Doctor of Philosophy Dissertation

Real-time Control Design with
Resource Constraints

by

Yifan Wu

Supervisor: Giorgio Buttazzo

Scuola Superiore Sant’/Anna, Pisa
2009

Abstract

Nowadays, most control systems are manipulated by conlgolithms that are

implemented as software components. In many practicaicgtighs, such soft-

ware components execute on platforms characterized witkticned resources,
such as in embedded systems. To ensure the correct timirayibelof the con-

trol software, real-time kernel is employed to scheduleesgvsuch components
running on the same platform and sharing the same limitealiress. However,

the integration of real-time systems and control systeregisieareful analysis and
deliberate design with new techniques.

In this dissertation, the design problem for real-time oalrdystems in resource-
constrained platforms is investigated. The backgrounaverige of real-time sys-
tems and control systems is introduced, and the state oftieraviewed. Several
new approaches are proposed to contribute to the existimgddogies.

The limited-preemption is utilized to improve the respgasess of control
tasks and hence improve the control performance, withopigedizing the schedu-
lability of the whole system.

A general framework for real-time control design is presdnihere the delay
and jitter effect are incorporated into the performancenaigation. The resource
constraints are characterized using the convex approximat the EDF deadline
space, and a two-step procedure for period and deadlingtiselés proposed.

The utilization of multiprocessor platform is investigateA search algorithm
is presented to exploit the internal parallelism of an aggion and partition it into
several flows that are then implemented using resourceveds®T to guarantee the
timely behavior and provide temporal isolation. The beaefftusing this method
is shown by a control application involved with a ball-arldtp system.

Acknowledgements

TODO:[To write]

Contents

1

Introduction 1
1.1 Motivation e 1
1.2 Problem 3
1.3 Structure 4
Background 5
2.1 Realtimesystems. 5
211 Taskmodel 5
2.1.2 Realtime Scheduling 8
2.1.3 Schedulability analysis 11
2.1.4 Sensitivityanalysis 13
2.1.5 Resourcereservation 14
22 Control Systems 15
2.2.1 Controlsystemsanalysis 18
2.2.2 Computer-controlled systems 23
2.3 Real-time Control Integration 6 2
2.3.1 Controllooptiming. 26
23.2 Stateoftheart 30
233 AnalysisTools 33
24 Conclusion 36
Improved responsiveness using limited-preemption 37
3.1 Introduction 37
3.2 RelatedWork 37
3.3 SystemModel 38
3.3.1 Placementof NPchunks 39
3.3.2 Timing Attributes L, 39
3.4 Response TimeAnalysis 40
3.4.1 Worst-Case Response Timeof EDF 40
3.4.2 Worst-Case Response Time of LP-EDF 41
3.5 ExperimentalResults 44
351 ExperimentSetup., 44
3.5.2 ResponsivenessResults. 45

CONTENTS

3.5.3 Control Performance Results 49
3.6 Conclusion 51
4 Parameter Selection in an Integrated Framework 53
4.1 Introduction 53
42 RelatedWork 55
43 Systemmodel 57
4.4 The General Framework 58
4.4.1 Integrated Design approach 58
4.4.2 The performance lossindex 59
4.4.3 The optimization problem 60
4.5 Linking Task Parameters to Control Performance ... 61
4.5.1 Characterization of the delay and jitter 61
4.5.2 Performance loss index derivation 62
4.5.3 Quantitative performance degradation analysis 63
454 Exampleofanalysisresults. 65
4.6 Resource Constraints Characterization 67
4.7 Experimentalresults 69
4.7.1 Thecontrolsystems 70
47.2 Experimentalsetup 71
4.7.3 Period and deadline selection., 72
4.8 Conclusion e 74
5 Parallel control application on multiprocessor platform 77
5.1 Introduction 77
52 RelatedWork 78
5.3 System model and background, 80
5.3.1 Terminology and notation 81
5.3.2 DemandBound Function 83
533 The{,A)server e 84
5.4 Partitioning an applicationintoflows 85
5.4.1 Assigning deadlines and activations 86
5.4.2 Bandwidth requirements foraflow. 90
5.4.3 The branch and bound algorithm 91
5.5 Experimentalresults 94
5.5.1 Effectiveness evaluation 94
552 AControlExample L. 96
56 Conclusion 100
6 Conclusion 103
6.1 Summary 103
6.2 FutureWork 104
A Proof of the quasiconvexity of optimization problem (5.1% 105

CONTENTS

B Deadline and activation assignment foi’;,,, 108
Appendices 105

References 109

Chapter 1

Introduction

1.1 Motivation

Computer-controlled systems are nowadays prevailinglgleyed in many fields.
Practically speaking, almost all the control systems ake cemputer-controlled
systems rather than analog systems, due to various adearbagught by the un-
derlying computing platform such as enhanced functiopalitd extended flexibil-
ity.

The traditional design approach for computer-controliestesms often involves
two steps. In the first step, the controller is obtained thhodiscretization of the
design in continuous time domain, or by directly using sadpontrol theory. It
is often assumed a constant sampling period in this stepe @oquired in its dis-
cretized form, during the second setup, the controller [gémented as a software
component and then scheduled to execute on computing mratihere, in most
cases, real-time systems are used to guarantee the tintelyibe The equidistant
sampling period assumption, among others, helps build wgparation between
the control community and the scheduling community. Therobengineers are
relieved from no worrying about the implementation detaiisl how scheduling is
performed, while computer engineers are allowed to focutherplatform issues
and pay no attention to the potential impact on control perémce. From a his-
torical point of view, such a separation facilitates botifesito concentrate on its
own area and produce considerable outcomes.

However, there are various problems induced by the ignerafiche mutual
influence. The control community often assumes a too singdk model and a
deterministic platform. The influence of the shared andtéohresources is usually
not considered during the controller design. In fact, thetradler is sometimes
envisioned to run as a simple loop on a dedicated computiitg @m the other
hand, the scheduling community assumes the controller lggaya be model as
a task and makes scheduling design trade-off without cersidn of the control
performance.

In practice, many control applications are nowadays runpim systems char-

CHAPTER 1. INTRODUCTION

acterized with non-determinism and timing uncertaintisich might be induced
by several sources:

e Low-cost mass-market productdost of the control applications are imple-
mented using inexpensive hardware. Only in extreme agjgit®, such as
nuclear power plants, can the cost of the computing hardianeeglected
in the overall development cost [Cer03]. These low-costhvare platforms
are often characterized with limited resources, such agpating capacity,
memory, battery power, etc. Meanwhile, due to the same neasrice
cut, the usage of mass-market hardware and operating syseelaces the
cost and increases the flexibility of the system design, kewkeading to
less efficiency and predictability than the ad-hoc solyteg. Application-
Specific Integrated Circuits (ASIC).

e Multitasking environmentDue to the need of low cost solution and demand
for high functionality, there is trend to incorporate moadtware compo-
nents into the same computing platform. Such software coemts include
user interface, logging, or even other control tasks. Ia thultitasking en-
vironment, multiple tasks compete for the shared resouteading to task
status like preemption and blocking. Besides, caches @@ tasimprove
the overall performance, but may give rise to cache missastigg in in-
constant and unpredictable computation time.

e Networked control systemWhen subsystems inside the control loop are
connected using networks, extra delays are introducedhetaystem such
as network interface delay, queuing delay, transmissidaydpropagation
delay, link layer resending delay, etc. Moreover, packss khould also be
considered.

In other words, the implementation issues have signifiaapiict on the orig-
inal control design, and hence the separation of contrdgdesnd computer im-
plementation is no longer capable of sufficing the needs efntiodern control
systems. In general, the negative effects of the separatgrdapproach include:

e Impaired schedulabilityWhen control engineers assign parameters such as
periods to the controller tasks without considering thatiehresource con-
straints, the set of software components may not be scHadulg the exe-
cution platform.

e Degraded control performanceThe scheduling-induced delay and jitter
bring non-determinism which violates several assumptinade in the con-
trol design, such as equidistant sampling and zero-ortanh$atency, lead-
ing to degradation of control performance or even instigbili

¢ Repetitive design procesthe whole design procedure tends to be repetitive
and tedious whenever the system is found to be unschedwatiie control
goal can not be met with the provided platform.

2

1.2. PROBLEM

Therefore, the integration of control and real-time schiadus necessary to
bridge the two communities, and mutual understanding is@aged to achieve
better system design. This dissertation aims to explorerakpossible ways to
improve performance and increase flexibility for the rémet control co-design in
resource-constrained systems.

1.2 Problem

The control and scheduling co-design problem is formallyngel in [Cer03] as:

Given a set of processes to be controlled and a computeriwith |
ited computational resources, design a set of controlietlssahedule
them as real-time tasks such that the overall control pedoce is
optimized.

and an alternative view to this is to minimize the resour@gaswhile still meeting
the performance requirement. There are indeed severafisgdgpes of resources
within real-time control systems, e.g. CPU, memory, I/Otpdbattery, etc. How-
ever, without loss of generality, this work will focus on t6&U time.

The integrated design of control and scheduling needs ledyel from both
area. To exploit the potential in the integration, seveaatdrs can be utilized:

e Control Theory New theories and design criterion help to overcome or com-
pensate the extra delay and jitter caused by the schedubtignm.

o Task modelDedicated task model can be used to better fit for the cdatrol
implementation.

e Scheduling policyModification of existing scheduling policies may benefit
the system performance.

e Design frameworkTo avoid the repetitive design process, new design frame-
work is desirable.

e Hardware With the advent of multiprocessor platform, the potergfadtom-
putation capability is largely extended, which can be elygidioto augment
the system performance.

This work will review existing researches utilizing one ewsral of these fac-
tors, and present some new methodologies. In particulahedsiling policy dif-
ferent from the traditional one is employed to improve cohfrerformance. A
design framework is proposed to relief the traditional t#e design process.
Dataflow programming model is suggested to be used for emgaapplications
on multiprocessor platform.

CHAPTER 1. INTRODUCTION

1.3 Structure

The main consideration of this dissertation is to make tiea- control co-design
with respect to the intersection of control and real-timeestuling domains. The
outline is described as follows:

Chapter 2 shows the background of the work. It first gives ef limtroduction
of the real-time systems theory and control theory. It tlekstabout the main is-
sues in the real-time control integration. It reviews ttagesof-the-art technologies
following several major directions. Finally, it introducseveral tools that help to
analyze and simulate the real-time control systems.

Chapter 3 suggests to use scheduling policy where preemspdie limited to
enhance the system behavior. This method allows to impronta performance
without affecting the schedulability of the whole system.

Chapter 4 presents a general framework which treats theinealcontrol co-
design as an optimization problem, so that the traditioepétitive design process
is avoided. The proposed framework allows to select tasiogerand deadlines
under schedulability constraints, taking into accountdfiect on control perfor-
mance from the scheduling-induced delay and jitter.

Chapter 5 proposes to use dataflow programming model andpnogissor
platform to improve the system performance and flexibilityparticular, a method
is presented to partition the control application into sav#lows, which then as-
signed to resource reservation onto multiprocessors.

Chapter 6 concludes the contents of the dissertation ares givggestion on
the future work.

Chapter 2

Background

2.1 Real-time systems

Real-time systems are computing systems that must redahvpitecise time con-
straints to events in environment [But97]. The correctradss real-time system
depends on not only its computed values but also the time atwthe results are
produced [Sta88]. There are numerous applications whaldinee systems play a
crucial role, including flight control systems, vehiclel®bn avoidance, military
appliance, industrial automation, etc.

The essential goal of applying real-time theory is to ensluediming behavior
of the system. Testing, to some extend, provides a partidiicagion of the system
behavior but fails to make such guarantee. Therefore, ralfiam using average
measures in general purpose systems, the full predidiabilithe real-time sys-
tem’s timing behavior is only achievable by elaborated ysialusing pessimistic
assumptions.

2.1.1 Task model

As illustrated in Figure 2.1, the computation entity thakalitime system deals
with is namedask denoted as;, which is usually characterized by the following
parameters:

e Arrival time aq; is the time at which a task becomes ready for execution. It
is also referred to aactivation timeor release timddenoted by-;);

e Start time s; is the time at which a task starts executing;
e Finishing time f; is the time at which a task finishes its execution;

e Absolute deadlined; is the time before which a task should complete its
execution;

e Worst-case execution time (WCET)C; is the maximum time needed for
the processor to execute the task without interruption;

5

CHAPTER 2. BACKGROUND

¢ Relative deadlineD; is the deadline with respect to the arrival time, that is

DZ‘ = di — Q4.
D;
.G
Ti l "
a; S fi d;

Figure 2.1: A typical real-time task.

Depending on theask criticality, that is the strictness of complying with the
timing constraint imposed by the deadline, tasks can beéndisshed into two
classes:

A Hard taskmust finish its execution within the relative deadlibe or otherwise
causes catastrophic consequences to the system.

A Soft taskonly decreases performance if it misses a deadline.

A real-time taskr; usually generates an infinite number of identical actigijtie
calledinstancesor jobs, denoted byr; 1, k € N 1. Depending on the regularity of
the activation mode of jobs, tasks can be classifiegesmdic taskandaperiodic
task corresponding to theme-triggeredandevent-triggeredashion, respectively.
A periodic task regularly generates its jobs ev&fydefined as th@eriod of the
task. Hence, if the activation time of the first instance isaled byg; (therelease
phasg, then the arrival time of thé-th job isa;, = ¢; + (k — 1)T;. On the
contrary, an aperiodic task activates it jobs at an irregalee. To perform off-line
guarantee of the criticality of the aperiodic tasks, it isstnof interest to analyze
the peak-load situation by assuming its maximum arrivat.rathat is the time
between two successive activations of an aperiodic tasiliimied by a minimum
value. The task is then callesporadic taskand this minimum value is defined as
minimum inter-arrival timealso denoted b¥{;. Figure 2.2 shows an example of
task instances for a periodic task and a sporadic task.

In most cases, a periodic or sporadic task can be completalacterized by
the 3-tuple(C;, D;, T;). The acquisition of the worst-case execution ti@eusu-
ally resorts to either static analysis involving both sefter code and hardware
platform, or measurement-based approaches. The relatadideD; and the pe-
riod (or the minimum inter-arrival timeJ; are typically specified by the system
designer, wherd; is often set equal ta@;.

Task constraints

The task model described above concdémméng constraintsof the real-time tasks.
Besides, there are other types of constraints that can higoaadly imposed, listed

!In this dissertationN denotes the set of positive integdrs 2, ..}, whileNo= NN {0} means
the set of non-negative integef8, 1, 2, ...}.

2.1. REAL-TIME SYSTEMS

T;

on || om| mm || t

bi aix = ¢; + (k—1)T;
(a) Activation of a periodic task;

T;

o | ‘ﬁl\ﬁlt

i k1 > Gi g+ T
(b) Activation of a sporadic task;

Figure 2.2: Sequence of instances for a periodic task andradio task.

as follows.

e Precedence constraint3.he precedence relations between tasks can be de-
scribed using a directed acyclic graph (DAG) where tasks and relations
are represented by nodes and arrows, respectively. Notatie 7; denotes
thatr; is apredecessoof 7;, meaning that; cannot start executing before
the completion ofr;. NotationT; — 7; denotes that; is animmediate
predecessoof 7;, meaning that there is an arc directed froyto 7;.

An example of a precedence graphis shown in Figure 2.3. It is clear that
only taskr; has no predecessors which means it can start executing at any
time. Oncer; completes execution, task andr4 are able to startrs has

to wait for the completion of», while 75 can not start until both, and 7,

finish executing. Tasks with no predecessors, e;gare callecbeginning
tasksor root nodesn the DAG. Tasks with no successors, ergandrs, are
calledending task®r leaf nodesn the DAG.

Figure 2.3: A precedence graph.

e Shared resource constraint¥his type of constraints requires synchroniza-
tion mechanism, e.g. semaphores, to achieve mutual eaolashong dif-
ferent tasks and thus keep data consistency. Resources grogscols, such
as Priority Inheritance and Priority Ceiling [SRL90], arecessary to avoid
the priority inversion phenomenon.

CHAPTER 2. BACKGROUND

2.1.2 Real-time Scheduling

A real-time system considers a set of concurrent tasks améges to assign the
processor to these tasks according to some predefinedarjtealledscheduling
policy. A schedulés a particular assignment of tasks to the processor, se@#udu
task is executed until its completion. It can be mathemiyickescribed as:

Given a task set = {r,...,7,}, a schedule is a mapping :
R* — Nsuch thatvt € R*,3t1,to : t € [t1,t2) andVt’ € [t1,t2) :
o(t) = o(t’). In other wordsg(t) is a step function as follows:

o(t) =

i >0 if 7 isrunning
0 if the processor is idle
An example of a schedule and the corresponditit) function is shown in
Figure 2.4. At time instants,,to,t3,t4 andts, the processor performsantext
switch At time instantto, the execution of is suspended and the processor is
assigned to task, according to the scheduling decision (usually duestbaving
a higher priority). This operation is callgaleemption

T1 t

T2

oOr N W
~

ty to t3 ty t5

Figure 2.4: Example of schedule an(t).

A schedule is said to bteasibleif all the tasks are able to complete within a
set of constraints, e.g. to all finish execution before dead! A task set is said
to beschedulablef there exists a feasible schedule for it.

In general, the scheduling problem deals with the probleassignm proces-
sorsP = {P, P,,...,P,} andl types of resource® = {R;, Ry,..., R} to
n taskst = 71, 7,...,7, in order to complete all tasks under the imposed con-
straints [Bla96]. This problem has been shown to be NP-cetaph its general
form [GJ79], and hence several assumptions have to be maeéuoe its com-
plexity, e.g. restrict to uniprocessor platform, remove finecedence and shared
resource constraints, or assume homogeneous task sét®{Witperiodic or only

8

2.1. REAL-TIME SYSTEMS

aperiodic tasks). These assumptions lead to various slihgdolices that are
typically classified as follows:

o Off-line. The schedule of the task set is decided before the actuahtaisk
vation, due to the fact that the complete information of tiektset is known
to the scheduling policy. In this case, the resulting schedustored in a
table and the activation of tasks are accordingly triggdnethe dispatcher
during runtime. Therefore this kind of scheduling is alsltechtable-driven
scheduling BS88].

e On-line. The scheduling decision is made during runtime, wheneveva n
task arrives or a running task terminates. This offers mesetdility than the
off-line scheduling but also introduces larger overheads$ypical diagram
of the implementation of the on-line scheduling is showniguFe 2.5. Tasks
that are activated will be first put intoraady queugwaiting for execution.
The ready queue is sorted by thehedulerwith respect to the ordering of
priorities. The first task in the queue with the highest fityas dispatched to
execute on the processor. If the task is preempted duringxeution, it is
put back to the ready queue. Otherwise, it will terminaterafs completion.
Notice that the scheduler acts like a priority assignergkdavithin the ready
queue. Therefore, the algorithm used by the schedulerfhesscheduling
algorithm, is also referred to gariority assignment scheme

Scheduler

Activation l Processor

N Dispatching Terminatior
r T R e N I T E—

Ready Queue

Preemption

Figure 2.5: Diagram of on-line scheduling.

e Preemptive Preemptive scheduling algorithms allow the running tashketo
interrupted at any time. The interruption causes the ssperof the cur-
rently running task and the assignment of the processor hosen task.

e Non-preemptiveWith non-preemptive scheduling algorithms, once the task
is started, it is executed by the processor until completibimerefore there
is no interference from other tasks.

With the advent of multiprocessor computing platform, éhirincreasing at-
tention paid beyond the classic uniprocessor area. Thelgthg algorithms in

multiprocessor context can be further classified into:

9

CHAPTER 2. BACKGROUND

e Global. A system-wide queue is used for all the ready tasks. The tdispa
then picks several of them to each execute on an availabtegsor.

e Partitioned. Tasks are statically assigned to one of the processors @hd ea
processor keeps a ready queue. The scheduling algorithys jdeally on
each ready queue as for a uniprocessor.

Figure 2.6 illustrates the difference between global saheg and partitioned

scheduling.
e NN
R e S R
[Lo

(a) Global scheduling (b) Partitioned scheduling

Figure 2.6: Difference between global scheduling and fi@méd scheduling.

Optimal scheduling algorithms

To ensure the predictable behavior of a real-time systepe(éally hard real-time
system), the feasibility of the task set should be guaraniegore the execution of
tasks assuming worst-case scenario. The feasibility sisdiyr a task set means to
find a feasible schedule if there exists one. However, ithglintractable if this is
performed by checking the schedulability of the task seeumdimerous schedul-
ing algorithms. Therefore it is important to introduce tlecept ofoptimality,
which refers to the fact that if the task set is not schedelalrider the optimal
scheduling algorithm, then it will not be schedulable undey other scheduling
algorithms in the same category, that is using the same gtiguns.

Concerning scheduling independent task set on uniprocesoe exist two
major scheduling algorithm$Rate-MonotonigdRM) and Earliest-Deadline-First
(EDF), both considered as optimal scheduling algorithms inr ttespective cate-
gories.

e Rate-Monotonic schedulindt assigns higher priorities to tasks with higher
activation rates. Since the priorities are assigned acupto static param-
eters and can be decided before runtime, it is considerdtkexs-priority
scheduling algorithm. It has been proven in [LL73] tiran is optimal
among all the fixed-priority scheduling, i; = T; for all the tasks. No-
tice that whenD; < T;, the Deadline-MonotonidDM) [LW82] scheduling
algorithm is optimal, where priorities are assigned acogydo the relative
deadlines. ActuallyrM is just a special case of DM.

10

2.1. REAL-TIME SYSTEMS

e Earliest-Deadline-First schedulinglt assigns priorities to tasks according
to the time to their absolute deadlines. The shorter timénéodeadline,
the higher priority is given to the task. TherefoenF is considered as a
dynamic-priorityassignment. Actually, as shown in [Der7&phr is optimal
among all the dynamic-priority scheduling algorithms, égher periodic or
aperiodic task set.

2.1.3 Schedulability analysis

With the concept of optimality, the feasibility of the task & verified by perform-
ing the schedulability analysis under the optimal schedudilgorithm. Some sim-
ple results on the schedulability analysis methods of Réaeetonic and Earliest-
Deadline-First scheduling are hereby presented.

Utilization bound

Given a set ofr periodic tasks, thatilization (also calledbandwidth) U; of each
task is defined as the ratio between computation time anddethat isU; =
C;/T;, and thetotal utilization U of the task set is the sum of the utilization of all

the tasks:
U= i Gi (2.1)
=1 TZ
A sufficient condition for the schedulability of a task seden Rate-Monotonic
scheduling is [LL73]:
- & 1/n
= =< - ,

U z; T S n(2 1) (2.2)

The right part of the inequality can be interpreted as tHeation bound of a task

set in terms of schedulability undem, and it converges tm 2 ~ 0.69 asn — oc.
This bound is expanded in [BBB03] namedthe hyperbolic bound

n

[[oi+1)<2 (2.3)

i=1

whose geometrical interpretation can be found later iniGe&.1.4.

UndereDF scheduling, the utilization bound approach applies as assecy
and sufficient condition whef; = T; for all the tasks [LL73]. All the tasks meet
their deadlines if and only if

= E <1 24
g =1 TZ a ()
which implies that the processor can be always fully utilize

11

CHAPTER 2. BACKGROUND

Response time analysis
Given the following definition:

e Response timeR; ;, of a job7; ;, is defined as the time between the arrival
time and the finishing time, i.e.

Rir=fir—aik (2.5)
o Worst-case response timez; of taskr; is the maximumg; ;, of all jobs:

RZ' = mkax Ri,k (26)

a necessary and sufficient schedulability conditionder has been presented in
[JP86] where the worst-case response time of each taslcidatdd and compared
with its corresponding deadline. The worst-case respomseR; of taskr; under
RM is acquired by taking into account all the interference froter tasks with
higher priorities and can be computed using the followiraursive equation:
R;
Ri=Ci+ Y. {?w C; (2.7)
Tj€hp(T;) J

wherehp(r;) represents the set of tasks with higher priorities thanTherefore,
the task set is schedulable if and onhfif < D, for all the tasks. Notice that this
condition is suitable foD; < T;.

The worst-case response time computationgfor is more complicated than
that forrM, and thus is not suggested for the schedulability analy$isvever, it
can still be used as a measure of task responsiveness, acel\Widbe described
in Chapter 3.

