s4.pi = 0 and s3.ci = s1.ci + Ci ≥ s2.ci + Ci =

s4.ci. So, we proved s3 �st s4.

3. s2 → s4 is a discrete step caused by the completion of a task τi. For such a step, only variables of

the finishing task will change: s4.pi = s2.pi ≤ s1.pi and s4.ci = 0 ≤ s1.ci. Remember that in the

definition of LHA, there is always a stutter transition from a location to itself. So, there is s1 → s1

and s1 �st s4.

In conclusion, the pre-order �st satisfies point one in Definition 5 also. Thus �st is a weak simulation

relation in SA.

5.4.2 Weak simulation in symbolic state space

As continuous variables in LHA vary in dense time domain, the weak simulation relation in concrete

state space cannot be applied to reachability analysis directly. In this section, we extend the slack time

weak simulation relation �st to symbolic states.

We remind here the concepts in Section 2.2 that a symbolic state is defined as a pair S = (l, C),

where l is a location and C is a linear constraint (or a convex region). A symbolic state abstracts a

(possibly infinite) set of concrete states. We can define the weak simulation relation in symbolic state

space (Space) by employing its counterpart in concrete state space (space).

Given symbolic states S1 and S2, we say S1 simulates S2 if

∀s2 ∈ S2 , ∃s1 ∈ S1 s.t. s1 � s2 (5.1)

Remember that a symbolic state is a pair (l, C) with a location l and a linear constraint C. The

linear constraint C can be represented by a convex region. In the following we use C to denote both a

linear constraint and its convex region. In the context of �st for concrete state space, there is no need

to consider location names. Clearly, given two states S1 = (l1, C1) and S2 = (l2, C2), if C1 includes C2
(denoted as C1 ⊇ C2), then S1 simulates S2. In the following, we are going to explore a more general

relationship between convex regions that can be used to judge the simulation relation between symbolic

states.

Assume we are in a N-dimensional space. Given two valuations ν = (x1, x2, . . . , xN) and ν′ =

(y1, y2, . . . , yN), we say ν prevails ν′, denoted by ν ≥ ν′, if for all i it holds xi ≥ yi. We say a valuation

47

5.4. Weak Simulation Relation in SA

x

y

x
+
y
≤

4
x ≥ 1

y ≥ 1

(a) the original convex region

x

y

x
+
y
≤

4

y ≤ 3

x ≤ 3

(b) after windening

Figure 5.4: A convex region C and its windening ∇(C)

ν is prevailed by a convex region C if there exists some valuation ν′ |= C and ν′ ≥ ν. Given two convex

regions C1 and C2, C1 is said to prevail C2, denoted as C1 ≥ C2 if for all ν |= C2, ν is prevailed by C1.

We can see that the prevailing relation is transitive, and convex region inclusion is a sufficient (but not

necessary) condition for prevailing relation.

Given two valuations ν and ν′ such that ν prevails ν′, if we pair them with location names we

can obtain two concrete states s = (l, ν) and s′ = (l′, ν′). The prevailing relation between ν and ν′

implies that s �st s′. Similarly, the weak simulation relation between symbolic states can be decided by

employing the prevailing relation between two convex regions.

We first extend the slack time pre-order from concrete state space to symbolic state space.

Definition 7. For the SA automaton, the slack-time pre-order �st⊆ Space× Space is defined such that

∀S1, S2, S1 �st S2 if and only if S1.C prevails S2.C.

Theorem 7. The pre-order �st⊆ Space× Space is a weak simulation relation.

Proof. From the definition of convex region prevailing.

We now need an efficient method for checking if two convex regions are in a relationship of prevailing.

To do this, we first define a widening operator ∇.

Given a convex region C, its widening ∇(C) is the convex region that can be obtained as follows:

• Construct linear constraints C′ in 2×N dimensional space (x1, . . . , xN , y1, . . . , yN) such that

(y1, . . . , yN) |= C ∧ ∀i, xi ≤ yi

• Remove the space dimensions higher than N in C′.

∇(C) represents the largest region that is prevailed by C. ∀ν ∈ ∇(C), there exists a ν′ ∈ C such that

ν′ ≥ ν and vice versa; this means C ≥ ∇(C) and ∇(C) ≥ C. An example for the widening operation is

shown in Figure 5.4.

Finally, the prevailing relation between two convex regions, thus the simulation relation between two

symbolic states, can be decided by the following lemma.

Lemma 2. Given two convex regions C1 and C2, C1 ≥ C2 if and only if ∇(C1) includes ∇(C2).

Proof. We first prove that C1 ≥ C2 ⇒ ∇(C1) ⊇ ∇(C2). Since C1 ≥ C2 ≥ ∇(C2) and ∇(C1) is the largest

region prevailed by C1, we get ∇(C1) ⊇ ∇(C2).

Then we prove ∇(C1) ⊇ ∇(C2)⇒ C1 ≥ C2. From ∇(C1) ⊇ ∇(C2), we have C1 ≥ ∇(C1) ≥ ∇(C2) ≥ C2.

So, C1 ≥ C2 ⇔ ∇(C1) ⊇ ∇(C2) and the lemma is proved.

48

Chapter 5. Exact G-FP Schedulability Analysis

5.4.3 Optimising the slack-time pre-order relation

We now present another more efficient simulation relation as an extension of the slack-time pre-order

relation �st in case that tasks have constrained deadlines. Although a similar pre-order can also be

defined for arbitrary-deadline sporadic tasks, for simplicity we restrict our extension only for tasks with

deadlines less than or equivalent to their respective minimum interarrival times.

Let us first have a look at a simple example. Given two states s1 and s2 with s1.ci = s2.ci = 0,

s1.pi = Ti + 1, s2.pi = Ti + 10000 and for any j 6= i, there is s1.cj ≥ s2.cj and s1.pj ≥ s2.pj . Following

the definition of slack-time pre-order, we would see s1 6� s2 because of s1.pi < s2.pi. However, for a task

with pi ≥ Ti that is ready for releasing a new job, the exact valuation of pi does not really matter. In

the following, we are going to extend the original slack-time pre-order given this observation.

Definition 8 (Extended slack-time pre-order). For the SA automaton, the extended slack-time pre-order

�′st⊆ space× space is defined as follows: ∀s1, s2, s1 �′st s2 if and only if for any τi

s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

or

s1.pi > Ti ∧ s1.ci ≥ s2.ci (C1)

The extension comes from the condition in (C1): s1.ci ≥ s2.ci is the same as in �st; s1.pi > Ti

says that τi is eligible to release a new job in s1 at any time. The extension part is meaningful when

s2.pi > s1.pi > Ti and in such a case the new job release of τi in both s1 and s2 can happen at any time

regardless of the exact values of s1.pi or s2.pi.

Theorem 8. The extended pre-order relation �′st is still a weak simulation relation in space(SA).

Proof. Let us say s1 �′st s2. If s2.pi ≤ Ti, then the original �st pre-order relation simply holds.

Otherwise, if there is s1.ci = 0, then for any job release of τi from s2, τi can trigger its job release also

in s1; given the structure of a Task Automaton and the constraint s1.pi > Ti, there is no possibility that

s1.ci > 0 (suppose that s1 be not in a DeadlineMissed location). In the end, our proof for Theorem 6

still holds for the extended slack-time pre-order.

Additionally, we can define the new pre-order for unconstrained-deadline tasks by modifying the

condition in (C1) as: s1.pi > Di ∧ s1.ci ≥ s2.ci. The reasoning behind this is similar as in proof of

Theorem 8 and we are not going into details of it.

As in the case of �st, we are going to adapt �′st for symbolic state space of SA. We first extend the

widening operator ∇. We define a new widening operator ∇′ such that given a convex polyhedron C,
∇′(C) is constructed as follows.

• For each task τi, if pi > Ti is satisfied but pi < Ti is not, then we unconstrain pi; that is, after the

operation there is −∞ < pi < +∞.

• Suppose C′ be the resulting convex polyhedron after the first step; the original widening operator

∇ is then called on C′. That is, the final widened convex region is ∇(C′).

Now, let us define the extended slack-time pre-order in the symbolic state space Space(SA) and prove

its validity.

Definition 9. For the SA automaton, the extended slack-time pre-order �′st⊆ Space× Space is defined

such that ∀S1, S2, S1 �′st S2 if and only if ∇′(S1.C) includes ∇′(S2.C).

Theorem 9. The extended pre-order �′st⊆ Space× Space is a weak simulation relation.

49

5.4. Weak Simulation Relation in SA

Proof. After the ∇′ operation, −∞ < pi < +∞ notifies the existence of such tasks that are eligible to

release new jobs at any time from then on. As in condition (5.1), the weak simulation relation between

symbolic states can be derived from corresponding weak simulation relation in concrete state space.

Given the definition of extended slack-time pre-order �′st in space(SA), the claim in this theorem is

valid.

In the rest, we implicitly use the notation slack-time pre-order �st to denote also the extended one.

5.4.4 Schedulability analysis in SA

In this section, we formulate the algorithm to explore the state space of SA by using a breadth-first

traversal for reachability analysis and adapting the classic algorithm (Algorithm 1 Section 2.2). The

pseudo-code of the Schedulability Analysis algorithm in SA (SA-SA) is shown in Algorithm 2. If some

state in F is reachable, then the task set encoded in SA is deemed not-schedulable.

Algorithm 2: Schedulability Analysis in SA (SA-SA)

1: R← {S0}
2: while true do
3: P ← Post(R)
4: if P ∩ F 6= ∅ then
5: return NOT schedulable
6: end if
7: R′ ← R ∪ P
8: R′ ← Max�(R′)
9: if R′ = R then

10: return schedulable
11: else
12: R← R′

13: end if
14: end while

Max�(R′) is defined as

∀S ∈ Max�(R′) :6 ∃S′ ∈ R′ s.t. S′ �st S

∀S, S′ ∈ Max�(R′) : S′ 6�st S

At line 8 of the algorithm, Max� operation eliminates from R′ the states that are simulated by others.

When no new state is produced (line 9), the algorithm terminates and the task set is deemed schedulable.

As long as it terminates, the correctness of Algorithm 2 can be proved following the same scheme as

in [GGL13]. We skip the details here.

By replacing the Max� operator with Max⊇ (as defined in Section 2.2), we obtain a version of SA-SA

that does not use the simulation relation. In Section 5.6.1, we will compare the efficiency of these two

versions of SA-SA, with and without simulation relation. As �st does not require the equivalence of

location names between two states such that s1 �st s2 and convex region inclusion is a special case

of convex region prevailing, there is Max�(R′) ⊆ Max⊇(R′). We will investigate how much efficiency

improvement the schedulability analysis can obtain through simulation relation enhancement.

Unlike previous exact analysis techniques in discrete time domain, SA-SA works in continuous time

domain, which makes it less sensitive to the values of task parameters. For example, given the task set

T1 = {(C1, D1, T1), . . . , (Cn, Dn, Tn)}, we enlarge every task parameter by multiplying by 10 and obtain

T2 = {(C1 · 10, D1 · 10, T1 · 10), . . . , (Cn · 10, Dn · 10, Tn · 10)}. When we apply SA-SA on T1 and T2, the

number of states generated at each step will be exactly the same for the two cases, whereas this may not

be true for the method in [BC07a] and [GGL13].

50

Chapter 5. Exact G-FP Schedulability Analysis

We have implemented SA-SA in the software FOrmal Real-Time Scheduler (FORTS)([SL14a]).

In general the reachability analysis of LHAs is not decidable. However, specific LHAs may be

analysable in a finite number of steps. We now prove that the problem under investigation is indeed

decidable.

5.5 The Decidability Interval

In this section, we formulate the concept of decidability interval, a bounded time interval starting from

time 0 (that is the beginning of the schedule) such that a set of sporadic tasks is schedulable if and only

if there exists no configuration of release patterns that provokes a deadline miss inside this interval. In

other words, we must check the schedules generated by all possible patterns of releases, but each one

only inside the decidability interval.

We then propose a formula for computing the decidability interval for G-FP scheduling of sporadic

tasks with constrained deadlines, and we show that this interval is indeed quite short. Note that the

concept of decidability interval is applicable to scheduling of sporadic tasks and does not rely on the

system automaton SA.

In the end, based on the decidability interval obtained for G-FP scheduling, we prove the decidability

of SA-SA algorithm with respect to constrained-deadline sporadic tasks. In the remainder of this chapter,

by default we assume that all tasks have constrained deadlines.

5.5.1 System statuses and the dominance relation

We first introduce some preliminary concepts and properties that will be used for defining and deriving

the decidability interval.

The task status δi(t) of a task τi at time t is defined as a pair δi(t) = (pi(t), ci(t)).

• pi(t) is the activation variable and records the time passed since τi’s latest activation.

• ci(t) is the execution variable and represents the unfinished computation of τi at time t.

Clearly, pi(t) and ci(t) here mimic their respective counterparts (pi variable and ci variable) in the

task automaton TA. Please refer to Section 5.3.1 for a more detailed explanation on these variables.

At any time t, there can be infinite possibilities of task statuses δi(t), subject to different task release

patterns.

The system status ∆(t) at time t for the task set T = {τ1, . . . , τn} is defined as the composition of

all its tasks’ statuses, ∆(t) = (δ1(t), . . . , δn(t)). A system status ∆(t) maps to a concrete state (l, ν) in

SA, as all the values of pi(t) and ci(t) for each task: 1) on one hand represent the valuation ν in a state,

and 2) on the other hand encode corresponding location information l.

Let Tk, with k ≤ n, be the subset containing the first k tasks from T . We define ∆k(t) =

(δ1(t), . . . , δk(t)) as the partial system status of the tasks in Tk.

We say that a task τi is active under the system status ∆(t) if in the corresponding task status δi(t)

there is ci(t) > 0, and A∆(t) denotes the set of active tasks under system status ∆(t). If at time t there

is pi(t) = Di and ci(t) > 0, then τi misses its deadline.

If a task τi is released at time t, then task statuses for τi before and after the release are also different.

Prior to the release, there is pi(t) ≥ Ti and ci(t) = 0; after the release, we have p′i(t) = 0 and c′i(t) = Ci.

To make an explicit distinction between the two cases, we use p′i(t) and c′i(t) to denote the latter. Such

a convention also applies for task status δ′i(t) and system status ∆′(t).

51

5.5. The Decidability Interval

(The initial configuration) We assume ∆(0) is the initial status of the system. Tasks in the system

are released asynchronously and we do not know when the first instance of a task is released. Thus, we

configure the initial system status as

∀τi ∈ T pi(0) ≥ 0 and ci(0) = 0

This means that the pi(0) can be an arbitrary non-negative value.

(The dominance relation) Given two task statuses δi(t) and δi(t
′), at time t and t′ respectively, we

say δi(t) dominates δi(t
′), denoted as δi(t) � δi(t′), if the following conditions hold.

• pi(t) ≥ pi(t′).

• ci(t) ≥ ci(t′).

The relationship can be lifted to system status: given two system statuses ∆(t) and ∆(t′), we say ∆(t)

dominates ∆(t′), denoted as ∆(t) � ∆(t′), if ∀τi ∈ T there is δi(t) � δi(t′). The dominance relation can

naturally be applied between partial system statuses.

The dominance relation between system statuses mimics the slack-time pre-order relation in system

automaton SA but without the underlying LHA model. By understanding this, the following property

is straightforward.

Lemma 3. Assume there are two system statuses ∆(t) and ∆(t′) at t and t′ respectively and ∆(t) �
∆(t′). Suppose ε be an arbitrary non-negative value and ∆(t′+ ε) be a system status at (t′+ ε) such that

from ∆(t′) to ∆(t′ + ε)

• there is no task activation;

• or, there is exactly one task activation at time (t′ + ε).

Then, there exists a system status ∆(t+ ε) such that ∆(t+ ε) � ∆(t′ + ε).

Proof. We first consider the case that from ∆(t′) to ∆(t′ + ε) there is no new task release. As tasks are

activated sporadically, there exists a system status ∆(t+ ε) such that from ∆(t) to ∆(t+ ε) there is also

no new task arrival. In such a case, all activation variables continuously increase. For any task τi there

is pi(t+ ε) = pi(t) + ε and pi(t
′ + ε) = pi(t

′) + ε. As ∆(t) � ∆(t′), for any task τi, there is pi(t) ≥ pi(t′)
and ci(t) ≥ ci(t′); this further implies that pi(t+ ε) ≥ pi(t′ + ε).

Now, it is the turn to analyze the execution variables. If τi is not an active task in ∆(t′), as there is

no new task arrival, there will be ci(t
′) = ci(t

′+ ε) = 0; thus, ci(t+ ε) ≥ ci(t′+ ε) trivially holds. On the

other hand, if τi is indeed an active task in ∆(t′), then it is also an active task in ∆(t). Suppose π and

π′ be the higher priority interference that τi suffers from t to (t+ ε) and from t′ to (t′ + ε) respectively.

Since ∆(t) � ∆(t′), A∆(t) ⊇ A∆(t′) and for any task τj ∈ ∆(t′) its unfinished execution in ∆(t) is no

smaller than its unfinished execution in ∆(t′) as ci(t) ≥ ci(t′). According to the G-FP scheduling policy,

π will not be smaller than π′, i.e., π ≥ π′. Suppose that ci(t
′ + ε) > 0 (otherwise, ci(t + ε) ≥ ci(t

′ + ε)

will trivially hold). There is actually ci(t
′ + ε) = ci(t

′) − (ε − π′) = ci(t) + π′ − ε; on the other side,

ci(t+ ε) = ci(t) + π − ε ≥ ci(t′ + ε). As a result, we have ∆(t+ ε) � ∆(t′ + ε).

Now, let us consider the second case, that is some task τk is activated task at time (t′ + ε). That

is, before τk is released, there is pk(t′ + ε) ≥ Tk; after τk is activated, there is p′k(t′ + ε) = 0 and

c′k(t′ + ε) = Ck. From t′ (t) to (t′ + ε) ((t + ε)), tasks that are different from τk can be analysed in the

same way as in the above discussion, and we are going to concentrate on the task τk.

As ∆(t) � ∆(t′), there is pk(t) ≥ pk(t′). From t to (t+ ε), if τk does not release a new task instance,

there is pk(t+ ε) = pk(t) + ε ≥ pk(t′) + ε ≥ Tk. So, at time (t+ ε), a new instance from τk is eligible to

52

Chapter 5. Exact G-FP Schedulability Analysis

be released, which will result in p′k(t + ε) = 0 = p′k(t′ + ε) and c′k(t + ε) = Ck = c′k(t′ + ε). As a result,

∆′(t+ ε) � ∆′(t′ + ε).

Hence, the lemma is proved.

Then, we generalise the above Lemma 3 as follows.

Theorem 10. Suppose ∆(t) and ∆(t′) are two system statuses such that ∆(t) � ∆(t′). Then, for any

non-negative value Θ and for any system status ∆(t′ + Θ), there exists a system status ∆(t + Θ) such

that ∆(t+ Θ) � ∆(t′ + Θ).

Proof. From ∆(t′) to ∆(t′ + Θ), the time interval [t′, t′ + Θ] can be divided into a finite number (let us

say N) of successive sub-intervals [t′, t′+ ε1], [t′+ ε1, t
′+ ε2], . . . , [t′+ εN−1, t

′+ Θ] such that in each such

sub-interval there is no new task arrival or there is exact one new task arrival and it happens at the end

of the sub-interval. Note that in case there are multiple task arrivals at a single time point, we can build

multiple sub-intervals with length 0. Then, Lemma 3 can be applied successively to each sub-interval

and the Theorem is proved.

5.5.2 The decidability interval for G-FP scheduling

First, we formally define the decidability interval for a set of sporadic tasks under G-FP scheduling as

follows.

Definition 10 (Decidability interval). The decidability interval is defined as a time interval [0, L] such

that the schedulability of task set T on m processors under a G-FP scheduler can be decided inside it.

That is, the task set T is schedulable if and only if no task will miss its deadline in the interval [0, L].

In order to compute the decidability interval for G-FP scheduling, we need to introduce another

concept called dominant interval.

Definition 11 (Level-k dominant interval). For the task subset Tk ⊆ T , its level-k dominant interval

is defined as a time interval [0, Lk] such that for any t′ and for any system status ∆k(t′), there exists

t ∈ [0, Lk] and there exists a system status ∆k(t) such that ∆k(t) � ∆k(t′).