Processor demand criterion

ConcerningeDF scheduling, the condition in Eq. (2.4) is only necessary rwhe
D; < T;. To perform the exact schedulability analysis in this cdB&H90]
presented the processor demand criterion whose basicsdeatiduring any time
interval [t,t + L), the processing time required by the task set must not exteed
The processor demand is defined as the cumulative computatie required by

Therefore, assuming a set of periodic tasks with deadlieesthan periods is
schedulable bgDF if and only if

VL >0 ZQL;DZ'JH)cigL (2.8)
i=1 g

where the set of check points bfcan be restricted to a limited number (see [BRH90]
for more details).

12

2.1. REAL-TIME SYSTEMS

2.1.4 Sensitivity analysis

While schedulability analysis tries to answer the yes@ignestion of whether a
task set is schedulable or not, thensitivity analysisolves the problem of how
much changes of parameters can be made keeping the taslasiblde Rather,
it gives a measure of the affordable modifications on taskrpaters in the sense
that the feasibility of the task set is not jeopardized. Thigseful, for instance,
when a certain degree of uncertainty is allowed for the WC&iFreation in system
design stage, or when deciding how to change the task péariaader to bring an
unfeasible task set back to feasible.

The sensitivity analysis usually findgeasibility regionwithin which the task
set is feasible. Therefore, the feasibility margin can berpreted as the distance
from the current parameter setting to the boundary of thsilfday region. An
example of the feasibility region in terms of computatiandiunder fixed priority
scheduling [BDNBO6] is shown in Figure 2.7. Task seis unfeasible because

101

-,
Figure 2.7: Sensitivity analysis in ti{g-space with 2 tasks.

it is outside the feasibility region (th€-space) denoted by the gray region. The
distance from the point of the current computation timesh houndary of the
feasibility region measures how much modification needendker feasible. The
dotted vertical and horizontal lines mean the minimum nesgichanges on only
C, or Cy, respectively. On the other hand, task seis feasible since it resides
within the C-space, and its location tells the margin of its feasibilitythe rest of
this section, some results of sensitivity analysis relatettis dissertation will be
briefly described.

Utilization space

The utilization bound described in Section 2.1.3 for sclheullity analysis can be
envisioned as thieasible utilization regiomn the coordinate system of task utiliza-
tion (theutilization spaceor U-spacg. An illustration involving 2 tasks is shown
in Figure 2.8. Notice that the feasible region for 2 tasksaurr scheduling,
given by either Eq. (2.2) or Eq. (2.3), is smaller than thesitela region undeebpr
scheduling restricted by th€ = 1 bound. However, recall that the utilization
bound condition forM is only sufficient, which means the region between the hy-

13

CHAPTER 2. BACKGROUND

B R™m
B +[] Hyperbolic
B[]+] EDF

Uy

083 1

Figure 2.8: The feasible utilization region in the U-spat@ tasks.

perbolic bound and th& = 1 bound remains unknown in terms of schedulability
underrm.

BeingU; = % andC; fixed, the utilization space can also be directly related
to the f-space, where frequendgy = Ti The exact feasiblg-region underm is
described in [BDNBO6].

EDF Deadline space

In [BBO9b], the authors give the description of the deadlépace undeeDF
scheduling. Given the computation timés = (C4,...,C,) and the periods

T = (T1,...,T,) of n tasks, the exact feasible deadline region is given by the
following formula:

s=(] | {DeR":D; >k-C— (k; —)T}}
keN" 4:k;#0

The geometrical interpretation of a simple task set cangistf 2 periodic tasks
with parameters o€ = (2,3) andT = (4, 7) is plotted in Figure 2.9. Thebr
deadline space and its usage in helping real-time contsidevill be detailed in
Chapter 4.

2.1.5 Resource reservation

Theresource reservatioreflects the idea of reserving a certain amount of resource
for one or a group of computing activities. In case of CPU tithe processing
capacity of a cpu can be partitioned into a set of reservgtieach equivalent to

a virtual processor with reduced speed. Resource resamvedin be implemented
using server mechanism in the operating system, where eagr snay host one or
several tasks. A desirable property of resource reservéito providetemporal

14

2.2. CONTROL SYSTEMS

D,

12 1

10

.|]

0 2 4 6 8 10 12 14 16 18 D,

Figure 2.9: An example of the feasible region in EDF D-spdc2tasks.

isolation between applications, in the sense that the occurrence sifeimavior
such as overruns within one server will not affect the reshefsystem. This can
be applied to hybrid task sets comprising hard/soft reaktiasks and/or non real-
time tasks, where the timing constraints of hard real-tias&s are guaranteed to be
met while the average response times of soft and non realtisks are reduced.

An example of such a mechanism is presented in [AB98] whereCibnstant
Bandwidth Server (CBS) is introduced to reserve a specifeedlWwidth to each
server that is characterized by a pgi}s, Ts), where@; is the maximum budget
andT} is the server period. The ratid, = /T is called server bandwidth. The
bandwidth isolation property of the CBS reveals the fact, timeany time interval
L, atask served by a CBS with bandwidth will never demand more thalii, L.

Besides CBS, there are numerous other different serverameshs proposed
in the literature. To ease the analysis and provide commerfate between differ-
ent mechanisms and implementations, (ingA) parameter pair has been proposed
in [FMO02] to characterize resource reservation mechanidBmgefly speaking«
represents the bandwidth, admeans the time granularity, that is the maximum
time an application may need to wait for being assigned sameurce by the
server. Thea, A) server will be explained further in Chapter 5.

2.2 Control Systems

Control system theory has continuously served the modeatasiny and society
for almost two centuries. There are various definitions ofte® systems, from
different points of view. The one from [CDHBO04] is cited here

A control systenis an interconnection of components forming a sys-

15

CHAPTER 2. BACKGROUND

tem configuration that will provide a desired response.

The basic assumption for analysis of control systems is #luseseffect relation-
ship for the components in a system. Therefore, a systemaoemp orplant? can

be represented as a block, which accepts input and produtestoas shown in
Figure 2.10. This cause-effect relationship represemtallows to view the plant
as a ‘Black Box', facilitating the decomposition and an&ys the whole system.

Input Output

— ™ Plant

Figure 2.10: Plant as a block.

To obtain the desired output, an actuator is connected toléme, which forms
up aopen-loop control systenshown in Figure 2.11. However, the open-loop

Desired output Output
— | Actuator - Plant

Figure 2.11: Open-loop control system.

control system usually fails to serve the purpose in theesehproducing desired
response, if the precise information of the system is ndtaa or an unexpected
disturbance occurs.

To overcome the deficiency of the open-loop system, the uéeolary idea of
feedback is introduced into the control system, where thgahoutput signal of
the plant is measured and fed back to compare with the desirgait value. The
controller then makes decision on the compared result,ishie difference be-
tween two signals (which is also the reason why a negativeatqes used on the
feedback signal), and take action on the controlled planth& system is called
feedback control systeor closed-loop control systenkigure 2.12 illustrates the
diagram of the general form of a feedback control system.sidrels in the closed
loop are:

e 1 is the desired output, often callegference

e y is the measurement of the actual output, catiatput variable

e ¢ is the differencedrror) between the desired and the measured output;
e v is thecontrol signaj also callednput variableof the controlled plant.

In practice, a control system can be physically or logicdilided into three
subsystems, a sensory subsystem, a controller subsysteasatuator subsystem.

2In control community, the controlled system is also widedjied process However, to avoid
the name conflict with therocessin the terminology of computer engineering, in this dissgon,
the nameplantwill be mostly used.

16

2.2. CONTROL SYSTEMS

Controller Plant

Figure 2.12: Diagram of feedback (closed-loop) controtesys

The sensory subsystem measures the output of the contpded sending the
measurement signal to the controller subsystem. The dlamtproduces control
signal according to the measurement and sends it to thetacswdbsystem. The
actuator performs the action on the plant. Subsystems cgedmraphically sep-

Actuator
Subsystem
Controller @
Subsystem
J
Sensory
Subsystem

Figure 2.13: Subsystems in a feedback control system.

arated. For example, idistributed control systemsubsystems can be remotely
connected through communication media (hence they arecalted networked
control systemjs On the other hand, subsystems can also be grouped tadiéther
in embedded systems.

There are two major problems considered in control theagedding on dif-
ferent design concerns:

e The servo problem(or tracking problen), as depicted in Figure 2.12, con-
centrates on following the reference signal;

e Theregulation problemmainly focus on making the system tolerant to exter-
nal disturbances, e.g. measurement noise. The basic dliagithe problem
is shown in Figure 2.14.

Disturbance

u y
Controller Plant

Figure 2.14: The regulation problem.

17

CHAPTER 2. BACKGROUND

2.2.1 Control systems analysis
Model

Building up the mathematical models makes it possible toetstdnd and ana-
lyze the complexity of the systems and perform control sgat Because of the
dynamic property, systems can be usually modeled by diffedeequations, uti-
lizing physical laws, e.g. Newton laws, Euler-Lagrangedaand Hamilton laws.
By natural, all the physical systems are non-linear. Howémear approximation
is often possible within certain range of the system vaegpi.e. assume small-
signal conditions [CDHBO04]. Moreover, if the system'’s respe does not depend
on the time at which the input is received, then the systetimis-invariant From
a mathematical point of view, this means the coefficientdhefdifferential equa-
tions are constants. In this work, we mainly consitieear time-invariant (LTI)
systems

With the system model in the form of differential equatiotise system re-
sponse can be obtained by solving the equations. Howevénéae time-invariant
assumption allows to useplace transfornto convert the model frortime domain
to frequency domainand ease the difficulties of resolving differential eqoasi
Thetransfer functiormodel of a linear time-invariant system is then defined as the
ratio of the Laplace transform of the output variable to thglace transform of the
input variable, with all initial conditions assumed to beapCDHBO04]. The trans-
fer function model is also calleidput-output modebecause it clearly express the
cause-effect relationship between system input and aufpgtire 2.15 illustrates
the relation between time domain and frequency domain arehlgthe nature of
Laplace transform.L(-) means Laplace transform, ards the Laplace variable
which can be interpreted as the differential operator. Qheautput in frequency
domainY(s) = G(s) - U(s) is calculated, thénverse Laplace transforroan be
performed to obtain the output in time domain, which is eglgnmt to the solution
of the differential equatiorf (¢).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.15: Laplace transform.

18

2.2. CONTROL SYSTEMS

There exist numerous analysis methods and design prisdipidransfer func-
tion model. However it only fits fosingle-input single-output (SISQystems.
For amultiple-input multiple-output (MIMO3ystem, one must use tb&ate-space
mode| which is essentially a group of first-order ordinary diéetial equations.
It utilizes the states inside the system and describes tthlgitions with input and
output. Therefore the state-space model is sometimesicaternal model while
in contrast the transfer function model is calledernal model The general form
of the state-space model is

d
= = faw
y=g(z,u)
wherez = [z, x9,...,x,] IS thestate vectorandn is the system order. Input

and outputy are scalars (for SISO systems) or vectors (for MIMO systerfbg
state-space model of a linear time-invariant system caxjpessed as

dx

—=A B

g e 2.9)
y=Cx+ Du

whereA is the state matrixB is the input matrix(' is the output matrix, an@d is
the feedforward matrix The solution of Eq. (2.9) is given by

z(t) = e (0) + /t A9 Bu(8)ds (2.10)
0

y(t) = Cez(0) + / t Ce 9 Bu(8)ds + Du(t) (2.11)
0

Stability analysis

In the analysis and design of control systems, stabilityhés key issue of most
importance. According to textbooks, the stability of a eystis defined as fol-
lows [CDHBO4]:

A stable system is a dynamic system with a bounded resporsse to
bounded input.

This is often referred to aBounded-input Bounded-output (BIBS&ability.

Considerable attention has been devoted to the finding ausstability cri-
teria in the evolution of control theory. A compendious diggmn is given as
follows:

e Poles condition. Defining thecharacteristic equatioras the denominator
polynomial of the system transfer function, thelesare the roots of the

®D is zero matrix when the system has no feedforward.

19

CHAPTER 2. BACKGROUND

characteristic equation. A feedback system is stable ifanid if the real
parts of all the poles of the system transfer function areatiegy The con-
dition geometrically means all the poles should lie on thHe dale of the
s-plane as shown in Figure 2.16.

7 Im

0,0

Z.
Figure 2.16: Stability region in the s-plane.

Routh-Hurwitz criterion.This is the method for investigating the stability of
a linear system by checking the coefficients of the chanatiteequation. It
allows to know the number of poles with positive real partthauit actually
computing their values.

Eigenvalues condition.Eacheigenvalue);(A) of the state matrix4 cor-
responds to a root of the characteristic equation. Thezefibie system’s
stability is equivalent to that all the eigenvalues of thstegn have negative
real parts.

Nyquist stability criterion.By drawing theG(iw) on a polar diagram as
varies from 0 tooo, the stability of the system can be investigated counting
the number that the drawn contour encircles the (-1,0) padinis method is
handy to determine the stability of the closed-loop systérmg its open-
loop model.

Lyapunov stability theorenT.he Lyapunov second theorem on stability uses
a Lyapunov functior?/(-) : R — R to in some sense act like an energy
function of the system. The system is stable if the Lyapunotion decays
over time, which can be visualized that the system loseggraerd rests at
some final state. Notice that the theorem is only sufficiend@@mn, and is
used on systems without input, i.e. autonomous systems.

The stability analysis discussed above is concerned wittiramous-time do-

main (both time domain and frequency domain), while in ®ecf.2.2 stability
analysis for sampled control systems will be reviewed.

Control performance

The performance characterization of a control system iallysdescribed by met-
rics in the transient response and the steady-state respore unit step input.

20

2.2. CONTROL SYSTEMS

Figure 2.17 depicts the response of a standard second andieolcsystem.

y(t) Maximum

+ overshoot M,
,,,,,,,,,, t

Input(1.0)- - -~ - -
09 """ 7

|
I
I
I
I
I
I
I
I
I
I
I
:
T
0 t t ts

0.1
>t
; Steady
| Rsivih | State

Figure 2.17: Unit step response of a standard second ordaoteystem.

As plotted, after the step input enters the system at time 0, the system
enters theransient statewhere the response of the system first rises, goes over
the input, giving a overshoot, and then oscillates untilgéfs in a small range
around the input value, that is, when the system enterstdaly stateThis range
is defined asté whered is specified as a certain percentage of the input amplitude.
Typical percentage values used in practice Bieand5%. The system is said to
be underdampedvhen it oscillates to reach the steady state, while in cehta
overdampedaystem does not oscillate and hence has no overshoot.

The performance measures of the transient response antktdy-state re-
sponse of the system are given by the following metrics:

e Maximum overshootis the difference between tipeak valuel/,, and the
input amplitude;

e Peak timet, is the time when the response reaches its maximum overshoot.
Notice that for an overdamped systefdoes not exist;

e Rise timet, is defined as the time required for the response to rise from 0%
to 100% of the final value for an underdamped system. For ardaugped
system, the 10-90% rise tinigis used,;

e Settling time ¢, is the time required for the system to stay within the range
+0, that is the finishing time of the transient state and the stae of the
steady state;

e Steady-state erroreg, is the difference between the final value of the re-
sponse and the input amplitude. This error exists due tontherinature of
the system.

21

CHAPTER 2. BACKGROUND

Summarily speaking, the performance of the response irréinsient state is
described with two aspects:

e Theswiftnesds represented by the peak time and the rise time;

e The closenesgor accuracy is represented by the maximum overshoot and
the settling time.

And the performance of the response in the steady statedsiloed with only the
closenesgor accuracy, represented by the stead-state error. Control design re-
quires a trade-off between the transient performance anstéady-state accuracy.

In modern control theonperformance indeis used as a quantitative measure
of the performance of a control system, which enables to nogkienal control
design based on mathematical computation rather than imairieal way. The
basic intention behind the performance index is similath® performance met-
rics described above, that is, to consider both the switmesl the accuracy of
the response. Therefore, the performance index is expéxtegasures the error
with respect to the desired response along the time. In [COHBseveral such
performance criteria are presented:

¢ Integral of the squared errof SE = ftf 2
o Integral of the absolute errofAE = [/ |e(t)|dt
e Integral of the time-weighted squared erBi' AE = ftft e (t)dt

e Integral of the time-weighted absolute ertBFf AE = foft le(t)|dt

wheree(t) is the response error, amng is the final time for the performance mea-
surement. Although in theor; should beo, it is usually substituted by a large
enough time, e.g. some time beyond the rising ttmeNotice that, the latter two
criteria make emphasis on the errors occurring later inéspanse, thus treat the
steady state more important than the transient state.

Some other performance criteria consider also the inpuaMieru(t), i.e. the
output of the controller, and make a weighted combinatiaih ¥ie error. This can
be interpreted as the spent control energy. For instancsjd=ringu(t) into ISE
(with w being the weighting factor) results in:

ISE' = /Otf (e*(t) +w - u(t)) dt

Let @, and Q2 be the weighting matrices, the performance index for state-
space model can be expressed in the similar manner as:

¢
J = / ! (a:Tlec + uTqu) dt
0

which measures the system states variation and the expenditthe control en-
ergy.

22

2.2. CONTROL SYSTEMS

Controller design

Controller design is the action to make the system resporiderway such that
stability and performance specifications are met. Therenameerous techniques
to design a controller among which a few are listed here:

e PID controlleris a simple but powerful technique that has been widely used
in industry. The main idea is to combine the proportionategmal, and
derivative part§in the controller to provide desired behavior of the closed-
loop system.

e Root-locus desigmethod draws a so-called root locus according to the
changes in the system’s feedback characteristics and p#nameters, and
shows how these changes influence the system poles.

e Bode plotdepicts the magnitude curve and the phase curve of a system in
frequency domain. It is also helpful for checking tBain marginandPhase
marginthat are two important metrics to measure the relative liabi

e Pole placemenallows to arbitrarily choose the location of the system pole
to reach the desired transient dynamics and steady stairg Behe state
feedback gain vectothe pole placement can be easily realized usiage
feedbackwvhere the control signal is produced in a linear feedbackman

u=—-L-x (2.12)

e Optimal and stochastic contrdias been a popular design tool for control
systems. Optimal control means to design a controller thatmmizes a
specified cost function, usually a performance index. Thbehgtstic con-
trol models the disturbances in the linear systems as ramutooesses, and
involves a quadratic cost function in the optimal design. éWlthe distur-
bances are modeled as Gaussian processes, it is calleit¢iae-Quadratic-
Gaussian (LQG) control problenand the resulting controller islZ2QG con-
troller which is also in the form of state feedback.

2.2.2 Computer-controlled systems

In the previous section, the described control systemgdegih continuous-time
domain, which is mostly fundamental in the era of analog rmntNowadays,
almost all the control systems have computing units withia ¢ontrol loop, as
depicted in Figure 2.18 (taken fro’AW97]).

Compared with the general closed-loop control system inrf€ig@.12, in computer-
controlled systems, the role of the controller is realizgdlaigital computer. The

“In some cases, only one or two terms are used, e.g. PI cantoslPD controller.
The relative stability answers the question of how stabléhéssystem, rather than a simple
yes-or-no question.

23

CHAPTER 2. BACKGROUND

continuous-time signaj(¢) of the plant output is converted into digital signal by
the analog-to-digital (A-D) converter and then deliverechasequence of numbers
{y(tr)} to the computer, wherg, is the sampling instant at which the conversion is
done. The computer then handles the sampled signal, pescassording to some
algorithm, and generates a sequence of control sign4ls,)}. This sequence is
converted to analog signal by a digital-to-analog (D-A)vater, usually being a
zero-order-holder (ZOH) which keeps the control signalstant during two suc-
cessive conversions. The operation events are synchcousieg a real-time clock
in the computer.

Clock

Control
Algorithm

Plant T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.18: Diagram of a computer-controlled system.

In computer-controlled systems, both continuous-timenaig and discrete-
time (sampled) signals exit in the same control loop, legdmextra difficulties
in analysis and design. However, there are basically twocaghes that have suc-
cessfully shown the capability of coping with the problem:

e Discretizationof the continuous-time design means that the controlleeis d
signed in continuous-time domain and implemented by appraton using
fast sampling. The approximation can be performed in sewags, such as
Tustin’s (or bilinear) approximation, Forward differesc@Euler's method),
and Backward differences. However, some approximatiomaustmay lead
to inaccurate mapping of the stability regio&\ly97]. Moreover, the fast
sampling required by the approximation may sometimes be too costly, e
pecially in embedded systems with limited resources.

e Sampled (Discrete-time) control theargnsiders the system behavior at the
sampling instants. The system is modeled by considering thel specific
time instants and then can be analyzed and synthesized sisiilgr ap-
proaches as in continuous-time domain, e.g. pole placeamhtoptimal
control design.

In sampled control theory, the sampling interval is usuaigumed to be piece-
wise constant, and has to comply with the Nyquist-ShannonpBag Theorem.

81t is suggested in[FPEN94] that the discretization yieldasonable results at sample rates of
20 times the natural frequency, and can be used with confdBmcsample rates of 30 times the
bandwidth or higher.

24

2.2. CONTROL SYSTEMS

Besides, various rules of thumb suggest the choice of sagpkriods depending
on the dynamics of the control system and the desired copé&dbrmance. For
example, {XWQ?] suggests that the sampling peribd¢an be chosen to give

wph &~ 0.1 — 0.6 (2.13)

wherew,, is the desired natural frequency of the closed-loop syshémtice that, a
long sampling interval saves resource consumption sudi®aspleration and CPU
usage, but may induce potential problems because the sgstdues in open-loop
between the sampling instants so that the disturbance d¢dvercaptured until the
next sampling point.

Model

Difference equationare used to describe the input-output behavior of the discre
time systems at the sampling instants, and play the samanrdhee analysis of
discrete-time systems as the differential equations db adntinuous-time sys-
tems. Additionally,Z-transformis the discrete-time analogy of the Laplace trans-
form, and is devised to solve the linear difference equation

State-space model remains its powerful capability in tiseréte-time domain.
Basically, the discrete-time state-space model comprg®ap of first-order dif-
ference equations. The sampled version of Eq. (2.9) can peegsed by only
considering the states at the sampling instants:

(tr+1) = k1) w(ti) + Dters tr)ulte) (2.14)
y(tr) = C(te) + Dulte) .
where
Q(try1,tr) = eAltk+1—tk)

te+1—1k A
D(tgr1,tr) :/ e**dsB
0

For periodic sampling, the model becomes linear time-iavaby utilizing ¢, =
k- h:

z(kh + h) = ®(h)z(kh) + T (h)u(kh)

y(kh) = Cx(kh) + Du(kh) (2.15)

where

D(t) = e

CHAPTER 2. BACKGROUND

Stability analysis

A brief introduction of stability criteria in discrete-tiendomain is given bellow.

e Poles/Eigenvalues conditio.he discrete-time system is stable if and only
if all its poles are within the unit circle of the-plane Therefore the stabil-
ity region of the left half plane of the s-plane (as shown igufe 2.16) is
mapped to the unit-circle in z-plane. The poles of a disefigte system can
be obtained by calculating the roots of the denominatorsgititse-transfer
function Besides, since each eigenvalig®) of the matrix® corresponds
to a pole, it is handy to acquire the poles with the state-epaadel.

1

),

Figure 2.19: Stability region in the z-plane.

e Spectral radius condition. The spectral radius of a matrix is defined as
the supremum among the absolute values of the eigenvatuep(d) =
max;(|\;|). The discrete-time closed-loop system is stable if and trthe
spectral radius of the closed-loop matrik.{ = & — I'L, whereL is the
state feedback gain vector) is less than 1, Reuble < p(P.) < 1. This
condition also allows to analyze the stability of a timeiaat system. For
example, in [MVFFO1b], the spectral radius condition isduseperform the
stability analysis for a control system with on-line comgated controller.

Other stability analysis methodéWQ?] for discrete-time systems can be found
to be similar to their continuous-time counterparts, idadg the Schur-Cohn-
Jury’s stability test, the Nyquist criterion, and the Lyapu's Second theorem.

2.3 Real-time Control Integration

2.3.1 Control loop timing

In the traditional discrete-time control theory, the sadplersion of the system
model usually considers an equidistant sampling intereahed assampling pe-
riod, as expressed in Eq. (2.15). Moreover, due to the time netededmpute
the control algorithm, it can be incorporated in the modebmputational latency,
which is often assumed to be constant. This can be clarifiguldifing the timing

26

2.3. REAL-TIME CONTROL INTEGRATION

of the controller, shown in Figure 2.20. The plant outpuhalg(t) is sampled at
time instants, = kh (k = 0,1,2,...), separated by a constant sampling interval
h. The sampled datg(t;) is sent to the controller, who calculates the control sig-
nal u(t;) and puts it to the ZOH. This process consumes a fixed amouirhef t
0, and therefore the latest active control signal is imposethe plant) time after
the sampling.

y(t)

u(t)

th_1 ti te+1 lrt2

Figure 2.20: Ideal timing of a control task.