A level-k dominant interval must be a decidability interval for Tk. Suppose that a task τi ∈ Tk misses

its deadline at time t′ under system status ∆k(t′), i.e., pi(t
′) = Di and ci(t

′) > 0. Given the definition

of a level-k dominant interval, there exists ∆k(t) with t ∈ [0, Lk] such that ∆k(t) � ∆k(t′). That is,

pi(t) ≥ pi(t
′) and ci(t) ≥ ci(t

′); this implies that τi also misses its deadline at time t. The decidability

interval and level-k dominant interval can be bridged through the following two theorems.

Theorem 11. Let [0, Lk] be the level-k dominant interval for Tk. Then, [0, Lk+Dk+1] is the decidability

interval for Tk+1.

Proof. Task τk+1 cannot interfere the execution of higher priority ones from Tk, and Tk is schedulable if

and only if no task from it misses a deadline in the interval [0, Lk] ⊂ [0, Lk +Dk+1].

As for τk+1, we will show that if there is a deadline miss for it after the time point (Lk+Dk+1), there

exists also a deadline miss for τk+1 inside the interval [0, Lk +Dk+1].

Since Lk is the level-k dominant interval, for any time t′ > Lk and for any ∆k(t′), there exists time

t ∈ [0, Lk] and there exists ∆k(t) such that ∆k(t) � ∆k(t′). Suppose that task τk+1 is released at an

arbitrary time t′ > Lk, after which there is p′k+1(t′) = 0 and c′k+1(t′) = Ck+1. If we consider the time

t ∈ [0, Lk] with ∆k(t) � ∆k(t′), as tasks are sporadically activated and at the initial time the activation

variable can have any value, then there exists a situation in which pk+1(t) ≥ Tk+1; this means the

53

5.5. The Decidability Interval

task τk+1 can also be activated at time t. After τk+1 is released, there will be also p′k+1(t) = 0 and

c′k+1(t) = Ck+1.

Thus, for any release of τk+1 at any t′ > Lk, there also exists the release for τk+1 at some time

t ∈ [0, Lk] such that after the release ∆′k+1(t) � ∆′k+1(t′). Suppose that there exists ∆(t′ + Dm+1)

such that τk+1 misses its deadline, i.e., pk+1(t′ + Dk+1) = Dk+1 and ck+1(t′ + Dk+1) > 0; according to

Theorem 10, there also exists ∆k+1(t + Dk+1) with ∆k+1(t + Dk+1) � ∆k+1(t′ + Dk+1), which implies

pk+1(t+Dk+1) = Dk+1 and ck+1(t+Dk+1) ≥ ck+1(t′ +Dk+1) > 0, i.e., τk+1 also misses its deadline at

time (t+Dk+1).

For any release of τk at time [0, Lk], its absolute deadline is bounded by (Lk+Dk+1). That is, the task

τk+1 is schedulable if and only if there is no deadline miss in the interval [0, Lk +Dk+1]. In conclusion,

[0, Lk +Dk+1] is the decidability interval for Tk+1.

The above Theorem 11 demonstrates how to derive a decidability interval from a dominant interval.

On the contrary, the next theorem shows that a decidability interval can itself be also a dominant interval

as long as the following property is verified.

Theorem 12. The decidability interval [0, Lk+Dk+1] in Theorem 11 is a level-(k+1) dominant interval

if τk+1 is schedulable.

Proof. We are going to discuss two cases given the task status δk+1(t′) of τk+1 at time t′ > Lk +Dk+1:

ck+1(t′) = 0 or ck+1(t′) > 0.

(Case 1: ck+1(t′) = 0) Because that Lk is the level-k dominant interval, there exists t ∈ [0, Lk] and

∆k(t) such that ∆k(t) � ∆k(t′). As for τk+1, given the initial configuration and the sporadic activation

behaviour, there exists task status such that pk+1(t) ≥ pk+1(t′) and ck+1(t) = 0 = ck+1(t′). As a result,

∆(t)k+1 � ∆k+1(t′).

(Case 2: ck+1(t′) > 0) For such a system status ∆k+1(t′) with ck+1(t′) > 0, the corresponding τk+1

is released at time (t′ − pk+1(t′)), denoted as t′0. Before the release, there must be pk+1(t′0) ≥ Tk+1;

after the release, there is p′k+1(t′0) = 0 and c′k+1(t′0) = Ck+1. Then, there exists t0 ∈ [0, Lk] such that

∆k(t0) � ∆k(t′0) and pk+1(t0) ≥ pk+1(t′0) and ck+1(t0) = 0; this implies, by triggering the release of

τk+1, ∆′k+1(t0) � ∆′k+1(t′0). According to the Theorem 10, after pk+1(t′) time elapsing, there must exist

system status ∆k+1(t0+pk+1(t′)) ≥ ∆k+1(t′). Let us denote with t = t0+pk+1(t′). As τk+1 is schedulable

and ck+1 > 0, there is pk+1(t′) < Dk+1; together with t0 ∈ [0, Lk], we have t ∈ [0, Lk +Dk+1).

In conclusion, ∀t′ > Lk + Dk+1∀∆k+1(t′), there exists t ∈ [0, Lk + Dk+1] and ∆k+1(t) such that

∆k+1(t) � ∆k+1(t′). That is, [0, Lk +Dk+1] is a level-(k + 1) dominant interval.

Theorem 11 and Theorem 12 provide a recursive way to construct the decidability interval for a given

task set T . However, the starting point of such a procedure is still missing. The following theorem fills

in the gap.

Lemma 4. The level-m dominant interval is [0, Lm] with Lm = max
τi∈Tm

{Ci}.

Proof. Suppose that m = 2 and T2 = {τ1, τ2}.
Given any time point t′ > L2, the system status ∆(t′) is in one of the following situations.

• Both τ1 and τ2 are active such that 0 ≤ p1(t′) < C1, c1(t′) = C1 − p1(t′) and 0 ≤ p2(t′) < C2,

c2(t′) = C2 − p2(t′).

• τ1 is active and τ2 is not active such that 0 ≤ p1(t′) < C1, c1(t′) = C1 − p1(t′) and p2(t′) ≥ 0,

c2(t′) = 0.

• τ1 is not active and τ2 is active such that p1(t′) ≥ 0, c1(t′) = 0 and 0 ≤ p2(t′) < C2, c2(t′) =

C2 − p2(t′).

54

Chapter 5. Exact G-FP Schedulability Analysis

t′

r1

r2

Figure 5.5: Both τ1 and τ2 are active

• Both τ1 and τ2 are not active such that p1(t′) ≥ 0, c1(t′) = 0 and p2(t′) ≥ 0, c2(t′) = 0.

For any of the cases listed above, it is not difficult to find a time point t ∈ [0, Lm] with a configuration

∆(t) such that ∆(t) � ∆(t′). For example, in case both τ1 and τ2 are active, the corresponding scenario

is depicted in Figure 5.5, where τ1 and τ2 are released at time r1 and r2 respectively. At time t′, there

is c1(t′) = C1 − t′ + r1, p1(t′) = t′ − r1, c2(t′) = C2 − t′ + r2, p2(t′) = t′ − r2. Note that p1(t′) = t′ − r1

and p2(t′) = t′ − r2 are upper bounded by Lm = max
τi∈Tm

{Ci}. Then, let us consider the time t ∈ [0, Lm]

such that t = max{t′ − r1, t
′ − r2}. There exists the task release of τ1 at time (t − p1(t′)) and the task

release of τ2 at (t− p2(t′)) such that at time t we will see p1(t) = p1(t′) and p2(t) = p2(t′). This implies

that c1(t) = C1 − p1(t) = C1 − p1(t′) = c1(t′) and c1(t) = C1 − p1(t) = C1 − p1(t′) = c1(t′). As a result

∆(t) � ∆(t′).

In case there is an active task (let us say τ1) and an inactive task (let us say τ2, i.e., p2(t′) ≥ 0 and

c2(t′) = 0) at time t′, for the active task the above analysis still can be applied, and the time t ∈ [0, Lm]

can be found such that c1(t) = c1(t′) and p1(t) = p1(t′). For the inactive task τ2, we remind that, at time

0, c2(0) = 0 and p2(0) can be any non-negative value; when there is no new task arrival, an activation

variable will monotonically increase. This means that at time t, there must exist a task status δ2(t) for

τ2 with p2(t) ≥ p2(t′) and c2(t) = 0. As a result, ∆(t) � ∆(t′).

In the last case, both tasks are inactive. There exists ∆(0) such that ∆(0) � ∆(t′). Moreover, if

we consider a general m ≥ 2, it is simply a matter of expanding the list for combinations of active and

inactive tasks.

Starting from the level-m dominant interval and by repeatedly applying Theorems 11 and 12, we are

able to compute the decidability interval for any task set T .

Theorem 13. For a task set T = {τ1, . . . , τn} with n tasks running on m processors, its decidability

interval is [0, L] with L =
∑

1≤i≤m
Ci +

∑
m<i≤n

Di.

Proof. Suppose that T is not schedulable. Let us say τk is the highest priority task among all non-

schedulable tasks. According to Theorem 11, Theorem 12 and Lemma 4, the decidability interval for

Tk is [0,
∑

1≤i≤m
Ci +

∑
m<i≤k

Di], which is contained in [0, L]. This implies that if T is not schedulable,

then there exists necessarily a configuration of releases such that a deadline miss happens in the interval

[0, L]. Thus, [0, L] is the decidability interval for T .

Given the fact that a task will never have its job run for more than its WCRT, we can refine the

formulation of a decidability interval.

Lemma 5. For a task set T = {τ1, . . . , τn} with n tasks running on m processors, its decidability interval

can be further refined as [0, L] with L =
∑

1≤i≤m
Ci +

∑
m<i≤n

min{Ri, Di}.

Proof. By replacing Di with min{Ri, Di}, the proofs for Theorem 11 and Theorem 12 still hold. In the

end, the new decidability interval length is valid.

55

5.6. Evaluation

Discussion A concept called feasibility interval has been extensively studied in [CG06], [CG07], and

[CGG11] for multiprocessor scheduling of periodic tasks. For a set of periodic tasks, its feasibility interval

is a finite interval such that if all jobs released within it can meet their deadlines, then the system is

schedulable. Such a result benefits from the determinism of tasks’ periodic activations and its complexity

is sensitive to the tasks’ hyperperiod.

On the other hand, the concept of feasibility interval cannot be applied to multiprocessor scheduling

of sporadic tasks, and we are not aware of any work for bounding a time interval for exact multiprocessor

schedulability analysis of sporadic tasks.

The decidability interval proposed in this work is the first result that proposes a small bounded inter-

val to check the schedulability of a set of sporadic tasks in global multiprocessor scheduling. Moreover,

as shown in Theorem 13, the computed decidability interval for a task set can be much shorter than its

counterpart for multiprocessor periodic tasks, as it does not rely on the value of hyperperiod.

5.5.3 Decidability for SA-SA algorithm

Now, we are going to answer the decidability question (in the end of Section 5.4.4) for the SA-SA

algorithm. Thanks to the decidability interval computed by Theorem 13, we know that in case of a set

of constrained-deadline tasks, it is enough to perform the reachability analysis of DeadlinMissed location

in the bounded time interval [0, L].

The reachability analysis of a generic LHA is undecidable [ACHH93], even in bounded time [BDG+11].

However, [BDG+11] proposed a subclass of LHA, subject to well defined language restrictions, for which

the reachability problem in bounded time is decidable. More specifically, clock variables must all be

monotonically increasing or stopped. The class of Stopwatch Timed Automata falls in this category.

Since our model is equivalent to a Stopwatch Timed Automaton (with an appropriate transformation

of variables), it can be seen that the reachability problem of SA in bounded time is also decidable.

Theorem 14. The termination of Algorithm 2 (SA-SA) is guaranteed in case of sporadic tasks with

constrained deadlines.

Proof. It follows from Theorem 13 in our work and from Theorem 1 in [BDG+11].

5.6 Evaluation

In this section we evaluate the run-time performance of SA-SA by applying the algorithm to randomly

generated schedulability problems. Each task set in the experiment is characterised by a tuple (m,n,U),

where m = 2 is the number of processors, n ∈ {5, 6} is the number of tasks in the task set and U is the

total utilisation of the task set (i.e. U =
∑n
i=1

Ci
Ti

). Given the number of tasks n and the total task set

utilisation U , the utilisation of each task is generated according to Randfixedsum algorithm ([ESD10]).

Task periods are distributed in the range [100, 1000]. After selecting a task period Ti, the WCET is

computed as Ci = Ti ·Ui; the relative deadline is then randomly sampled from Ci to Ti, After a task set

is randomly generated, priorities are assigned to its tasks by the Deadline Monotonic strategy; that is, a

task with shorter deadline is assigned higher priority.

Discussion It is important to underline the advantages of our methodology with respect to the methods

proposed in [BC07a], [GGL13], [BMS12]. These methods typically assume task parameters such as

WCETs, deadlines and periods to be rather small integers. For example, for testing their method,

[GGL13] restricted tasks to have period no larger than 8. This is mainly due to the fact that they

use discrete time model checking, with integer time values. Thus, these methods are sensitive to the

56

Chapter 5. Exact G-FP Schedulability Analysis

�0

�2000

�4000

�6000

�8000

�10000

�12000

0.0×100 1.0×104 2.0×104 3.0×104 4.0×104

SA
-S
A

SA-SA-WoS

Figure 5.6: SA-SA v.s. SA-SA-WoS

absolute values of task parameters. On the other hand, relying on the formalism of LHA in continuous

time domain, we are able to apply exact schedulability test on more general task configurations.

5.6.1 SA-SA algorithm with and without slack-time pre-order relation

First, we demonstrate how much the slack-time pre-order (�st) can benefit the reachability analysis in

system automaton SA, by comparing the SA-SA algorithm and the SA-SA Without weak Simulation

(SA-SA-WoS). We randomly generate 100 task sets with m = 2, n = 5 and utilisation randomly chosen in

[0.5, 2.0]. Then we apply SA-SA and SA-SA-WoS to each task set, and we respectively record state space

size for the two to decide the schedulability of every task set. Without the enhancement of slack-time

pre-order, SA-SA-WoS faces the danger of going out of memory for some task sets. So, we put an upper

threshold of 40000 for the symbolic state space size during the test of a task set by SA-SA-WoS. When

the number of generated states exceeds this threshold, we stop the analysis and return with error.

Results are reported in Figure 5.6. Each point in the graphic represents a task set: the x-axis value

records the number of states generated by SA-SA-WoS for checking the schedulability, and the y-axis

is the state space size generated by SA-SA. As shown in the figure, by employing the slack-time weak

simulation relation �st, the size of state space for schedulability check is reduced significantly. In most

cases, state space sizes resulted by SA-SA and SA-SA-WoS can differ by an order of magnitude.

5.6.2 Run-time complexity of SA-SA algorithm

In Theorem 14, we have proved the termination of schedulability analysis by SA-SA. In this part, we

will evaluate the factors that can affect SA-SA’s run-time performance.

All simulations are conducted in a MacBook with 2.5 GHz Intel Core i5 and 8 GB memory. At first,

we consider 2 processors (n = 2) and 5 tasks (m = 5). More specifically, we randomly generate a series

of task sets with U uniformly distributed within [0.5, 2].

By applying SA-SA on these task sets, we record the time consumed and final state space size for

each test.

The results are shown in Figure 5.7a that displays the state space size of all tests by SA-SA. Each

point in the figure is a task set, which is further distinguished by being schedulable and not schedulable.

The x-axis denotes the utilisation of the task set and the y-axis counts the final state space size by SA-SA

to decide its schedulability. Similarly, Figure 5.7b reports the time cost (in minutes) to decide a task

set’s schedulability and Figure 5.7c shows the relation between state space size and time cost.

57

5.6. Evaluation

As we can observe, most tests terminate in a short time with a relatively small state space size.

However, with an increase of the task set utilisation, we may experience cases with a rather high run-

time cost, with respect to states generated and time spent. This is due to the fact that a higher task set

utilisation has a larger chance to result in a longer decidability interval (Lemma 5), within which there

can be more complex task execution interleavings, thus complicating SA-SA’s reachability analysis.

Furthermore, we run simulations with m = 2 and n = 6. This time, we fix several different utilisation

levels for generating task sets. The time spent and state space size on each task set by SA-SA are plotted

in Figure 5.8. Note that we manually stop the procedure when analysis time exceeds 7 hours (upper

bound on the maximum time cost we experienced for 5 tasks running on 2 processors), and we use black

colors to denote these cases in Figure 5.8a. In the same figure, we use red colors and blue colors for

schedulable and unschedulable task sets respectively. Still, a task set with higher utilisation tends to

complicate the analysis by SA-SA, and this is compatible with our observation from m = 2 and n = 5. On

the other side, we must understand that for the unschedulable task set, SA-SA may terminate without

exploring the complete state space, as long as the corresponding deadline miss condition is encountered.

Thus, the schedulability check of an unschedulable task set may finish very soon. When it comes to the

simulation results, as the total utilisation keeps increasing, there will more unschedulable task sets. In

fact, the average run-time performance (time cost and state space size) of SA-SA improves in the high

utilisation end of our simulations, as shown in Figure 5.8b and Figure 5.8c.

5.6.3 Comparison with state-of-the-art over-approximate approach

In this part, we assess the pessimism of state-of-the-art over-approximate schedulability test for spo-

radic tasks under G-FP policy. The analytic test we use is the Response Time Analysis with Carry-in

Enumeration (RTA-CE), which will be introduced in Chapter 7. Although being the most accurate

over-approximate schedulability test for G-FP scheduling problem to date, RTA-CE is still pessimistic.

That is, RTA-CE may judge a schedulable task set as not-schedulable. It is interesting and meaningful

to see how much gap there is between the approximate result of RTA-CE and the exact result of SA-SA.

We pick up the task set utilisation U from the set {0.5, 0.6 . . . , 1.5, 1.6} with m = 2 and n = 5.

Then, for each U we generate 100 task sets, for which RTA-CE and SA-SA are applied. The number of

schedulable tasks discovered by RTA-CE and SA-SA on each utilisation level are recorded respectively.

Results are plotted in Figure 5.9. The x-axis shows the utilisation and the y-axis represents the percentage

of schedulable tasks over the total number of randomly sampled tasks (at each utilisation level).

As shown in Figure 5.9, there is still a considerable number of schedulable task sets that RTA-CE

failed to find. Such a gap can be seen as a motivation to further develop more precise approximate

schedulability analysis.

5.6.4 Exact schedulability analysis for periodic tasks in G-FP

Finally, we would like to discuss the difference in complexity between exact analysis of periodic tasks

and sporadic tasks.

In the case of single processor, for the fixed-priority scheduling, the schedulability analyses of sporadic

tasks and synchronous periodic tasks are not really different, as they share the same worst-case scenario.

When it comes to the multiprocessor, no worst-case scenario has even been found for sporadic or periodic

tasks under G-FP. Therefore, to perform an exact analysis we need to analyse all possible task activations

and interleavings, for both sporadic and periodic tasks.

As we proved in Theorem 13, the exact analysis of sporadic tasks can be done in a decidability

interval, which is relatively small. Therefore, the complexity of analysing sporadic tasks comes from the

non-deterministic activations, which produce many different arrival patterns that need to be analysed.

58

Chapter 5. Exact G-FP Schedulability Analysis

 0×100

 1×104

 2×104

 3×104

 4×104

 5×104

 6×104

 0.4 0.8 1.2 1.6 2

NO
.
of
 s
ta
te
s

Task set utilisation

schedulable
not schedulable

(a) State space size

 0

 60

 120

 180

 240

 300

 360

 420

 0.4 0.8 1.2 1.6 2

Ti
me
 (
mi
nu
te
s)

Task set utilisation

schedulable
not schedulable

(b) Time cost

 0

 60

 120

 180

 240

 300

 360

 420

 0×100 1×104 2×104 3×104 4×104 5×104 6×104

Ti
me
 (
mi
nu
te
s)

NO. of states

schedulable
not schedulable

(c) State space size v.s. Time cost

Figure 5.7: Run-time complexity of SA-SA for m = 2 and n = 5

59

5.6. Evaluation

 0

 60

 120

 180

 240

 300

 360

 420

 480

 0×100 1×104 2×104 3×104 4×104 5×104

Ti
me
 (
mi
nu
te
s)

NO. of states

U=0.8
U=1.0
U=1.2
U=1.4
U=1.6
U=1.8

(a) State space size v.s. Time cost

 0

 60

 120

 180

 240

 300

 360

 420

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ti
me
 (
mi
nu
te
s)

Task set utilisation

(b) Average time cost

 0u100

 1u104

 2u104

 3u104

 4u104

 5u104

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

NO
.
of
 s
ta
te
s

Task set utilisation

(c) Average state space size

Figure 5.8: Run-time complexity of SA-SA for m = 2 and n = 6

60

Chapter 5. Exact G-FP Schedulability Analysis

�0

�0.2

�0.4

�0.6

�0.8

�1

�0.6 �0.8 �1 �1.2 �1.4 �1.6

Pe
rce
nt
ag
e�o
f�s
ch
ed
ula
ble
�ta
sk
s

Task�set�utilisation

SA-SA
RTA-CE

Figure 5.9: Comparison between RTA-CE and SA-SA

As for periodic tasks, they have deterministic activation patterns, and the complexity of an exact analysis

is affected by the length of the feasibility interval, which is directly related to the hyperperiod of the

tasks.

In this section, we refer to [GGD+07] and [GGL+08] for the exact test for periodic tasks. Both works

adopt the discrete approach to model the schedule of a set of periodic tasks running on multiprocessors.

Even though [GGD+07] builds the model by Timed Automata, the continuous time is discretised by using

a global clock. Thus, they restrict the absolute values of task parameters to small integers. Actually, in

both cases the authors choose task periods in a range [8, 20] for their experiments.

In principle, the analysis scheme for periodic tasks considers all possible combinations of tasks’ initial

offsets; for an arbitrary combination of initial offsets, tasks’ periodic activations are fixed, the system is

simulated and any deadline miss is checked.

In the following, we replicate the experiment in [GGL+08], where there are 8 tasks running on 4

processors. Our goal here is not to solve the exact schedulability analysis of periodic tasks, but rather

to demonstrate the different run-time complexity. Therefore, we consider all offsets to be equal to 0, so

all tasks arrive at the same time.

We randomly generate 1000 periodic task sets. The system automaton for schedulability check for

periodic tasks can be generated similarly as the SA for sporadic tasks: in Figure 5.2, the invariant in

location Idle is set to p ≤ T . We also restrict ourselves to tasks with constrained deadline (i.e. D ≤ T),

so we remove all guards and actions from the transitions from Waiting to itself, and from Running to

itself. Finally, we do not use our simulation relation, because it is only valid for sporadic tasks and

cannot be easily extended to periodic tasks.

In the end, we use FORTS to check the schedulability of each task set and records the time cost for

deciding the schedulability. Results are reported in Figure 5.10. The x-axis denotes the length of the

hyperperiod of a task set and the y-axis denotes the size of the state space when schedulability check is

completed for the task set. As we anticipated, the number of states to explore increases with the length

of hyperperiod. The maximum time we experienced for deciding a task set’s schedulability is less than

3 minutes. It follows that, deciding the schedulability of a set of periodic tasks is in average easier than

checking the schedulability of a set of sporadic tasks.

61

5.7. Conclusion

 0

 4000

 8000

 12000

 16000

 0 500 1000 1500 2000

NO
.
of
 s
ta
te
s

Length of hyperperiod

schedulable
not schedulable

Figure 5.10: The exact analysis for periodic tasks

5.7 Conclusion

In this chapter, we formally model the exact G-FP scheduling on a multiprocessor platform; we propose

a weak simulation relation for reducing the complexity of state space exploration. Then, we formulate

SA-SA algorithm for the exact schedulability test. Even though the reachability problem in LHA is

undecidable, we prove the correctness and termination condition for SA-SA. Compared to previous

works on exact analysis, our methodology allows more complex task sets: we are able to analyse tasks

with arbitrary values of parameters. On the other hand, our simulation relation work can be regarded

as a general approach to mitigate the complexity brought by sporadic events when modeling real-time

systems with a formalism like Stopwatch Timed Automata.

However, as task set size increases, the complexity of exact analysis is still too high even with our

approach. We are working on other ways of reducing the complexity: first, we would like to use a different

representation for the symbolic states (e.g. Octagons [Min06] or Difference Bound Matrices [Min01]),

which requires an approximate analysis similar to the ones used for Stopwatch Timed Automata and

Time Petri Nets [BFSV04]. Second, we are investigating the possibility to enhance and extend our

simulation relation, so to further reduce the state space.

Furthermore, although exact critical instants for G-FP scheduling are not known, in Chapter 7 we

prove a class of release patterns that can lead to worst-case response time. By exploring the advanced

study in scheduling theory, we may achieve simpler models or even faster state space analysis methods.

Finally, we proved that the schedulability analysis of a sporadic task set can be done in bounded

time. To our knowledge, this is the first work to demonstrate the decidability of the problem and to

formulate such an upper bound. It will be interesting to see if we can apply this result to further enhance

the approximate schedulability analysis methods.

62

Chapter 6

Multiprocessor Global Scheduling

In this chapter, we will briefly revise the analytical schedulability analysis of a set T of n sporadic tasks

running on m (m < n) processors by the multiprocessor global scheduler. While many previous works

exist, we will present the results that are most relevant to ours.

We focus on two kinds of global scheduling policies: the Global Earliest Deadline First (G-EDF) and

the Global Fixed Priority (G-FP). Moreover, the discrete time domain is assumed. That is, ri,j , di,j and

fi,j of a task will be non-negative integers.

To simplify the expressions, the following notations are used: JxKy = max{x, y}, JxKy = min{x, y}
and JxKzy = JJxKyKz.

6.1 Introduction

One important class of real-time schedulers for multiprocessor systems is the class of global scheduling

policies. According to global scheduling, all ready tasks are enqueued in a single ready queue, and the

m highest priority jobs are executing on the m processors. In global preemptive scheduling, a task

executing on one processor may be preempted by a higher priority task and later resume execution on

a different processor: therefore, we say that this class of scheduling policies allow migrations of tasks

among processors. Experimental comparison in the Linux operating system shows that global/clustered

configurations are a viable solution for multiprocessor platforms [LFCL12].

The two most popular global scheduling algorithms are Global Fixed Priority (G-FP) and Global

Earliest Deadline First (G-EDF). In G-FP scheduling, a fixed priority is assigned to each task and all

jobs of the task share the assigned priority; in G-EDF scheduling, a job’s priority is decided by its

associated absolute deadline, a smaller absolute deadline corresponding to a higher priority.

As we discussed in Chapter 5, any exact schedulability condition for a set of sporadic tasks scheduled

by global scheduling requires to test a very high number of release patterns of the tasks. For this reason,

most researchers focused on deriving approximated analyses, i.e. sufficient conditions for schedulability.

We say that schedulability test A dominates another schedulability test B, denoted as A � B, if every

task set that is deemed schedulable by B is also deemed schedulable by A, and there may exist sets of

tasks which are deemed schedulable by A but not by B.

Baker [Bak03] developed a sophisticated analysis technique based on the concept of problem window.

The technique consists in checking the schedulability of one task at a time: first, the problem window

is selected equal to the interval between the arrival time and the deadline of one instance of the task

under analysis; then, the interference of higher priority jobs is computed and taken into account in

the schedulability analysis. Interfering jobs are divided into carry-in jobs (i.e. jobs which may start

executing before the problem window and whose computation time only partially contributes to the

63

6.2. Basic Notations

interference) and non-carry-in jobs (i.e. jobs whose arrival time and execution time are contained in the

problem window).

Baker’s technique has since been extended by many researchers who tried to improve the estimation

of the interfering workload. Bertogna et al. [BCL05] discovered that for each competing task with very

high workload in the problem window, the part of its workload that has to be executed in parallel with

the analysed task should not be taken into account in the actual interference. Later, Bertogna and

Cirinei [BC07b] applied this technique to iterative Response Time Analysis (RTA) of global scheduling,

including both G-EDF and G-FP.

Another breakthrough was proposed by Baruah [Bar07]. His technique tries to limit the number

of carry-in tasks to be m − 1. Although such a technique was originally conceived for G-EDF, Guan

et al. [GSYY09] combined it with the RTA technique, obtaining the more precise schedulability test

for G-FP scheduling. In case of G-FP schedulability analysis, the following dominant relation holds:

[GSYY09]�[BC07b]. Instead of using the iterative procedure as in [GSYY09], [DB11] directly measures

the interference within the problem window by considering limited number of carry-in tasks. Though the

test in [DB11] is more pessimistic than the one in [GSYY09], it is compatible with the Optimal Priority

Assignment scheme, thus has the advantage when considering priority assignment of tasks under G-FP.

In [LA13], there is another G-FP test based on limiting carry-in workload, but it is incomparable with the

tests just mentioned. Lee and Shin [LS13] generalised the limited carry-in idea to any work-conserving

algorithms.

When it goes to G-EDF, besides the tests in [Bak03, BCL05, BC07b, Bar07], many other tests have

been proposed, like [BB09a] and [BBMSS09], and none of these tests can dominate the others. However,

according to empirical evaluations [BB11], tests in [Bar07] and [BC07b] are shown to have better average

performance.

In [LSSE15] a compositional theory is proposed to improve the overall schedulability results, which

explores the sufficient condition such that to apply existing over-approximate tests for a subset of total

tasks on a subset of processors. While it is likely that the dominance relation between underlying

schedulability tests can be kept also for the composition result, a further study is out of the scope of this

thesis. A “divide-and-conquer” approach is proposed in [Lee14] and applied to the RTA for G-EDF in

[BC07b], which additionally finds certain schedulable task sets that the original test fails to detect.

6.2 Basic Notations

In this section, we will introduce these notations that are used in the context of multiprocessor global

scheduling.

Tasks are tested one by one for schedulability and we assume the target one is τk; in particular, we

focus on an arbitrary job of τk, which is also called the target job. When analysing the schedulability of

τk, a problem window is assumed. A problem window is a time interval [a, b) with certain length. More

detailed formulation of a problem window may depend on different tests.

The workload of a task τi in a time interval of length t is the amount of computation that τi requires

within this time interval. The interference of a task τi on the target task τk in a time interval is the

cumulative length of the intervals during which jobs of τi execute and jobs of τk have been released but

cannot execute. Since existing schedulability tests can only provide an upper bound on the interference,

we abuse the use of notations interference and interference upper bound. This also happens for workload

and workload upper bound.

A task τi is called a carry-in (CI) task if at least one job of τi has been released before the beginning

of the window and executes within the window. If no such job exists, the task is called non-carry-in (NC)

64

Chapter 6. Multiprocessor Global Scheduling

task. That is, tasks are differentiated into NC tasks T NC and CI tasks T CI such that T = T NC ∪ T CI

and T NC ∩T CI = ∅. Without or without carry-in, a task may result in different workload (interference).

Thus, the workload of a task can be explicitly distinguished into NC workload and CI workload; the

same rule applies for interference also.

6.3 Tests for G-EDF

As for the schedulability analysis for G-EDF, here we briefly introduce Bertogna and Cirinei’s Response

Time Analysis (RTA) [BC07b], denoted as BC, and Baruah’s test [Bar07], denoted as Bar. Note that

both tests assume sporadic tasks with constrained deadlines.

(Demand bound function) In EDF scheduling, the concept of demand bound function plays an

important role for schedulability analysis. For any t, the demand bound function DBFi(t) of a task

τi bounds the maximum cumulative execution requirement by jobs of τi that have both arrival time and

deadline within any interval of length t. It is formally defined as follows.

DBFi(t) =

(⌊
t−Di

Ti

⌋
+ 1

)
Ci (6.1)

For G-EDF schedulability analysis, a commonly used problem window is a time interval [a, b) such

that b is coincident with the target job’s absolute deadline.

For a NC task τi, its interference in a problem window (with length t) can be bounded by using the

DBF function directly:

INCi (t) = DBFi(t)

If τi is a CI task, its possible interference is estimated as:

ICIi (t) =

⌊
t

Ti

⌋
× Ci + J(t mod Ti)−Di +RiK

Ci
0 . (6.2)

The worst-case CI interference corresponds to the scenario depicted in Figure 6.1. Among the sequence

of jobs from τi that may interfere with the target job, the first job is called carry-in job, and the last one

is called carry-out job. The CI task’s interference in the problem window is maximised when: 1) deadline

of carry-out job is coincident with b, 2) every job of τi is released as soon as possible, and 3) the carry-in

job exactly finishes the execution with its worst-case response time. The inequality INCi (t) ≤ ICIi (t)

always holds.

TiDi −Ri

a b

Figure 6.1: Maximum CI interference under G-EDF

6.3.1 BC

Bertogna and Cirinei [BC07b] formulated a generic upper bound to the workload of a task τi over an

arbitrary time interval with some length L that does not depend on the specific scheduling algorithm:

Wi(L) = Ni(L)Ci + JL+Ri − Ci −Ni(L)TiKCi0

where Ni(L) =
⌊
L+Ri−Ci

Ti

⌋
.

65

6.3. Tests for G-EDF

Di −Ri Ti

a b

Figure 6.2: Maximum workload in a problem window

The situation that brings the worst-case workload is depicted in Figure 6.2: the carry-in job starts

execution at the beginning of the window and finishes exactly with its worst-case response time; and

every successive instance of τi arrives as soon as possible.

Finally, BC relies on a classic iterative response time analysis.

Theorem 15 (Theorem 6 in [BC07b]). An upper bound on the response time of a task τk in a G-

EDF scheduled multiprocessor system can be derived by the fixed point iteration over X of the following

expression, starting with X = Ck.

X ← Ck +

 1

m

∑
i6=k

Ii,k(X)


with Ii,k(X) = min(Wi(X), ICIi (Dk), X − Ck + 1).

The term X − Ck + 1 is due to the fact that if the target task is schedulable, then for any task the

part of its execution that is in parallel with τk’s execution does not result in interference [BCL05] and

such a constraint is also applied to other tests for global scheduling.

For every task, its response time Ri is needed to compute Wi(X) and ICIi (Dk). However, Ri is

unknown. This can be solved by the following iterative procedure.

1. For every task, its Ri is initialised to Di.

2. Apply Theorem 15 to every task in the system. If the resulting response time is > Di for some task,

then that task is marked as “potentially unschedulable”. If there are no potentially unschedulable

tasks, the task set is declared to be schedulable.

3. Repeat step (2) until there is no Ri update.

Please note that in BC all tasks are considered as CI tasks.

6.3.2 Bar

Baruah [Bar07] derived another sufficient schedulability test for G-EDF. Given the problem window [a, b)

with length Dk, the idea in Bar is to extend the interval back to some point s0 at which at least one of

the m processors is idle, and from s0 to a all processors are busily executing jobs with absolute deadlines

no larger than the target one’s. Let define Ak = a− s0. Such a time interval [s0, s0 + Ak) is called the

busy period. Thanks to this extension, there are at most (m− 1) CI tasks at time point s0. In order

for τk to meet its deadline, it is sufficient that all m processors are executing jobs other than τk for no

more than Ak + (Dk − Ck) time units over [s0, b).

Different from BC, Bar explicitly differentiates the interference caused by the NC task (INCi,k) and

interference caused by the CI task (ICIi,k) in the extended problem window.

INCi,k =


q
INCi (Ak +Dk)

yAk+Dk−Ck+1
if i 6= k

q
INCi (Ak +Dk)− Ck

yAk if i = k

66

Chapter 6. Multiprocessor Global Scheduling

ICIi,k =


q
ICIi (Ak +Dk)

yAk+Dk−Ck+1
if i 6= k

q
ICIi (Ak +Dk)− Ck

yAk if i = k

Let us define IDIFFi,k = ICIi,k − INCi,k , then there is the following theorem for schedulability analysis for

G-EDF.

Theorem 16 (Theorem 3 in [Bar07]). A task set T is schedulable with G-EDF if, for any τk ∈ T and

all 0 ≤ Ak ≤ Ak, the following holds:

Ω ≤ m(Ak +Dk − Ck) (6.3)

where Ω is the total interference:

Ω =

∑
τi∈T

INCi,k +
∑

the (m−1) largest

IDIFFi,k

 (6.4)

CΣ denotes sum of the (m− 1) largest WCETs among tasks and Ak is defined as follows:

Ak =
CΣ +DkUtot −mDk +

∑
τi∈T (Ti −Di)Ui +mCk

m− Utot
(6.5)

Additionally, the condition in Equation (6.4) needs only be tested with Ak values at which DBFi(Ak+

Dk) changes for some task τi. When m = 1, Bar is equivalent to the exact schedulability test for EDF

in [BMR90].

6.4 Tests for G-FP

In this section, we present two state-of-the-art tests for G-FP scheduling. Also in [BC07b], similarly

as the RTA for G-EDF, Bertogna and Cirinei propose the RTA for G-FP scheduling, denoted as BC-

FP. Furthermore, by integrating the limited carry-in technique in Bar and the RTA in BC-FP, Guan

et al. develop the RTA with Limited Carry-in (RTA-LC) for G-FP scheduling in [GSYY09]. The

Deadline Analysis with Limited Carry-in (DA-LC) in [DB11] is the state-of-the-art test when regarding

the priority assignment problem subject to G-FP scheduling. While BC-FP and DA-LC deal with

constrained-deadline tasks, RTA-LC applies for arbitrary-deadline tasks.

To analyse the schedulability of a task τk, we need to take only all higher priority tasks τ1, . . . , τk−1

into account and compute the interference that they may cause on τk. As for the problem window [a, b),

for G-FP schedulability analysis, it is built such that at the time point a task τk releases its first job

within the window.

6.4.1 BC-FP

The test BC for G-EDF as in Theorem 15 can be easily adapted for G-FP scheduling by ignoring the CI

interference estimated in Equation (6.2), which is computed through aligning tasks’ absolute deadlines.

Theorem 17 (Theorem 7 in [BC07b]). An upper bound on the response time of a task τk in a G-

FP scheduled multiprocessor system can be derived by the fixed point iteration over X of the following

67

6.4. Tests for G-FP

expression, starting with X = Ck.

X ← Ck +

⌊
1

m

∑
i<k

Ii,k(X)

⌋

with Ii,k(X) = min(Wi(X), X − Ck + 1).

6.4.2 RTA-LC

The RTA-LC (Response Time Analysis with Limited Carry-in)1. in [GSYY09] is the start-of-the-art

algorithm for computing the worst-case response time for global FP scheduling on multiprocessors. It

integrates the limited carry-in idea in Bar and the response time analysis in BC-FP, and it also generalises

the schedulability analysis to arbitrary-deadline tasks.

To get a safe upper bound on the WCRT of the target task τk, [GSYY09] proves that it is sufficient

to consider the problem window [a, b) such that such that there are at most m − 1 tasks with carry-in.

Thus, we denote with Z the set of all possible carry-in task sets with no more than m−1 higher priority

tasks.

Given a higher priority task τi and a problem window with lenght x, its workload in the window

and interference upon the target task are formulated as follows. Since tasks may have unconstrained

deadlines, there can be more than one active jobs from τk in the window and the term h is used to

explicitly emphasises this number.

Lemma 6 (Lemma 2 in [GSYY09]). The workload bounds can be computed with

WNC
i (x) =

⌊
x

Ti

⌋
· Ci + [x mod Ti]

Ci (6.6)

WCI
i (x) =

⌊
[x− Ci]0

Ti

⌋
· Ci + Ci + α (6.7)

where α = [[x− Ci]0 mod Ti − (Ti −Ri)]Ci−1
0 .

Lemma 7. Let τk be a task under analysis, and let τi be a higher priority task. If task τk is schedulable,

then an upper bound to the interference that τi causes to the first h instances of τk in a problem window

of length x (x ≥ h · Ck) is given by:

INCk (τi, x, h) = min(WNC
i (x), x− h · Ck + 1) (6.8)

ICIk (τi, x, h) = min(WCI
i (x), x− h · Ck + 1) (6.9)

Given a time interval x, the total interference Ωk(x, h) on the first h jobs of task τk is defined as :

max
T CI∈Z

 ∑
τi 6∈T CI

INCk (τi, x, h) +
∑

τi∈T CI
ICIk (τi, x, h)

 (6.10)

Ωk(x, h) upper bounds the interference from higher priority tasks to the first h jobs of τk in the

problem window. Ωk(x) sometimes used as an abbreviation for Ωk(x, 1). Ωk(x, h) can be computed

in linear time, since it is sufficient to find the m − 1 maximal values of the difference ICIk (τi, x, h) −
INCk (τi, x, h). Given the workload formulation in Lemma 6, ICIk is never smaller than INCk .

1This naming convention can be traced back to [DB11].

68

Chapter 6. Multiprocessor Global Scheduling

Theorem 18 (Theorem 2 in [GSYY09]). For each h ≥ 1, let X h be the minimal solution of the following

Equation by doing an iterative fixed point search of the right hand side starting with x = h · Ck.

x =

⌊
Ωk(x, h)

m

⌋
+ h · Ck (6.11)

then,

Rk = max
h∈[1,H]

{X h − (h− 1) · Tk} (6.12)

is an upper bound of τk’s WCRT.