Assuming a constant delay less than the sampling period, keh, the model
of Eq. (2.15) is then extended to be

Tpr1 = P(h)xg + P(h — O)I(S)ug—1 + T'(h — 0)ug (2.16)
yr = Cag '
Notice that a simplified notation is used, where the suffdenotes time instarith
and hencery, is equivalent tac(kh). Plus, feedforward matri® is assumed to be
0. The expression shows that in order to model the dynamiteafampled system
with constant delay, control signal of 1 sampling periodobefmust be embodied
into the equation. In other words, there is an extra siatg in the extended state
vector, and the state evolution equation of Eq. (2.16) camrbenstructed as

[wkﬂ _ [(I)(h) @(h—a)r(a)} [Tk } N [F(h—é)} o (217)

Uf 0 0 Uk—1 1

27

CHAPTER 2. BACKGROUND

While longer delay exists, more extra states, i.e. prevommrol signals, must
be taken into account. According t&\W97], if

§=(d-Dh+8& 0<d <h

whered is an integer, a number afprevious control signals are considered to be
extra states in the expanded model.

The discrete-time state-space model (2.15) and its extivetsion (2.16) have
shown that the timing issue can be addressed using the maticahformulation.
Therefore, the implementation should guarantee the tirasd assumed in the con-
trol design stage. In practice, real-time system theorya$gpable to enforce such
timing determinism.

There are several options to guarantee the timing assuntled gontrol design
using real-time methodology. The off-line scheduling cbbé one of the candi-
dates. In fact, the cyclic executive method is widely usethdustry and served
its original purpose. However, such static scheduling makarduous to modify
and extend the already established application, and egtyedifficult to adapt to
resource availability and application changes. To oveetinese issues, on-line
scheduling is adopted by using real-time operating systgopart to fundamen-
tally increase analyzability, feasibility, maintainatyil and extensiblity.

Different choices of models exist for implementing a colgroas a real-time
task. For instance, sampling and actuation can be realg@uexrupts, separated
from the calculation part. However this solution increastes difficulty in ana-
lyzing schedulability and loses generality. Thereforead control task model is
often used in the real-time control systems. As shown inieidu21, the plant
of (2.16) is controlled by task;. The equidistant sampling fashion is enforced by

Input Output
® o
Ci
a; i fi di aip1 t

Figure 2.21: Naif control task model.

setting the task period; = h. Sampling and actuation occur at the beginning and
termination of each job’s execution, i.e. the start tisp@nd the finishing timef;,
respectively. Task deadling = a; + D, is used to bound the delay. It is worth
mentioning that, from the computer’s point of view, the séintpis the input to the
controller while the actuation is the output. Hence the irgnd output are inverse
of the ones for the controlled plant, where the input vagablthe control signal
and the output variable is the sampled signal (see Sect&)n 2.

Notice that, ifD; is set equal t@ in the extend model of (2.16), then the task
model can be used to precisely describe the sampled sydvefmesior (assuming
constant computation time). However, this may cause sggmifiimpairment on
the schedulability of the real-time system. On the otherdh@nD; is relaxed to

28

2.3. REAL-TIME CONTROL INTEGRATION

be larger thar, the actual delay becomes different frénand inconstant during
runtime. In other words, the naif task model brings timingenainty (temporal
nondeterminism) into the control system.

In general, when a control taskruns with other tasks on the same processor,
it suffers interferences and experiences variable saggeriod and inconstant
delay, which is illustrated in Figure 2.22. Input and Output abbreviated us-

R k-1 R ke

s s 30 s %0
A Av,k Av,k Ai,k+1 Ai,kJrl

i,k—1 Ai?k:—l
II To 19 00 L 00
a;

K Qi k1 t

A, k—1

Figure 2.22: Timing uncertainty of a control task

ing notation/ and O. To characterize the timing of the control task, tivaing
attributesare commonly used and are described below.
Each job of the control task experiences two types of latetefined as

e Sampling delay A?, is the latency from the ideal sampling instant to the
actual sampling instant, that is the time between the ariive a, ;, and the
start times, ;, of each job:

Af,k = Si,k — a“{; (218)

e Input-output delay (10 delay) A;ﬁ"k is the latency from the sampling instant
to the actuation instant, that is the time between the stas ¢; ;, and the
finishing time f; ;. of each job:

o= fik — Sik (2.19)

The sampling delay\?, is induced by the blocking after the control task is
released, due to a runniﬁg task with higher priority, andasable from job to
job. Similarly, the interferences (preemption or blockionig a mutual exclusive
resource) from other tasks, as well as the varying compuigtme, make the
input-output delay\’, inconstant. The variation of these two types of latency are
denoted by ’

e Sampling jitter j; is the maximum difference betweex; , of all the jobs:
7= max Ajy — mkin Ay (2.20)
e Input-output jitter (1O jitter) ji* is the maximum difference betweek(%

of all the jobs: ‘ ‘ ‘
750 = max A — mljn A% (2.21)

29

CHAPTER 2. BACKGROUND

Note that the sampling jitter leads to jitter in the nomireigling periodh;. In
fact, the actual sampling peridd . is not invariable, clearly shown in Figure 2.22,
whose variation is denoted by

e Sampling period jitter ;7 is the maximum difference between all the actual
sampling period:; ., which is quantified by

th = m]?x hi g — mlgn hi i (2.22)

and according to [Cer03], it is upper bounded by

h
Ji <23

It has been widely acknowledged that delay and jitter hageifstant impact
on the correct behavior of control systems, which implied,tii not properly taken
into account, they may result in degradation of the contesfgrmance, and even
lead to instability of the system [MVFFOla, CHD3]. Therefore, analysis of
control loop timing and understanding of how the timing effethe control system
are of great importance in real-time control co-design.

2.3.2 State of the art

In this section, some existing methods for real-time cdmivedesign are reviewed.
These methods are categorized into several tendencied ta$aCESO00].

Task models

In Section 2.3.1, a naif control task model was introduceds §eneral task model
facilitates to perform real-time analysis, e.g. schediitglcheck, but may not
achieve the best control performance. Therefore sevenaiowved task models
are proposed by different researchers to enhance the tpetformance during
system runtime.

[Cer99] proposes to split the control task into two subtasisere the first
subtask calculates the control signal and the second subpaiates the internal
states of the controller. In this way, the control signal baroutput as soon as it is
ready, reducing the latency in the control loop.

[CRA99] proposes to partition the control task into threetgpadata acquisi-
tion, algorithm evaluation and action delivery, and thealzgle delay of the control
activities is reduced by determining the minimum intervalene the control action
has to be allocated.

In [HHKO3], the proposed task model uses two synchronimapoints, i.e.
sampling and actuation, which are located at the release diitthe current job
and the next job. This method gives precise timing of therobtask and thus
allows to achieve better modeling and controller designweéieer, the introduction
of synchronization points leads to several drawbacksudich the difficulty in
schedulability analysis and the longer delay in the coritrap.

30

2.3. REAL-TIME CONTROL INTEGRATION

The one-shot model presented in [LVMO08] improves the aboedehwhere
only one synchronization point is used at each actuatiorambswhile the sam-
pling requires no synchronization point and is assumedke fdace at the start
time of each job. Therefore, the model allows the stateesgaatroller to know
the latency from the sampling instant to the actuation, acdrporate it into the
system evolution equations.

Although these task models show the higher capability oflipteng timing
behavior and improving control performance, the naif tasklet is still suitable to
use due to its generality. This dissertation will mostly tieenaif task model.

Delay/Jitter Compensation

To cope with the problem of delay and jitter in real-time cohapplications, dif-
ferent techniques have been developed.

[NBW98] analyzes the performance and stability of realetioontrol systems
with varying delays, and derives an optimal stochastic rotlet to compensate
for jitter. The controller uses timestamps to track the eets-controller and
controller- to-actuator delays.

[LCO2] uses a more realistic approach where the output jxperienced in
one period is compensated for in the next period. The resuitier-compensating
controller can be viewed as a generalization of the wellkm&mith predictor,
and the design of the compensator does not require a fulepsomodel.

[MFFRO1] presents a method to on-line compensate the dgmeréormance
degradation caused by jitter. The compensation is achigyedjusting the param-
eters of the controller at each job with the help of timing sweaments provided
by the real-time operating system. The stability analysistich kind of controller
is presented in [MVFFO1b]. This kind of compensation methetden used on-
line, introduces extra computation overhead into the systé such overhead is
significant, then controller parameters should be preutatied off-line and stored
in a lookup table, which requires extra memory space.

Parameter selection

Parameter selection refers to the integrated approactoobahy task parameters to
meet both control performance requirement and resourlizatitbn requirement.

[SLSS96] presents an integrated approach where task fieigsg(periods) are
selected to comply with the schedulability constraints ama@ptimization problem
is solved to minimize the control performance differenceveen the continuous-
time design and the discrete-time implementation. Thifoperance difference is
approximated as an exponential function of the samplinguieacy.

Instead of the period parameter, [RS00] uses the time sigtheas the granu-
larity of the schedule, and presents a method to decide #tefidine static cyclic
schedule of several control tasks to optimize the overaliesy performance.

More related work will be reviewed in Chapter 4.

31

CHAPTER 2. BACKGROUND

Feedback scheduling

When the control plant or the system workload is highly dyitant could be
advantageous to adapt the task parameters on-line. In [BILST S99, LSA 00]
and other similar works, feedback mechanism is employeceép khe real-time
system acting with a stable behavior. This type of feedbatieduling is also
known asresource manager

However, the more control-related cases consider cortsiktrather than reg-
ular real-time tasks in the system. Therefore, the feedbabkduler makes deci-
sion based on not only the system workload situation, e.gdlde miss ratio, but
also the status of the controllers implemented by the cbtasis.

[EH,&OO] proposes to use a recursive optimization procedureine change
sampling periods of a group of control tasks to keep the sysit#ization at a sta-
ble level while maximizing the overall control performancehe feedback signal
is the execution time change of each task.

[MLB *04] presents a feedback-based resource management metcldtvs
to allocate resources to control tasks as a function thecustates of their con-
trolled systems. It is shown that using this dynamic all@catmechanism based
on the actual needs of the controllers, the available ressuare well utilized to
provide better control performance than using static nesoallocation.

[HCO5] presents a feedback scheduling strategy to dyndlyniadjust sam-
pling rates for a set of LQ-controller tasks. The controfpenance is analytically
expressed as a function of the sampling period and the dtatmntrolled system,
and is used for on-line sampling period adjustment.

Resource reservation

Some control applications may have highly variable exeoutimes, such as vi-
sual tracking. In these cases, the controller normally @escwith short compu-
tation times under most situations and only occasionallyegrnces the worst-
case execution time. Therefore, the WCET assumption mégtd to significant
under-provision of computing resources, and hence is awefii for performance
optimization.

[CBSO00] proposes to use the nominal computation timesadstéthe WCETSs
in optimizing sampling periods. Task overruns are handiethb presented Hard
CBS (' BS"%) algorithm.

[PACT00] suggests that certain amount of deadline misses may|®&enb
due to the inherent robustness of the control systems. fdnerstrict deadline
constraints can be relaxed to enable higher sampling rétesdeadline miss ratio
can be bounded by CBS if the probability distribution fuontiof the execution
times of the control task is known.

[CEO03] presents the Control Server which gives small latearad jitter, and
isolates timing misbehavior between unrelated tasks. Apkeperty of the model
is that both schedulability and control performance of atrdriask will depend

32

2.3. REAL-TIME CONTROL INTEGRATION

on the reserved utilization factor only.

Event-driven control

Recent researches have shown that if the equidistant sageriod constraint is
relaxed, computing resources usage may be reduced whitetie! performance
is maintained. This leads to interesting topics in the irdggn of event-driven
control and real-time systems theory. However, since tlssedtation will focus
on periodic control, only a brief review will be listed.

[JHCO7] presents the analysis and performance evaluafitmecevent-based
control of first-order stochastic systems. A minimum irggent time is defined to
treat the control tasks as sporadic tasks so that the systeddability is guaran-
teed. The results indicate that the sporadic control caieaeletter performance
than periodic control in terms of reduced process statenee and control action
frequency.

[DLCHZO07] proposes a self-triggered control task modelahtdecides its next
release time at each job execution to enforce upper bountteanduced, gain
of a linear feedback control system. To ensure the scheiltyladif the system,
the self-calculated release time is sent to the elasticdsdimg algorithm [BAL98]
which assigns the actual release time to the control task.

[VMBO08] presents a framework to accommodate several egsivent-driven
control approaches and shows the schedulability analysedget of control-driven
tasks using both Fixed Priority and Earliest Deadline First

2.3.3 Analysis Tools

Owning to complex relations between control performanag taming attributes,
as well as between timing attributes and implementatioarpaters [TH T06], it
might be intractable to express such relations in analyiieg. However, several
tools have been acknowledged to support the analysis of lgzatgd nature of the
real-time control problem.

Jitterbug

Jitterbug is a Matlab-based toolbox that allows the contmrtaf a quadratic per-
formance criterion for a linear control system under vasitoning conditions [LC02].
The toolbox is built on the LQG theory and jump linear systems
In Jitterbug, a control system is built by a signal model atichang model. The

signal model includes a number of inter-connected contistione and discrete-
time systems, in either state-space form or transfer fandiorm, and are each
associated with a continuous-time quadratic cost fundomperformance evalu-
ation. The timing model consists of a group of timing nodeshecorresponding
to zero or more discrete-time systems in the signal modehirj nodes are con-

33

CHAPTER 2. BACKGROUND

nected so that a next node will be activated after the previmde is finished. At
each activation of a timing node, the corresponding disetiete systems will be
updated.

The timing model therefore is used to describe the timingabieh of the ac-
tual runtime of a real-time system. The first timing node canabtivated in a
periodic fashion (every. seconds) or aperiodic fashion to model the time-driven
or event-driven controller. Between two timing nodes, aray with a discrete-
time probability density function can be specified to modiel telay and jitter in
runtime. Notice that in periodic systems, when the totahgexceeds the period
h, the remaining timing nodes are skipped for activation.sthodels the behavior
in hard real-time systems where control tasks must finisbrbdhe next sampling,
however brings some limitation which will be mentioned inapter 4.

It is worth mentioning that Jitterbug toolbox also providesonvenient func-
tion to make LQG design. Thigigdesignfunction designs a discrete-time con-
troller for a continuous-time LTI plant with a constant timhelay and a continuous-
time cost function (see Jitterbug manual [CLO6] for moreadg).

TrueTime

TrueTime is a Matlab/Simulink-based simulator, which litaties co-simulation of
controller task execution in real-time kernels, netwodnmissions, and continu-
ous plant dynamics [OHCO07, CHI03].

A TrueTime simulation is constructed by connecting stadd@mulink blocks,
which gives flexibility to easily build control systems. Ba#ss, a few TrueTime-
specific blocks are provided by the toolbox, including:

e TrueTime kerneis a block to simulate a real-time kernel. It was originally
assumed for only uniprocessor, and starts to support siimgkaultiproces-
sor platform since TrueTime 2.0.

e TrueTime networksimulates medium access and packet transmission in a
local area network, including a wired version and a wirelsssion. The
possible network models are

— For wired networks: CSMA/CD (e.g. Ethernet), CSMA/AMP (e.g
CAN), Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP),
and Switched Ethernet.

— For wireless networks: IEEE 802.11b/g (WLAN) and IEEE 8241
(ZigBee).

e TrueTime batterys a block to mimic the battery charging and recharging.

"There is possibility to have alternative execution patithinsense that the next activation timing
node is picked among a group of candidates.

34

2.3. REAL-TIME CONTROL INTEGRATION

To customize the different configuration for these blochgijalization scripts
should be written. Moreover, executive scripts during $ation can also be spec-
ified. All these scripts can be written as either Matlab Msfitae C++ codes. The
former one gives ease of using the familiar Matlab syntax &Rt and requires
no compilation, while the latter one increases the simutasipeed.

The initialization scripts define the setup of the real-tikeznel, as well as
the networks, and create tasks, interrupt handlers, tiregesnts, monitors, etc for
the simulation. The scheduling policy of the real-time leroan be one of the
predefined classic scheduling algorithms ld&eF or RM, or it can be any user-
defined priority function. The execution of the tasks andrinipt handlers, written
in user scripts to perform jobs like I/0O and control, are tseheduled according
to the scheduling policy during the simulation.

Because of the seamless connection with Matlab/SimulinkgTime is con-
sidered to be a powerful tool to make extensive simulati@taited analysis and
system-wide real-time control co-design.

S.Ha.R.K

S.Ha.R.K Goft andHard Real-timeK ernel) is a highly configurable uniprocessor
real-time kernel designed for supporting hard, soft, andneal-time applications
on PC of x86 architecture. It includes device drivers for rmmenmon hardware,
making it possible to easily interact with the environmdrbr example, it can be
used on PC to act as a controller, with the help of I/O deviaad, hence enables
experiments on integrated real-time control systems.

The modular component-based interface for the specifitaticcheduling al-
gorithms makes it extremely easy to utilize and evaluatstent or new scheduling
policies. Moreover, the hierarchical structure of the skcitieg modules further fa-
cilitates the system-level composition and interchanijgalf multiple schedul-
ing algorithms. This is illustrated in Figure 2.23. Eachktasassociated with a

Level 0 Module A
Level 1 Module B
Level 2 Module C
Level 3 Module D

Figure 2.23: Hierarchical structure of scheduling modules

scheduling module. Modules are ordered from top to bottorteweds. All the
events of a task is scheduled by its associated module, eéground of the tasks
belonging to a lower-level module. In other words, each tamke an extra fixed
global priority specified by the index of the level at which lielonged module
stays.

35

CHAPTER 2. BACKGROUND

2.4 Conclusion

In this section, the background knowledge of real-time dmtegration has been
introduced. In particular, basic concepts in the real-tsystems have been de-
scribed, and popular technologies have been presentddggiimg scheduling poli-
cies, schedulability analysis, sensitivity analysis aggburce reservation. A brief
introduction of control systems has been given, as wellasligcrete-time control
theory for computer-controlled systems. The timing chi@m@zation for real-time
control integration has been detailed. Finally, state efdaht has been reviewed
and several analysis tools have been described.

36

Chapter 3

Improved responsiveness using
limited-preemption

3.1 Introduction

Limited-preemptionEDF scheduling (P-EDF) has been introduced by Baruah in
[Bar05] to join the beneficial effects of both preemptive and-preemptive schedul-
ing. The main benefit of non-preemptive scheduling is indidedreduced num-
ber of context switches, with a limited scheduling overhdad to cache misses
and to the additional need of storing the state of a preemigiskl in order to
safely retrieve it when the task will be resumed. On the o#ide, executing
each task non-preemptively might lead to limited schedlifalperformances due
to the large blocking imposed on tasks with smaller deadlingVith LP-EDF,
instead, a task is executed non-preemptively as long agltid@s not cause the
system to become unschedulable. When the task executedefondximum al-
lowed non-preemptive interval, the processor is surresaiey the ready task hav-
ing earliest deadline, according goF. Pseudopolynomial complexity algorithms
are presented in [Bar05, BB09a] to compute the durationBefiaximum Non-
Preemptive (NP) chunks for each task in the system. In thig wae can take
advantage of the optimality of preemptigzerF with a reduced system overhead.

However, the benefits of limited preemptiepr are not limited to the smaller
number of preemptions introduced in the system. This chapigloits this tech-
nique to increase the responsiveness of a selected seksfitmproving the control
performance of a control system.

3.2 Related Work
In this section, we briefly remind the main results on noreprptive and limited-

preemption scheduling.
In [JSM91], Jeffayet al. proved thaEDF is optimal even among non-preemptive

37

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

work-conserving scheduling algorithfngor periodic or sporadic task sets. For
these systems, a necessary and sufficient schedulabslityite pseudo-polynomial
complexity is provided. Moreover, it is shown that both thbeduling problem —
find an algorithm that is able to schedule a feasible task send-the feasibility
problem — decide if a set of tasks can be scheduled withoutdleagline be missed
— are NP-hard in the strong sense for concrete periodic igtkms scheduled by
non-preemptive algorithms

Baruah and Chakraborty analyzed in [BCO06] the schedutalmifinon-preemptive
task sets under the recurring task model and showed thag éxést polynomial
time approximation algorithms for both preemptive and poeemptive schedul-
ing.

Mok and Poon presented in [MPO05] sufficient conditions torgotee the ro-
bustness (a.k.a. sustainability) of non-preemptive tgskess, i.e., guaranteeing
that the schedulability is not affected by the relaxatiomié or more task timing
requirements (like a decrease in the computation time aneease in the period).

The idea of deferring preemptions until pre-determinedhisoinside the task
code has been first introduced by Burns in [Bur94]. An al@aomitcalled Fixed
Priority with Deferred Preemptions#DP) has been proposed, describing as well
an associated response time analysis. However, a flaw im#igsis has been later
corrected by Brikt al. in [BLVO7].

With a similar idea, Baruah analyzed in [Bar05] the Limiteg@&mptionEDF
scheduling algorithmif-EDF). The maximum amount of time for which a task
may execute non-preemptively, without missing any deadlis computed. Dif-
ferently from the model adopted in [Bur94, BLVQ7], there acefixed preemption
points, but the position of Non-Preempting Regions (NPRY fif@at inside the
task code (provided it is shorter than the allowed lengttije Gomputation of the
maximum NPR lengths has been later improved in [BB09a].

A response time analysis for preemptiger has been described by Speti
al. in [SB96, SSRB98]. Such analysis has been extended to systeneduled
with non-preemptiveeDF by Georgeet al. in [GRS96]. Palencia and Gonzalez
applied similar technigues for more general (distributadk systems in [GHO5].

The idea of exploiting non-preemptive scheduling to imgraentrol perfor-
mances has been adopted by Buttazzo and Cervin in [BCO7}ewloa-preemptive
EDFis used to reduce task jitter.

3.3 System Model

We will consider a set composed by: periodic and sporadic real-time tasks. Each
taskr; is defined by a worst-case execution requirenténia relative deadliné;

A scheduling algorithm is work-conserving if the procesisanever idled when a task is ready
to execute. Note thatDF is not optimal among general non-preemptive schedulectu@img non
work-conserving ones).

2A concrete periodic task is a periodic task that comes witassigned initial activation.

38

3.3. SYSTEM MODEL

Qi
1 [|

Figure 3.1: Placement of the final NP chunk of a tagk

and a period, or minimum interarrival time&; (all parameters are assumed in the
real numbers domain). Such a sporadic task generates aiteisg&guence of jobs
Tik, k € N, with the first job arriving at any time, and successive jotivals
separated by at lea$} time units. Each job; ;. has an arrival time, j, a finishing
time f; 1, and a deadlin€; , = a;;, + D;. The starting times; ;, of job 7; ;, is the
first time it is scheduled for execution.

We consider the scheduling of sporadic task systems upambegprocessor,
using theEarliest Deadline First (EDF) scheduling algorithm [LL73] with limited
preemption (P-EDF) [Bar05, BB09a]. For each task, we will assume to know in
advance the maximum amount of time for which it can executepreemptively.
Such value can be computed using the techniques descrij&hids, BB09a],
and will be denoted a9;. Note that); < C;,Vi. WhenevelQ); = C;, the taskr;
will always be executed non-preemptively.

3.3.1 Placement of NP chunks

In order to improve control performances for one or moregagkwve will place an
NP region with length); at the end of its worst-case execution, i.e., at ttthe Q;,
as shown in Figure 3.1. This can be done considering the ca®ieed by the task
when it produces the largest worst-case execution timepkawihg a preemptions
disable command as close as possible to the instructiorue@,; time-units
before the end. When this is not possible, for instance tsscattimeC; — Q); the
task is inside a loop, or it is calling a remote function whaamnot be modified,
the preemptions disable instruction is placed as soon aslp@sresulting in a
smaller non-preemptive region. Without losing generalitg assumé); to denote
the effective length of such non-preemptive region.