The H in (6.12) is an upper bound to the values of h that need to be checked to get the maximal

response time bound Rk. The response time analysis procedure terminates as long as the obtained

X h − (h − 1) · Tk is no larger than Tk. It has been proved in [GSYY09] that a bounded H exists to

guarantee the termination of the response time analysis procedure if task τk satisfies∑
i<k

V ki +M × Uk 6= M, where V ki = min(Ui, 1− Uk) (6.13)

6.4.3 DA-LC

Instead of an iterative procedure as in RTA-LC, DA-LC in [DB11] measures the total interference within

a problem window having the length Dk directly.

Theorem 19 (Equation (14) in [DB11]). For the target task τk and the task set T , τk is schedulable if

the following condition holds.

Dk ≥
⌊

Ωk(Dk)

m

⌋
+ Ck (6.14)

69

Chapter 7

Improving the RTA for G-FP

Scheduling

In this chapter we address the problem of schedulability analysis for a set of sporadic tasks with arbitrary

deadlines running on a multiprocessor system with Global Fixed-Priority (G-FP) preemptive scheduling.

The discrete time domain is assumed.

We prove the existence of a class of critical instants for releasing a task, one of which results in the

worst-case response time of that task.

Then, we propose a new analysis that improves over Response Time Analysis with Limited Carry-in

(RTA-LC), the state-of-the-art schedulability analysis with respect to G-FP, by reducing its pessimism.

We also observe that, in the case of unconstrained deadlines, the RTA-LC may underestimate the carry-in

workload, and we propose a new formulation that corrects the problem. Finally, we evaluate the perfor-

mance improvement of our new response time analysis method by empirical evaluation with randomly

generated task sets. Simulation results show that our new analysis method can successfully accept a

considerable amount of task sets that have to be treated as unschedulable by existing methods.

The content in this chapter is based on [SLGY14].

7.1 Critical Instants for G-FP Scheduling

We first define the concept of “critical instants” for a task τk and we prove that the Worst-Case Response

Time (WCRT) of τk happens when it is released precisely at one of these critical instants. This notion

has already been proposed by Guan et al. [GSYY09]; later Davis et al. [DB11] independently proved

that, for constrained-deadline tasks, releasing a task at one of its “critical instants” will result in the

WCRT. Here we prove it directly for the general case of arbitrary deadlines.

Clearly, it makes no sense to discuss the critical instants for the m highest priority tasks, since they

can execute whenever eligible and their WCRTs simply equal to their WCETs. In the following context,

when using the notion of critical instants and response time analysis, we only refer to tasks other than

the m highest priority ones.

Definition 12. A critical instant for task τk is an instant t such that:

• At least m tasks with priority higher than τk are active at t;

• At most m− 1 tasks with priority higher than τk are active just before t.

The critical instant defined above does not precisely correspond to a concrete system state at run-

time. Instead, it covers a set of possible system states, one of which will lead to the worst-case response

70

Chapter 7. Improving the RTA for G-FP Scheduling

time as we will prove in the following. In particular, there can be up to m − 1 higher priority tasks

executing before t and we do not know which are these tasks, when these tasks have been activated and

how much of their computation time is left at t.

Apart from the critical instants defined above, we also claim that the worst-case response time of a

task occurs when this task releases jobs “as fast as possible”, which is formally captured by the following

definition:

Definition 13. Given a sporadic task τk, a chain of consecutive jobs (or chain for short) Jk,s, . . . , Jk,h,

with arrival times rk,s, . . . , rk,h, respectively, is defined as follows:

• The job preceding Jk,s (if any) has completed before rk,s;

• every job Jk,j, j = s, . . . , h− 1 completes after rk,j+1.

The chain is said to be tight if ∀j = s+ 1, . . . h, rk,j = rk,j−1 + Tk.

Note that every job in the system is included in some chain. For instance, in the special case of a

constrained-deadline task with (Dk ≤ Tk), every tight chain only contains one job.

Lemma 8. The worst-case response time of τk is found with a job Jk,h in a tight chain.

Proof. We prove the lemma by showing that for an arbitrary chain Jk,s, . . . , Jk,h of task τk, if we shift

the release time of every job Jk,j in the chain to r′k,j = rk,s + (j − s)Ti, thus obtaining a tight chain, the

finishing time of every job fk,j , j = s, . . . , h does not change.

A job cannot start executing until the prior job of the same task has terminated. However, in the

original chain, the finishing time of every job (except the last one) is after the arrival time of the successive

job. Therefore, when job Jk,j arrives at ri,j , it must still wait until fk,j−1 before it can be activated. By

shifting its arrival time to r′k,j = rk,s + (j − s)Tk this precedence relationship is maintained. Therefore,

nothing in the schedule changes, and the finishing time of each job in the chain remains the same.

We now prove the critical instant defined in Definition 13 indeed leads to the worst-case response

time of a task.

Theorem 20. The worst-case response time of τk is found with a job Jk,h in a tight chain Jk,s, . . . , Jk,h,

such that rk,s coincides with a critical instant for task τk.

Proof. First of all, by Lemma 8, if the job with the worst-case response time is not in a tight chain, we

can find another job, whose response time is not smaller, in a tight chain. So in the following we only

focus on jobs in tight chains.

We will show that, if worst-case response time of task τk occurs in a tight chain Jk,s, . . . , Jk,h that

does not start at a critical instant, by modifying the arrival times of the chain we can construct a tight

chain Jk,s, . . . , Jk,h starting at a critical instant, such that the new response time R′k,h of job Jk,h in the

resulting chain is no smaller than its counterpart Rk,h in the original chain.

The release time of the first job in the original chain does not coincide with a critical instant, so we

have two possibilities:

• Suppose that at rk,s there are no more than m− 1 higher priority tasks active. Let [A,B] be the

first interval after rk,s such that there are at least m higher priority active tasks in every instant of

[A,B]. It is easy to see that A < fk,h, because otherwise we can set r′k,s and obtain a chain with

a higher response time, as τk cannot execute in [A,B].

Therefore, τk executes in [rk,s, A]. If we set r′k,s = A, the new finishing time of Jk,h is

f ′k,h ≥ fk,h + (A− rk,s)

71

7.1. Critical Instants for G-FP Scheduling

So the new response time of Jk,h is

R′k,h = f ′k,h − r′k,h
≥ fk,h − (rk,s −A)− r′k,h
= fk,h − (rk,s −A)− (A+ (h− s)Tk)

= fk,h − (rk,s + (h− s)Tk) = fk,h − rk,h = Rk,h

Therefore, the new response time is no smaller than the original one.

• Suppose that at rk,s and just before rk,s there are at least m higher priority tasks active. Let A

be the latest time before rk,s such that there are no more than m− 1 higher priority active tasks

at A − 1. By setting r′k,s = A, we observe that task τk cannot execute in [A, rk,s], because all

processors are busy executing higher priority tasks. Also, after rk,s the schedule does not change,

and particularly f ′k,h = fk,h. So the new response time of Jk,h is

R′k,h = f ′k,h − r′k,h
= fk,h − (rk,h − (rk,s −A))

= Rk,h + (rk,s −A) > Rk,h

i.e., the new response time is strictly larger than the original one.

7.1.1 Pessimism and optimism in RTA-LC

The original form of RTA-LC is presented in Section 6.4.2. Here we point out both the pessimism and

optimism in it.

Pessimism in the iteration procedure

Let us first consider the following task set running on two processors: τ1 = (28, 50, 50), τ2 = (13, 30, 30),

τ3 = (5, 50, 50), τ4 = (6, 30, 30), and τ5 = (6, 40, 40). Following Theorem 18, we compute the WCRT

upper bound of first four tasks and obtain: R1 = 28, R2 = 13, R3 = 18 and R4 = 24. While iteratively

computing the WCRT of task τ5 and along with x increasing, the CI task set that corresponds to the

maximised Ω5(x) varies. For example, when x = 31, the total interference Ω5(x) is maximised with

τ4 as the CI task; and when x = 38, Ω5(x) is maximised if τ3 is the CI task. Finally, the iteration in

Theorem 18 will report a deadline miss for τ5. However, this task set is indeed schedulable, according to

our improved analysis method that will be introduced in next section.

We now formalize the pessimism in the iteration procedure of RTA-LC. For simplicity we focus on the

constrained-deadline case, but the pessimism also exists in the unconstrained-deadline case. Let T CI1

and T CI2 be two possible candidates of the carry-in task set. Suppose T CI1 is indeed the carry-in task

set that leads to the worst-case response time of the analysed task τk, then during the whole analysis

procedure the total interference to task τk can be bounded by

Ω1
k(x) =

∑
τi 6∈T CI1

INCk (τi, x) +
∑

τi∈T CI1

ICIk (τi, x)

and suppose with the above calculation of Ω1
k(x) the fixed-point iteration procedure converges at x1.

72

Chapter 7. Improving the RTA for G-FP Scheduling

Similarly, if T CI2 is indeed the carry-in task set that leads to the worst-case response time of the

analysed task τk, then during the whole analysis procedure the total interference to task τk can be

bounded by

Ω2
k(x) =

∑
τi 6∈T CI2

INCk (τi, x) +
∑

τi∈T CI2

ICIk (τi, x)

and the fixed-point iteration procedure converges at x2.

In general, Ω1
k(x) and Ω2

k(x) may not dominate each other. In other words, we may have Ω1
k(x′) >

Ω2
k(x′) for some x′ and Ω1

k(x′′) < Ω2
k(x′′) for some x′′. In particular, we assume it holds

Ω1
k(x1) < Ω2

k(x1)

Ω2
k(x2) < Ω1

k(x2)

Since the interference upper bound Ωk(x) calculated by Equation (6.10) upper bounds both Ω1
k and Ω2

k,

we know

Ω1
k(x1) < Ωk(x1)

Ω2
k(x2) < Ωk(x2)

Therefore, we can conclude that in RTA-LC (using Ωk calculated by Equation (6.10)), the fixed-point

iteration may not converge at either x1 or x2, but converges at some point which is larger than both x1

and x2.

Pessimism in the carry-in workload of constrained-deadline tasks

Given a task τi = (19, 50, 50) with Ri = 20 and x = 29. By using Lemma 6, there is WCI
i (x) = 19.

However, since we know τi is running before the problem window, we can observe that the workload of

τi in a window of length 29 cannot exceed 18. As the minimum time interval between a job’s finishing

point and the successive job’s arrival for τk is Ti −Ri = 30.

Optimism in the carry-in workload of unconstrained-deadline tasks

Since we allow Di > Ti, there can be Ri > Ti. Suppose a task τi is a CI task and
⌈
Ri
Ti

⌉
= 3. This means

at the same moment, there can be at most 3 active jobs from τi in the system. And given a problem

window with length equivalent to Ti, the workload upper bound of τi should be ≥ 3 · Ci − 1. But the

computation result returned by Lemma 6 is 2 · Ci − 1.

7.2 RTA-CE: RTA with Carry-in Enumeration

In this section we introduce a new response time analysis that solves the problems described above.

7.2.1 New workload upper bound

We start by proposing a new upper bound on the workload.

Lemma 9. The workload bound of a carry-in task τi in the problem window of length x can be computed

as:

WCI
i (x) = WNC

i ([x− xp]0) + [x]δ (7.1)

73

7.2. RTA-CE: RTA with Carry-in Enumeration

Figure 7.1: The CI workload of a task.

where xp and δ are defined as:

xp = Ci − 1 +

⌈
Ri − Ci
Ti − Ci

⌉
Ti −Ri (7.2)

δ =

⌈
Ri − Ci
Ti − Ci

⌉
Ci − 1 (7.3)

and WNC is calculated as in Equation (6.6).

Proof. We use w to denote the number of carry-in jobs of τi. Suppose t is the starting time of the

problem window, then by the definition of critical instant, there are at most m − 1 tasks having active

jobs at time t− 1, so the carry-in jobs are already executing at t− 1, and the total unfinished execution

demand of the carry-in jobs by the start of the problem window is bounded by w · Ci − 1.

We argue that the worst-case release pattern leading to the maximal workload of τi is as follows:

(1) the earliest carry-in job executes as late as possible and finishes at exactly its worst-case response

time, (2) the earliest carry-in job starts execution one time unit before the starting point of the problem

window, (3) inside the problem window all jobs are released as fast as possible. The argument follows

the same strategy as in [Bak03,GSYY09], showing that if we shift the release times in any way, this will

not increase the total workload of the job inside the problem window. We omit the detailed reasoning

procedure, but we use Figure 7.1 to depict this worst-case scenario. In the following, we show that with

this particular release pattern, the workload of τi in the problem window is bounded by Equation (7.1).

We index the job released inside problem window as Ji,1, Ji,2, . . . , and we assume ξ be the smallest

index (if there exists) such that, when Ji,ξ is released, all the preceding jobs have been finished. Therefore,

the time interval between the starting time of the problem window and the release time of Ji,ξ must be

at least enough to execute all its preceding jobs. On the other hand, the release time of the ξth job in

the problem window is xp = (Ci − 1) + (w + ξ − 1) · Ti −Ri. So we have

w · Ci − 1 + (ξ − 1)Ci ≤ (Ci − 1) + (w + ξ − 1) · Ti −Ri

Since ξ is an integer, the minimum value for it is:

ξ =

⌈
Ri − Ci
Ti − Ci

⌉
− (w − 1)

Then we can obtain the expression of xp as in Equation (7.2).

The total workload of τi in the problem window is contributed by two parts: (i) the jobs executing

before the release of the ξth job; (ii) the jobs executing after the release of the ξth job.

The jobs executing before the ξth job include the carry-in jobs (the workload of which in the problem

window is bounded by w · Ci − 1 as we discussed above), and the ξ − 1 jobs that are released in the

74

Chapter 7. Improving the RTA for G-FP Scheduling

problem window. So their total workload is bounded by

δ = w · Ci − 1 + (ξ − 1)Ci =

⌈
Ri − Ci
Ti − Ci

⌉
Ci − 1

On the other hand, the maximal workload actually executed in the problem window is bounded by the

length of the problem window x.

When τi releases a job at xp, all its preceding jobs have been finished, so the total workload of jobs

released in [xp, x] is bounded by

WNC
i ([x− xp]0)

Putting the workload upper bound of the two parts together establishes the lemma.

Our new formulation in Equation (7.1) for calculating WCI
i (x) fixes both the pessimism and optimism

issues in Lemma 6. Moreover, our new calculation of WCI
i (x) leads to an interesting fact: now, when

Ri < Ti, the two functions WCI
i (x) and WNC

i (x) are in general incomparable. More specifically, WCI
i (x)

may be smaller than WNC
i (x) with certain x. This can be demonstrated by the following example.

Consider the analysis of the workload of task τi with Ci = 2, Ti = 4 and Ri = 3, whose workload

function is depicted in Figure 7.2. We have WCI
i (2) = 1 < WNC

i (2) = 2. This (somehow counter-

intuitive) phenomenon is due to the fact that a carry-in job has at least been executed for one time unit

before the start of the problem window. However, when Ri ≥ Ti, the relation WCI
i (x) ≥ WNC

i (x) still

holds.

x

Wi(x)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
WNC
i (x)

WCI
i (x)

Figure 7.2: The worst-case workload of a task with Ci = 2, Ti = 4 and Ri = 3

Finally, we can still compute the carry-in and non-carry-in interference ICIk (τi, x, h) and INCk (τi, x, h)

of a higher priority task τi to the analysed task τk based on WCI
i (x) and WNC

i (x) by Equation (6.8)

and Equation (6.9).

7.2.2 New iterative analysis procedure

Given a specific carry-in task set T CI , we define the total interference (over time interval x) on task τk

as follows :

Ωk(T CI , x, h) =
∑

τi 6∈T CI
INCk (τi, x, h) +

∑
τi∈T CI

ICIk (τi, x, h) (7.4)

We denote X h,T CI the minimal solution of the following iteration :

x =

⌊
Ωk(T CI , x, h)

m

⌋
+ h · Ck (7.5)

75

7.2. RTA-CE: RTA with Carry-in Enumeration

Lemma 10. Given a task τk and a carry-in task set T CI , the WCRT of τk with respect to T CI is upper

bounded by :

RT
CI

k = max
h∈[1,H]

{X h,T
CI

− (h− 1) · Tk} (7.6)

Proof. We show here the case when deadlines are less than or equal to periods and the arbitrary deadline

case can be derived similarly. For simplicity, we use Ik(τi, x), Ωk(T CI , x) and X T CI by ignoring h = 1.

Suppose X T CI is the minimal solution of the iteration

x =

⌊
Ωk(T CI , x)

m

⌋
+ Ck (7.7)

We are going to prove X T CI is an upper bound of τk’s response time with respect to T CI .
The proof is similar as in [BC07b]. By contradiction. Suppose, for some carry-in task set T CI , the

iteration in Equation (7.7) ends with a value X T CI ≤ Dk, but the response time of τk, released with the

same T CI , is higher than X T CI . Since the iteration ends, there is

X T
CI

=

⌊
Ωk(T CI ,X T CI)

m

⌋
+ Ck

That is,

X T
CI

=


∑
τi∈T

Ik(τi,X T
CI

)

m

+ Ck (7.8)

Remind that
∑
τi∈T

Ik(τi,X T
CI

) is a short form for

∑
τi 6∈T CI

INCk (τi,X T
CI

) +
∑

τi∈T CI
ICIk (τi,X T

CI

)

According to Theorem 3 in [BC07b], if Rubk is a response time upper bound of τk, we have∑
τi∈T

Ik(τi, R
ub
k) < m(Rubk − Ck + 1)

We assumed that X T CI is not an upper bound, hence we reverse the above formula:∑
τi∈T

Ik(τi,X T
CI

) ≥ m(X T
CI

− Ck + 1) (7.9)

Then, by replacing
∑
τi∈T

Ik(τi,X T
CI

) in Equation (7.8) with the right hand side of Equation (7.9), we

have
X T

CI

≥ (X T
CI

− Ck + 1) + Ck

= X T
CI

+ 1

By contradiction, we know that X T CI is the upper bound of response time of τk with carry-in task set

T CI .

Theorem 21 (RTA-CE). The upper bound of WCRT of task τk is

Rk = max
T CI∈Z

(
RT

CI

k

)
(7.10)

with Z being the set of all possible CI task sets.

76

Chapter 7. Improving the RTA for G-FP Scheduling

Proof. As long as τk is released at one of its critical instants, its response time is then upper bounded

by Rk, which, according to Theorem 20, is the upper bound of τk’s worst-case response time.

Note that with our new formulation of computing WCI
i (x) the overall analysis procedure still guar-

antees to terminate under the condition as in Equation (6.13). This follows the similar reasoning in

[GSYY09].

The WCRT upper bound returned by RTA-CE will never be larger than the result of RTA-LC. As the

cost of a more precise response time estimation, the new RTA needs to explicitly enumerate all possible

carry-in task sets in Z (this is where the name RTA-CE comes from) and this leads to an exponential

time complexity for the new RTA. However, as shown later in the simulation, the RTA-CE can handle

task systems with realistic scales in reasonable time.

7.2.3 Improving the efficiency

The iterative fixed-point calculation in RTA-CE with each given h should start with an initial value no

larger than the minimal solution of Equation (7.5) (otherwise the iteration converges at a larger solution

and results in more pessimistic response time bounds). Under this constraint, the initial value should be

as large as possible, to make the iteration procedure converge faster. A straightforward and safe initial

value is x = h · Ck. In the following, we introduce a larger safe initial value to speedup the analysis

procedure. We first define:

ωk(x, h) =
∑
τi∈T

min{INCk (τi, x, h), ICIk (τi, x, h)} (7.11)

Note that, as we discussed in Section 7.2.1, WNC
i and WCI

i are generally incomparable, and so do

INCk and ICIk . Let sh be the minimal solution of the following iteration starting with x = h · Ck:

x =

⌊
ωk(x, h)

m

⌋
+ h · Ck (7.12)

For any T CI , it holds ωk(x, h) ≤ Ωk(T CI , x, h), so we know sh is no larger than X h,T CI for any T CI .
Therefore, sh can be used as a safe initial value for x in Equation (7.5) for any T CI .

Furthermore, to find X h,T CI , we can utilise the already computed X h−1,T CI and start with x =

Ck + X h−1,T CI .

In conclusion, the starting point for Equation (7.5) is

x =

{
sh h = 1

max{sh, Ck + X h−1,T CI} h > 1
(7.13)

7.3 Evaluation

Each test in the evaluation is described by a tuple (m,n,U) where m is the number of processors, n is

the number of tasks and U is the total task utilisation in the task set. Task sets are randomly generated

according to Randfixedsum algorithm in [ESD10]. Every task has its period Ti uniformly distributed in

the range [100, 200]. For constrained-deadline tasks, the ratio between Di and Ti is distributed in the

range [0.7, 1]; for arbitrary-deadline tasks, Di
Ti
∈ [0.7, 1.3]. Before applying RTA-CE and RTA-LC, tasks

in a task set are first assigned priorities by the Deadline Monotonic (DM) strategy, i.e. a task with

shorter deadline gets a higher priority.

77

7.3. Evaluation

7.3.1 Performance tests

We conduct simulations with randomly generated task sets to evaluate the precision improvement of

RTA-CE over RTA-LC. We consider m ∈ {2, 4}, and given m we set its corresponding task set size n

and task set utilisation U to be n = 10 ·m and U ∈ {0.025m, 0.5m, . . . , 0.975m,m}, respectively. For

each configuration (m,n,U), 1000 task sets are randomly generated.

We report the results in Figure 7.3. The horizontal axis specifies task set utilisations and the vertical

axis denotes the number of schedulable systems found. We omit plotting points where the number of

schedulable task sets is simply 1000 or 0 in figures.

The simulation results confirm RTA-CE’s improvement over RTA-LC in practice. For example, in

the case of tasks with arbitrary deadlines where m = 2, n = 20 and U = 1.35, RTA-CE finds 111 more

schedulable task sets (among 1000 randomly generated task sets) than RTA-LC.

�0

�200

�400

�600

�800

�1000

�1 �1.1 �1.2 �1.3 �1.4 �1.5

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(a) m = 2, n = 20, Di
Ti

∈ [0.7, 1]

�0

�200

�400

�600

�800

�1000

�1.1 �1.2 �1.3 �1.4 �1.5

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(b) m = 2, n = 20, Di
Ti

∈ [0.7, 1.3]

�0

�200

�400

�600

�800

�1000

�1.8 �1.9 �2 �2.1 �2.2 �2.3 �2.4 �2.5 �2.6 �2.7

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(c) m = 4, n = 40, Di
Ti

∈ [0.7, 1]

�0

�200

�400

�600

�800

�1000

�2 �2.1 �2.2 �2.3 �2.4 �2.5 �2.6 �2.7 �2.8 �2.9

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(d) m = 4, n = 40, Di
Ti

∈ [0.7, 1.3]

Figure 7.3: RTA-CE v.s. RTA-LC

�0

�200

�400

�600

�800

�1000

�1.2 �1.3 �1.4 �1.5 �1.6 �1.7 �1.8

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(a) m = 2, n = 20

�0

�200

�400

�600

�800

�1000

�2.2 �2.4 �2.6 �2.8 �3 �3.2

NO
.�o
f�s
ch
ed
ul
ab
le�
ta
sk
�se
ts

task�set�utilization

RTA-CE
RTA-LC

(b) m = 4, n = 40

Figure 7.4: RTA-CE v.s. RTA-LC (Ti ∈ [10, 1000], DiTi ∈ [0.7, 2])

The advantage of RTA-CE over RTA-LC may not be always as shown in Figure 7.3. For example,

if we assume task periods are distributed in range [10, 1000] and Di
Ti
∈ [0.7, 2], we obtain the simulation

78

Chapter 7. Improving the RTA for G-FP Scheduling

results in Figure 7.4. On the other hand, it is possible to set up different simulations and get even

stronger dominance relation between RTA-CE and RTA-LC than Figure 7.3 shows.

7.3.2 Efficiency tests

The efficiency tests contain two parts:

• We investigate how much the efficiency improvement scheme introduced in Section 7.2.3 can affect

the run-time performance of RTA-CE;

• we demonstrate to which extent RTA-CE can (or cannot) scale through a showcase study.

All tests are conducted in a MacBook with 2.5 GHz Intel Core i5 processor.

�0

�200

�400

�600

�800

�1000

�1200

�1400

�1600

�40 �45 �50 �55 �60

Ti
m
e�
(s
ec
on
ds
)

Priority�Level

RTA-CE-WOE
RTA-CE-WE

Figure 7.5: Efficiency improvement tests

At first, we discuss the simulation for testing RTA-CE’s efficiency strategy. To set up tests, we

consider m = 6, n = 60, U ∈ {3, 4, 5, 6} and arbitrary-deadline tasks. For every (m,n,U), 30 task sets

are randomly generated. In the simulation, we measure the time spent for deciding the schedulability

of tasks by RTA-CE with efficiency enhancement (RTA-CE-WE) and without efficiency enhancement

(RTA-CE-WOE).

There are 60 different priority levels (1-60) in each generated task set and a lower number means

higher priority. RTA procedure is applied from highest priority task (with priority 1) to lowest priority

task (with priority 60). For all task sets we report the accumulated time, which starts from applying

RTA-CE on the task with priority 1, that is used by RTA-CE-WE and RTA-CE-WOE respectively to

decide the schedulability at each priority level. In this way, for a schedulable task set, the time obtained

for priority level 60 is actually the time used to decide the schedulability of a task set. For a task set

that is not schedulable, we report time instances recorded till the last task that RTA-CE checks.

The final results are plotted in Figure 7.5. On average, RTA-CE-WE saves 1/5 ∼ 1/4 RTA-CE-

WOE’s run-time. For instance, the time RTA-CE-WE uses to deal with 60 tasks and the time RTA-CE-

WOE spends on 58 tasks are almost the same. And RTA-CE-WE can always obtain the analysis result

(schedulable or unschedulable) for a task set in less than 20 minutes.

To further stress the efficiency improvements, we randomly generate an arbitrary-deadline task set

with m = 8, n = 80 and U = 4. Then we measured the run-time for applying RTA-CE on this task set.

79

7.4. Conclusion

�0

�200

�400

�600

�800

�1000

�1200

�1400

�30 �35 �40 �45 �50 �55 �60 �65

Ti
m
e�
(m
in
ut
es
)

Priority�Level

RTA-CE

Figure 7.6: The scalability test (m = 8, n = 80, U = 4)

The test result is reported in Figure 7.6. We manually stopped the test after the run-time exceeded 20

hours: at that instant, RTA-CE had finished the schedulability check of the first 63 tasks.

7.4 Conclusion

In this chapter we considered the response time analysis problem for global fixed-priority scheduling on

multiprocessors. We proved the existence of a type of critical instant leading to the worst-case response

time of a task. The idea of this critical instant has been used in the context of approximated analysis,

but has not been strictly proved to lead to the actual worst-case response time for arbitrary-deadline

task sets.

Then we improved the state-of-the-art technique RTA-LC by addressing both its pessimism and

optimism. We first propose a new formula to bound the workload of carry-in jobs. The new formula is,

on one hand more precise than the one used in RTA-LC, and on the other hand it fixes the potential

under-estimation of the carry-in workload for unconstrained-deadline tasks. We then proposed a new

iterative response time analysis procedure that achieves better precision. Simulations with randomly

generated tasks show that our new method RTA-CE can successfully accept a considerable number of

task sets that are deemed to be unschedulable by RTA-LC.

80

Chapter 8

New Techniques for G-EDF

Schedulability Analysis

In this chapter, we address the problem of schedulability analysis for a set of sporadic real-time tasks

(with constrained deadlines) scheduled by the Global Earliest Deadline First (G-EDF) policy on a mul-

tiprocessor platform. When it comes to multiprocessor global schedulability analysis, state-of-the-art

tests are often incomparable. That is, a task set that is judged not schedulable by a test may be verified

to be schedulable by another test, and vice versa.

We first develop a new schedulability test that integrates the limited carry-in technique and Re-

sponse Time Analysis (RTA) procedure for G-EDF schedulability analysis. Then, we provide an over-

approximate variant of this test with better run-time efficiency. Later, we extend these two tests to

self-suspending tasks. All schedulability tests proposed in this chapter have provable dominance over

their state-of-the-art counterparts.

Finally, we conduct extensive comparisons among different schedulability tests. Our new tests bring

a significant improvement for schedulability analysis for G-EDF.

The content in this chapter is based on [SL15].

8.1 An Improved Schedulability Test for G-EDF

In Section 6.3, we introduced two state-of-the-art tests for G-EDF scheduling: BC shows us the classic

RTA procedure is still effective in multiprocessor schedulability analysis; Bar contributes the idea that we

may more precisely estimate the interference on multiprocessor global scheduling by limiting the number

of CI tasks. However, all tasks in BC are considered as CI tasks, whereas Bar directly measures the

interference in a time interval instead of using the iterative analysis. Therefore, here we combine the two

techniques to take advantage of their strong points.

Before proceeding with the presentation of the new algorithm, we quickly recapitulate the related

concepts; we further propose the definition of a sub problem window, as depicted in Figure 8.1.

a b

Ak Dk

x

s0 s1

Figure 8.1: Different problem windows

We are checking the schedulability of a target task τk, so we select a target job of τk in the window

81

8.1. An Improved Schedulability Test for G-EDF

[a, b) with a and b corresponding to its release time and deadline, respectively. We still use the extended

problem window [s0, b), where s0 is the earliest time point before a such that within [s0, a) all processors

are busily executing jobs with absolute deadlines smaller than or equal to the target job’s and Ak = a−s0

is the length of this busy period.

In the following, instead of simply computing the interference generated by a task in the extended

problem window [s0, b), we follow the iterative technique in BC to calculate the interference. We define

a new time interval [s0, s1), called sub problem window of the extended one, such that s0 < s1 ≤ b, and

we would like to compute the interference in the sub problem window [s0, s1). We denote x = s1 − s0.

8.1.1 Interference in a sub problem window

Before upper bounding the interference in the sub problem window [s0, s1), we first formulate the work-

load, subject to G-EDF scheduling, generated by a task τi in this sub problem window, denoted as

Wi(x,L) with L = Ak + Dk. We use WNC
i (x,L) for NC tasks and WCI

i (x,L) for CI tasks, and

WDIFF
i (x,L) = WCI

i (x,L)−WNC
i (x,L).

Algorithm 3 calculates the maximum workload produced by a NC task inside [s0, s1). It follows the

worst-case release pattern for WNC
i (x,L) such that

• the first job (carry-in job) of τi is released at time s0;

• successive jobs of τi are released as soon as possible.

Algorithm 3: WNC
i (x,L)

1 W ← 0, p← 0
2 while p < x do
3 if p+Di ≤ L then
4 W ←W + Jx− pKCi
5 p← p+ Ti

6 else
7 break

8 return W

DiTiTi −Ri

s0 s1 b

Figure 8.2: The worst-case arrival pattern for WCI
i (x,L)

As for a CI task τi, its worst-case release pattern for WCI
i (x,L) corresponds to the scenario in Figure

8.2:

• the carry-in job finishes its execution with τi’s worst-case response time;

• successive jobs of τi are released as soon as possible;

• the carry-out job arrives as late as possible and finishes its worst-case execution within the sub

window.

It is easy to see that any other scenario produces a workload that is not greater than this one. Note that

all interfering jobs, including the carry-out one, have their absolute deadlines no later than b.

82

Chapter 8. New Techniques for G-EDF Schedulability Analysis

Algorithm 4 uses this worst-case release pattern to compute WCI
i (x,L). At first, it computes the

latest possible arrival time for the carry-out job, denoted as Jx−CiKL−Di . If the resulting arrival time is

less than 0, it means that there is at most one interfering job of τi in the (sub) window and it must arrive

before the beginning of the busy period; then lines 3-6 in the algorithm deal with such a situation. In

the other case, there will be (N + 1) interfering jobs of τi that can contribute their complete worst-case

executions; and the remaining part (lines 7-9) of the algorithm deals with this situation.

Algorithm 4: WCI
i (x,L)

1 W ← 0

2 p← Jx− CiKL−Di
3 if p < 0 then
4 W ← JL − (Di −Ri)KCi
5 W ← JW Kx0
6 return W

7 N ←
⌊
p
Ti

⌋
8 W ← (N + 1) · Ci + Jp mod Ti − (Ti −Ri)KCi0

9 return W

For τk, we only need to consider its job releases before the target one. Then, its NC and CI workload

can be further bounded.

WNC
k (x,L) =

q
WNC
k (x,L)

yINCk (JL−TiK0)

WCI
k (x,L) =

q
WCI
k (x,L)

yICIk (JL−TiK0)

After computing the workload, the interference can be bounded. The corresponding NC interference

and CI interference by τi on the target job of τk are denoted as INCi,k (x,Ak) and ICIi,k (x,Ak). For any

x ≥ Ak + Ck, the interference from τi is bounded as follows.

INCi,k (x,Ak) =
q
WNC
i (x,L)

yx−Ck+1

ICIi,k (x,Ak) =
q
WCI
i (x,L)

yx−Ck+1

IDIFFi,k (x,Ak) is defined as (ICIi,k (x,Ak)− INCi,k (x,Ak)).

Given the sub window [s0, s1), we now demonstrate how to upper bound the total interference on the

target job.

• According to the limited carry-in technique in Bar, we can derive an upper bound to the total

interference, denoted as Ω1 such that

Ω1 =
∑
τi∈T

INCi,k (x,Ak) + max
the m−1 largest

IDIFFi,k (x,Ak) (8.1)

• On the other hand, given that [s0, a) is a busy period with length Ak, we can formulate another

upper bound Ω2 such that

Ω2 = m ·Ak +
∑
i6=k

ICIi,k (x−Ak, 0) (8.2)

where
∑
i 6=k I

CI
i,k (x−Ak, 0) upper bounds the maximum interference in interval [a, s1) by assuming

all tasks different from τk as CI tasks.

• Finally, we define the total interference upper bound in the sub window [s0, s1) as Ω(x,Ak), which

83

8.1. An Improved Schedulability Test for G-EDF

is the smaller one between Ω1 and Ω2; that is

Ω(x,Ak) = JΩ1KΩ2 (8.3)

8.1.2 RTA-LC-EDF

Now, we are going to formulate a new RTA procedure for G-EDF schedulability analysis that integrates

the limited carry-in technique, and we call the new test “RTA with Limited Carry-in for multiprocessor

global EDF scheduling”: RTA-LC-EDF.

Theorem 22 (RTA-LC-EDF). Given an Ak value, let us say XAk be solution of the following iteration

starting from X = Ak + φ with φ = Ck.

X ← φ+

⌊
Ω(X,Ak)

m

⌋
(8.4)

Then, the response time upper bound of τk is

Rk = max
∀Ak
{XAk −Ak}.

Proof. The theorem can be proved by showing that, for any Ak such that within the time interval [s0, a)

all processors are fully occupied by higher priority jobs, XAk is an upper bound of the target job’s

finishing time (let us say s0 = 0) subject to this specific Ak value.

Suppose Equation (8.4) converges to XAk . If XAk is not an upper bound of τk’s finishing time, then

there would be bΩ(XAk ,Ak)

m c+φ > XAk , which contradicts with Equation (8.4)’s convergence at XAk .

Then, the same refinement procedure as in BC can be applied to RTA-LC-EDF.

1. We start by setting Ri = Di for every task and by marking all tasks as “potentially unschedulable”.

2. We compute Ri for every task by using the iterative procedure in Theorem 22. For a potentially

unschedulable task, if the resulting response time is ≤ Di, then it is marked as “schedulable” and

the value of Ri is updated; for a schedulable task, if the resulting response time < Ri, then Ri is

updated.

3. If no task has Ri update, the iteration stops; otherwise, go back to step (2).

In the following, we are going to prove that the new test dominates Bar and BC: if a task set is

decided schedulable by Bar or BC, the same result is returned by RTA-LC-EDF.

Theorem 23. RTA-LC-EDF � Bar and RTA-LC-EDF � BC.

Proof. Here we give the key points to prove RTA-LC-EDF’s dominance over Bar.

• For any Ak and for any x ∈ [Ak + Ck, Ak + Dk], there is Ω ≥ Ω(x,Ak). Remember that Ω

(Equation (6.4)) is the total interference, with respect to corresponding Ak value, computed by

Bar in the extended problem window; and Ω(x,Ak) is the total interference computed by RTA-

LC-EDF in the sub problem window with a length x.

• For any Ak > Ak (Equation (6.5)), there is Ω ≤ m(Ak +Dk − Ck) (please check [Bar07] for more

details), this implies Ω(x,Ak) ≤ m(Ak +Dk − Ck).

84

Chapter 8. New Techniques for G-EDF Schedulability Analysis

In the end, if Equation (6.3) in Bar holds (i.e. Ω ≤ m(Ak + Dk − Ck) and τk is schedulable), then

there will be Ω(x,Ak) ≤ m(Ak + Dk − Ck) for any x ∈ [Ak + Ck, Ak + Dk]; and there is no way for

RTA-LC-EDF to result in a response time upper bound larger than Dk.

The dominance of RTA-LC-EDF over BC is rather straightforward. For any x ≥ Ak + Ck, it is easy

to see that Ii,k(x − Ak) ≥ ICIi,k (x − Ak, 0), where Ii,k(x) is the interference estimation by BC. Thus,

Ω(x,Ak) ≤ Ω2 ≤
∑
i 6=k Ii,k(x−Ak) +mAk. In the end, RTA-LC-EDF will return a WCRT upper bound

no larger than the one returned by BC.

8.1.3 Upper bound to Ak

The RTA-LC-EDF test in Theorem 22 does not provide a bounded range of Ak values for the analysis.

In order to apply the new test, we must find a finite set of Ak such that it is enough to estimate the

response time upper bound by simply using these Ak values. This is what we are going to present in

this section. We remind that Ak denotes the length of the busy period (before the release of target job).

As a first step, we restrict to valid Ak’s values for RTA-LC-EDF, where the concept of a valid busy

period length is defined below.

Definition 14 (Valid Ak). Given a busy period, we say it has a valid length Ak if the solution of following

iteration would be larger than Ak.

X ←
⌊
W (X)

m

⌋
(8.5)

with W (X) = ∑
τi∈T

WNC
i (X,L) + max

the m−1 largest
WDIFF
i (X,L). (8.6)

The W (X) formulated above represents the total workload in a sub problem window with length X.

A busy period with a valid Ak means that all processors are always occupied in the interval [s0, s0 +Ak)

by higher priority jobs and the resulting workload must cause an interference on the execution of target

job. Thus, in the analysis, we exclude those busy period lengths such that the solution of Equation (8.5)

is no larger than its corresponding Ak. In the special case that there is no valid Ak, it is safe to conclude

that the WCRT of the target task τk is Ck.

Then, we explore the two following properties to find an upper bound to Ak.

Theorem 24. It is sufficient to bound the busy period length Ak by Ak < Aαk such that

Aαk =
CΣ +

∑
τi∈T (Ti − Ci)Ui
m− Utot

.

Proof. We first formulate a generic NC workload function for a task τi in a time interval t without

restricting to specific scheduling policy.

wi(t) =

⌊
t

Ti

⌋
Ci + Jt mod TiK

Ci

A linearised upper bound for wi(t) is the following:

lwi(t) = Uit+ (Ti − Ci)Ui

It can be easily seen that WNC
i (Ak, Ak +Dk) ≤ lwi(Ak), and WCI

i (Ak, Ak +Dk) ≤ lwi(Ak) +Ci. Thus,

in order to have a busy period with valid length Ak, a necessary condition is that

CΣ +
∑
τi∈T

lwi(Ak) > m ·Ak

85

8.1. An Improved Schedulability Test for G-EDF

In the end, we have Ak < Aαk .

Theorem 25. It is sufficient to bound the busy period length Ak by Ak < Aβk such that

Aβk =
CΣ +

∑
τi∈T (Ti −Di)Ui + (Utot − Uk)Dk

m− Utot
(8.7)

Proof. This is an extension of the Theorem 3 in [Bar07]. The proof is similar to the proof of Aαk , in which

we use an over-approximation of the DBF function (as in Equation (6.1)) instead of the linearisation of

the workload function.

As a result, the smaller one between Aαk and Aβk is a safe upper bound on busy period length.

Moreover, starting from Ak = 0, only those Ak values at which DBFi(Ak + Dk) changes for some

τi need to be considered. Finally, the RTA-LC-EDF test has a pseudo-polynomial time complexity:

O(n3LmaxDmaxN)1 such that Lmax is the maximum length of the extended problem window and N
denotes the maximum number of Ak points checked.

In the case of m = 1, there is no pessimism in the computation of workload and interference for RTA-

LC-EDF. Given that it takes only valid busy periods into account, RTA-LC-EDF is compatible with

Spuri’s RTA [Spu96] for EDF scheduling in the single processor and returns exact worst-case response

time when m = 1.

Discussion To better understand the differences among the three tests Bar, BC and RTA-LC-EDF, it

is useful to see what happens when they are applied to the case of m = 1.