3.3.2 Timing Attributes

To investigate the responsiveness of limited-preemptior we will consider the
timing attributes defined by Eq. (2.18)-Eq. (2.21) in Saetfd3.1. Besides, we also
consider the response time as a measure of the responsiafreeseal-time task.
The response time of a jaby ;, is defined with Eq. (2.5) in Section 2.1.3. Here, the
definition of its variation is given as:

e Response Jittery! is the maximum difference betweét) ;, of all the jobs:

7= mkax R\ — mlgn R; (3.2)

39

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

Moreover, for each one of the job-based attribui&s; (being X one of R
(response time)\® (sampling delay) and\ (input-output delay)), we define the
corresponding task-based averagevalues, taking the average among all jobs of
a taskr;:

_ m X,
X; = lim D=1 Xik (3.2)
m—oo m

3.4 Response Time Analysis

The worst-case response time of a task in a system scheditle@mr has been
computed by Spuri et al. in [SB96, SSRB98]. We briefly remiedetthe adopted
technique.

Definition 1 (Deadline Busy Period)A deadlined-busy period is an interval of
continuous execution in which only instances with absalle&dline beforel are
scheduled.

Theorem 1 (from [SB96, SSRB98]) The worst-case response time of a tasls
found in a deadline busy period in which all tasks bdre released synchronously
from the beginning of the deadline busy period, and at theiximum rate.

3.4.1 Worst-Case Response Time of EDF

Exploiting Theorem 1, it is possible to compute the worsteceesponse time of
each task-;, considering all deadlinéz + D;)-busy periods for a meaningful set
of possible release timesof jobs of r;, and taking the maximum response time
among such jobs, as follows [SB96, SSRB98]:

1. The maximum busy period lengthis found considering a situation in which
all tasks are released synchronously and at their maximten Taoerefore,
L is the smallest positive value satisfying the following atijon:

-zl

TiET

2. For each task;, the maximum deadline-busy peri@g is found considering
all tasks butr; synchronously released at timme= 0. An algorithm for the
computation of allL; values is presented in Figure 3.2.

3. The lengthL;(a) of the deadling«w + D;)-busy period of a job of task;
that arrivesz time units after the synchronous arrival of all other taskihe

3Note that ausy period(without referring to any particular deadline) is insteastjan interval
of continuous execution.

40

3.4. RESPONSE TIME ANALYSIS

COMPUTE BusY PERIOD LENGTHS(7)
1 A={a<L|a=kTj+Dj;, 1<j<n, ke NU{0}}
2 Ln+1 +~— L

3 for (i =n)downtol

4 repeat

5 a<—max{€€A|€§Li+1—0i+Di}—Di

6 until (L;(a) > a)

8 retun Ly,...,L,

Figure 3.2: Algorithm for the computation of the maximum di&ze busy period
lengths.

smallest positive value satisfying the following equation

= <1 ! L%D Cit (3.3)
R R el

4. The maximum response timegfcan be found as

Ri = max{Li(a) — a}, (3.4)

where

Ai={a<L;|a=kIj+ D; — D;, Vj, ke N U {0}}.

As proved in [GRS96], if the task set utilization is strickbyver thanl, L exists
and is pseudopolynomial, so that the algorithm may convergepseudopolyno-
mial number of steps. If instead the total utilizatior jgshe maximum busy period
length L is bounded by the least common multiple of the periods ofdkks, when
such value exists. In that case, the complexity of the algaris exponential.

In the next section, we will show how to modify the algorithmarder to take
into account non-preemptive regions.

3.4.2 Worst-Case Response Time of LP-EDF

George et al. presented in [GRS96] a method to compute thet\wase response
time for task systems scheduled with non-preemgime. The method takes into
account the effect of priority inversion for the computatiof the deadline busy
period and can be used as well in analyzing the limited préemgDF case.

41

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

e

t3 t1 ty ta =t1+D;

B NP chunk ofr;
[] Deadlinet; busy period
[1 NPchunkofr;

Figure 3.3: Worst-case response time scenario for Limitedmption EDF.

Theorem 2. The worst-case response time of a tasls found in a deadline busy
period forr; in which:

e 7; has a job released at time(and possibly other jobs released before);

o all tasks with relative deadline smaller than or equaltot D;) are released
synchronously at time= 0 and at their maximum rate;

o a further taskr; with relative deadline greater thaa + D;, if any, starts
executing a non-preemptive region of len@th an arbitrarily small amount
of time before = 0.

Proof. We adapt the proof contained in [GRS96] to the case undelid=nasion.
Consider the scenario in Figure 3.3 whetehas a job with arrival time; and
absolute deadling, = ¢; + D;. Lett, be the start time of the NP chunk of,
according to the rule defined in section 3.3.1. The actualdian time of the NP
chunk is< @;. Finally letts be the last time before or & such that there are no
pending jobs with absolute deadlines before arat

By the choices made; must coincide with the release time of at least one job,

and there cannot be idle time betwegrand¢,. This means that the execution of
7;'S NP chunk of the job arrived at timg is preceded by a busy period of those

instances released betwegrandt,, and that have absolute deadlines before or at

t2, plus at most one other NP chunk released beforeth absolute deadline after
to.
Consider now the scenario in which:

e all tasks butr; with relative deadline less than or equal(te — t3) are re-
leased from time = 0 at their maximum rate;

e beinga = (t1-t3), 7; is released at timéa— L%J T;) , (a—(L%J — 1)Ti) e

(3

o the taskr;, if any, that attains the maximum valuesiofixp - (;,¢,){Q;} is
released an arbitrarily small amount of time before 0. That is,7; causes
the worst possible priority inversion w.r.t. the absolugadlinea + D;.

42

3.4. RESPONSE TIME ANALYSIS

In the new scenario, the workload in the interval precedmsgstart time of the
NP chunk of the considered instancergfreleased at time = ¢; — t3, cannot be
less than in the previous scenario: the busy period pregddis NP chunk can-
not be shorter, since it includes the worst-case priorigiision w.r.t the absolute
deadlineax + D;, as well as the largest deadlife-+ D;)-busy period preceding it.
Therefore;r;’s response time cannot diminish. O

Using Theorem 2, itis possible to adapt the algorithm dbsdrin Section 3.4.1
for the computation of the worst-case response time of astaskthe limited pre-
emption case. We will prove that we will only need to replacgi&ion (3.4) with

R; = max{Li(a) - a+ Qi}. (3.5)
and Equation (3.3) with
a

Li(a) = Djliliji{Qj} + (1 + {iJ) Ci— Qi+ (3.6)

S i {1 |40 1| 2D,

- T; T;

JF
Dj§a+Di

Proof. Differently from the worst-case response time analysipfeemptiveEDF,
where the considered busy period ends at the finishing tinteeofeference job
of 7;, in LP-EDF we focus on the busy periqatecedingthe execution of the final
non-preemptive region of the reference job (titpén Figure 3.3). Hence all jobs
released before this time should be taken into account.

Consider the scenario described in the proof of Theorem 2.LL@) be the
length of the busy period starting at time= 0 and preceding the start time of the
last non-preemptive region of a job of released at time. Let 7; ;, be such job.
The response time of ;, is given byL;(a) — a + Q;. Taking the maximum over
all jobs released by;, Equation (3.5) follows.

Now, to prove that the length;(a) can be determined by finding the smallest
solution of Equation (3.6), note that the first term on the Rid&unts for the max-
imum possible priority inversion w.r.t. the absolute dézelt + D;. The second
and third terms correspond to the time needed to executekbseqgfr; released
before or at times, excluding the final NP chunk of; ;.. Finally, the last term
represents the time needed to execute the jobs of taskswith absolute dead-
lines< (a + D;), that are released before the beginning of the last NP regfion
7; - Note that this term is slightly different from the correaping term used in
Equation (3.3), to make sure that the last NP region phas already startéd O

“The analysis can be tightened adopting techniques used WO[H for Fixed Priority schedul-
ing. In particular, the terrrﬁl + {LT—“‘)D can be replaced by the tighter te(nﬁLiT—(f')w) , whenever
J J

there is a positive blocking term (i.e.tifaxp, >a+p,{Q;} > 0). See [BLVO7] for further details.

43

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

Observing Eg. (3.6), it is clear that the length of the busygoeused to com-
pute the worst-case response timerpis not affected by NP regions of any task
7; having D; < D;. In other words, the responsiveness of a task does not change
if NP regions are introduced inside the code of one or moiesthaving shorter
deadlines.

By taking advantage of this observation, we will analyze ett®n 3.5 the
performances of the controller task having the largestivel@leadline among tasks
that have non-negligible NP regions.

3.5 Experimental Results

3.5.1 Experiment Setup

We consider a system withh = 7 hard real-time tasks. We will monitor the timing
attributes listed in Section 3.3.2 for task having periodl; = 50ms and execu-
tion time C; = 5ms (and, therefore, utilizatio/; = 0.1). The other 6 tasks are
generated usingUNIFAST algorithm [BB04], with periodl; uniformly distributed
in [10, 100] ms and utilizationU; chosen according to a 6-dimensional uniform
distribution to reach the desired total utilization. Notpmadar task ordering is
assumed. For all tasks, including, D; equalsT;.

The system utilization varies from 0.2 to 1 with steps of Gar each utiliza-
tion, 500 task sets are randomly generated. For each task gete scheduling
policies are tested:

e Fully preemptive Earliest Deadline First policy, denotedafF,;

¢ Limited-preemptioneDF, placing the largest possible non-preemptive re-
gions (whose lengthg; are computed using the algorithm described in [Bar05])
at the end of the execution of each task; this policy will baaled as
LP-EDF;

e Limited-preemptioneDF, placing the largest possible non-preemptive re-
gions at the end of the execution of those tasks having aveldeadline
< Dy, and scheduling the remaining ones with preemg#ige; this policy
will be denoted asP-EDF*;

A schedule is generated for each one of the above policies, omulation length
of 40 seconds, running in TrueTime [CHD3].
We will measure the average values defined in Section 3.p@o&imating
Equation (3.2) with the the following expression:
X, = M) (3.7)
m;
wherem; is the total number of jobs of; generated during thé¢0s of simula-

tion. Since the simulation time is very large, Equation &pproximates well
Equation (3.2).

44

3.5. EXPERIMENTAL RESULTS

3.5.2 Responsiveness Results

In Figure 3.4, we show the worst-case and average respanee ¢f task~. The
worst-case response time is computed with the method 8escin Section 3.4,
while the average response time is derived as describecabov

—6— EDF
401 —«— LP-EDF
—8— LP-EDF*

Worst-case Response Time (ms)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
U

(a) Worst-case Response Timerof

18

—o— EDF
16| —<— LP-EDF
—&— LP-EDF*

Average Response Time (ms)

(b) Average Response Time of

Figure 3.4: Response Time of.

The results show that the smallest worst-case response éraebtained with
LP-EDF*, thanks to the NP region of task. The largest worst-case response
times are instead obtained witlp-EDF, due to the blocking imposed by the non-
preemptive regions of lower-priority tasks. The lower suapip shows that, with
limited preemption scheduling, the system can achieveebealierage response
time. More specificallyLP-EDF* gives always the best (shortest) average response

45

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

time, which are from 20% to 30% smaller than the average resspomes of pre-
emptiveEDF. UnderLP-EDF, instead, the average response time is comparable to
the EDF case, being slightly shorter only when the system utilirats below 0.4,

or above 0.85.

To highlight the improvement over preemptizer, we found it useful to in-
troduce theRelative Response Time ImprovemenRg“, defined as the difference
between the average response time under preemptiveand under a particular
scheduling policy4, divided by the task period, i.e.,

nEDF DA
pa _ i — I

whereR;4 is the average response timerplinder a policyA. Notice thatfig“ >0
means that the response timerpfs reduced (improved) under the poligyw.r.t.
preemptiveEDF.

TheOverall Relative Response Time Improvement? is defined as the mean

of R; among all tasks;:

fo = Zmerfli

0.06

x RfPfEDF
— % 7RLP—EDF
0.04 | —s— REP-EDF”
- B 7RLP7EDF*

0.05¢

0.03f
X 002}
=
& 001f
{
0 =
=% j\g\ﬂ‘\“i;ﬁ/' e
-0.01f T~ s
=~ X
X~ _ -
-0.02f o e
_003 1 1 1 1 1 1 1
02 03 04 05 06 07 08 09 1
U

Figure 3.5: Relative Response Time Improvemé&it & 0.1).

In Figure 3.5, the two solid curves far-EDF and LP-EDF* show that the
average response time is improved usifgeEDF* and LP-EDF in highly loaded
system, w.r.t the preemptiveDF case. Moreover, undarP-EDF*, 7; achieves
alwaysa much lower average response time, &{"EPF" > 0 for all tested

utilizations.
The dashed curves, however, show that the overall relatisgonse time im-
provementR of the whole task set is negative, both fe-EDF* andLP-EDF. This

46

3.5. EXPERIMENTAL RESULTS

can be explained by the response-time “redistributiont thiees places when intro-
ducing NP regions: the average response times of shontiedgasks are increased
due to the extra blocking time from lower priority tasks;teed, the average re-
sponse time of longer-period tasks are reduced, thank® todh-preemptive exe-
cution of their NP regions. However, because of the smabeiods, the increase
in the relative response time of shorter-period tasks isrsmnificant than the re-
duction for longer-period tasks. Nonetheless, the negatifect is relatively small
in LP-EDF*, since there are less priority inversions for shorterguetasks.

40

—6&— EDF @ 30
—— LP-EDF 3 20
—&— LP-EDF* &

0.2 0.4 0.6 0.8 1
U

(a) Response jitter

9 15
—~8
(2] —
10
E £
2.7 N
<] Rl 5
6
(b) Average |10 Delay (c) 10 Jitter
15 40
@ 10 %0
E £
- = 20
<] 5 Ky
10
0
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
u u
(d) Average Start Delay (e) Start jitter

Figure 3.6: Timing Attributes of;, (U; = 0.1).
Figure 3.6 shows the timing attributes of. As depicted, both.r-EDF and
LP-EDF* perform well in minimizing 10 delayA\® and IO jitter;%. It can be easily

proved that the 10 delay with limited preemptionsalvayssmaller than with

47

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

preemptiveeDF, due to the smaller interference suffered by a task in itsclagnk.
Moreover, since once a task starts executing, it cannotdenmpted by tasks with
larger relative deadlines, the 10 delaygfwith LP-EDF is always identical to the
IO delay withLP-EDF*, as shown in the figure. Both algorithms have 10 detdy
very close taC; = 5ms (and 10 jitter;%° close to zero), meaning that mostofs
jobs will be able to execute entirely non-preemptively.

Regarding the start dela¥; and the start jittey], LP-EDF* has the same per-
formances as preemptivedF. This can be explained by noting that no jofy,
of taskr; can be blocked by the NP regions of tasks having smalleriveldead-
lines, since either they have an absolute deadline eahligrd, 5, or they arrive
after a; . Instead, both the start delay] and the start jitten] increase with
LP-EDF, due to the blocking of lower priority tasks.

Finally, the response jittey; is influenced by bothy$ and i, being Ry , =
Aj . + Al The smallest response jitter is obtained witheDF*, while the
Iarcjer respbnse jitter afP-EDF is due to its large start jitter.

0.1

x RfP_EDF

0.08f

0.06

0.04

Figure 3.7: Relative Response Time Improvemént & 0.2).

Similar results are obtained changings execution time. Due to space rea-
sons, we include here only the case with= 10ms (andU; = 0.2). The results
for &2 and the other timing attributes are shown, respectivelfignre 3.7 and 3.8.
Note that increasing;'s utilization, there is a more significant improvement (ove
preemptiveEDF) in the average response timergffor both LP-EDF andLP-EDF,
as testified by the positive values +P-EPF and RLP-EDF”_ Jitters and delays
are similar to the previous case. Note thds 10 delay and jitter are not always
constant, but they increase for heavy loads, meaningrthigtnot always able to
execute non-preemptively. Nevertheless, the valuesidfaind ;i for LP-EDF and
LP-EDF* are still significantly smaller than withDF.

48

3.5. EXPERIMENTAL RESULTS

30 k
—©— EDF % 20
—>— LP-EDF 3
—&— LP-EDF* &g
10
OC
0.4 0.6 0.8

u
(a) Response jitter

A%° (ms)
=
w

108—R————R—2 B i |
0.4 0.6 0.8
u
(b) Average 10 Delay (c) 10 Jitter
10 30
i
8
é 6 p ’g 20
‘m<r 4 ag 10
2
0
0.4 0.6 0.8 0.4 0.6 0.8
u u
(d) Average Start Delay (e) Start jitter

Figure 3.8: Timing Attributes ofy (U; = 0.2).

3.5.3 Control Performance Results

When a controller is implemented as a hard real-time taskingnin a multi-
threaded environment, the scheduling-induced delay #ed @ffect assumptions
like the constant sampling period and the null, or consiapyt-output delay, de-
grading control performances [Mar02, BCO7]. In generalpatiol task achieves
better performance if it experiences smaller delay anerjat runtime. To show
how limited preemption scheduling can be exploited to iaseethe responsive-
ness and, accordingly, the performances of a controllésstase considered the
following benchmark control system, inspired by the exargbiown in [BCO7].

An inverted pendulum with natural frequency ®frad/s is controlled by a

49

CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

Linear Quadratic Gaussian (LQG) controlleﬁrV[/Q?]. The state-space model of
the inverted pendulum is:

de _[o 1] Q] 1
at 136 ol" T lol" T |o|"
y:[O 1]33+€

wherew is a continuous-time Gaussian white-noise process witb reran and
variancel, ande is a discrete-time Gaussian white-noise process with zexanm
and variancé.1.

A quadratic cost functiony is provided to design the LQG controller as well
as to evaluate the control performance.

1 [t
J=F lim —/ xTo 0 x+u’)dt
tp—oo by Jo 0 10

where|0, ¢,,] is the time span to be considered. Although from a theolgpiciat

of view t,, should bexc, in practice we could use a large enough value to evaluate
the control performance. In our experimeftjs set to the simulation time, i.e., 40
seconds. Notice that the cost function is defined so as tamzgrithe state error
and control energy. Therefore, a larger cost implies a woosgrol performance
(see [BCOT)).

The simulation setup is the same as in Section 3.5.1 with tadleing the
controller task. Hence, the sampling period of the cordgrak 50ms. Assuming
sampling (input) and control signal actuation (output)gep respectively, at the
start time and at the finishing time of each jobef the lateness of the controller
is equal the lateness of.

—6— EDF
—— LP-EDF
08| —=— LP-EDF*

0.6

Cost

0.4}

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.9: Control Performance of.

From Figure 3.9, we notice that by employing limited-preéiomp schedul-
ing, the control performance improves (the cost is reduged). standard=DF,

50

3.6. CONCLUSION

owing to the reduction of 10 delay and jitter. The performammprovement of
LP-EDF, however, is smaller than withP-EDF* because of the negative effect on
sampling delay and jitter. Nevertheless, the results detnate that the enhanced
responsiveness obtained with limited preemption schegudielps achieving better
performances in real-time control systems.

3.6 Conclusion

The application of limited preemptioeDF scheduling is proposed to improve the
responsiveness of selected tasks in a uniprocessor mealsiystem. In particular,
it is suggested to execute non-preemptively the last chifickde of each control
task, in order to improve the control performances. For eanin task, an algo-
rithm to compute the worst-case response time is providednding a previously
proposed method for non-preemptive systems. The propasiey s evaluated on
a randomly generated task distribution, measuring avetiageg parameter that
determine the performance of a control system. The sinmugtitogether with an
example case-study, showed the effectiveness of the ped@ysproach.

51

Chapter 4

Parameter Selection in an
Integrated Framework

4.1 Introduction

As mentioned in Chapter 1, the typical approach adoptechgutie design of a
control system is to separate performance requirements drchitecture and im-
plementation issues. In a first stage, the control law isgthesi assuming an ideal
behavior of the computing system on which the controllercaies, where tasks
run smoothly on the processor without considering any kihidterference. This
is equivalent of synthesizing a controller in the contineitme domain without de-
lay. When computational resources are taken into accouheidesign, the limited
processing power of the system is considered by assignixg@$ampling rate to
the controller, whereas other types of interference areutated by considering a
fixed input-output delay in the control loop. In this case,oatomller can either
be discretized or directly designed in the discrete timealorasing sampled-data
control theory.

In a second stage, once performance requirements are @rguthe control
laws, control loops are mapped into periodic tasks and sdalidity analysis is
performed to verify whether the timing constraints assutnethe control designer
can be met. If so, the system is implemented, otherwise theaidaws must be
designed by assuming different sampling rates and/or gegmd the process must
be repeated.

Even when timing constraints are verified through feasjb#inalysis (using
predicted values), the actual system implementation mesateoverload condi-
tions and longer delays that force further refinement stephé design process,
unless very pessimistic assumptions are considered olyshens [BMVO07]. Fig-
ure 4.1 illustrates the typical refinement process of thesital design methodol-
ogy.

Such a separation of concerns facilitates both controbdesind implementa-
tion, allowing the system to be developed by teams with difieexpertise. In fact,

53

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

Performance Design of control laws
requirement
Task parameters— Mapping to periodic tasks
Architectural Schedulability analysis
constraints
. NO
Feasible?
YES
Implementation
Run time monitoring
Meet NO
constraints?
YES
OK

Figure 4.1: Typical design cycle of a real-time control syst

control experts can focus on system-level goals, such b8istarobustness, and
control performance, whereas computer engineers can uvate on task map-
ping, schedulability analysis, resource management ate generation to ensure
a reliable support to the applicatioﬁ\q:ESOO].

Unfortunately, however, such a repetitive design methmgiphas the follow-
ing disadvantages:

e Long and expensive development. Since design is performimiving a
trial and error strategy, several refinement steps can héreeqto find a
suitable solution, especially when computational resesirare scarce and
the application consists of several concurrent and int@gactivities.

e Suboptimal performance. The myopic search in the spacelati@ms does
not guarantee that the found solution leads to the bestnpeafwce. A dif-
ferent setting of parameters could guarantee feasibilitly avsignificant in-
crease in the performance.

54

4.2. RELATED WORK

e Suboptimal use of the resources. Since resource constraiatnot taken
into account in the design process (except for verifyingifakity), a feasi-
ble solution does not guarantee optimal resource exglmitatvhich would
be of crucial importance in embedded systems where resoareescarce.
For instance, optimal resource usage would allow to mirengzergy con-
sumption while meeting performance requirements.

The major problem in such a design practice is that the assoimspmade at
the first stage of control design are difficult to meet in th@lementation, unless
delays are assumed equal to sampling periods [HHKO01]. Hewétrhas been
shown [BCO7] that, in most cases, a shorter and varying delays to a better
performance than a fixed but longer delay. Sampled-dataaidheory usually as-
sumes a negligible or at least constant input-output delagreas in resource con-
strained implementations (as the case of embedded systehmetworked control
systems) many concurrent tasks competing for computdtiesaurces may cause
transient or permanent overload conditions, as well agduoire variable input-
output latencies in control loops. Such non-deterministiects can significantly
degrade the overall system performance and possibly lethe taiolation of some
properties achieved during the control design phase, ditgdusystem stability.

As aresult, a trade-off between control performance aralress usage should
be wisely considered during the whole design process. lticp&ar, architecture
constraints (as processing power, memory size, maximumnepgeansumption)
and operating system effects (as runtime overhead, blgdkime, response time,
intertask interference) should be properly modelled tajlxhg optimize the design
towards a precise control objective.

In this chapter, an integrated approach to enhance theot@atrformance of a
system through proper selection of task periods and dessjlimder EDF schedul-
ing. A general framework is proposed to extend Seto’s methagbtimize perfor-
mance with respect to not only sampling periods but alsordtheng attributes.
In particular, task deadlines are chosen to balance thealslkihg-induced perfor-
mance loss of each controller task exploiting the feagjbitegion in the space of
EDF deadlines [BB09b]. Detailed simulations are also tesgito demonstrate the
usage of the proposed methodology and verify its effecéigsrover other methods.

4.2 Related Work

To distribute the limited computing resources to differeontroller tasks, Seto et
al. [SLSS96] proposed to formulate the real-time contretlesign problem as an
optimization problem, where the control performance indeypressed as a func-
tion of the sampling period, is constrained by the feasjbitondition of the task

set. By solving the optimization problem, the sampling @efor each controller is

computed to maximize the overall system performance. Teihadology, further

extended by many researches, is referred to apéhied selection problemBini

55

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

and Di Natale [BDNO5] applied Seto’s methodology to a set afitmller tasks
scheduled by Fixed Priorities.

To cope with the problem of delay and jitter in real-time cohapplications,
different technigues have been developed. Nilsson [NBV&®&8]yzed the perfor-
mance and stability of real-time control systems with vagyidelays, and derived
an optimal stochastic controller to compensate for jitteervin et al. [CLE 04]
introduced the concept gitter margin, defined as the upper bound of the input-
output jitter of a control task that guarantees the stgbdit the controlled sys-
tem. Marti et al. [MFFRO1] presented a method to online censate the con-
trol performance degradation caused by jitter. Anotherr@ggh for reducing
delay and jitter is to use non-preemptive or limited-pregvepscheduling poli-
cies [BB09a, YBB09]. For example, Chapter 3 discussed thefits of using EDF
with limited preemptions to reduce input-output delay dttdrj without impairing
the schedulability of the task set.

Another widely adopted method to reduce delay and jitteo init the exe-
cution interval of each task by setting a proper relativedtiea. Like period se-
lection, this method can be referred to @sadline selectionDifferent algorithms
for computing the minimum deadline have been proposed ifitdrature. Some
methods [HBJK06, BRCO06] allow to minimize the relative digsal of a single
task at a time, following a given order. In this way, howetee first task in the se-
guence experiences the most significant deadline redudtiaving little slack for
the remaining tasks. A more uniform deadline reduction @adhieved by scaling
all deadlines by the same factor [BRCO06], but the improveraehieved in terms
of delay and jitter is not significant and, in some cases, thedule could even
remain unchanged. Other methods [BBGL99, HBO7] use binaaych to reduce
task relative deadlines as much as possible according &m gieduction factors,
while keeping the task set schedulable. These methods,veowage mainly fo-
cused on schedulability aspects and barely consideredotisgues; moreover, it
is not clear how reduction factors can be assigned to tasks.

Different delayl/jitter reduction methods have been disedsand compared
in [BCO7], where it is shown that the effectiveness of a patéir method depends
of the characteristic of the controlled system, althoughdbadline reduction ap-
proach is the simplest and most effective for most contrstesys.

Ryu and Hong [RH98] used a heuristic method to select peaodsdeadlines
with respect to performance specification and schedufglitinstraints. The con-
trol performance was specified in terms of steady state,esk@rshoot, settling
time, and rise time, which were expressed as functions asdhepling period and
input-output latency. At each step of the heuristic mettbd,periods and dead-
lines were derived using the Period Calibration Method iagha nonlinear opti-
mization problem. The optimization goal, however, was taimize the utilization
of the task set.

Kim [Kim98] suggested to express the control cost as a fanaif both periods
and delays, where periods were found assuming that thesielase given. Then,
the new delays were computed by simulating the schedulel tfieatasks up to

56

4.3. SYSTEM MODEL

the hyperperiod, and iteratively the periods were updassdraing the new delay
values. However, this method considered only fixed presitind was extremely
time consuming.

Palopoli et al. [PAC 00] proposed to use resource reservation to serve control
tasks as soft real-time threads. It was revealed that dasisks may tolerate a
certain amount of deadline misses owing to their inherelmismess, therefore re-
laxing the hard timing constraints allows higher activatiates, which may lead to
improved performance. However, no optimization was pentat to select reser-
vation parameters and only experimental results were prege

Chantem et al. [CWLHO08] proposed a heuristic search algortio find feasi-
ble period-deadline pairs, based on the assumption thadézsllines are piecewise
first-order differentiable functions of their respectiveripds. However, this work
mainly focused on schedulability issues.

Bini and Cervin [BCO08] approximated the delays as a functibtask periods
and incorporated the delay consideration into the perfomaaptimization, while
the resource constraint remains to be the feasibility regiith respect to task
periods. This method only applies to fixed priority systetrsgause in dynamic
priority systems delays are functions of both periods aralliiees.

4.3 System model

This work considers a set of n periodic real-time tasks that are executed on a
uniprocessor system under the Earliest Deadline First jEfeReduling policy.
The task set is logically divided into 2 subsets: one subsg};, consisting of
ner CONtroller tasks that are each implemented using the rekifiteodel described

in Section 2.2.1, and another subsgl;,;, consisting ofn,,.; regular tasks that
are not related to control. Each tagks characterized by the followingcheduling
parameters

C; the worse-case execution time (WCET);
Cf the best-case execution time (BCET);
Dg”m the minimum allowed relative deadline;
Di"e* the maximum allowed relative deadline;
T the minimum allowed period;

;" the maximum allowed period,

D; the actual relative deadline, whose value has to be sel&dthth the range
[Dyin, Dy,

T; the actual period, whose value has to be selected withiratige{7"", 7.
For control tasksT; is set equal to the sampling period.

57

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

Itis assumed that;, C?, D™in, Dmaex Tmin and 7™ are known, whereds;
andD; are thedesign parameter® be selected. Notice that, to derive more general
results, relative deadlines are allowed to be less thamalequ or greater than

periods. In addition, the utilizatiotl; of each task can range WithﬁUme, umer],
whereUZ.mm = TZ—ZT andU""* = % Similarly, U, Ueti, Unetrrr denote the
total utilization of the whole task seU(=) " | U;), the utilization of all the
controller tasks {4y = Znérml U;), and the utilization of all the regular tasks

(Unetrt = _r,ex,.,,, Ui), respectively.

4.4 The General Framework

4.4.1 Integrated Design approach

To avoid the repetitive design process, we propose to usenergleframework
that extends Seto’s method [SLSS96] to achieve optimabpadnce and optimal
resource usage. The extended framework considers notlenlampling periods
but also other timing attributes. Figure 4.2 illustrates iblasic idea of the proposed
design methodology, whereas Figure 4.3 depicts a typiadbmeance function
in the space of the design parameters. The shadowed aretesl¢he feasible
region where task parameters satisfy the required timimgstcains. Notice that
the optimal control performance must take such constramdsaccount and can
only be achieved by wisely selecting the task parametetinget

. Sampling perioc
+— Delay
Jitter

Generic control laws

Y

System performance characterization

Y

Resource constraints characterization

Y

Optimization process

i

Task parameters

Figure 4.2: Proposed design methodology.

58

4.4. THE GENERAL FRAMEWORK

€2

Ty

Figure 4.3: Relation between control performance and taskmeters

4.4.2 The performance loss index

The primary goal of a control system is to meet stability aadfgrmance require-
ments, such as transient response and steady-state ac{Bk&¢07]. Beyond
such requirements, controller design attempts to minirttizesystem error, de-
fined as the difference between the desired response andttte sesponse. The
smaller the difference, the better the performance. Hepedprmance criteria
are mainly based on measures of the system error. Traditioteria (reported in
control text-books, e.g. [CDHBO04]), such as IAE (Integrattee Absolute Error),
ITAE (Integral of Time-weighted Absolute Error), ISE (lgtal of Square Error)
or ITSE (Integral of Time-weighted Square Error), providentitative measures
of a control system response and are used to evaluate (aigd)desntrollers.

More sophisticated performance criteria, mainly used itinogd control prob-
lems, account both for the system error and for the energyigispent to accom-
plish the control objective. The higher the energy demarimjethe controller, the
higher the penalty paid in the performance criterion. Thsteay error and control
energy can be multiplied by a weight to balance their redatiwportance.

The performance index used in this work is the same as thesmukin Linear
Quadratic Gaussian (LQG) controller design (eﬁgl\,[97]). The performance of a
control task is given by a quadratic cost function

L[p T

J=E lim —/ (3: Qiz+u qu) dt, (4.2)
tp—00 p JO

wherez is the state vector, is the control signal vectoi, ¢,] is the time span

to be considered, an@:, Q> are weighting matrices. The performanéean be

interpreted as the weighted sum of state errors and comsstg. Higher values

of J indicate larger deviation from the desired states or lasgeargy spent for

59

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

control, which means worse control performance. For tlasaa, in the remainder
of the paper,J is referred to as thperformance loss index

Previous work on period selection has considered the pedioce loss index
as a function of the sampling peridd

J = J(T).

In most realistic cases, for a reasonable range of sampiiegvals, the perfor-
mance loss (4.1) is an increasing function of the samplinipgeCervin et al. [CEB02]
argued that the performance loss index can often be appatedrby a linear func-
tion of the sampling period,

J =~ a+ pT,

or by a quadratic function of the sampling period,
J~a+ BT +~T2

Delay and jitter in the control task execution can have aelangpact on the
control performance, especially if the sampling frequeisdpo low compared to
the speed of the closed-loop system. It would hence be téssita include the
delay and jitter in the performance loss index. The relatigm between these
timing attributes and the resulting control performanchasever very complex.
The solution proposed in this work is to include the relatieadlineD in the cost
function:

J=J(T,D). (4.2)

As will be shown in Section 4.5, the relative deadlibeupper limits the amount of
delay and jitter the controller can experience. Knowihgnd D, it is hence possi-
ble to predict the worst-case performance degradationdntred by the schedul-
ing. In general/(T, D) is a nonlinear function. It is realistic to assume that it is
an increasing function in botl' and D, since the control performance typically
degrades as the sampling period, delay, or jitter increasekater shown in Fig-
ure 4.14 of Section 4.7.1.

4.4.3 The optimization problem

The period selectiorproblem has received considerable attention in the res-ti
literature. It can be expressed as an optimization probtefindl the best periods
for the controller tasks that minimize the performance lokge guaranteeing the
system schedulability. Such an optimization problem utii®F can be expressed
as follows:

min J = Ji (T
{13} Z)

Ti€Tetrl
C; C;
s.t. E — E — <1
T; T;
Ti€Tetrl Ti€Tnctrl

60

4.5. LINKING TASK PARAMETERS TO CONTROL PERFORMANCE

where the objective function is the sum of all the controtkesks’ performance
in dices, which are assumed to be function of the samplingpghe~or the con-
straints, the first equation relates the sampling periodls the task periods, while
the second equation imposes the schedulability constaitihe given scheduling
policy (EDF).

To take the impact of delay and jitter on control performaimte account, the
relative deadlines are included in the performance lossdesiand the optimization
problem is generalized to

min J = Frer, (Ji(Ti, D;
i = Fren, (5T D) s
s.t. {TuDz} eSS, Vr,er

whereF : Rt — R is a system-wide function used to combine the individual
performance indices of control tasks into a global systerfopm@ance index, and
S is the set of resource constraints, i.e. schedulabilityditmms, imposed by the
scheduling platform. The choice of functiofi depends on the user’s interest and
can be, for instance, a linear combination of all the indieidperformance loss
indices, or the maximum among the performance loss indices.

4.5 Linking Task Parameters to Control Performance

This section explains how to derive the performance lossxmgiven in Eq. (4.2)
in a simulative or experimental fashion, describes theiogldetween control per-
formance and scheduling parameters, and formalizes timaiaption problem ex-
pressed by Eq. (4.3).

4.5.1 Characterization of the delay and jitter

Assuming that the task set is schedulable, each job willHims later than its
absolute deadline. This puts a limit on the amount of delayjiter that a control
task with periodl’; and relative deadlin®; can experience.

Consider the worst-case scenario depicted in Figure 4.thidrscenario, task
7; releases 3 consecutive jobs, wherejgpfinishes with best-case execution time
Cf, job 7; 1 starts at its release time and finishes at its deadline, aatlyfifob
i 2 StartsD; — C; before its deadline to ensure that it will not cause an overru
By analyzing the worse-case scenario, the following bowrdthe delays can be
derived:

max Azf’k = Aﬁ?l < D;

: 0 __ A0 b
min A, = A > G (4.4)
max Aka - Z$,2 S -DZ - CZ

M S _ S
min A7y =Aj; >0

61

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

Also, the following relations on the jitter hold:

73 <D —CY
7 <D; —C;

c Ti,0 l lT Til ‘ Ti,2 c,
[] : r

Figure 4.4: Worst-case scenario for delay and jitter.

(4.5)

Notice that the reported worst-case scenario must not sadlystake place
in an actual schedule, since the interference on taglepends on the scheduling
parameters of other tasks as well. Therefore, the relatierigsed above represent
only the lower or upper bounds of the actual delay and jitter.

The analysis above shows that a shorter relative deadlipkesnboth shorter
delays and less jitter, which should imply better contrafgenance. How to find
the actual performance loss index is treated next.

4.5.2 Performance loss index derivation

In most cases, it is impossible to evaluate the exact valibeoperformance loss
index (4.1) for a controller executing in a real-time systeftn execution of the
real-time system will generate an infinite sequence of siag@nd input-output
delays,{A$ o, Al A%, AL, A%y, AL, ...}, for each control task;. The de-
lays are in general random and depend on the execution-tiaracteristics of the
control algorithm and the preemption pattern created bydheduling algorithm,
which in turn depend on the execution of the other tasks irsylseem.
Using the bounds on the delay and jitter derived in the pres/gubsection, var-
ious approaches can be used to evaluate the performandedessapproximately:
e Taking a stochastic approach, one can assume{ihaf, Al% 1%, describe
a sequence of independent two-dimensional uniform randamalles with
bounds given by (4.4). The performance index can then beiaea nu-
merically using a tool such as Jitterbug [LC02]. A limitatiof Jitterbug,
however, is that the maximum delay variation allowed is lwmehby the
sampling period. Hence, some cases whBfe> T; are not possible to
evaluate.

e Taking a worst-case approach, one may try to evaluate thedatheoreti-
cally possible performance degradation given the delanpé®.4). For the
case of pure input-output jitter, the jitter margin [CL&4] can be used. Un-
fortunately, however, no performance degradation thedmrmixed sam-
pling jitter and input-output jitter exists today.

62

4.5. LINKING TASK PARAMETERS TO CONTROL PERFORMANCE

e A third option, which is advocated in this paper, is to do argitative anal-
ysis with respect to delay and jitter to determine whichdatias the larger
influence on the performance degradation. From previousrexpce, the
worst case with respect to the bounds (4.4) is often achieeth A7 . =
A;OJ = D;, i.e., the worst control performance is typically obtairfed
zero jitter and a constant input-output delay/@f. The quantitative anal-
ysis can be carried out using Jitterbug, simulation (usowstlike True-
Time [HCAAOG] or RTSim [CBLL98, PAC 00]), or by experiments on the
real system.

The last option is elaborated upon in the rest of this section

4.5.3 Quantitative performance degradation analysis

As mentioned above, an approximative performance losifatea control task
can be derived in a simulative or experimental fashion. Whersystem model is
not available or it is not accurate, the control performararebe directly monitored
using a real-time kernel, like S.Ha.R.K [GAGBO01], that alboto enforce desired
and precise delays in task executions. The method presbetedcan be used
on any real-time platform, either real or simulated, tovkethe performance loss
index of a single controller task at a time, as a function affigurable timing
attributes.

The most intuitive solution to generate a sampling delay iddfer the start
time of the job of the controller task by inserting a delayptive before the input
procedure. Similarly, the input-output delay can be inticetl by inserting a de-
lay primitive before the output procedure, as shown in Feglis, wherej;, and
5t represent the injected artificial sampling delay and the é@ydfor each job
T,k respectively. Figure 4.6 illustrates this intuitive madh Notice that, assum-
ing Input andOutputoperations consume negligible computation times, theaactu
input-output delay is{kzﬁ"k = 5§0k + C;, while the actual sampling delay is always
equal to the artificial one, that 87, =67,

CONTROLLER-TASK ()

Delay (7 ;)

sampled-data < Input()

control-signal < Calculation(sampled-data)
Delay(éf,ok)

Output(control-signal)

a b~ wdN P

Figure 4.5: Pseudocode for controller taskvith artificial delays.

A problem with this implementation is that, when deadlines larger than
periods, delays can be larger than expected, as depictegyumeF4.7. In fact,

63

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

’ 3

|
- - =

s 70
51’,1@ 51’,1@

Figure 4.6: Inserting artificial delays.

Af7k+l
A ‘
¢ o @ ‘ o
[[’ l Y
a; -) - -
R 0% 0i% 1

Figure 4.7: Problem when deadlines are larger than periods.

when thek*" job of taskr; completes after the beginning of the next period, the
actual sampling delay results to be higher than the spedified , and in particular
equal to

S S
Al k1 =0 g1+ fik — Gigr1-

To solve this problem, the controller task is split into gsubtasks: a peri-
odic subtask and two aperiodic subtasks, as illustratedgar€ 4.8. At the end
of each job of the periodic subtaskuptask]), a system-level event is posted to
activate the first aperiodic subtaskuptask® after a given amount of time, equal
to the specified sampling delay, . Such an aperiodic subtask performputand
Calculationand then it posts another system-level event to activatedbend ape-
riodic subtask gubtask} after the specified input-output deléﬁ{’k. The second
aperiodic subtask performs ti@utputand finishes the control job. The two aperi-
odic subtasks are scheduled with a lower priority with respe the periodic task
to ensure the proper activation sequence.

The timeline at the top of the figure shows the equivalent @kee of the con-
troller task with the proper enforced delays. It can be gaskn that, except for
a negligible overhead due to the subtask activation, theifgpe: sampling delay
47, and input-output delay)ijf"k are not affected by the task finishing time. It is
worth mentioning that the second aperiodic subtask is msdig priority higher
than that of the first aperiodic subtask, becauseQhgutis less time consum-
ing and should not be preempted by the execution of the filstiegic subtask.
Also notice that this approach allows generating tasks aritfitrary jitter as well,

obtained by introducing random activation delays in thetashs.

The pseudocode of the controller subtasks is listed in Eigu#, 4.10 and 4.11,
wherePost-Kernel-Event(t, e) is a function that posts a system-level everst
time ¢, andt.,, is the current system time.

64

4.5. LINKING TASK PARAMETERS TO CONTROL PERFORMANCE

A6, A 5io

i,k+1
® ® O T
- -
s s
07 1 07 k1

T

subtask1l
subtask?2 3 3 j ’_E
o 1 o 1
el et |
subtask3 l 1

)) ‘
10 0
5z‘,k 5i,k+1

Figure 4.8: Sequence of subtasks to generate delays lagyeperiods.

SUBTASK1()

1 Post-Kernel-Event(
tcur +5§7k’
event-activate-subtask?2

Figure 4.9: Pseudocode for subtaskrof

SUBTASK2()

1 sampled-data <+ Input()
2 control-signal < Calculate(sampled-data)
3 Post-Kernel-Event (

teur +(5§?]€1

event-activate-subtask3

Figure 4.10: Pseudocode for subtask2-of

4.5.4 Example of analysis results

As an example of the quantitative performance analysis,LtQ& control of a
double integrator process with the sampling intefflak 0.02sec is studied. The

65

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

SUBTASK3()
1 Output(control-signal)

Figure 4.11: Pseudocode for subtask3-of

performance loss as a function of the amount of samplingrjittonstant input-
output delay, and input-output jitter is plotted in Figurd2l The figure makes

1.12

—6— Constant 10 delay A = x
—>— 10 jitter y*° =z
—+— Sampling jitter 3° = x

11

1.08

1.06

1.04

Performance loss

1.02

098 | | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

X (sec)

Figure 4.12: Comparison of the influence of delay and jitberaf double integrator
with T' = 0.02sec.

a comparison of the separate effects on control performahnckfferent timing
attributesA’° (constant)y® and ;. The values ofr can be as large as twice the
sampling period. Notice that the constant sampling delaisconsidered in the
comparison, since a task where all jobs have a constant sampling defsyis
equivalent to a task with a release offset/of and sampling delay equal tbfor
all jobs. It is seen that, in this case, the 10 delay is the msa@stificant timing
attribute influencing the control performance. Hence, tbestwcase respecting the
bounds (4.4) occurs wheh® = D; andj$ = j*° = 0.

66

4.6. RESOURCE CONSTRAINTS CHARACTERIZATION

4.6 Resource Constraints Characterization

Since the performance loss index is assumed to decrease peribd or the dead-
line of the controllers decrease, the solution of the depigiblem is to find the
smallest values fdf; and D; that guarantee schedulability.

To determine the feasible task parameters under EDF, theeggor demand
criterion proposed by Baruah et al. [BRH90] is used. Acauydb this test, a task
set is schedulable by EDF if and only if:

i <1 45
vt € diset Sy max {0, | ZBEL Loy < '
wheredISet is an opportune subset of absolute deadlines.

Unfortunately this test does not provide a description effdasible parameters
that is well suited for maximizing the performance. In fasitice periods and
deadlines appear within the floor operator, the shape ofdbhedary necessary to
apply constrained optimization techniques (such as thedrag multipliers) is not
easy to derive.

To overcome such a problem, the following two-step approsedopted:

1. First, consideD; = T; for all the tasks and find the periods that minimize the
performance loss index, using the Liu and Layland necessadysufficient
test for EDF

_< .
;Ti_l 4.7

which is linear and it can be used in the optimization pro¢8&$S96].

2. Then, fix the task periods as derived in the previous s&dax the assump-
tion D; = T;, and perform the optimization in the space of the feasible
deadlines [BBO9Db].

Due to the regularity of the constraint expressed by Eq),(theé first step can
be made by applying standard convex optimization techsigli¢ghe performance
function conforms to a class of some special functions (sisdmear, exponential
or logarithmic) then a closed solution can also be found [S2&G AMMMAOL].

The second step can be accomplished by exploiting the geicrpebperties
of the space of feasible deadlines. Bini and Buttazzo [BB@®bved that given
the computation time€ = (C4,...,C,) and the periodd = (11,...,T,), the
region of the feasible deadline can be expressed as follows:

s=() U {(DeR":D;>k-C— (k- 1)T;} (4.8)
kEN™ i:k; #0

To clarify the geometry of the space of feasible deadlinepmpose an ex-
ample with two periodic tasks, whose parameters(are (2,6) andT = (4,12).

67

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

Dy

e T O
o B N W > O

P N W OO N 00 ©

Dr
0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.13: The region of feasible deadlines.

According to Eq. (4.8), the resulting space of feasible tieras is illustrated in
Figure 4.13.
0J;

Since the performance always improves as deadlines becuoaies(i.e. 5o <
0), then all the corners of the region of the feasible deadlare a local optima. An
optimization routine should then test the performanceeraluall these local op-
tima and select the best performing solution. In the exarsiptevn in Figure 4.13,
local optima are in the s& = {(8,6), (6,8), (4,10), (2,12)}.

Unfortunately, the cardinality of the set of local optimadaot increase poly-
nomially with the number of tasks, hence this method canrbhe ttonsuming for
large task sets. An alternative solution is to use a convexeglipn of the exact
space. In [BB0O9Db], it is proved that if the following set ofi¢iar constraints are
satisfied

D; —D; <T; Vi, j
Dy(1 =3 U)+ >, UiDy > 570 G Y

then the resulting deadline assignment is feasible. Ndtiaethe number of the
linear constraints is2. Moreover, if in the first step of the optimization procedure
the periods are assigned such that the total utiliza}ion; reachesl (i.e. the

68

4.7. EXPERIMENTAL RESULTS

computing resource is fully exploited), the convex constraecomes

{Di—Dj <T, Vi, j 4.9)

Z?:l Ui D; > Z?:l Ci

whose region is delimited by - (n — 1) 4+ 1 linear constraints. In Figure 4.13
the convex subregion is depicted in light gray. Although E&g9) provides only
a sufficient test, the convexity of the region allows impletieg a very efficient
algorithm for finding a deadline assignment.

In a system composed by both controller tasks and regules,tdse number of
constraints can be further reduced, if the deadlines oflaegmsks are equal to the
periods, i.e.D; = T;,Y7; € Tnetri-

From the first equation of Eq. (4.9), it follows that:

D;—D; <T; VT3, Tj € Tetrl
0<D; <T;+ T’] VT € Tetrl; Tj € Tnctrl

From the second equation of Eq. (4.9), it follows that:

oG+ > G o< D UDi+ Y, UD;

TiCTetrl Ti€Tnetrl TiCTetrl Ti€Tnctrl
= Y UDi+ Y UT,
Ti€Tetrl Ti€Tnctrl
= E U,D; + E CZ
Ti€Tetrl Ti€Tnctrl
Hence,
E U;D; > E Ci
Ti€Tetrl TiCTetrl

Therefore Eq. (4.9) can be written as:

Di — Dj <T VTz’y Tj € Tetrl
0<D; <T;+minTj VTi € Tetrl, Tj € Tetrl (4.10)
Z7—7.'67—(:t'r‘l UZ DZ Z ZTieT(ztrl CZ

Notice that wherr,,.;,; # 0, i.e. n.,; < n, the number of constraints is reduced to
ey + Metrt + 1.