As a matter of fact, BC provides only an upper bound to the response time of a task even for

m = 1, because it analyses just the problem window and not the whole busy period. To the best of our

knowledge, RTA-LC-EDF is the first response-time analysis for G-EDF that reduces to the exact Spuri’s

algorithm [Spu96] for single processors when m = 1.

The Bar schedulability test is based on the demand bound function, so it does not provide a response

time. In fact, for the case of m = 1, Bar is equivalent to the classic single processor demand-bound

analysis [BMR90], which is a necessary and sufficient test. Therefore, we can say that the main difference

between Bar and RTA-LC-EDF is that the first provides a yes/no answer for schedulability, whereas the

second additionally provides an upper-bound to the response time of a task (which becomes exact for

m = 1).

On the other hand, we rely on more precise estimation of workload and interference to preserve the

dominance over Bar and BC. The fine-grained workload computation of Algorithm 3 and 4 is more

precise than the one used in Bar in the extended problem window. The total interference upper bound

Ω2 in Equation (8.2) is also a key factor and guarantees that RTA-LC-EDF’s estimated interference on

the target job is never more than the one computed by BC.

Furthermore, in Bar and RTA-LC-EDF, we need to advance the beginning of the problem window

and this can result in additional pessimism: such pessimism is inherent to limited CI techniques and

cannot be completely avoided; however, the computation of Ω2 reduces it considerably.

8.1.4 RTA-LC-EDF-B

Here, we propose an over-approximation of the RTA-LC-EDF test of Theorem 22. We aim to improve

the run-time efficiency, while preserving certain guarantees of the schedulability result.

Given the sub problem window [s0, s1) (Figure 8.1), we further concentrate on its later part after the

target job’s release, that is [a, s1). We denote y = s1 − a.

1 The complexity formulated in the original paper [SL15] is more pessimistic.

86

Chapter 8. New Techniques for G-EDF Schedulability Analysis

Then, we define Ω(y) = max
∀Ak
{Ω(Ak + y,Ak) −mAk}. Ω(y) represents an upper bound on the total

interference over interval [a, s1). In the following, we are interested in knowing if Ω(y) is large enough

such that τk’s target job cannot complete its worst-case execution in [a, s1); and we can still upper bound

Ak values to the smaller one between Aαk and Aβk . In the new test, we skip the validity check of Ak

(Equation (8.5)) for efficiency concern.

Moreover, we employ another bound on Ak that is dependent on the value of y. That is, given any

y, we are going to find (if there exists) the first Ak such that the resulting interference does not leave

enough space in the interval [a, s1) for the target job’s worst-case execution.

Lemma 11. In order to decide whether the target job is eligible to finish its worst-case execution within a

time interval [a, s1) with length y, it is enough to consider Ak values ≤ Ayk such that
⌊

Ω(Ayk+y,Ayk)−mAyk
m

⌋
>

y − Ck.

Proof. If inequality
⌊

Ω(Ayk+y,Ayk)−mAyk
m

⌋
> y − Ck holds, it means that there exists Ak = Ayk such that

the target job cannot finish execution inside [a, a+ y).

Theorem 26 (RTA-LC-EDF-B). An upper bound of τk’s WCRT is the solution of the following iterative

procedure starting from Y = φ with φ = Ck.

Y ← φ+

⌊
Ω(Y)

m

⌋
(8.8)

Proof. This can be proved using the same technique as in the proof of Theorem 22.

The complexity of RTA-LC-EDF-B is O(n3D2
maxN), where Dmax is the maximum deadline among

all tasks. However, the value of Ayk is usually very small. This means that the overall number of Ak

values checked in each step of Equation (8.8) can be very low too, and this would further benefit the

run-time performance of RTA-LC-EDF-B.

As for the precision guarantee in RTA-LC-EDF-B, the following theorem proves that it still dominates

Bar and BC.

Theorem 27. RTA-LC-EDF-B � Bar and RTA-LC-EDF-B � BC.

Proof. For any Ak and Ck ≤ y ≤ Dk, there is Ω(Ak+y,Ak)−mAk ≤ Ω−mAk and Ω(y) ≤
∑
i6=k Ii,k(y),

where Ω and
∑
i 6=k Ii,k(y) are the total interference upper bounds by Bar and BC respectively. Then,

following the same reasoning procedure as in the proof of RTA-LC-EDF’s dominance over Bar and BC

(Theorem 23), it holds that RTA-LC-EDF-B � Bar and RTA-LC-EDF-B � BC.

In the end, since Bar is optimal in single processors, so is RTA-LC-EDF-B. That is, in case m = 1, a

task is EDF schedulable if and only if the WCRT estimation returned by RTA-LC-EDF-B is no larger

than that task’s deadline.

Enhancing RTA-LC-EDF-B2

A more careful look into RTA-LC-EDF-B helps us further improve its efficiency and precision. At each

step of the iteration as in Equation (8.8), the Ayk also provides a lower bound on the Ak values to be

considered for the next step: for any Ak < Ayk, there exists y′ < y such that
⌊

Ω(Ak+y′,Ak)−mAk
m

⌋
+Ck ≤ y′.

By taking this into account, the final complexity of RTA-LC-EDF-B will be O(n3(Dmax +N)Dmax).

When m = 1, since there is no need to go through the refinement procesure, the overall complexity of

RTA-LC-EDF-B becomes O(n2(Dmax +N)). Although it does not necessarily return the exact WCRT,

2 This enhancing version is not in the original paper [SL15].

87

8.2. Suspension-Aware Schedulability Analysis

RTA-LC-EDF-B is still an exact test when there is a single processor. To compute the exact WCRTs

of a set of tasks in case of the single processor, the most efficient solution is by [GY14] and has the

complexity O(NLmax + n). Given the fact that very often N � n and Lmax � Dmax, RTA-LC-EDF-B

has a better run-time efficiency. Another advantage of RTA-LC-EDF-B is that it is able to estimate the

WCRT of an arbitrary task τk with complexity O(n(Dk +N)), however, the method in [GY14] has to

always compute tasks’ WCRTs all together.

8.2 Suspension-Aware Schedulability Analysis

8.2.1 Self-suspending tasks

Now, we are going to consider tasks that can suspend their executions. As in Section 2.1, by default we

assume a task cannot suspend its execution voluntarily. Below we show how to extend a sporadic task

model to take into account the self-suspension.

A self-suspending task τi is characterised by (Ci, Di, Ti, Si), where Si denotes that a job of τi can

at most suspend itself for Si time units. Note that a job can suspend multiple times as long as the

cumulative suspension time is no more than Si, and it can begin or end with a suspension phase. We

require that Ci + Si ≤ Di.

A task that never suspends itself is also called a computational task for explicitly distinguishing it

from self-suspending tasks. A computational task can be regarded as a special self-suspending task with

Si = 0. When there are both self-suspending and computational tasks in T , we use T s to denote the

subset of self-suspending tasks and T c to denote the subset of computational tasks. That is, T = T s∪T c

and T s ∩ T c = ∅. For simplicity, we require that the size of T c is at least (m− 1).

8.2.2 Suspension-aware schedulability: prior results

The state-of-the-art suspension-aware test for multiprocessor G-EDF scheduling in hard real-time systems

is by Liu and Anderson [LA13], and we denote this test as LA. LA makes an extension from Bar and

still relies on its extended problem window (see Figure 8.1).

A target job from τk is chosen for analysis and we use sk,e ∈ [0, Sk] to denote the cumulative suspension

time of this job; such suspension time is needed to bound interference suffered by the target job within

the extended problem window. For a computational task, sk,e = 0 can be always assumed.

INCi,k =


q
INCi (Ak +Dk)

yAk+Dk−Ck−sk,e+1
if i 6= k

q
INCi (Ak +Dk)− Ck

yJAk+Dk−TkK0
if i = k

ICIi,k =


q
ICIi (Ak +Dk)

yAk+Dk−Ck−sk,e+1
if i 6= k

q
ICIi (Ak +Dk)− Ck

yJAk+Dk−TkK0
if i = k

When bounding the total interference, a key difference between task sets with and without self-

suspending tasks is that all self-suspending tasks can bring carry-in workload in the beginning of the

extended problem window. In the end, together with the fact that there are at most (m−1) computational

tasks with CI workload, the total interference in the extended problem window becomes Ω =∑
τi∈T s

ICIi,k +
∑
τj∈T c

INCj,k +
∑

the m−1 largest

IDIFFj,k

88

Chapter 8. New Techniques for G-EDF Schedulability Analysis

Theorem 28 (Adapted from Theorem 2 in [LA13]). A task set T = T s∪T c is schedulable with G-EDF

if, ∀τk ∈ T , ∀sk,e ∈ [0, Sk] and for any 0 ≤ Ak < Ak, the following holds:

Ω ≤ m(Ak +Dk − Ck − sk,e) (8.9)

with Ak =
m·(Ck+sk,e)+

∑
τi∈T

Ci

m−Utot −Dk.

8.2.3 RTA-LC-EDF(-B) with suspension-awareness

Here, we discuss how to apply RTA-LC-EDF(-B) to systems with self-suspensions. Again, a target job

of τk with suspension time sk,e is considered.

From suspension-oblivious context to suspension-aware analysis, a series of adaptations are listed

below.

• The suspension of a task does not contribute to its worst-case workload. Thus, the workload

formulation of a task, which can be from either T s or T c, in Algorithm 3 and Algorithm 4 is still

valid.

• In order for the target job (with suspension) to successfully terminate, there should be enough

processing time left for both its execution (Ck) and suspension (sk,e). That is, when bounding the

interference from workload, we should consider the target job’s suspension.

INCi,k (x,Ak) =
q
WNC
i (x,L)

yx−Ck−sk,e+1

ICIi,k (x,Ak) =
q
WCI
i (x,L)

yx−Ck−sk,e+1

• All self-suspending tasks are regarded as CI tasks. The total interference in the sub problem

window is bounded by two estimates: Ω1 in Equation (8.1) and Ω2 in Equation (8.2), where Ω1

is obtained by limiting the number of CI tasks in the beginning of sub problem window. As all

self-suspending tasks are CI tasks now, we need to refine Ω1’s formulation.

Ω1 =
∑
τi∈T s

ICIi,k (x,Ak) +
∑
τj∈T c

INCj,k (x,Ak)

+ max
the m−1 largest

IDIFFj,k (x,Ak)

Similarly, the total workload W (x) within the sub problem window formulated in Equation (8.6)

is refined as follows.
W (x) =

∑
τi∈T s

WCI
i (x,L) +

∑
τj∈T c

WNC
j (x,L)

+ max
the m−1 largest

WDIFF
j (x,L)

• In the suspension-aware context, all self-suspending tasks may bring CI workload into a problem

window. Hence, we re-compute Aαk as

C ′Σ +
∑
τi∈T s Ci +

∑
τi∈T (Ti − Ci)Ui

m− Utot

and Aβk as
C ′Σ +

∑
τi∈T s

Ci +
∑
τi∈T

(Ti −Di)Ui + (Utot − Uk)Dk

m− Utot

89

8.3. Evaluation

with C ′Σ denoting sum of the (m− 1) largest WCETs among computational tasks.

On the other hand, to decide if the interference Ω(y) is too large so that the target job’s execution,

together with its self-suspension, exceeds the interval [a, s1), it is enough to bound Ak by the

following Ayk with ⌊
Ω(Ayk + y,Ayk)−mAyk

m

⌋
> y − Ck − sk,e.

• The last step to adapt RTA-LC-EDF and RTA-LC-EDF-B for Suspension-Awareness (SA) context

is a new starting point, which should take into account the suspension time sk,e, for their respective

RTA procedures. That is, φ = Ck + sk,e for Equation (8.4) and Equation (8.8).

In the end, the adapted tests are denoted as RTA-LC-EDF-SA and RTA-LC-EDF-SA-B. Instead of

enumerating all possible sk,e in [0, Sk] for the WCRT of the target task, we prove that it is enough to

only consider the job with maximum suspension time Sk.

Theorem 29. The WCRT of τk can be upper bounded when its target job has sk,e = Sk.

Proof. Let us first have a look at RTA-LC-EDF-SA. Suppose that φ1 = Ck + sk,e and φ2 = Ck + s′k,e
are two starting points (let us say Ak = 0) for Equation (8.4) in the suspension-aware context and

sk,e > s′k,e. Given two sub problem windows with length X1 and X2 corresponding to φ1 and φ2

respectively and X1 − X2 = sk,e − s′k,e, for any task, the upper bound on its interference in the two

cases is X1 − φ1 + 1 = X2 − φ2 + 1. That means, if we choose an arbitrary iteration step, the difference

between the results starting from φ1 and φ2 is at least (sk,e− s′k,e). By assuming sk,e = Sk, the resulting

WCRT estimation would be a safe upper bound.

For RTA-LC-EDF-SA-B, a similar proof can be conducted.

In the end, we prove the dominance of the new suspension-aware algorithms over LA.

Theorem 30. RTA-LC-EDF-SA � RTA-LC-EDF-SA-B � LA.

Proof. Here we only sketch the proof for RTA-LC-EDF-SA-B � LA. Similarly to the suspension-oblivious

situation, when explicitly taking the self-suspending time sk,e into account, we have Ω(Ak + y,Ak) −
mAk ≤ Ω − mAk; Ω(Ak + y,Ak) and Ω are estimated by RTA-LC-EDF-SA-B and LA (Theorem 28)

respectively. Thanks to the more precise estimation of workload and interference, RTA-LC-EDF-SA-B

� LA.

8.3 Evaluation

In this section we evaluate the performance of different schedulability tests with or without explicitly

taking task suspension time into account. For simplicity, in this section, we use A and B as abbreviations

for RTA-LC-EDF and RTA-LC-EDF-B, respectively; and SA-A and SA-B denote the suspension-aware

counterparts. Recently, [Lee14] developed a “divide and conquer”technique and applied it to BC, denoted

as DC-BC (more specifically, we refer to the NEW-CEDF in [Lee14]). In brief, DC-BC judges the target

task τk to be schedulable if there exists an integer pair configuration (c′, l) ∈ [0, Ck]× [0, Dk] dividing τk

into two parts such that both parts satisfy certain interference-based conditions derived from BC. We

include DC-BC in the comparison.

8.3.1 Tasks without self-suspension

Each task set in the simulation is characterised by a tuple (m,n,Utot) such that m is the number of

processors, n is the number of tasks and Utot is the total task utilisation. We consider m ∈ {2, 4, 8}, and

90

Chapter 8. New Techniques for G-EDF Schedulability Analysis

we set n ∈ {2 ·m, 4 ·m, 8 ·m, 10 ·m}. For each (m,n,Utot) configuration, we randomly generate 1000 task

sets. For a task set with some Utot, tasks’ utilisations are generated according to Randfixedsum algorithm

[ESD10]. Task periods are randomly sampled with uniform distribution in the range [10, 1000]. Then,

the WCET of a task τi is simply computed as Ti · Ui and the relative deadline Di is randomly chosen

with uniform distribution in a range [0.8 · Ti, Ti].
For each generated task set, different schedulability tests are applied, and we record the the number

of schedulable task sets returned by each test. Results are reported in Figure 8.4, 8.5 and 8.6. The x-axis

denotes the total task utilisation Utot and the y-axis represents the percentage of schedulable task sets

detected by different tests. The line marked with Bar/BC counts the task sets that are found schedulable

by at least one of the two.

Clearly RTA-LC-EDF and RTA-LC-EDF-B substantially improve over other tests. DC-BC may

slightly perform better than RTA-LC-EDF when the task set size is small (i.e. n
m = 2). This leaves us

an motivation for the investigation of applying ”divide and conquer” idea to RTA-LC-EDF in the future.

8.3.2 Tasks with self-suspension

We evaluated the performance of our new suspension-aware tests SA-A and SA-B. Task sets are generated

in the same way as before; given any task τi, its maximum suspension time Si is then chosen in the

range [0.5 ·Ci, Ci]. Besides comparing with the state-of-the-art suspension-aware test LA, we also apply

Bar, BC, RTA-LC-EDF(-B) and DC-BC in the suspension-oblivious way, i.e., by simply treating self-

suspending time as task execution.

Results are in Figure 8.7, 8.8 and 8.9. Notice that LA is very pessimistic and gives positive results for

very few task sets. The suspension-aware version of RTA-LC-EDF further improves over the suspension-

oblivious version.

8.3.3 Run-time efficiency

As we have seen from simulation results, the performances of RTA-LC-EDF and of its over-approximation

RTA-LC-EDF-B are rather close to each other. However, RTA-LC-EDF-B has a better run-time per-

formance, as shown in Figure 8.3, where we report the running time of the two algorithms on task sets

with m = 8, n = 10 ·m and different utilisations. Notice that the running time of RTA-LC-EDF-B is up

to 100 times shorter than that of RTA-LC-EDF.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 4.5 5 5.5 6 6.5 7 7.5

T
i
m
e

(
s
e
c
o
n
d
s
)

Task set utilisation

A
B

Figure 8.3: Run-time comparison between new tests

91

8.4. Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1 1.2 1.4 1.6 1.8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1 1.2 1.4 1.6 1.8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1 1.2 1.4 1.6 1.8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1 1.2 1.4 1.6 1.8

Sc
he

du
la

bl
e

ta
sk

 s
et

s
Task set utilisation

A
B

Bar/BC
DC-BC

(d) n
m

= 10

Figure 8.4: Tests on 2 processors (without self-suspension)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(d) n
m

= 10

Figure 8.5: Tests on 4 processors (without self-suspension)

8.4 Conclusion

In this chapter, we provided more accurate algorithms for computing the response times of real-time tasks

scheduled by G-EDF. We also extended the methodology to self-suspending tasks. Our algorithms strictly

dominate the state-of-the-art algorithms, and substantial performance improvements are confirmed by

92

Chapter 8. New Techniques for G-EDF Schedulability Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

Sc
he

du
la

bl
e

ta
sk

 s
et

s
Task set utilisation

A
B

Bar/BC
DC-BC

(d) n
m

= 10

Figure 8.6: Tests on 8 processors (without self-suspension)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(d) n
m

= 10

Figure 8.7: Tests on 2 processors (with self-suspension)

simulation results. In the future, we plan to extend the algorithm to other task models, taking into

account interaction through shared resources.

93

8.4. Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(d) n
m

= 10

Figure 8.8: Tests on 4 processors (with self-suspension)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(a) n
m

= 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(b) n
m

= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(c) n
m

= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Sc
he

du
la

bl
e

ta
sk

 s
et

s

Task set utilisation

A
B

Bar/BC
DC-BC
SA-A
SA-B

LA

(d) n
m

= 10

Figure 8.9: Tests on 8 processors (with self-suspension)

94

Chapter 9

Task Parameter Scalability Problem

In Chapter 5, the proposed exact G-FP schedulability analysis is built upon Linear Hybrid Automata

(LHA), and relies on the continuous time schedule; that is, the ri,j , fi,j and di,j for a job Ji,j can be

any non-negative values. Whereas from Chapter 6 to 8, when talking about the analytical schedulability

analysis of multiprocessor systems, the discrete time schedule is considered, that is, the ri,j , fi,j and di,j

for a job Ji,j must be non-negative integers.

The discrete time assumption reflects the fact that processing time in a computing platform can

always be divided into discrete ticks. Such an assumption is very common in real-time systems. For

instance, The Response Time Analysis (RTA) [ABR+93] is a foundmental methodology for real-time

schedulability analysis and it relies on the assumption that time is divided into integers.

A good feature for schedulability analysis in continuous time domain is that, given a schedulable task

set, by scaling up all tasks’ parameters, the resulting task set is still schedulable. But is this also true

when a discrete time schedule is considered? We believe such a property matters, and it concerns with

the robustness of the scheduling policy and the schedulability analysis.

In this chapter, we propose the concept of task parameter scalability (p-scalability) in a real-time

system by investigating the facts (in discrete time domain) that for some scheduling algorithms the

schedulability of a task set is not preserved when its task parameters are scaled. Examples are the

multiprocessor Global Fixed Priority (G-FP) scheduling of periodic or sporadic tasks and the uniprocessor

Fixed Priority scheduling of real-time tasks with self-suspension.

For such scheduling algorithms, we discuss principles for the safe schedulability analysis. In particular,

we demonstrate that state-of-the-art schedulability tests for G-FP scheduling are not safe and a new

methodology is proposed for the G-FP schedulability analysis by taking the p-scalability property into

account.

When talking about the p-scalability property, by default the discrete time domain is assumed.

Without loss of generality, we will focus on Fixed Priority (FP) systems.