4.7 Experimental results

This section illustrates how the proposed methodology eamskd for selecting pe-
riods and deadlines in a system consisting of both contrtalkks and regular tasks.
The overall performance of the system is evaluated by siinglahe runtime of
the whole system scheduled by EDF on uniprocessor using‘ﬁfmae[HCAA%]

in Matlab.

69

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

4.7.1 The control systems

Two types of plant have been considered with highly diffedgmamics to control.
The first type, denoted &lant A, is a double integrator with the following state-

space model:
dx 0 0 1 1
a1 ool o
Yy = [O 1] z 4+ V0.1e.
The cost function used for both LQG desighW97] and control performance

evaluation is
1 [t [
J=FE lim —/ P N A
e 0 10
The second type, denoted Rkant B, has the following state-space model:
d_a: ~ | ! T+ K U+ 5 v
d — |-3 —4 11 —61
Y= [2 1} T+e

with its corresponding quadratic cost function

1 [t 700 2035
— E lim — T ?) dt.
J=E lim t /0 <x [20\/% op | T W)t

This plant is a modification of the one investigated in [NBVW38here the LQG
design results in a controller that is extremely sensitivddlay and jitter.

For all the plant models; is a continuous-time zero-mean white noise process
with unit intensity, an is a discrete-time zero-mean white noise process with unit
variance. In the cost functiof), ¢,] is the time span to be considered. Although
should bex in LQG design, when evaluating control performance, it &smnable
to use a suitable large value, which in this case was set tedthss, also equal to
the simulation time of the experiment.

The control performance loss index with respect to sampbeigod and rel-
ative deadline was derived for both types of plant. To obginh an index, a
performance derivation procedure using the method in @edti5.2 was set up in
TrueTime. The adjustable ranges of sampling period areQ#p@ for Plant A
and [30, 70}ns for Plant B, respectively. For both types of plant, the values of dif-
ferent timing attributes can be as large as twice the sagpkmiod. The evaluated
performance loss indices are plotted separately in Figu4. 4

To facilitate the comparison of the performance betweeiemiht plants, each
performance loss index has been normalized so that the mmiperformance
value is 1. Figure 4.14a shows tHalant A is only sensitive to sampling period,
and quite tolerant to relative deadline, especially whenpdmg period is small.
On the contrary, Figure 4.14b shows tRént B is much more sensitive to relative
deadline than to sampling period.

70

4.7. EXPERIMENTAL RESULTS

Performance loss index
Performance loss index

200

15 200
150
100 100

40 50

30 0

10
5 50

T (ms) 0 D (in % of T) T (ms) D (in % of T)

(a) Performance loss index Bfant A. (b) Performance loss index &fant B.

Figure 4.14: Derived performance loss indices.

4.7.2 Experimental setup

The considered task setconsists of. = 7 hard real-time tasks scheduled by EDF
on a uniprocessor. Among those tasks,; = 3 are controller tasks, conceptually
grouped as, and the rest are,,.;,; = 4 regular tasks denoted ag.,;. The

3 controller tasks in,; are labeled as;, m» andrs, wherer; and, control a
Plant A type, whereass controls aPlant B type. The derived performance loss
indices of both types of plant are saved as 2-D lookup tablsch allows the
optimization procedure to interpolate the cost value.

Let the variable ranges of task periods be the same as thesafigampling
periods in the evaluation of the performance loss indic&eiction 4.7.1, and sim-
ilarly assume the WCET of each controller task is equal ta4 Then, the max-
imum and minimum utilization of each task was obtained, @asvehin Table 4.1.

Table 4.1: Summary of the controller tasks

Task | WCET(ms) | Period{ns) | Utilization(100%)
T 4 [4,20] [0.2,1]
P 4 [4,20] 0.2,1]
T3 4 [30, 70] [0.057,0.133]
Uctri [0.457,2.133]

Notice that the utilization of all controller tasKg.;,; ranges from 45.7% to
213.3%, meaning that the controller tasks cannot be schédnl EDF at their
maximum sampling rates.

To investigate situations under different system loads utfilization of all the
controller taskd/;,; was fixed to 0.5 throughout the simulation, and the total uti-
lization of the whole task sdf was varied from 0.6 to 1 with a step of 0.1. The
tasks withint,.,; were generated using theJNIFAST algorithm [BB04], with

71

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

computation time”; uniformly distributed in[1, 10] ms and utilizationU; chosen
according to a 6-dimensional uniform distribution to reédth;,; = U — U,.. For
eachU, N = 100 subsets of,,.;,; were randomly generated.

4.7.3 Period and deadline selection

To select the scheduling parameters that optimize the lbeerarol performance,
the functionF in Eq. (4.3) has been chosen as follows to form up a globabperf
mance loss index:

3
J = Zwi . JZ(TZ,DZ)
=1

wherew = w1, w2, ws] is a weight vector. For this case, all weights have been set
to 1, meaning that all plants have the same importance.

As long as the utilization of all controller tasks,,; is decided, period selection
can be performed without consideration of any regular tasking the resource
constraint sznercm % < U4, as the first step described in Section 4.6. By
solving the optimization problem with deadlines equal togus, the results shown
in Table 4.2 were obtained.

Table 4.2: Results of period selection

Task | Period(ns) | Utilization(100%)
T 0.0189 0.212
To 0.0189 0.212
T3 0.0528 0.076

Uctri 0.50

Once periods have been derived, deadline selection carbtheerformed in
the deadline space. The advantages of the proposed methdibba evaluated
with respect to other two approaches under three differaariarios:

e Standard Deadlines of tasks are equal to periods, therefore tastilidea
are not utilized to limit delay and jitter.

e Binary Search The deadlines of the three controller tasks are uniforraly r
duced by binary search. This method can be found in [BBGL9§HB07].

e D-convex The deadlines of the three controller tasks are selectieg tise
deadline convex space, as proposed in Section 4.6.

Notice that only the deadlines of the controller tasks atecsed, while the
deadlines of the regular tasks are equal to their periodsVir; € e, Di =
T;. The results of deadline selection are reported in Figuts,4vhich shows the
average value of the ratio of the selected deadii@nd the period;. Note that
aratio larger than 1 means that deadline is extended beyengetriod. The ratios

72

4.7. EXPERIMENTAL RESULTS

of 71 and r» are the same due to the same performance loss index and tke sam
weight, and thus reported in the same figure.

T T 2 T T
—o&— Standard —o&— Standard
—+— Binary Search —+— Binary Search
—>— D-convex —>— D-convex
151 1 151
1 1
05)] 05) .
g I .
M
0 0 . A
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
ioDi ioLi
(a) Ratio=* of 71 andrs. (b) Ratio = of 3.
k2 k2

Figure 4.15: Ratio of selected deadline and pel%afd

In both subfigures, the ratios under tB&andardscenario stay at 1, whereas
the ratios undeBinary Searchhave the same value due to the uniform deadline
reduction. However, as shown in Figure 4.15a, applyingdtteonvexmethod, the
ratio of ; andr, becomes greater than 1, meaning that their deadlines aneded
beyond their periods, to achieve a greater reductiory’sfdeadline. Indeed, Fig-
ure 4.15b shows that, usifigrconvexmethod,r3’s deadlines can be reduced more
than undeBinary Search

The resulted control performance loss under the three deresi cases is il-
lustrated in Figure 4.16. As shown in the figure, under3tendardscenario and

12

—6— Standard
—+— Binary Search
1.15H —— D-convex i

11

1.05¢

Performance loss

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Total Utilization (100%)

Figure 4.16: Control performance under different straegi

Binary Searchwhen system load is high, the performance loss of the whae s

73

CHAPTER 4. PARAMETER SELECTION IN AN INTEGRATED FRAMEWORK

tem tends to infinity. This means that, in a highly loadedaystthe interference
introduced on the execution ef leads to instability of the planP{ant B). How-
ever, under scenarid-convex the performance loss is kept at an acceptable level,
even if the system is highly loaded. This is possible bec#usB-convexmethod
allows a more aggressive reductiongfdeadline, limiting its delay and jitter to
maintain the stability.

A specific simulation was performed to compare the three austln highly-
loaded systems. All the conditions remain the same, whdedtal utilization is set
to be 1. The result of performance over the simulation tingl@vn in Figure 4.17
which clearly demonstrates that using tB&ndardand Binary Searchmethods
the system went unstable after certain time, while usindoHe®nvexapproach the
system was stable and maintained a sufficiently good pedioca

200

150

100

Performance loss

50

—6— Standard
—+— Binary Search
—— D-convex

0 10 20 30 40 50
Simulation time (sec)

Figure 4.17: Control performance over time under diffesdrategies.

The schedules of the three controller tasks obtained irsthislation undeBi-
nary SearchandD-convexare reported in Figure 4.18a and Figure 4.18b, respec-
tively. The upwards arrows denote the arrival times and thendvards arrows
indicate the deadlines. For each task, the 3 different $eg€khe step function
mean (from top to bottom) running, ready and idle states eftéisk. Notice that
the tasks are initially released with random offsets. Itigven thatr; experiences
much less delay and jitter after using the proposed methodigfadline selection.

4.8 Conclusion
In this chapter, the problem of task parameter selectiorrdal-time controller

tasks has been addressed. In particular, a general fraéwmerbeen proposed
to make integrated real-time control design that attempt@void the traditional

74

4.8. CONCLUSION

PPy Ly
(L P L e P e
e P fr] P

T T T T T T T T T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Simulation time (sec)

(a) ScheduleBinary Search

P P by
| Ji b Ho b Honby g He
ol I O Y I

T T T T T T T T T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Simulation time (sec)

(b) Schedule@-convey.

Figure 4.18: Partial schedule.

repetitive design procedure and to achieve optimal pedioca and resource ex-
ploitation. A general method has been proposed to derivedhtol performance

loss index in either a simulative or experimental way, wéhlpect to various tim-

ing attributes, and arbitrary deadlines, which are alloteelde less than, equal to
or greater than the periods. Task periods and deadlinesthvemeselected by op-
timization upon the convex approximation of EDF deadlinacgp considering the
delay and jitter effects on control performance.

Extensive simulations have been performed where a congpanias made be-
tween the proposed methodology and other methods. Thesdsue shown that
the proposed method managed to keep the performance lasaeteptable level
even in highly loaded systems which might lead to instabilging other methods.

75

Chapter 5

Parallel control application on
multiprocessor platform

5.1 Introduction

Multi-core architectures represent the next generatiomlyeof processors for pro-
viding an efficient solution to the problem of increasing fhecessing speed with
a contained power dissipation. In fact, increasing the aipeg frequency of a
single processor would cause serious heating problems aodsiderable power
consumption.

However, analyzing multi-core systems is not trivial, anel tesearch commu-
nity is still working to produce new theoretical results rteand the well established
theory for uniprocessor systems developed in the last 3@yadso, fully exploit-
ing the computational power available in a multi-core @ati requires new pro-
gramming paradigms, which should allow expressing théisitr parallel structure
of the applications in order to optimize the allocation ofgiiel execution flows to
different cores.

Moreover, the complexity of modern embedded systems is iggpaontinu-
ously, and the software is often structured in a number o€eoent applications,
each consisting of a set of tasks with various charactesigtnd constraints, and
sharing the same resources. In such a scenario, isolagngitiporal behavior of
real-time applications is crucial to prevent a reciprocakiference among criti-
cal activities. As described in Section 2.1.5, temporalaison can be achieved
through Resource Reservatiaechnique. When moving to multiprocessor sys-
tems, however, the meaning of reservations has to be exljsiind the research
community just started to address this issue.

This chapter proposes a method for allocating a paralléitirea application,
described as a set of tasks with time and precedence coitstran a multi-core
platform. To achieve modularity and simplify portability applications on dif-
ferent multi-core platforms, we abstract the virtual math by the Multi Supply
Function MSF) [BBB09]. The advantage of using the virtual platfoMtSF is

77

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

that, if the hardware platform is replaced with another orith & different num-
ber of cores, the set of reservations does not need to be ethangd only the
server mapping to physical processors has to be done. Al$® independent of
a particular reservation algorithm, a virtual processsereation is expressed by a
bounded-delay time partition, denoted by the gairA), wherea is the allocated
bandwidth and\ is the maximum service delay. This method, originally pisgub
by Mok et al. [MFCO1], is general enough to express severa¢dyof resource
reservation servers.

To better exploit the existing parallelism available in twnputing platform,
the application precedence graph is partitioned into afdibws, each consisting
of a subset of tasks to be sequentially executed on a virtaakgsor. For each flow,
we determine its computational requirements and compwertimimum server
bandwidth needed for executing it. Since the bandwidthirements depend on
the specific partition, the proposed method can be usedmdifigéhe partition that
minimizes a given cost function (e.g., the overall bandwidbnsumption or the
maximum degree of parallelism).

A simple control application involving a ball-and-plateapt is used to exem-
plify the utilization of the proposed methodology in reité control design. By
exploiting the software parallelism of the controller aneé@ute it on multipro-
cessor platform, smaller sampling period and control I@ipricy are possible to
achieve than on a uniprocessor, hence leading to betterotpetrformance.

5.2 Related Work

The most natural abstraction of a multi-core platform idyatay the uniform mul-
tiprocessor model proposed by Funk, Goossens and Barud0[H3w~here a col-
lection of sequential machines is abstracted by their speéd this paper, the
authors also showed that a set of tasks scheduled by gtalzajwith migrations)
and requiring an overall bandwidth ©20% has higher chances to be successfully
scheduled upon two virtual processors with bandwidi® and20%, rather than
on other two with the same bandwidth @§%. However, when no task migra-
tion is allowed, packing the bandwidth into full reservasgds not always the best
approach. In fact, consider a periodic applicafiboonsisting of 5 tasks with com-
putation times 1, 1, 5, 6, 6 and period equal to 10 (deadlinerog). In this case,
the bandwidth required by the applicationlis = 190%, and a feasible sched-
ule can be found using 3 reservations, equaltd, 60% and50%. However, no
feasible solution exists if the bandwidth is provided by tx@servations equal to
100% and90%.

Otero et al. [OPRS06] applied the resource reservation paradigm to inter-
related resources (processor cycles, cache space, andrynacoess cycles) to
achieve robust, flexible and cost-effective consumer prtsdu

Shin et al. [SELO8] proposed a multiprocessor periodicuss®model to de-
scribe the computational power supplied by a parallel mrechiln their work,

78

5.2. RELATED WORK

a resource is modeled using three parametérs), m), meaning that an overall
budgetQ is provided by at most processors every periaél.

Leontyev and Anderson [LAO8] proposed a multiprocessoeduling scheme
for supporting hierarchical reservations (containeraj éncapsulate hard and soft
sporadic real-time tasks.

Very recently, Bini et al. [BBB09] proposed to abstract adfet: virtual pro-
cessors by the set of the supply functions [FM02, LB03, SLO03] of each virtual
processors. In this paper we borrow such an abstraction afwalvmulti-core
platform.

In all these works, however, the application is modeled asllaation of spo-
radic tasks, and no precedence relations are taken intaiaicco

A more accurate task model (generalized multiframe task}idering condi-
tional execution flows, expressed by a Directed Acyclic GrépAG), has been
proposed by Baruah et al. [BCGM99]. However, multiple brascoutgoing from
a node denote alternative execution flows rather than pacaimputations.

The problem of managing real-time tasks with precedencdioes was ad-
dressed by Chetto et al. [CSB90], who proposed a generalotethgy for as-
signing proper activation times and deadlines to each taskder to convert a
precedence graph into timing constraints, with the objectif guaranteeing the
schedulability undeeDpr. Their algorithm, however, is only valid for uniprocessor
systems and does not consider the possibility of havinglphcamputations.

Partitioning and scheduling tasks with precedence cangtranto a multipro-
cessor system has been shown to be NP-Complete in gener8B]Sand vari-
ous heuristic algorithms have been proposed in the litexatu reduce the com-
plexity [ACD74, ERL90, kKkAA96], but their objective is to mimize the total
completion time of the task set, rather than guaranteem@ngj constraints un-
der temporal isolation. One category of such algorithm#edd.ist scheduling
[ERL90, ACD74], is based on proper priority assignments &etihe application
constraints. Another technique, called Critical Path littigs [Sar89, kKAA96],
was developed to deal with non-negligible communicatiolaytebetween tasks.
The idea is to assigns weights to nodes to reflect their resaisage and to edges
to reflect the cost of inter-processor communication, aed #8horten the length of
the Critical Path of a DAG by reducing the communication stwtasks within a
cluster.

Collette et al. [CCGO08] proposed a model to express the lplsah of a code
by characterizing all possible durations a computationlditake on different num-
ber of processors. Schedulability is checked under glaba| but no precedence
relations are considered in the analysis.

Lee and Messerschmitt [LM87] developed a method to statisahedule syn-
chronous data flow programs, on single or multiple processBrecedence rela-
tions are considered in the model, but no deadline consirane taken into account
and temporal protection is not addressed.

Jayachandran and Abdelzaher [JAO8] presented an elegamfi@ctive alge-
bra for composing the delay of applications modeled by DAG$ scheduled on

79

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

distributed systems. However, they did not provide tempgedation among ap-
plications.

Fisher and Baruah [FB09] derived near-optimal sufficieststéor determining
whether a given collection of jobs with precedence consisaian feasibly meet all
deadlines upon a specified multiprocessor platform undevayEDF scheduling,
S0 partitioning issues and resource reservations are dotssed.

5.3 System model and background

A real-time application is modelled as a set of tasks wittegiprecedence con-
straints, specified as a Directed Acyclic Graph (DAG). Anlaagion is consid-
ered to be sporadic, meaning that it can be cyclically at®/avith a minimum
interarrival periodl” and must be completed within a relative deadlingwhich
can be less than or equal to the period. Each task consistsegjuential portion
of code with known worst-case execution time (WCET,)

Note that the DAG represents a description of the applinatmnsidering the
maximum level of parallelism. This means that each taskessrts a sequential
activity to be executed on a single core. Tasks can be preshgttany time and
do not call blocking primitives during their execution. Eig 5.1 illustrates an
example of DAG for an application consisting of five taskshveixecution times:

C1=4,C0=1,03=5,04=2,C5 = 3.

The entire application starts at time= 0 and is periodically activated with a period
T = 20. We consider a relative deadlirie equal to the period.

Figure 5.1: A sample application represented with a DAG.

To better illustrate the parallel execution of an applmatnd identify the max-
imum number of required processors, we adopt a differerdrgg®n that visual-
izes the computation times of each task in the timeline, as @antt chart. In
such a diagram, denoted as tiraeline representatigreach task starts as soon as
possible on the first available core, assuming as many cereeeded. For the
application shown in Figure 5.1, the timeline represeotats illustrated in Figure
5.2, where synchronization points coming from the preceearaph are repre-
sented by arrows.

An advantage of the timeline representation is that it tfedsualizes the in-
trinsic parallelism of the application, showing in eachdistot the maximum num-
ber of cores needed to perform the required computatiors Mieians that adding

80

5.3. SYSTEM MODEL AND BACKGROUND

1

)

T3

T4

T5

10

Figure 5.2: Timeline representation.

other cores will not reduce the overall response time, mxdue DAG already
expresses the maximum level of parallelism.

5.3.1 Terminology and notation

First, to shorten the expressions, we may demnote{0,x} as(x),. Moreover,
throughout the paper we adopt the following terminology aathtion.

e Application T'. It is a set ofn tasks with given precedence relations ex-
pressed by a Directed Acyclic Graph (DAG). The applicatisrsporadic,
meaning that it is cyclically activated with a minimum irdetval time T
and must complete within a given relative deadlibe which can be less
than or equal t@". This allows asserting that only one instance of the appli-
cation is running at any time.

e Task 7;. It is a portion of code that cannot be parallelized and mast b
executed sequentially; can be preempted at any time and is characterized
by a known worst-case execution tirdk > 0. 7; is also assighed a deadline
d; and an activation time; relative to the activation of the first task of the
application. The assignment of deadlines and activatioediis investigated
in Section 5.4.1. Tasks are schedulecEny.

e Precedence relationR. It is formally defined as a partial ordering C
I' x I'. Notation7; < 7; denotes that; is a predecessoof 7;, meaning
that; cannot start executing before the completiorr,ofNotationr; — 7;
denotes that; is animmediate predecessof 7;, meaning that; < 7; and

Ty X Tp < Tj = (Tk =T; Or 71, :Tj)'

e Path P. Itis any subset of taskB C I' that is totally ordered according to
R;i.e., V7, 1; € Peitherr; < r;orr; < 7.

81

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

e Execution time function C(+). Itis a functionC : P(I') — R that, applied
to any subset of T, returns the total execution time of the tasksdin

vACT Cc(A)E Y c.
TiEA

e Sequential Execution TimeC*. It is the minimum time needed to complete
the application on a uniprocessor, by serializing all taakihe DAG. It is
equal to the sum of all tasks computation times:

s o).
For the application illustrated in Figure 5.2, we have= 15.

o Parallel Execution Time CP. It is the minimum time needed to complete
the application on a parallel architecture with an infinitenter of cores. It
is equal to

cr Y max C(P). (5.1)
Pis apath
Notice that the application relative deadline cannot be teanC?, other-
wise it is missed even on an infinite number of cores. For th@icgiion
illustrated in Figure 5.2, we hav@? = 10.

e Critical path (CP). Itis a path P having'(P) = C?.

e Virtual processor VPy. Itis an abstraction of a sequential machine achieved
through a resource reservation mechanism characterizeal igndwidth
a; < 1 and a maximum service delay;, > 0.

e Flow Fy. Itis a subset of taskB; C T" allocated on virtual processdPy,
which is dedicated to the execution of tasksFinonly. An applicationl” is
partitioned intom flows.

e Flow computation time C,f. It is the cumulative computation time of the
tasks in flowrFy:

ol ¥ o(my).

Dividing an application into parallel flows allows severations, from the ex-
treme case of defining a single flow for the entire applicafiere no parallelism
is exploited/necessary and all tasks are sequentiallyubx@mn a single core) to
the case of having a flow per task (maximum parallelism). Tlag wa which
flows are defined may affect the total bandwidth required &rete the applica-
tion. Hence, we now address the problem of finding the bestiparof flows that
minimizes the total bandwidth requirements.

Intuitively, grouping tasks into large flows improves schiedbility, as long as
each flow has a bandwidth less than or equal to one. To befaiexeach step of

82

5.3. SYSTEM MODEL AND BACKGROUND

Figure 5.4: An alternate parallel flow selection.

the process, we consider a reference application corgistifive tasks, previously
illustrated in Figure 5.1. For this example, we divide thelagation in two flows,
as illustrated in Figure 5.3. Notice that there can be séwags for selecting flows
in the same application. An alternative solution is showRigure 5.4.

5.3.2 Demand Bound Function

SinceEDF is used as a scheduler, here we recall the concept of demamdl bo
function that is used to estimate the amount of required coatjpnal resource.
The processor demand of a taskthat has activation time;, computation time
C;, periodT;, and relative deadlind;, in any interval[t, to] is defined to be the
amount of processing timg(¢1, t2) requested by those instancesrpéctivated in
[t1,t2] that must be completed [, t2]. That is [BHR9O0],

def (| t2 —a; —d; t1—a;
gi(ti,t2) = ({ J - [w +1> C;.
T; T; 0

The overall demand bound function of a subset of tadks I is

def
WAt ta) = > gilty, ta)
TiEA

where we made it depend on the beginning and the length oftée/al.
As suggested by Rahni et al. [RGRO08], we can use a more corfgpatilation
of the demand bound function that depends only on the lengitthe time interval

83

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

[t1,t1 +t]:

dbf(A, 1) & max h(A, tr, b1 +1). (5.2)
1

5.3.3 The ¢, A) server

Mok et al. [MFCO1] introduced the “bounded delay partitidn"describe a reser-
vation by two parameters only: a bandwidihand a delayA. The bandwidthy
measures the amount of resource that is assigned to the demgapplication,
whereasA represents the worst-case service delay.

Before introducing ther and A parameters, it is necessary to recall the concept
of supply function [LB0O3, SLO3], that represents the minimamount of time that
a generic virtual processor can provide in a given interféhoe.

Definition 2 (Def. 9 in [MFCO01], Th. 1in [LBO3], Eq. (6) in [EALO7]) Given a virtual
processol Py, its supply functionZy(t) is the minimum amount of time provided
by the reservation in every time interval of length 0.

The supply function can be defined for many kinds of resewaati as static
time partitions [MFCO01, FMO02], periodic servers [LB03, S]0or periodic servers
with arbitrary deadline [EALO7]. For example, for the siraplase of a periodic
reservation that allocaté&g units of time every period®, we have [LB03, SLO3]:

Z(t) =max{0,t — P+ Q — (k+1)(P —Q),kQ} (5.3)

with & = | =€)
Given the supply function, the bandwidthand the delay\ can be formally
defined as follows.