The content in this chapter is based on [SLb], and all results hold for both sporadic and periodic

tasks.

9.1 Task Parameter Scalability

In this section, we are going to formally present the definition of task parameter scalability.

Given a task τi = (Ci, Di, Ti) and a positive integer α, the α-scaling of τi is a task characterised by

(α · Ci, α ·Di, α · Ti) and is denoted as α · τi. As an example, for a task τi = (5, 10, 10), its 10-scaling is

10 · τi = (50, 100, 100). We use the term any-scaling to denote an arbitrary α-scaling task of τi.

95

9.1. Task Parameter Scalability

For a task set T = {τ1, . . . , τn}, its α-scaling is α · T = {α · τ1, . . . , α · τn}. An any-scaling task set

can be similarly defined as the any-scaling task.

Given a task set T and a scheduling policy S such that T is schedulable by S, does the schedulability

result hold for α · T (∀α ∈ Z+)?

The answer of the above question does not come for free and this motivates us to explore the concept

of task parameter scalability.

Definition 15 (Task parameter scalability). We say a scheduling algorithm S is task parameter scalable

(p-scalable) if for any task set T that is schedulable under S, its any-scaling task set α · T (∀α ∈ Z+) is

also schedulable.

For a p-scalable system, it is enough to analyse the schedulability of the set of tasks with parameters

scaled down from original values. On the other hand, for a non p-scalable system, schedulability analysis

can be tricky, for which we are going to discuss later. At first, we would like to investigate the p-scalability

property of several well-known FP systems.

9.1.1 Uniprocessor FP scheduling

The uniprocessor FP scheduled system is the most well-studied topic in the literature. A sufficient and

necessary test is in [ABR+93] and it computes the exact WCRT of a task, which can be either periodic or

sporadic. Given the periodic or sporadic task τi, its exact WCRT can be obtained through the following

iterative procedure starting with X = Ci.

X = Ci +

i−1∑
j=1

⌈
X

Tj

⌉
Cj

Theorem 31. Uniprocessor FP scheduling is p-scalable.

Proof. For any task τi ∈ T with WCRT Ri, we use Rα·i to denote the WCRT of its α-scaling α·τi ∈ α·T .

Given the task τi ∈ T and X, and α · τi ∈ α · T and α ·X, the following relation holds:

α · Ci +

i−1∑
j=1

⌈
α ·X
α · Tj

⌉
α · Cj = α · (Ci +

i−1∑
j=1

⌈
X

Tj

⌉
Cj).

This means that for any α · τi ∈ α · T , there is Rα·i = α · Ri. That is, if τi is schedulable (Ri ≤ Di),

then α ·τi is also schedulable (α ·Ri ≤ α ·Di). In conclusion, uniprocessor FP scheduling is p-scalable.

9.1.2 Multiprocessor G-FP scheduling

Theorem 32. Multiprocessor G-FP scheduling is not p-scalable.

Proof. We use a counter-example to demonstrate that G-FP is not p-scalable. Let us assume a task set

T of 4 sporadic tasks running on 2 processors: τ1 = (1, 4, 4), τ2 = (1, 3, 3), τ3 = (1, 3, 3) and τ4 = (1, 2, 2).

The schedulability of this task set can be confirmed by applying the sufficient schedulability test like

RTA-CE (Theorem 21).

Given a schedulable task set with sporadic tasks, if tasks become periodic, they are still schedulable.

However, 10 · T is not schedulable. For example, when τ2, τ3 and τ4 are released together at time

point 0, whereas τ1 is released at time point 1, such a release pattern will result in τ4’s deadline miss

and this has nothing to do with sporadic or periodic task activations.

Hence, the G-FP scheduling is not p-scalable.

96

Chapter 9. Task Parameter Scalability Problem

9.1.3 Uniprocessor FP scheduling of self-suspending tasks

As we have seen in Section 8.2.1, in some systems, a task may be allowed to self-suspend its execution, and

it is called a self-suspending task. Different from the case of non self-suspending tasks as in Section 9.1.1,

the exact schedulability condition of uniprocessor FP scheduling of real-time tasks with self-suspension

is unknown.

In particular, we adopt a simple model such that a self-suspending task is depicted as (Ci,1, C
′
i,1, Si,1,

S′i,1, Ci,2, C
′
i,2, Di, Ti), where there are two execution sessions that are separated by a suspension session

and the terms Di and Ti are the same as in non self-suspending tasks. Each execution session is specified

by its lower bound (Ci,1 and Ci,2) and upper bound (C ′i,1 and C ′i,2) on the execution time; Si,1 and

S′i,1 are the lower and upper bounds on a task’s self-suspending time. Although here only a suspension

session is allowed, multiple suspensions of a task can be extended easily. A non self-suspending task can

be regarded as a special self-suspending tasks with Si,1 = S′i,1 = 0.

Theorem 33. The uniprocessor FP scheduling of a set of self-suspending tasks is not p-scalable.

Proof. This can be proved by a counter-example. Let us see a task set T with two tasks: τ1 = (C1,1 =

1, C ′1,1 = 1, S1,1 = 1, S′1,1 = 2, C1,2 = 1, C ′1,2 = 1, D1 = 8, T1 = 8) and τ2 = (C2,1 = 1, C ′2,1 = 1, S2,1 =

2, S′2,1 = 2, C2,2 = 1, C ′2,2 = 1, D2 = 5, T2 = 5). τ1 and τ2 are running upon a uniprocessor platform, and

τ1 has a higher priority.

In this simple system, an enumeration of all patterns of task arrivals and execution/self-suspension

interleavings is possible, and the task τ2 is schedulable. As an example, we only present here a particular

case such that τ1 and τ2 arrives simultaneously (let us say at time 0).

• For the time unit [0, 1), τ1 occupies the processor.

• For [1, 2) τ1 goes to suspension and τ2 executes.

• For [2, 3), there are two cases: 1) τ1 starts its 2nd execution session, and 2) τ1 still self-suspends.

In both cases, τ2 goes into self-suspension and τ1 will not interfere τ2’s 2nd execution phase. In

the end, τ2 will meet its deadline.

However, when it comes to α · T , possible interleavings between α · τ1 = (10, 10, 10, 20, 10, 10, 80, 80)

and α · τ2 = (10, 10, 20, 20, 10, 10, 50, 50) can result in the deadline miss of α · τ2. Suppose that α · τ2 is

released at time 0 and α ·τ1 is released one time unit later, and both tasks self-suspend by their respective

upper bounds, finally α · τ2 will miss its deadline. The corresponding schedule is depicted as in Figure

9.1. Thus, the FP scheduling of self-suspending tasks is not p-scalable.

τ2

τ1

11 20 31 41

Figure 9.1: The scheduling of self-suspending tasks is not p-scalable

9.2 The Schedulability Analysis for non P-Scalable Scheduling

9.2.1 Certain and uncertain tests

Given any scheduling policy, the core is to check the schedulability of a task set under it. The concept

of p-scalability brings new considerations for designing schedulability tests.

97

9.2. The Schedulability Analysis for non P-Scalable Scheduling

At first, for a non p-scalable scheduling policy, the exact test seems to be less attractive. Given an

exact test T and suppose that T verifies a task set T to be schedulable, this does not bring the guarantee

for the schedulability of the any-scaling of T .

As a consequence, we differentiate schedulability tests for a non p-scalable system into two classes:

• A test T is said to be certain if for any task set T that is decided to be schedulable by T, its

any-scaling α · T (∀α ∈ Z+) is also schedulable by T;

• otherwise, the test is uncertain.

In the end, for a non p-scalable scheduling algorithm, a certain test is safe to use. When checking

the schedulability of task sets under a non p-scalable algorithm, since the exact test is uncertain, a less

pessimistic certain test will be the best that can be expected.

In the following, we will take the multiprocessor G-FP scheduling as an example, and demonstrate

how to perform certain schedulability analysis in a non p-scalable system.

9.2.2 The schedulability analysis for G-FP: prior results

In this part, we briefly recall the state-of-the-art tests RTA-LC, RTA-CE and DA-LC for schedulability

check of task sets under G-FP policy, which is not p-scalable. More details on the analytical techniques

for G-FP schedulability analysis can be found in Chapter 6 and Chapter 7. For simplicity, we assume

tasks have constrained deadlines.

A target task τk is chosen for the schedulability check; more specifically, we can focus on one arbitrary

job of τk that is called the target job. When analysing the schedulability of such a job, a problem window

is assumed. The problem window is a time interval [a, b) such that a coincides with the release time of

the target job and b is the corresponding absolute deadline. A sub problem window of is a time interval

[a, s) with s ≤ b, and we denote x = s− a.

Given a sub problem window, the workload of a higher priority task τi represents the maximum

amount of execution can be conducted by τi over this time interval. In order to check the schedulability

of the target task, we need to convert workload to the interference upon the target job. The interference

from a higher priority task τi denotes the cumulative length of all time intervals such that the target

job of τk is active but cannot execute, while τi is executing. The computation of the exact interference

is very hard, we will focus on the upper bound of it. Since almost all state-of-the-art results for G-FP

consider only the over-approximate interference, we would abuse the use of the term ”interference” to

denote also the upper bound of interference. According to the observation in [BCL05], it is enough to

upper bound a higher priority task τi’s interference Ii,k(x) over a time interval x as follows.

0 ≤ Ii,k(x) ≤ (x− Ck + 1) (9.1)

In order to more precisely estimate the interference caused upon the target job, interfering tasks are

differentiated into two classes: carry-in (CI) tasks and non-carry-in (NC) tasks. Given the problem

window [a, b), a task is said to be a CI task if it has a job released before the beginning of the window

and such a job is still active at time point a; otherwise, it is a NC task.

According to Theorem 20, to estimate the WCRT of τk, we only need to consider situations with up

to (m− 1) CI tasks.

For a NC task, the workload upper bound can be easily computed as follows.

WNC
i (x) =

⌊
x

Ti

⌋
· Ci + Jx mod TiKCi (9.2)

98

Chapter 9. Task Parameter Scalability Problem

TiTi −Ri
Dk

a b

Figure 9.2: The worst-case arrival pattern for WCI
i (x)

On the other hand, Figure 9.2 depicts the worst-case scenario for resulting the maximum workload

of a CI task, and we adapt the formulation in Equation (7.1) to estimate the CI workload.

WCI
i (x) = WNC

i (Jx− xpK0) + JxKCi (9.3)

with xp = Ci + Ti −Ri.
Then, we derive the interference from a higher priority task τi on the target one, according to the

property in Equation (9.1) and workload formulation in Equation (9.2) and (9.3).

INCi,k (x) = JWNC
i (x)K(x−Ck+1) (9.4)

ICIi,k (x) = JWCI
i (x)K(x−Ck+1) (9.5)

Given a time interval with length x, the total interference is defined.

Ωk(x) =
∑
i 6=k

INCi,k (x) +
∑

the (m−1) largest

IDIFFi,k (x) (9.6)

where IDIFFi,k (x) = ICIi,k (x)− INCi,k (x).

Finally, the interference upon the target job within a sub problem window with length x can be upper

bounded by
⌊

Ωk(x)
m

⌋
.

When it comes to the schedulability analysis, RTA-LC computes the response time of each task by

incrementally enlarging the sub problem window and estimating the interference at each iterative step.

Lemma 12 (RTA-LC). For the target task τk ∈ T , its WCRT is bounded by the solution of following

iteration, starting with X = Ck.

X ←
⌊

Ωk(X)

m

⌋
+ Ck (9.7)

In Chapter 7, the test RTA-CE applies a Carry-in Enumeration (CE) technique to RTA-LC by

explicitly enumerating the possible sets of CI tasks in prior to the RTA procedure.

Lemma 13 (RTA-CE). The upper bound of WCRT of task τk ∈ T is

Rk = max
T CI∈Z

(
RT

CI

k

)
where Z is the set of all possible CI task sets and given a CI task set T CI , RT

CI

k is computed by the

following iteration

X =

⌊
Ωk(T CI , X)

m

⌋
+ Ck

with

Ωk(T CI , x) =
∑

τi 6∈T CI
INCi,k (x) +

∑
τi∈T CI

ICIi,k (x).

Instead of an iterative procedure, DA-LC measures the total interference within a problem window

directly.

99

9.2. The Schedulability Analysis for non P-Scalable Scheduling

Lemma 14 (DA-LC). For the target task τk ∈ T , τk is schedulable if

Dk ≥
⌊

Ωk(Dk)

m

⌋
+ Ck.

9.2.3 Certain schedulability analysis for G-FP

In this part, we first demonstrate that the G-FP schedulability tests discussed in prior are all not certain.

Then, we analyse the causes of the uncertainty and provide a new methodology for certain schedulability

analysis of G-FP scheduling.

Theorem 34. The G-FP schedulability tests RTA-LC, RTA-CE and DA-LC are uncertain.

Proof. The counter-example in the proof of Theorem 32 can be re-used here to prove the uncertainty of

these tests. In fact, by applying them for randomly generated task sets and corresponding scalings, the

theorem can be easily confirmed.

Although it is enough to show a test’s uncertainty through a counter-example, we would like to

provide a brief analysis on factors causing the uncertainty. We start from RTA-LC.

Given a task τk ∈ T and a time interval with length L, we build the scenario containing τk’s α-scaling

α · τk ∈ α · T and the time interval with length α · L. Let us say, by RTA-LC, the interference upon τk

subject to L is I, and the interference upon α · τk subject to α · L is I ′.
Given a mathematical function F , we use the form F(L, τi) to denote the computation result of F

with respect to the input L and task τi. We say F is certainty-friendly, if given an input L, it always

holds that ∀α ∈ Z+,F(α · L,α · τi) ≤ α · F(L, τi); otherwise, F is said to be certainty-unfriendly.

If all mathematical functions appearing in RTA-LC, from Equation (9.1) to Equation (9.7), for

estimating the workload and interference are certainty-friendly, then there would be I ′ ≤ α · I, and

RTA-LC will be a certain test. As this is not the fact, let us detect the certainty-unfriendly parts in

RTA-LC.

• The interference upper bound x− Ck + 1 in Equation (9.1) is certainty-friendly, as there is

(α · L− α · Ck + 1) ≤ α · (L− Ck + 1).

• The NC workload estimation in Equation (9.2) is certainty-friendly. In fact, it holds that α ·
WNC
i (L) = WNC

α·i (α · L), where α · i emphasises that the corresponding task is α · τi.

Whereas for the CI workload estimated in Equation (9.3), we need to consider different conditions.

If there is Rα·i ≤ α ·Ri (again, α · i is used for the explicit denotation for task α · τi), then WCI
i (L)

is certainty-friendly; otherwise, WCI
i (L) may be certainty-unfriendly.

• Due to the certainty-friendliness of L − Ck + 1 and WNC
i (L), the NC interference estimated in

Equation (9.4) is also certainty-friendly.

However, the certainty-friendliness of the CI interference in Equation (9.5) depends on the relation

between Ri and Rα·i, so does the total interference in Equation (9.6).

• Finally, it is the turn to the RTA-LC’s iterative function in Equation (9.7). Let us first recall the

following relation for the floor operator [flo]:

∀y, α,m ∈ Z+
⌊α · y
m

⌋
≥ α ·

⌊ y
m

⌋
.

This says that the floor operator is not certainty-friendly, and this results in a certainty-unfriendly

iterative procedure for RTA-LC to upper bound a task’s response time as in Equation (9.7).

100

Chapter 9. Task Parameter Scalability Problem

Now, we propose a new RTA procedure with a certain schedulability result.

Theorem 35 (Certain RTA-LC). For the target task τk ∈ T , its WCRT is bounded by the solution of

following iteration, starting with X = Ck.

X ←
⌈

Ωk(X)

m

⌉
+ Ck (9.8)

Proof. As the new iteration in Equation (9.8) will never converge into a fixed point that is smaller than

Equation (9.7)’s, the new test indeed upper bounds τk’s WCRT.

Implicitly, a task τk’s WCRT upper bound is also denoted by Rk, and for k ≤ m there is Rk = Ck,

as we only apply the RTA to tasks other than the m highest priority ones.

Then, certainty of the new test can be proved if given the task τk such that ∀i < k Rα·i ≤ α ·Ri, it

holds that Rα·k ≤ α ·Rk.

Because that Rα·i ≤ α · Ri, the CI interference ICIi,k (L) in Equation (9.5) and the total interference

Ωk(L) in Equation (9.6) become certainty-friendly.

On the other hand, in the iterative procedure, we replace the floor operator with the ceiling, which

is certainty-friendly [flo]:

∀y, α,m ∈ Z+
⌈α · y
m

⌉
≤ α ·

⌈ y
m

⌉
.

As a result, there will be Rα·k ≤ α ·Rk, and the RTA test in Theorem 35 is certain.

Still, the CE technique in Chapter 7 can be applied to Certain RTA-LC and this will result in a

Certain RTA-CE.

Similarly, a certain version of DA-LC is as follows.

Theorem 36 (Certain DA-LC). For the target task τk ∈ T , τk is schedulable if

Dk ≥
⌈

Ωk(Dk)

m

⌉
+ Ck.

9.3 Conclusion

In this chapter, we formulated the task parameter scalability (p-scalability) problem in a real-time system.

Such a property is meaningful for the safe timing analysis. Unfortunately, many well-known systems are

not p-scalable. That is, given a schedulable system, by scaling all task parameters, the resulting system

may be not schedulable.

We then discussed how to solve challenges for schedulability analysis in a non p-scalable system. As

it is shown, state-of-the-art tests for multiprocessor G-FP scheduling are not really safe. In the end, a

new methodology is developed for G-FP schedulability analysis that takes the p-scalability into account.

Although this chapter deals with only fixed priority scheduling, similar issues also appear in dynamic

priority systems. For example, the tests BC (Theorem 15) and RTA-LC-EDF (Theorem 22) for mul-

tiprocessor global Earliest Deadline First (EDF) scheduling obviously do not follow the safe principles

regarding p-scalability. It will be interesting to further explore the p-scalability property in different

real-time systems.

101

Chapter 10

Conclusion

Through this thesis, a variety of problems have been investigated to integrate the use of analytical

approach and model-based approach for real-time schedulability analysis.

Classic theorems from the literature of real-time scheduling can be applied to the modeling of real-

time systems so as to optimise the exploration of the state space. As in Chapter 3, a naive parametric

analysis in the LHA model fails to return meaningful results and this is fixed by taking into account the

system’s critical instant. On the other hand, the LHA model allows parametric schedulability analysis

on scenarios that the analytical approach does not apply.

In Chapter 4, the LHA is utilised to model a periodic server, which is a very classic abstraction in

real-time scheduling theory. As a result, the LHA approach brings more precise schedulability results;

due to the expressness, the LHA model can deal with different task characterisations.

The multiprocessor global scheduling problem has been extensively studied in this work. At first, a

LHA model is built to solve the exact Global Fixed Priority (G-FP) schedulability analysis. Because of

the high complexity, an exact analysis reaches state explosion easily. Then, the heuristic from real-time

scheduling helps and a pre-order relation is defined to mitigate the state explosion problem. Meanwhile,

based on the LHA model, a bounded time interval for deciding a sporadic task’s schedulability under G-

FP scheduling, however, this result itself does not depend on the underlying LHA model and it advances

people’s understanding on the G-FP scheduling of sporadic tasks.

Even with the proposed pre-order relation, the exact analysis can only deal with rather small systems.

Still, the analytical approach with over-approximate schedulability results has its critical role. Thus, more

precise schedulability tests for multiprocessor global FP and global EDF systems have been developed

in Chapter 7 and Chapter 8.

One key difference between the exact G-FP test in LHA and the analytical tests upon multiprocessor

global scheduling is that the LHA based test is in continuous time and the latter often assumes the discrete

time schedule. When reasoning such a mismatch, the robustness problem for schedulability analysis in

discrete time domain becomes a concern. This motivates the work in Chapter 9 for the task parameter

scalability problem. As a result, the exact test in discrete time domain for some scheduling policies

becomes problematic, and the G-FP policy belongs to this class of scheduling algorithms. Moreover,

state-of-the-art analytical tests for G-FP become unsafe to use and a new methodology for safe G-FP

schedulability analysis is proposed.

Overall, the analytical approach for schedulability analysis focuses on special cases of a system, for

example, the worst-case scenario; in the model-based approach, each state in the state space represents

a specific scenario of the system. In conclusion, the most important experience learnt from a series of

works in this thesis is that the integration (also the collision) of different solution techniques does bring

people new perspectives to analyse a real-time system.

102

Acknowledgments

Three years ago, when I started my PhD work, my naive plan was to become famous in some specific

field. While this is not really a wise motivation, I do not regret my choice of joining the PhD program.