Definition 3 (compare Def. 5 in [MFCO01]) GivenVP,, with supply functionZy,
the bandwidthey, of the virtual processor is defined as

of . Z(t
oy d:fthm k() (5.4)

—00 t

The A parameter provides a measure of the responsiveness, asedopy
Mok et al. [MFCOL1].

Definition 4 (compare Def. 14 in [MFCO01])GivenVP,, with supply functionzy,
and bandwidthy;, thedelay A, of the virtual processor is defined as

Ar % sup {t -~ Z’“—(t)} . (5.5)

t>0 ag

84

5.4. PARTITIONING AN APPLICATION INTO FLOWS

Informally speaking, given a VR with bandwidthe,,, the delayA, is the
minimum horizontal displacement such that the lindt — A,) is a lower bound
of Z,(t).

Once the bandwidth and the delay are computed, the supptyidanof VP,
can be lower bounded as follows:

Z(t) = ag(t — Ag)o. (5.6)

If the (a, A) server is implemented through a periodic server [LB03, $L03
that allocates a budgé&p;. every periodP;, we have a bandwidth;, = Q/Px
and a delayA, = 2(P, — Q). In practice, however, a portion of the processor
bandwidth is wasted to perform context switches every tiroeraer is executed. If
o is the runtime overhead required for a context switch, Bni$ the server period,
the effective server bandwidth can be computed as:

g

B, = —.

k= g + P

ExpressingP, as a function ofy, andAj we have

Ay

P=——Fr
YT o1 — o)

Hence,
1-— (697

Ay
From previous results [SL03], we can state that a sulisistschedulable on
the virtual processor characterized by bandwidtind delayA, if and only if:

B = ap + 20

(5.7)

VE>0 dbf(A,t) < alt — A (5.8)

5.4 Partitioning an application into flows

This section describes the method proposed in this papetéordine the optimal
partition of an application into flows. A sample partitiordispicted in Figure 5.5.

The possible partitions into flows are explored through andfmaand bound
search algorithm, whose details are given later in Sectiér85

For a given partition (i.e., selection of flows), we first tsfarm precedence re-
lations into timing constraints by assigning suitable diead and activation times
to each task, as illustrated in Section 5.4.1.

Once deadlines and activations are assigned, the ovenafiwtational require-
ment of each flowF}, is evaluated through its demand bound function and the pa-
rameters of the corresponding virtual processBy, are computed, as explained in
Section 5.4.2.

Then, if the objective is to minimize the total bandwidthe thverall bandwidth
required by the entire partition is computed by summing gredwidths computed

85

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

dbf(Fy,t) | | dbf(Fy,t) | | dbf(Fs,t)

(VP) (VP) VP,

Figure 5.5: A sample partition into three flows.

for each flow using Equation (5.7) and, finally, the partitwwith the minimum
bandwidth is determined as a result of the branch and bouattsalgorithm.
A different metrics is also presented in Section 5.4.3 toimize the maximum
degree of parallelism.

5.4.1 Assigning deadlines and activations

Given a partition{ F1, ..., F},,} of the application intan flows, activation times

a; and the deadlineg; are assigned to all tasks to meet precedence relations and
timing constraints. The assignment is performed accorttirgmethod originally
proposed by Chetto-Silly-Bouchentouf [CSB90], adaptedvtok on multi-core
systems and slightly modified to reduce the bandwidth requénts. The algo-
rithm starts by assigning the application deadlinéo all tasks without successors.
Then, the algorithm proceeds by assigning the deadlinegaska; for which all
successors have been considered. The deadline assignetihta &sk is

d; = min (d;j — Cj) (5.9)

JiTi—Tj

The pseudo-code of the deadline assignment algorithruiiidited in Figure 5.6.
For the application shown in Figure 5.1, considering thatdterall deadline
is D =T = 20, by applying the transformation algorithm, we get:

dz =20

ds =20

dy = min(ds — C3,ds — C5) = min(15,17) = 15
dy =ds — C5 =17

dy = min(ds — Oy, dy — Cy) = min(14, 15) = 14.

86

5.4. PARTITIONING AN APPLICATION INTO FLOWS

ASSIGNDEADLINES(T)

1 for all (nodes without successors) et = D;
2 while (there exist nodes not seft)

3 select a task;, with all successors modified;
4 setd, = min (d] — Cj),
5

31T —Tj
}

Figure 5.6: The deadline assignment algorithm.

Activation times are set in a similar fashion, but we slighthodified the
Chetto-Silly-Bouchentouf’s algorithm to take into accothmat different flows can
potentially execute in parallel on different cores. Clgari cannot be activated
before all its predecessors have finished.

Let 7; be a predecessor of and letF;, be the flowr; belongs to. Ifr; € Fy,
then the precedence constraint is already enforced by #ide assignment given
in Eq. (5.9). Hence, it is sufficient to make sure thais not activated earlier than
7j. In general, we must ensure that

def prec
a; > max a;} = aP*c. 5.10
! Tj%Ti,T]’GFk{ j} ¢ ()

On the other hand, if; ¢ F}, we cannot assume that will be allocated on
the same physical core as thus we do not know its precise finishing time. Hence,
7; cannot be activated before deadline, that is

a;> max {d;} %< aee, (5.11)

Tj—TiyTj ¢Fk

In general,a; must satisfy both (5.11) and (5.10). Moreovgrshould be as
early as possible so that the resulting demand bound fumistiminimized [BHR90].
Hence, we set

a; = max {al"*, d>"} . (5.12)

The algorithm starts by assigning activation times to raalas, i.e., tasks with-
out predecessors. For such tasks, the activation time exsetd to the application
activation time that we can assume to be zero, without logeérality. Then, the
algorithm proceeds by assigning activation times to a taskvhich all predeces-
sors have been considered. Figure 5.7 illustrates the psmak of the algorithm.

Indeed, the transformation algorithm proposed by Cheitty, 8nd Bouchen-
touf was designed to guarantee the precedence constrnagtsdless of the pro-
cessor demand. In fact it assigns deadlines as late as lgodsdwever activations
may coincide with some deadline as well. If an activatioros ¢lose to the cor-
responding deadline, then the demand bound function camnteeery large. To
address this issue, in this work we propose an alternatiagdle assignment that

87

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

ASSIGNACTIVATION TIMES(T)

1 forall (nodes without predecessors) et 0;
2 while (there exist nodes not seft)

3 select a task; with all predecessors modified;
4 seta;, = max{a] °,d}"}

5

}

Figure 5.7: The activation assignment algorithm.

reduces the processor demand of the flow by distributingstdskdlines more uni-
formly along the time line. IC? is the computation time of a critical path abid
is defined as

cr
p_
v D
we propose to assign task deadlines as follows:
di = 'min (dj - Cj/Up) (513)
]:TiA)Tj

instead of according to Eq. (5.9).

The following lemma shows that such a deadline assignmesuusd, in the
sense that all relative deadlines are greater than the atiricomputation times
of the preceding tasks in a path.

Lemma 1. If each taskr; of a pathP is assigned a relative deadline

di = .min (d] —Cj/Up)

j:’Ti—)T]’

whereU? = C?/D, then it is guaranteed that all the tasks ih have relative
deadlines greater than the cumulative execution time optbeeding tasks, that is

d; > Z C,.

T EP, TR <T;

Proof. Given any node, let 7,11, 7512, ..., 77 be the sequence of successors of
7; such thatr;, is a leaf node (hencé;, = D) and

V]:Z,,L—l dj:dj+1—0j+1/Up.

Then we have:

L
_ Ciy1 _ > i—i+1Cj
dl_dl+1_W_D_T
If Pisa path including;, 7,41, .., 75, We can write:
Up Up Up

88

5.4. PARTITIONING AN APPLICATION INTO FLOWS

and sinceJ/? = C?/D we have

) p Zi=i Cj.

di =D — Or e

SinceC(P) < CP for any P, andC? < D, we have:
22:1 Cj i
d; > = Zlcj.

J:

Thus, the lemma follows. O

For the application shown in Figure 5.1, we have that:

CL1:O
D=T=20
CP =10
C* =15

cr
p:—:
U 7o) 0.5

Hence, the proposed transformation algorithm (Eqg. (5.a8)luces the following
deadline assignment:

ds = 20

ds = 20

dy = min(20 — 5/0.5,20 — 3/0.5) = min(10, 14) = 10
dy=20—3/0.5=14

dy = min(10 — 1/0.5,14 — 2/0.5) = min(8, 10) = 8.

If, for example, we select the flowB, = {7, 7,3} and Fy, = {74, 75}, the
activation times result to be:

ar =0
as =0
az =0
ay =d; =8

a5 = max(ay4, ds) = max(8,10) = 10

The demand bound functions of the two flows are reported inr€i%.8 and
Figure 5.9, respectively.

89

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

Y 4 g d;
| l T l T ‘ T -
\ 8 10 20
dbf(F1,t)
10: L SE—
8]
67 .
4 -—
2]
T 7 [[7 ‘
0 5 10 15 20

Figure 5.8: Demand bound function of flai;.

5.4.2 Bandwidth requirements for a flow

Once activation times and deadlines have been set for & t&ach flow can
be independently executed on different virtual processadereDF, in isolation,
ensuring that precedence constraints are met.

To determine the reservation parameters that guaranteiedbkibility of the
schedule, we need to characterize the computational ergaimt of each flow. By
using the demand bound function defined in Equation (5.2) ave tthat a flow?
is schedulable on the virtual proces&? characterized by bandwidthand delay
A if and only if:

Vt>0 dbf(F,t) < a(t — A). (5.14)

Now the problem is to select they, A) parameters among all possible pairs
that satisfy Eq. (5.14). We propose to select the pair thatmmzes the bandwidth
B used by the virtual processor, as given by Eq. (5.7), whicloaats for the cost
of the server overhead. Hence, the best\) pair is the solution of the following
minimization problem:

l-«
A (5.15)
subjectto dbf(F,t) < a(t —A)y, Vt>0

minimize o +¢

with e = 20.

This problem have a very efficient solution that exploits ¢tbavexity of the
domain and the quasiconvexity of the cost function (see AgpeA for the proof).
More details of how to obtain the optiméd, A) pair for a flow can be found
in [BBWO09].

90

5.4. PARTITIONING AN APPLICATION INTO FLOWS

g 3y 3 d, d
‘ ‘ T T T T l ‘ l T -
8 10 14 20
h(F2,a4,a4 +t)
&
4
2 .
‘ T ‘ T T ‘ T ‘ 1 t
0 5 10 15
h(F2,as5,a5 +t)
4
.—
2
[T [T [T o t
0 5 10
dbf (Fy, t)
6
-
4
.—
2 ~—
\ [T [T [T =
0 5 10 15 t

Figure 5.9: Demand bound function of flai#.

5.4.3 The branch and bound algorithm

This section illustrates the algorithm used for selecting best partition of the
application into flows. Two different objectives have beensidered in the opti-
mization procedure.

As a first optimization goal, we considered minimizing the@i bandwidth
requirement of the selected flows, that is

m m 1—ay
B = B = 2 . A
> kz<ak+aAk> (5.16)

=1

Clearly, the numbem of flows has to be determined as well.
As a second optimization goal, we considered minimizingitlagimum degree
of parallelism, defined as

==r 5.17
----- m By ()

The selection of this metric is inspired by the glolgalF test on uniform multi-
processors [FGBO1]. In fact, in uniform multiprocessorestiling, if By > By >
... > B, are the speeds of the processors, a platform with a low vdlyehas

91

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

higher chance to schedule tasks due to the lower degreegrhématation of the
overall computing capacity

To show the benefit of adopting the cost of Equation (5.17)u$econsider a
virtual platform withm identical processors, each provididty = B/m. While
the cost according to Eq. (5.16) i, hence independent of the number of virtual
processors, the cost according to Eq. (5.1 #islt follows that the minimization
of 3 leads to the reduction of number of flows in which the applicais parti-
tioned. Nonetheless, the minimization®&lso implicitly implies the selection of
a partitioning with low overall bandwidth requiremeft In fact we have that

m m m
i1 Bi 2 i—i Bi
; b= B - k::Hll,a}fm By b

Henceg is also an upper bound of the overall bandwidthand a minimization of
B leads indirectly to the selection of a low value®fas well. Later in Figure 5.14
we will show that in our experiments the difference betwgemdB is very small.

The search for the optimal flow partition is approached bygisi branch and
bound algorithm, which explores the possible partitiongégyerating a search tree
as illustrated in Figure 5.10.

Figure 5.10: The search tree.

At the root level (levell), task; is associated with flowF;. At level 2, 7
is assigned either to the same fléw (left branch) or to a newly created flof
(right branch). In general, at each levekaskr; is assigned either to one of the
existing flows, or to a new created flow. Hence, the depth otrixe is equal to
the numbem of tasks composing the application, whereas the numbeaoéteof
the tree is equal to the number of all the possible partitadres set ofn members,
given by the Bell Numbeb,, [Rot64], recursively computed by

" /n “ n!
by = =S — b 5.18
o Z<k>k > (5.18)

k=0

To reduce the average complexity of the search, we use samégrcondi-
tions to cut unfeasible and redundant branches for impgotyie runtime behavior
of the algorithm.

"Notice that in [FGBO1] the authors uge= 5 — 1 to express the parallelism of the platform.

92

5.4. PARTITIONING AN APPLICATION INTO FLOWS

We first observe that if, at some node, there is a flgwwith bandwidth greater
than one

Ci
Bz Y >l (5.19)
T, €EF)
then the schedule of the tasks in that flow is unfeasiblegsinc
Y Ci>T>D. (5.20)
T, €FY

Hence, whenever a node has a flow with bandwidth greater thenae can prune
the whole subtree, since no feasible partitioning can bedan the subtree. More-
over, the pruning efficiency can be further improved by atowy tasks by de-
creasing computation times, because this order allowsmyunsubtree satisfying
Eqg. (5.19) at the highest possible level.

The following lemma provides a lower bound on the number of$lan any
feasible partition:

Lemma 2. In any feasible partitioning, the number of flows satisfies

CS
> | —. .
m > [Dw (5.21)
Proof. In any feasible partitioning 71, . .., F,,, }, we have
C(Fy)
<1 :
5= 1 (5.22)

Adding equations (5.22) for all the flows, we have

2 CE) _C°
D D —

ns[2].

Nonetheless, much of the complexity of the algorithm lieghie horizontal
expansion of the tree: in fact, the search tree keeps addisgjlppe new flows (at
the rightmost branch) even when the number of flows is hidtear the parallelism
that can be possibly exploited by the application. Hencepmee a subtree when
the number of flows exceeds a given boung,.,. A tight value ofm,., IS not
easy to find, hence we adopted the following heuristic value:

Mimax = {5%1 (5.23)

whered > 1 is a parameter for tuning the size of the search tree. A vdldelnse
to one allows a significant improvement in terms of executime, but at the price
of losing optimality. Larger values @f permit reaching optimality with reasonable
execution times. As illustrated in the next section, oundation results show that
the optimal solution is often achieved with< 2.

And sincem is integer,

O

93

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

5.5 Experimental results

To illustrate the effectiveness of the proposed searchrighgo, in this section we

present a number of experiments aimed at comparing thetigéieess of the pro-
duced solution (in terms of humber of flows and required badth);, the efficacy

of the pruning rules (in terms of reducing the number of stepad the advantage
of the use in control applications.

5.5.1 Effectiveness evaluation

In a first experiment, we considered the application showsidare 5.5, consisting
of n = 9 tasks with computation times; =2, Cy, = 3,C3 =5, Cy = 3, C5 = 4,
Cs = 3,C7 = 6,Cg =5, andCy = 6. From the DAG of the application, it results
that the sequential execution time@¥ = 37 and the parallel execution time is
C? = 12, corresponding to the critical pafh = {7¢, 75, 75 }. Notice that the ratio
m = (C?*/CP provides an indication of the maximum level of parallelisimttoe
application. In this example, we have ~ 3.08. Clearly, when the application
deadlineD is less thanC?, the schedule is infeasible on any number of cores,
whereas wherD = CP = 12, the number of cores cannot be less than 4 (see
Lemma 2).

Figure 5.11 reports the number of flows of the optimal partitiound by the
algorithm as a function of the application deadlibe(ranging fromC? to C¥),
using the first optimization goal expressed by Eq. (5.16)e d@ashed line repre-
sents the theoretical bound given by Equation (5.21). Ndtat the number of
flows is equal to 4 wher = CP (meaning that the application need¥R’s to
meet its deadline) and drops to 1 fbr> C*, meaning that the application can be
completely hosted by VYP.

The corresponding bandwidili acquired by the optimal partition (including
the context switch overhead) is shown in Figure 5.12, for different value of
The figure also reports the minimum theoretical boarfd D (without overhead)
and the worst-case bandwidth obtained by selecting one femtgsk. Notice
that the solution found by the algorithm is always very clas¢he ideal one and
significantly better than the worst-case curve.

Considering the second optimization goal, expressed wighcost function
reported by Eq. (5.17), Figure 5.13 reports the optimalchieved by the search
algorithm, as a function of the application deadline, fdfedent values ofs.

The difference between the bandwidth achieved by the seaoddthe first
optimization goal is reported in Figure 5.14. Notice thatlsa difference is never
less than 0, since the first optimization goal aims at miniimgizhe total bandwidth.
However, the bandwidth loss resulted from the second metvesinever larger
than 0.12.

To test the runtime behavior of the search algorithm and fi@ency of the
pruning rule, we ran another experiment with a fully patadleplication (i.e., no
precedence relations) with random computation times,rgése with uniform dis-

94

5.5. EXPERIMENTAL RESULTS

By Search
— — — Theoretical

m (number of flows)

1 L
15 20 25 30 35
D (application deadline)

Figure 5.11: Number of flows as a function of the applicatieadline.

------- Worst-case
By Search (o = 0.8) |
— — — By Search (0 =0.4)
By Search (o = 0)
— — — Theoretical

B (total bandwidth)

15 20 25 30 35
D (application deadline)

Figure 5.12: Total bandwidth as a function of the applicatieadline.

tribution in [1,10]. The application deadline was set beawé'? and C*, with a
valueD = (CP?+ (C*)/2. The runtime behavior of the algorithm was monitored by
counting the number of steps for reaching a solution, as etifumof the number
of tasks, for different values of the pruning parametet he results of this exper-
iment are shown in Figure 5.15, which clearly shows that asiclemable amount
of steps are saved when small valuesyadre used. It is worth mentioning that
using a small value of results in negligible bandwidth loss. Intuitively, thisnca
be justified by considering that a high number of flows oftequiees a high total
B.

95

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

15 20 25 30 35
D (application deadline)

Figure 5.13:5 as a function of the application deadline.

0.14} 0=0.8
- —-0=04
S 0.12} =
EO 0g=0 /
E K
= 0.1} [l
2 ‘H
go.os— — !
b | |
o |
® 0.06F M~ | ‘
< | |
S 0.04] | | l
goor | -
e N n ‘ s
002 | || | , '
I i r A
0 i \‘L L [L vl L
15 20 25 30 35

D (application deadline)

Figure 5.14: Bandwidth loss resulted from minimizifig

5.5.2 A Control Example

The considered controlled plant is a ball-and-beam systdrare the plate is tilted
around two axes (X-axis and Y-axis) that are mutually pedpmiar. On each
axis, the rotation of the plate around that axis is actuayead $ervo motor. There-
fore, it can be viewed as a ball-and-beam system on eachwkish gives the
possible parallelism of the controller. Moreover, accogdio works on task split-
ting [Cer99], controller can be in general split into two tgarCalculate Output
andUpdate StateTheCalculate Outpupart takes charge of producing the control
signal, while theUpdate Stateart updates the states of the controller and makes

96

5.5. EXPERIMENTAL RESULTS

107F| reveees Bell number

no pruning (& =)
- ——-930=2

Ll —90=15

Number of Steps
=
o

n (number of tasks)

Figure 5.15: Runtime of the algorithm as a functiomof

any other operation. Hence, further parallelism can beogbeal.
The state-space model of each ball-and-beam plant is given b

dr [0 1 0 0
= lo ol e [
y=[1 0]z+0.1e

where K = 20 is the factor due to physical modelingande are Gaussian white-
noise process with zero mean and unit variance. One LQGaitamntrs designed
for each ball-and-beam system, according to the assodgagdunction:

1 t
J=F lim —/p <xT [10 0} x+u2> dt (5.24)
0

tp—o0 tp 0 0

The control applicatior’,,, 2 is described with the precedence graph in Fig-
ure 5.16. The taskSal-X andCal-Y denote theCalculate Partof the algorithm for
each ball-and-beam control, while tadip-X and Up-Y denote thdJpdate State
part to update the controller states. It is assumed that hécation has other
2 objects: data logging and LCD monitoring, whose softwardeccan both be
parallelized, resulting in tasksogl-4andLCD1-4, respectively. The indices and
WCETSs of all the tasks are shown in Table 5.1. The sequentadwion timeC*
is 36ms, and the parallel execution tinte” is 16ms.

Assume there is another tasl running on the same platform, with a predicted
WCET 2ms and period8ms, giving the required bandwidth df;3 = 0.25. To
show the benefits of using resource reservatipnmay misbehave in its execution
time aftert = 25sec during the simulation, giving a possible execution time in

2Abbreviationbap is short forball and plate.

97

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

Figure 5.16: The precedence graph of the ball-and-plateaapplication.

Table 5.1: The tasks in the ball-and-plate application.

Task| Label | WCET(mns) || Task| Label | WCET(ms)
71 | Cal-X 2 5 | Up-X 3
T3 Cal-X 2 T4 Up-X 3
Ts Logl 3 T6 Log2 2
Ty Log3 4 T8 Log4 4
79 | LCD1 4 79 | LCD2 3
T11 LCD3 5 T12 LCD4 1

[2, 4]ms. This disturbance in the real-time scheduling system waillse the off-
line guarantee of the resource giveriig,, become insufficient to fulfill its timing
constraints, if resource reservation mechanism is nozedil

Three experiments are performed, whose different scenar® described as
below:

e Uniprocessor On uniprocessor platformi,,,, has to be executed sequen-
tially, in the topological order of the nodes in the precemegraph. To
output the control signals as soon as they are ready, the sindevn in Fig-
ure 5.17 is assumed. Taskal-X and Cal-Y are firstly executed, and the
calculated control signal for each axis is output when threesponding task
is finished. ThertJp-XandUp-Y are executed, and tatkCD1-4andLogl-4
will later run in topological order in accordance to theiepedence relations.

! 3 o

ca-x | ca-y Up-X Up-X LCD1-4, Logl-4

Figure 5.17: Sequential execution of the ball-and-plafiegtion on uniprocessor.

98

5.5. EXPERIMENTAL RESULTS

Knowing the required bandwidth fat 3 is U3 = 0.25, the available CPU
bandwidth left for the ball-and-plate applicationlis,, =1 — Uz = 0.75,
if EDF scheduling policy is used. That means, the maximum achievab
sampling rate fol',,, is

~Ur, 075

oy = G- = 3¢ = 0-02083H>2

which is equivalent to a sampling period 4fms.

Uniprocessor + DisturbanceAll the setup is precisely the same as the first
simulation, except for that;s will misbehave aftet = 25sec.

Multiprocessor + Disturbance The proposed method in the chapter is used.
The deadline and period &%, are chosen to be equaldpms. Assuming
the context switch overheadl = 0.1ms, the optimal partitioning with re-
spect to minimizing the maximum parallelism is shown in Fegb.18. The

Figure 5.18: The optimal partition d@f,,.

results of deadline and arrival time assignment of tasksanmemarized in
Appendix B. The(a, A) pair of Flow F; is (0.997037, 0.136985) and the
one of FlowF; is (0.727272, 0.375000), which leads to CBS server param-
eters(Q, P) of (23.047, 23.116) and (0.500, 0.688), respectively. Atmul
processor platform with two symmetric CPUs is used, whéres assigned

to CPUL, andF; is assigned to CPU2.

Same disturbance froms take place, but this time;s is put in a CBS
with Q, = 2ms and P, = 8ms, which is then allocated to run on CPU2.
Therefore, total utilization of CPU2 is

0.5 0.002
Ui = ——— + ——= = 0.977 < 1
vu2 = 5683 T 0.008

which is schedulable usirgpr.