I am deeply appreciative of my supervisor Giuseppe Lipari for his guidance, respect, tolerance, kind-

ness and support on me during my PhD study. He deserves all these words, and I believe I learnt many

important things from him besides being professional.

I am lucky to work with many brilliant colleagues. I owe my thanks to Marco Di Natale, who has

helped me in different circumstances since I was a graduate student. I would like to thank Giorgio

Buttazzo. Under his lead, the RETIS lab is the perfect place for conducting research work on real-time

systems and I feel proud being a member of it. Thanks to captain Enrico Bini of our carcassonne team.

I am grateful to Marko Bertogna and Gilles Geeraerts for revising my PhD thesis. Moreover, their

previous work is the base for my results in the thesis.

Thank Laurent Fribourg for inviting me to visit LSV, where I began the adventure in the wonderland

of formal methods. Special thanks to Étienne André, for our interesting discussions and amazing works

together on parametric Timed Automata.

Thank Claudio Manfroni and Valentina Venuti, and they have been always available to help on

administrative stuff. Thank all the past and current members in the lab, my collaborators and my

friends.

Finally, thanks go to my family for the love, trust and support!

103

Bibliography

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time

systems. In Proc. 19th IEEE Real-Time Systems Symposium (RTSS’98), Madrid, Spain,

December 1998.

[ABR+93] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J Wellings. Apply-

ing new scheduling theory to static priority pre-emptive scheduling. Software Engineering

Journal, 8(5):284–292, 1993.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid au-

tomata: an algorithmic approach to the specification and verification of hybrid systems.

Springer, 1993.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.

[AF10] Étienne André and Laurent Fribourg. Behavioral cartography of timed automata. In Reach-

ability Problems, pages 76–90. Springer, 2010.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITATOR 2.5:

A tool for analyzing robustness in scheduling problems. In Dimitra Giannakopoulou and

Dominique Méry, editors, Proc. 18th International Symposium Formal Methods (FM’12),

volume 7436 of LNCS, pages 33–36, Paris, France, August 2012. Springer.

[AFS13] Étienne André, Laurent Fribourg, and Romain Soulat. Merge and conquer: State merging in

parametric timed automata. In ATVA, volume 8172 of Lecture Notes in Computer Science,

pages 381–396. Springer, 2013.

[AHV93] Rajeev Alur, Thomas A Henzinger, and Moshe Y Vardi. Parametric real-time reasoning.

In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages

592–601. ACM, 1993.

[ALNS15] Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun. Reachability

preservation based parameter synthesis for timed automata. In NASA Formal Methods,

pages 50–65. Springer, 2015.

[AM02] Yasmina Abdeddäım and Oded Maler. Preemptive job-shop scheduling using stopwatch

automata. In Tools and Algorithms for the Construction and Analysis of Systems, pages

113–126. Springer, 2002.

[APN11] Mikael Asberg, Paul Pettersson, and Thomas Nolte. Modelling, verification and synthesis of

two-tier hierarchical fixed-priority preemptive scheduling. In Real-Time Systems (ECRTS),

2011 23rd Euromicro Conference on, pages 172–181. IEEE, 2011.

104

Bibliography

[ARI96] ARINC. ARINC 653: Avionics Application Software Standard Interface (Draft 15). Airlines

Electronic Engineering Committee (AEEC), June 1996.

[AS13] Étienne André and Romain Soulat. The Inverse Method. ISTE Ltd and John Wiley & Sons

Inc., 2013.

[Bak03] Theodore Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. IEEE

Real-Time Systems Symposium (RTSS), 2003.

[Bar07] Sanjoy K. Baruah. Techniques for multiprocessor global schedulability analysis. In Proceed-

ings of the 28th IEEE Real-Time Systems Symposium (RTSS 2007), 3-6 December 2007,

Tucson, Arizona, USA, pages 119–128, 2007.

[BB06] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In Real-Time Systems

Symposium, 2006. RTSS’06. 27th IEEE International, pages 159–168. IEEE, 2006.

[BB09a] Theodore Baker and Sanjoy Baruah. An analysis of global EDF schedulability for arbitrary-

deadline sporadic task systems. Real-Time Systems, 43(1):3–24, 2009.

[BB09b] Theodore Baker and Sanjoy K Baruah. Sustainable multiprocessor scheduling of sporadic

task systems. In Real-Time Systems, 2009. ECRTS’09. 21st Euromicro Conference on, pages

141–150. IEEE, 2009.

[BB11] Marko Bertogna and Sanjoy Baruah. Tests for global EDF schedulability analysis. Journal

of Systems Architecture, 57(5):487–497, 2011. Special Issue on Multiprocessor Real-time

Scheduling.

[BBMSS09] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller.

Implementation of a speedup-optimal global EDF schedulability test. In Real-Time Systems,

2009. ECRTS’09. 21st Euromicro Conference on, pages 259–268. IEEE, 2009.

[BC07a] Theodore P Baker and Michele Cirinei. Brute-force determination of multiprocessor schedu-

lability for sets of sporadic hard-deadline tasks. In Principles of Distributed Systems, pages

62–75. Springer, 2007.

[BC07b] Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled sym-

metric multiprocessor platforms. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th

IEEE International, pages 149–160. IEEE, 2007.

[BCL05] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability analysis of

EDF on multiprocessor platforms. In Real-Time Systems, 2005.(ECRTS 2005). Proceedings.

17th Euromicro Conference on, pages 209–218. IEEE, 2005.

[BDG+11] T Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.F. Raskin, and J. Worrell. On reacha-

bility for hybrid automata over bounded time. In Proc. 38th International Colloquium on

Automata, Languages and Programming (ICALP’11), volume 6756 of LNCS, pages 416–427.

Springer, 2011.

[BDNB08] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis for fixed-priority

real-time systems. Real-Time Systems, 39(1-3):5–30, 2008.

[BFSV04] Giacomo Bucci, Andrea Fedeli, Luigi Sassoli, and Enrico Vicario. Timed state space analysis

of real-time preemptive systems. Software Engineering, IEEE Transactions on, 30(2):97–

111, 2004.

105

Bibliography

[BMR90] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively scheduling hard-real-

time sporadic tasks on one processor. In Real-Time Systems Symposium, 1990. Proceedings.,

11th, pages 182–190. IEEE, 1990.

[BMS12] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis of sporadic real-

time multiprocessor task systems. Algorithmica, 63(4):763–780, 2012.

[BRH90] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms and complexity

concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-

time systems, 2(4):301–324, 1990.

[But11] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms

and applications, volume 24. Springer Science & Business Media, 2011.

[CG06] Liliana Cucu and Joël Goossens. Feasibility intervals for fixed-priority real-time schedul-

ing on uniform multiprocessors. In Emerging Technologies and Factory Automation, 2006.

ETFA’06. IEEE Conference on, pages 397–404. IEEE, 2006.

[CG07] Liliana Cucu and Joël Goossens. Feasibility intervals for multiprocessor fixed-priority

scheduling of arbitrary deadline periodic systems. In Proceedings of the conference on De-

sign, automation and test in Europe, pages 1635–1640. EDA Consortium, 2007.

[CGG11] Liliana Cucu-Grosjean and Joël Goossens. Exact schedulability tests for real-time scheduling

of periodic tasks on unrelated multiprocessor platforms. Journal of systems architecture,

57(5):561–569, 2011.

[CL00] Franck Cassez and Kim Larsen. The impressive power of stopwatches. In CONCUR

2000Concurrency Theory, pages 138–152. Springer, 2000.

[CLPV11] Laura Carnevali, Giuseppe Lipari, Alessandro Pinzuti, and Enrico Vicario. A formal ap-

proach to design and verification of two-level hierarchical scheduling systems. In Alexander

Romanovsky and Tullio Vardanega, editors, Proc. 16th Ada-Europe International Confer-

ence Reliable Software Technologies (Ada-Europe’11), volume 6652 of LNCS, pages 118–131.

Springer, 2011.

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic computation of schedu-

lability regions using parametric timed automata. In Real-Time Systems Symposium, 2008,

pages 80–89. IEEE, 2008.

[CPV13] Laura Carnevali, Alessandro Pinzuti, and Enrico Vicario. Compositional verification for hi-

erarchical scheduling of real-time systems. IEEE Trans. on Software Engineering, 39(5):638–

657, 2013.

[DB05] R.I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Proc. 26th

IEEE Real-Time Systems Symposium (RTSS’05), pages 10 pp.–398, 2005.

[DB11] Robert Davis and Alan Burns. Improved priority assignment for global fixed priority pre-

emptive scheduling in multiprocessor real-time systems. Real-Time Systems, 47(1):1–40,

2011.

[Dod06a] RB Dodd. An analysis of task-scheduling for a generic avionics mission computer. Technical

report, DTIC Document, 2006.

106

Bibliography

[Dod06b] RB Dodd. Coloured petri net modelling of a generic avionics mission computer. Technical

report, DTIC Document, 2006.

[ESD10] Paul Emberson, Roger Stafford, and Robert Davis. Techniques for the synthesis of multi-

processor tasksets. In 1st International Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

[FJK08] Goran Frehse, Sumit Kumar Jha, and Bruce H Krogh. A counterexample-guided approach

to parameter synthesis for linear hybrid automata. In Hybrid Systems: Computation and

Control, pages 187–200. Springer, 2008.

[FLMS12] Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. Robustness analysis for

scheduling problems using the inverse method. In Mark Reynolds, Paolo Terenziani, and

Ben Moszkowski, editors, Proc. 19th International Symposium Temporal Representation

and Reasoning (TIME’12), pages 73–80, Leicester, UK, September 2012. IEEE Comp. Soc.

Press.

[flo] Introduction to the rounding and congruence functions. Web page:

http://functions.wolfram.com/IntegerFunctions/Ceiling.

[FM02] Xiang Feng and Aloysius K. Mok. A model of hierarchical real-time virtual resources. In

Proc. 23rd IEEE Real-Time Systems Symposium (RTSS’02), pages 26–35, Austin, TX USA,

December 2002.

[FMPY03] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability analysis

using two clocks. In Tools and Algorithms for the Construction and Analysis of Systems,

pages 224–239. Springer, 2003.

[FPY02] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynchronous pro-

cesses: Schedulability and decidability. In Tools and Algorithms for the Construction and

Analysis of Systems, pages 67–82. Springer, 2002.

[GGCG13] Emmanuel Grolleau, Joël Goossens, and Liliana Cucu-Grosjean. On the periodic behavior of

real-time schedulers on identical multiprocessor platforms. arXiv preprint arXiv:1305.3849,

2013.

[GGD+07] Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact schedulability

analysis for static-priority global multiprocessor scheduling using model-checking. In Soft-

ware Technologies for Embedded and Ubiquitous Systems, pages 263–272. Springer, 2007.

[GGL+08] Nan Guan, Zonghua Gu, Mingsong Lv, Qingxu Deng, and Ge Yu. Schedulability analysis

of global fixed-priority or EDF multiprocessor scheduling with symbolic model-checking. In

Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International

Symposium on, pages 556–560. IEEE, 2008.

[GGL13] Gilles Geeraerts, Joël Goossens, and Markus Lindstrm. Multiprocessor schedulability of

arbitrary-deadline sporadic tasks: complexity and antichain algorithm. Real-Time Systems,

49(2):171–218, 2013.

[GGS14] Gilles Geeraerts, Joël Goossens, and Amélie Stainer. Synthesising succinct strategies in

safety and reachability games. In Reachability Problems - 8th International Workshop, RP

2014, Oxford, UK, September 22-24, 2014. Proceedings, pages 98–111, 2014.

107

Bibliography

[GSYY09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority

multiprocessor scheduling. In Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE,

pages 387–397. IEEE, 2009.

[GY14] Nan Guan and Wang Yi. General and efficient response time analysis for EDF scheduling.

In Design, Automation & Test in Europe Conference & Exhibition, DATE 2014, Dresden,

Germany, March 24-28, 2014, pages 1–6, 2014.

[Has12] Gomaa Hassan. Software Modeling and Design: UML, Use Cases, Patterns, and Software

Architectures. Cambridge University Press, 2012.

[HPR97] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-time sys-

tems using linear relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

[LA13] Cong Liu and James H Anderson. Suspension-aware analysis for hard real-time multipro-

cessor scheduling. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,

pages 271–281. IEEE, 2013.

[LAL+14] Shang-Wei Lin, Etienne Andre, Yang Liu, Jun Sun, and Jin Song Dong. Learning as-

sumptions for compositionalverification of timed systems. IEEE Transactions on Software

Engineering, 2(40):137–153, 2014.

[LB04] Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchical scheduling

systems. Journal of Embedded Computing, 1(2), 2004.

[Lee14] Jinkyu Lee. Time-reversibility of schedulability tests. In Real-Time Systems Symposium

(RTSS), 2014 IEEE 35th. IEEE, 2014.

[LFCL12] Juri Lelli, Dario Faggioli, Tommaso Cucinotta, and Giuseppe Lipari. An experimental

comparison of different real-time schedulers on multicore systems. Journal of Systems and

Software, 85(10):2405–2416, 2012.

[Liu00] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA,

1st edition, 2000.

[LL73] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[LPPR13] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and Yusi Ramadian. Timed-automata

based schedulability analysis for distributed firm real-time systems: a case study. Interna-

tional Journal on Software Tools for Technology Transfer, 15(3):211–228, 2013.

[LPT13] Kai Lampka, Simon Perathoner, and Lothar Thiele. Component-based system design: ana-

lytic real-time interfaces for state-based component implementations. International Journal

on Software Tools for Technology Transfer, 15(3):155–170, 2013.

[LS13] Jinkyu Lee and Insik Shin. Limited carry-in technique for real-time multi-core scheduling.

Journal of Systems Architecture, 59(7):372–375, 2013.

[LSSE15] Jinkyu Lee, Kang G. Shin, Insik Shin, and Arvind Easwaran. Composition of schedulability

analyses for real-time multiprocessor systems. IEEE Trans. Computers, 64(4):941–954, 2015.

[LW82] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-priority scheduling

of periodic, real-time tasks. Performance evaluation, 2(4):237–250, 1982.

108

Bibliography

[Min01] Antoine Miné. A new numerical abstract domain based on difference-bound matrices. In

Proceedings of the Second Symposium on Programs as Data Objects, PADO ’01, pages 155–

172, London, UK, UK, 2001. Springer-Verlag.

[Min06] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,

19(1):31–100, 2006.

[SLa] Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test of

sporadic tasks on multiprocessor global fixed-priority scheduling. Real-Time Systems.

[SLb] Youcheng Sun and Giuseppe Lipari. The task parameter scalability problem in real-time

systems.

[SL03] Insik Shih and Insup Lee. Periodic resource model for compositional real-time guarantees. In

Proc. 24th IEEE Real-Time Systems Symposium (RTSS’03), pages 2–13, Cancun, Mexico,

December 2003.

[SL08] Insik Shin and Insup Lee. Compositional real-time scheduling framework with periodic

model. ACM Transactions on Embedded Computing Systems (TECS), 7(3):30, 2008.

[SL14a] Youcheng Sun and Giuseppe Lipari. FOrmal Real-Time Scheduler (FORTS). Web page:

https://github.com/glipari/forts, January 2014.

[SL14b] Youcheng Sun and Giuseppe Lipari. A weak simulation relation for real-time schedulability

analysis of global fixed priority scheduling using linear hybrid automata. In Proceedings

of the 22nd International Conference on Real-Time Networks and Systems, page 35. ACM,

2014.

[SL15] Youcheng Sun and Giuseppe Lipari. Response time analysis with limited carry-in for global

earliest deadline first scheduling. In Real-Time Systems Symposium (RTSS), 2015 IEEE

36th. IEEE, 2015.

[SLAF14] Youcheng Sun, Giuseppe Lipari, Étienne André, and Laurent Fribourg. Toward parametric

timed interfaces for real-time components. In Proceedings 1st International Workshop on

Synthesis of Continuous Parameters (SynCoP), pages 49–64, Grenoble, France, 6th April

2014.

[SLGY14] Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. Improving the response time

analysis of global fixed-priority multiprocessor scheduling. In Embedded and Real-Time

Computing Systems and Applications (RTCSA), 2014 IEEE 20th International Conference

on, pages 1–9. IEEE, 2014.

[SLS+14] Youcheng Sun, Giuseppe Lipari, Romain Soulat, Laurent Fribourg, and Nicolas Markey.

Component-based analysis of hierarchical scheduling using linear hybrid automata. In Em-

bedded and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE 20th

International Conference on, pages 1–10. IEEE, 2014.

[Spe91] ARINC Specification. 651: Design guidance for integrated modular avionics. Aeronautical

Radio, Inc, Annapolis, MD, 1991.

[Spu96] Marco Spuri. Analysis of deadline scheduled real-time systems. 1996.

109

https://github.com/glipari/forts

Bibliography

[SSL+14] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and Laurent Fribourg.

Parametric schedulability analysis of fixed priority real-time distributed systems. In Formal

Techniques for Safety-Critical Systems, pages 212–228. Springer, 2014.

[TCN00] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling

hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva.

The 2000 IEEE International Symposium on, volume 4, pages 101–104. IEEE, 2000.

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H Roux. Parametric model-checking of

stopwatch petri nets. J. UCS, 15(17):3273–3304, 2009.

[WW07] Christopher B Watkins and Randy Walter. Transitioning from federated avionics archi-

tectures to integrated modular avionics. In Digital Avionics Systems Conference, 2007.

DASC’07. IEEE/AIAA 26th, pages 2–A. IEEE, 2007.

110

	Introduction
	Preliminary Definitions
	System Model
	Linear Hybrid Automata

	Parametric Schedulability Analysis
	Introduction
	The Inverse Method
	A Modular Framework for Modeling Real-Time Systems
	Applying the Parametric Analysis
	Convergence problem
	An improved model of the system

	Applicability of the Idle-Time Scheduler
	Toward Timed Interfaces
	The Timed Interface
	Conclusion

	Component-Based Schedulability Analysis
	Introduction
	State of the Art
	The Hierarchical System
	Server Algorithm
	Periodic Server Model in LHA
	Proof of correctness

	Schedulability Analysis in the Hierarchical System
	Scheduler automaton
	Hierarchical composition
	Decidability

	Evaluation
	Comparison with the Lipari-Bini test
	External service test
	A real case study of an avionics system
	Scalability of the analysis

	Conclusion

	Exact G-FP Schedulability Analysis
	Introduction
	Related Work
	Multiprocessor Schedulability in LHA
	The task automata
	Scheduling automaton

	Weak Simulation Relation in SA
	Weak simulation in concrete state space
	Weak simulation in symbolic state space
	Optimising the slack-time pre-order relation
	Schedulability analysis in SA

	The Decidability Interval
	System statuses and the dominance relation
	The decidability interval for G-FP scheduling
	Decidability for SA-SA algorithm

	Evaluation
	SA-SA algorithm with and without slack-time pre-order relation
	Run-time complexity of SA-SA algorithm
	Comparison with state-of-the-art over-approximate approach
	Exact schedulability analysis for periodic tasks in G-FP

	Conclusion

	Multiprocessor Global Scheduling
	Introduction
	Basic Notations
	Tests for G-EDF
	BC
	Bar

	Tests for G-FP
	BC-FP
	RTA-LC
	DA-LC

	Improving the RTA for G-FP Scheduling
	Critical Instants for G-FP Scheduling
	Pessimism and optimism in RTA-LC

	RTA-CE: RTA with Carry-in Enumeration
	New workload upper bound
	New iterative analysis procedure
	Improving the efficiency

	Evaluation
	Performance tests
	Efficiency tests

	Conclusion

	New Techniques for G-EDF Schedulability Analysis
	An Improved Schedulability Test for G-EDF
	Interference in a sub problem window
	RTA-LC-EDF
	Upper bound to Ak
	RTA-LC-EDF-B

	Suspension-Aware Schedulability Analysis
	Self-suspending tasks
	Suspension-aware schedulability: prior results
	RTA-LC-EDF(-B) with suspension-awareness

	Evaluation
	Tasks without self-suspension
	Tasks with self-suspension
	Run-time efficiency

	Conclusion

	Task Parameter Scalability Problem
	Task Parameter Scalability
	Uniprocessor FP scheduling
	Multiprocessor G-FP scheduling
	Uniprocessor FP scheduling of self-suspending tasks

	The Schedulability Analysis for non P-Scalable Scheduling
	Certain and uncertain tests
	The schedulability analysis for G-FP: prior results
	Certain schedulability analysis for G-FP

	Conclusion

	Conclusion
	Acknowledgments