99

CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

450

— — — Uniprocessor + Disturbance /
400 Uniprocessor -

. . Di ,
3501 Multiprocessor + Disturbance ,

300+ ;
250 /
200

150

Performance loss
N\

100

501

0 10 20 30 40 50
Simulation time (sec)

Figure 5.19: Control performance comparison.

All three experiments run in TrueTime 2.0 wilosec, and the control perfor-
mance is evaluated using Eq. (5.24). The results is showigiré-5.19. It clearly
shows that due to the disturbance brought in by tagkthe performance signif-
icantly degrades after = 25sec. However, the resource reservation mechanism
used in the 3rd experiment manages to isolate the incorneictgt behavior ofry3.

A more interesting fact reported in the figure is that the ewfthe 3rd experiment
is lower than the one from the 1st experiment, which meatiging the proposed

method to exploit the parallelism in the controller softer@nables the real-time
control system to have a faster sampling rate and shorteedd latency, hence
resulting in better performance.

Notice that, in the experiment only simple state feedbackrotiers are used
for the Calculate OutpupartsCal-X andCal-Y. We believe that the control perfor-
mance improvement should be largely increased if more stipaied controllers
are involved so that our proposed method can take advantagessibly more
parallelism in the control algorithm.

5.6 Conclusion

The chapter presented a general methodology for allocatipgrallel real-time
application to a multi-core platform in a way that is indegent of the number
of physical cores available in the hardware architecturdependency is achieved
through the concept of virtual processor, which abstraatssaurce reservation
mechanism by means of two parametergthe bandwidth) and\ (the maximum
service delay).
An algorithm was developed to automatically partition thgplacation into

flows, meeting the specified timing constraints and miningaither the overall re-

100

5.6. CONCLUSION

quired bandwidthB or the maximum degree of parallelisth The computational
requirements of each flow were derived through the procedsorand criterion,
after defining intermediate activation times and deadlfioesach task, properly
selected to satisfy precedence relations and timing ainsdr

The employment of the method in control scenario was iléistt by an ex-
ample with a ball-and-plate system. The experimental teshiow that the mul-
tiprocessor platform allows the control application to@xe with certain degree
of parallelism such that faster sampling and shorter erehtblatency is achieved.
The control performance is improved even when disturbarist i the schedul-
ing system, owning to the resource reservation.

101

Chapter 6

Conclusion

6.1 Summary

In this dissertation, the analysis and design for real-ttor@rol systems in resource-
constrained platform is discussed. After reviewing thekgasund knowledge and
existing state-of-the-art techniques, several new methaye been presented to
enhance the current technology for real-time controlleiigte

Limited-preemption scheduling is investigated for its @ubages in improving
task responsiveness and control performance. It has besynsh previous re-
search that using non-preemptive EDF scheduling, the iapytut delays of con-
trol tasks are minimized to their WCET, thus improving thattol performance.
However, the achievement of better control performanceid py impairing the
feasibility of the task set, because of the property of the-peeemptive schedul-
ing. In other words, non-preemptive EDF forces a reductibthe total resource
utilization. Increasing the responsiveness of a contrsk t@sults in smaller de-
lay and jitter, thus improving its control performance. Ade-off can be made
by using limited-preemption, where the feasibility of tlasKk set is maintained
while the responsiveness of certain tasks can be incre&@gdelectively apply-
ing limited-preemption to control tasks in dynamic prigréystems (EDF), their
response times, as well as input-output delay/jitter, edeiced and the correspond-
ing control performance are improved.

In resource-constrained systems, the interference gedeg the concurrent
execution of multiple controller tasks leads to extra delag jitter, which degrade
control performance and may even jeopardize the stabilitiyeocontrolled system.
A general methodology has been presented which integratgsot issues and
real-time schedulability analysis to improve the contretfprmance in embedded
systems with time and resource constraints. The perforengrecease is achieved
by properly selecting task periods and deadlines undeibiésconstraints.

A full exploitation of the computational power availableanmulti-core plat-
form requires the software to be specified in terms of pdrakecution flows. At
the same time, modern embedded systems often consist ofpamkel applica-

103

CHAPTER 6. CONCLUSION

tions with timing requirements, concurrently executingtba same platform and
sharing common resources. To prevent reciprocal interéeremong critical ac-
tivities, a resource reservation mechanism is highly édsin the kernel to achieve
temporal isolation. In this dissertation, a general methagly is proposed for par-
titioning the total computing power available on a multreglatform into a set
of virtual processors, which provide a powerful abstractmallocate applications
independently of the physical platform. The applicatioesatibed as a set of tasks
with precedence relations expressed by a directed acy@jghgis automatically
partitioned into a set of subgraphs that are selected tamizeieither the overall
bandwidth consumption or the maximum degree of parallelishe effectiveness
of the proposed method for real-time control systems istitated by experiment
on a ball-and-plate control system.

6.2 Future Work

The maturity of the techniques in designing real-time aargystems requires con-
tinuous attention and efforts from both control communitgd acheduling commu-
nity. Regarding the presented methods in this dissertaseveral extensions are
possible.

o Utilization of limited preemption. In the presented method in Chapter 3,
the non-preemptive chunk is proposed to be placed at thefezatb control
task, which lead to a significant decrease of input-outplaydélowever, it
would be interesting to investigate the placement of the Nihk when a
control task is divided into separated parts I&alculate OutpuandUpdate
States It can be envisioned that if th@alculate Outpupart is completely
non-preemptive, then the input-output delay is minimizekich could lead
to even better performance.

e Parameter Selection. The proposed method for period and deadline se-
lection in Chapter 4 uses a 2-step procedure, which bagicah not give
the optimal solution. To reach the optimal control perfonoe, the feasi-
ble region of both period and deadline is required. Howethe, finding
of such region is not trivial and has only been studied with simgle task
in [BRCO9].

e Multiprocessor platform. The investigation of real-time control design
problem on multiprocessor platform has just received #terrecently. It
would be interesting to see what is the effect on controlgrerbnce from
different scheduling policies on multiprocessor platfoffor instance, would
global scheduling policies benefit the real-time contradteyns, or would
partitioned scheduling policies be preferable? Regarttinthe proposed
method in Chapter 5, a planned work is to investigate thdioaldetween
(o, A) parameter and the control performance, and to involve thfope
mance in the searching of the optimal partitioning.

104

Appendix A

Proof of the quasiconvexity of
optimization problem (5.15)

Since thedbf is a step function, it is enough to ensure that Eq. (5.14)ridied at
all the steps. IschedP is the set of time instants where thef has a step, then
Eq. (5.14) can be equivalently ensured by

Vt € schedP dbf(t) < a(t — A)p.

Accordingly, the minimization problem (5.15) can the be siifired to

. 11—«
minimize o+ ¢

(A.1)
subjectto dbf(F,t) < a(t — A)g, Vt € schedP

Such an optimization problem be solved very efficiently,nigato the good
properties of both the constraint and the cost function. Ygegrove the convexity
of the constraint.

Lemma 3. Givent,w > 0, let D(¢, w) be defined as
D(t,w) = {(a,A) € R* : a(t — A) > w,a > 0}
thenD(¢, w) is convex.
Proof. We start observing that
at—A)>w>0=t-A>0 (A.2)

becausex > 0. To prove the convexity oD (¢, w) we use the property that

{(z,y) : f(z) <y} is convexs % >0 (A.3)

105

In fact we have

APPENDIX A. PROOF OF THE QUASICONVEXITY OF OPTIMIZATION PROBLEM (5.15)

Now
2 w 2w
- >0
dA2t—A (t—A)P —

because of Eq. (A.2). Hence from the property of Eq. (A.3,ltemma follows.
O

Figure A.1 shows examples of the doma§, w).

oL [[[1] D(10,6)
't D(30,20)
I ==T-I'%)
41
3L < xl
2L
tr A
Il Il Il Il L Il Il Il Il Il Il l/T ‘ N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(0]

Figure A.1: Examples of the regiors(¢, w).
Regarding the properties of the cost function, we first ftebalfollowing def-
inition.
Definition 5 (Section 3.4 in [BV04]) A functionf : R — R is calledquasicon-

vex if its domain and all its sublevel sefsg = {z € domf : f(z) < B}, for
B € R, are convex.

Notice that convexity implies quasiconvexity, but the vieesa is not true [BV04].
We then have the following result.

Lemma 4. The functiory : [0, 1] x (0, 4+00) = R

11—«
A

gla,A) =a+e

is quasiconvex.

Proof. We first notice that the domain ¢f that isG = [0, 1] x (0, +00) iS convex.
From the definition of quasiconvexity we have to prove thhtha level sets

SB:{(Q,A)EG:a—i-El;aSB} (A.4)

are convex (see Figure A.2 for graphical representatiomceS3 is interpreted
as the overall bandwidth used by the reservation, we onlg neg@rove this for
B < 1. SinceB > « andA > 0, we have that:

1-— 1-—
agB & € a

<A

o+¢€ B_a>

106

and from the property of Eq. (A.3),

11—« d? 1—-«
A): <A — >
{(a,) EB—a* }@daQB—aO

sincek > 0.
We have

dl-a -1B-ao)+(1l-ao) 1-v
daB—a (B — «)? - (B —a)?
¢ 1-a _, 1-8

da?B—a “(B—-a)3

that is greater than or equal to zero, becabisg 1 anda < B. This proves the
convexity of the level setSz and the quasiconvexity gfas required. O

o[>
N W A OO N O ©

-

Figure A.2: Examples of the regiorss.

Since the cost function of the problem of Eq. (A.1) is quasvex (from Lemma 4)
and the feasibility region is the intersection of convexioag (from Lemma 3),
then the minimization problem is a standard quasiconveixagdtion problem [BV04],
which can be solved very efficiently by standard techniques.

107

Appendix B

Deadline and activation

assignment forl’,,,,

Table B.1: TheD, a assignment for tasks i,

Task | Label | a;(ms) | D;(ms) || Task| Label | a;(ms) | D;(ms)
1 Cal-X 0 3.13 To Up-X 0 7.81
3 | Cal-X 0 3.13 T4 Up-X 0 7.81
7 | Logl | 3.13 | 1250 | 7 | Log2 | 7.81 | 18.75
7 Log3 7.81 18.75 T8 Log4 7.81 25.00
9 | LCD1| 7.81 15.63 7190 | LCD2 | 15.63 23.44
11 | LCD3| 7.81 23.44 T1o | LCD4 | 23.44 25.00

108

Bibliography

[ABOS]

[ACD74]

[ACES00]

Luca Abeni and Giorgio Buttazzdntegrating multimedia appli-
cations in hard real-time systemBroceedings of theé9" IEEE
Real-Time Systems Symposium (Madrid, Spain), Decembe8,199
pp. 4-13.

Thomas L. Adam, K. M. Chandy, and J. R. Dickséngomparison
of list schedules for parallel processing syste@emmunications
of the ACM 17 (1974), no. 12, 685-690.

KarI-Erik,&rzén, Anton Cervin, Johan Eker, and Lui Sl in-
troduction to control and scheduling co-desjgRroceedings of
the 391" IEEE Conference on Decision and Control (Sydney, Aus-
tralia), December 2000.

[AMMMAOQ1] Hakan Aydin, Rami Melhem, Daniel Mossé, and Ped¥iejia-

[AW97]

[BAL9S]

[Bar05]

[BBO4]

[BB09a]

Alarez, Optimal reward-based scheduling for periodic real-time
tasks IEEE Transactions on Computés8(2001), no. 2, 111-130.

Karl JohanAstrom and Bjorn WittenmarkComputer-controlled
systems: Theory and desjgrd ed., Prentice Hall, 1997.

Giorgio C. Buttazzo, Luca Abeni, and Giuseppe Lip&ilastic task
model for adaptive rate contrpProceedings of the9!" IEEE Real
Time System Symposium (Madrid, Spain), December 1998.

Sanjoy BaruahThe limited-preemption uniprocessor scheduling
of sporadic task system®roceedings of the EuroMicro Confer-
ence on Real-Time Systems (Palma de Mallorca, Balearindsla
Spain), IEEE Computer Society Press, July 2005, pp. 137-144

Enrico Bini and Giorgio C. Buttazzdiasing effects in schedula-
bility measuresProceedings of th#6" Euromicro Conference on
Real-Time Systems (Catania, Italy), jun 2004, pp. 196-203.

Marko Bertognha and Sanjoy Barudbniprocessor scheduling of
sporadic task systems under preemption constralB8EE Trans-
actions on Computers (2009), In submission. Available fowialk
load at http://retis.sssup.it/ marko/publi.html.

109

BIBLIOGRAPHY

[BBOYD]

[BBBO3]

[BBBO9]

[BBGL99]

[BBWOY]

[BCO6]

[BCO7]

[BCOS]

[BCGM99]

[BDNO5]

Enrico Bini and Giorgio Buttazzd he space of edf deadlines: the
exact region and a convex approximatidReal-Time System41
(2009), no. 1, 27-51.

Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M.tBazzo,Rate
monotonic scheduling: The hyperbolic boutBEE Transactions
on Computer$2 (2003), no. 7, 933-942.

Enrico Bini, Giorgio C. Buttazzo, and Marko Bertaymhe multy
supply function abstraction for multiprocesspBroceedings of
the 15™ IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (Beijing, Chinsy);
gust 2009, pp. 294-302.

Sanjoy Baruah, Giorgio Buttazzo, Sergey Gorinskyd Giuseppe
Lipari, Scheduling periodic task systems to minimize output jit-
ter, Real-Time Computing Systems and Applications, Inteometi
Workshop orD (1999), 62.

Enrico Bini, Giorgio Buttazzo, and Yifan Wigelecting the mini-
mum consumed bandwidth of an EDF task Bebceedings of the
2"d Workshop on Compositional Real-Time Systems (Washington
DC, USA), December 2009.

Sanjoy Baruah and Samarjit Chakrabo@ghedulability analysis

of non-preemptive recurring real-time tasksternational Work-
shop on Parallel and Distributed Real-Time Systems (IPDPS)
(Rhodes, Greece), April 2006.

Giorgio Buttazzo and Anton CerviGomparative assessment and
evaluation of jitter control methog#®roc. of the 15th International
Conference on Real-Time and Network Systems (RTNS2007)
(March 29-30, 2007), 137-144.

Enrico Bini and Anton CervinDelay-aware period assignment in
control systemsProceedings of th29!" IEEE Real-Time Systems
Symposium (RTSS 2008) (Barcelona, Spain), December 2008,
pp. 291-300.

Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky, aridyAius K.
Mok, Generalized multiframe taskBeal-Time System&7 (1999),
no. 1, 5-22.

Enrico Bini and Marco Di NataleOptimal task rate selection
in fixed priority systemsProceedings of th@6" IEEE Real-
Time Systems Symposium (Miami (FL), U.S.A.), December 2005
pp. 399-409.

110

BIBLIOGRAPHY

[BDNBO6]

[BHRI0]

[Blag6]

[BLVO7]

[BMVO7]

[BRCO6]

[BRCO9]

[BRHO0]

[BS88]

[Bur94]

[But97]

Enrico Bini, Marco Di Natale, and Giorgio C. Buttaz, Sensitiv-

ity analysis for fixed-priority real-time systepiaroceedings of the
18t Euromicro Conference on Real-Time Systems (Dresden, Ger-
many), July 2006.

Sanjoy K. Baruah, Rodney Howell, and Louis Rosfdgorithms
and complexity concerning the preemptive scheduling abger,
real-time tasks on one processdreal-Time System® (1990),
301-324.

Jacek BlazewiczScheduling in computer and manufacturing sys-
tems Springer-Verlag, 1996.

Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Vezh, Worst-
case response time analysis of real-time tasks under fikedtp

scheduling with deferred preemption revisitdelCRTS '07: Pro-
ceedings of the 19th Euromicro Conference on Real-Time=gyst
2007, pp. 269-279.

Giorgio Buttazzo, Paul Marti, and Manel VelascQuality-of-
control management in overloaded real-time systdBEE Trans-
actions on Computeis6 (2007), no. 2, 253-266.

Patricia Balbastre, Ismael Ripoll, and Alfons QresOptimal
deadline assignment for periodic real-time tasks in dymapmi-
ority systemsProceedings of thes!" Euromicro Conference on
Real-Time Systems (Dresden, Germany), July 2006, pp. 65-74

, Period sensitivity analysis and d-p domain feasibility re-
gion in dynamic priority systemsournal of Systems and Software
82(2009), no. 7, 1098-1111.

Sanjoy K. Baruah, Louis E. Rosier, and R. R. HowAlgorithms
and complexity concerning the preemptive scheduling abger,
real-time tasks on one processdreal-Time System® (1990),
301-324.

T.P. Baker and A. Shawlhe cyclic executive model and ada
Real-Time Systems Symposium, 1988., Proceedings., Deg, 198
pp. 120-129.

A. Burns, Preemptive priority based scheduling: An appropriate
engineering approachln S. Son, editor, Advances in Real-Time
Systems (1994), 225-248.

Giorgio C. Buttazzo,Hard real-time computing systems: Pre-
dictable scheduling algorithms and applicationKluwer Aca-
demic Publishers, Norwell, MA, USA, 1997.

111

BIBLIOGRAPHY

[BVO4]

[CBLLOS]

[CBS00]

[CCGO8]

[CDHBO4]

[CEO3]

[CEBAOZ]

[Cer99]

[Cer03]

[CHL*03]

[CLO6]

[CLE*04]

Stephen Boyd and Lieven Vandenbergh@&pnvex optimization
Cambridge University Press, 2004.

A. Casile, G. Buttazzo, G. Lamastra, and G. Lip&imulation and
tracing of hybrid task sets on distributed systefeoceedings of
the 5th International Conference of Real-Time Computingt&wns
and Applications, IEEE, October 1998, pp. 303-310.

Marco Caccamo, Giorgio Buttazzo, and Lui SBestic feedback
control, Proceedings of theé2! Euromicro Conference on Real-
Time Systems (Stockholm, Sweden), June 2000, pp. 121-128.

Sébastien Collette, Liliana Cucu, and Joél Gensdntegrating
job parallelism in real-time scheduling thegrinformation Pro-
cessing Letterd06(2008), no. 5, 180-187.

Richard C. Dorf and Robert H. BishoModern control systems
tenth ed., Prentice Hall, 2004.

A. Cervin and J. EkefThe control server. a computational model
for real-time control tasksReal-Time Systems, 2003. Proceedings.
15th Euromicro Conference on, July 2003, pp. 113-120.

Anton Cervin, Johan Eker, Bo Bernhardsson, and Kailk-érz'en,
Feedback-feedforward scheduling of control taskeal-Time Sys-
tems23(2002), no. 1-2, 25-53.

Anton CervinImproved scheduling of control taskBroceedings
of the 11" Euromicro Conference on Real-Time Systems (York,
UK), June 1999, pp. 4-10.

______,Integrated control and real-time schedulingh.D. thesis,
Department of Automatic Control, Lund University, Swedapril
2003.

Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eked &arl-
Erik Arzén,How does control timing affect performance? Analysis
and simulation of timing using Jitterbug and TrueTinteEE Con-
trol Systems Magazing3 (2003), no. 3, 16—-30.

Anton Cervin and Bo LincolnJittrbug 1.21 Reference Manyal
February 2006.

Anton Cervin, Bo Lincoln, Johan Eker, Karl-Enfczén, and Gior-
gio Buttazzo,The jitter margin and its application in the design
of real-time control system®roceedings of the 10th International

Conference on Real-Time and Embedded Computing Systems and

Applications (Goteborg, Sweden), August 2004, Best papard.

112

BIBLIOGRAPHY

[CRA99]

[CSBY0]

[CWLHO8]

[Der74]

[DLCHZO07]

[EALO7]

[EHAO00]

[ERL90]

[FBO9]

[FGBO1]

[FMO02]

A. Crespo, I. Ripoll, and P. AlbertoReducing delays in rt control:
the control action interval Proceedings of the 14th IFAC World
Congress (Beijing, China), vol. 5, 1999, pp. 257-262.

H. Chetto, M. Silly, and T. Bouchentoudynamic scheduling of
real-time tasks under precedence constrgiiteal-Time Systems
2(1990), no. 3, 181-194.

Thidapat Chantem, Xiaofeng Wang, M. D. Lemmon, and
X. Sharon HuPeriod and deadline selection for schedulability in
real-time system&CRTS '08: Proceedings of the 2008 Euromicro
Conference on Real-Time Systems (2008), 168-177.

M. L. DertouzosControl robotics: The procedural control of phys-
ical processesinformation Processing4 (1974).

Michael D. Lemmon, Thidapat Chantem, Xiaobo SimaHu, and
Matthew Zyskowski,On self-triggered full-information h-infinity
controllers Proceedings 10th International Conference on Hybrid
Systems: Computation and Control(HSCC 2007) (Pisa, Italy)
2007, pp. 371-384.

Arvind Easwaran, Madhukar Anand, and Insup L&nmposi-
tional analysis framework using EDP resource mogd@&soceed-
ings of the28™ IEEE International Real-Time Systems Symposium
(Tucson, AZ, USA), 2007, pp. 129-138.

Johan Eker, Per Hagander, and KarI—Eﬁiﬂzén,A feedback sched-
uler for real-time controller tasksControl Engineering Practic@
(2000), no. 12, 1369-1378.

Hesham EI-Rewini and T. G. LewiScheduling parallel program
tasks onto arbitrary target machinedournal of Parallel and Dis-
tributed Computing (1990), no. 2, 138-153.

Nathan Fisher and Sanjoy Barudie feasibility of general task
systems with precedence constraints on multiprocessdfoptas
Real-Time System41 (2009), no. 1, 1-26.

Shelby Funk, Joél Goossens, and Sanjoy Bar@akHjne schedul-
ing on uniform multiprocessorsProceedings of th@2" |IEEE
Real-Time Systems Symposium (London, United Kingdom), De-
cember 2001, pp. 183-192.

Xiang Feng and Aloysius K. Mok, A model of hierarchical
real-time virtual resourcesProceedings of th@3™ IEEE Real-
Time Systems Symposium (Austin, TX, U.S.A.), December 2002
pp. 26-35.

113

BIBLIOGRAPHY

[FPEN94]

[GAGBO1]

[GHO5]

[GIT79)]

[GRS96]

[HBO7]

[HBJIKO6]

[HCO5]

[HCAAO6]

[HHKO1]

Gene F. Franklin, J. David Powell, and Abbas Emblaini,
Feedback control of dynamic systen®d ed., Addison-Wesley
Publishing Company, Inc., Boston, MA, USA, 1994,

Paolo Gai, Luca Abeni, Massimiliano Giorgi, ando@jio But-
tazzo,A new kernel approach for modular real-time systems devel-
opment Proceedings of thé3™ Euromicro Conference on Real-
Time Systems (Delft, The Nederlands), June 2001, pp. 192-20

José Carlos Palencia Gutiérrez and Michael GleazdarbourRe-
sponse time analysis of EDF distributed real-time systemsrnal
of Embedded Computing (2005), no. 2, 225-237.

M.R. Garey and D.S. Johnso@pmputers and intractability: A
guide to the theory of np-completene®¥éH. Freeman and Com-
pany, 1979.

Laurent George, Nicolas Rivierre, and Marco Spareemptive
and non-preemptive real-time uniprocessor schedulirech. Re-
port RR-2966, INRIA: Institut National de Recherche en inia-
tique et en Automatique, 1996.

Hoai Hoang and Giorgio Buttazzé&®educing delay and jitter in
software control system#roc. of the 15th International Confer-
ence on Real-Time and Network Systems (RTNS2007) (Nancy,
France), March 2007.

Hoai Hoang, Giorgio Buttazzo, Magnus Jonsson, Siefian Karls-
son,Computing the minimum edf feasible deadline in periodie sys
tems Proceedings of thé2™ IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(Sydney, Australia), August 2006, pp. 125-134.

Dan Henriksson and Anton Cervi@ptimal on-line sampling pe-
riod assignment for real-time control tasks based on plaautesin-
formation Proceedings of the 44th IEEE Conference on Decision
and Control and European Control Conference ECC 2005 (8gvil
Spain), December 2005.

Dan Henriksson, Anton Cervin, Martin Andersson, andal¥aik
Arzen, TrueTime: Simulation of networked computer control sys-
tems Proceedings of the 2nd IFAC Conference on Analysis and
Design of Hybrid Systems (Alghero, Italy), June 2006, leslitalk.

Thomas A. Henzinger, Benjamin Horowitz, and Clojst Meyer
Kirsch, Embedded control systems development with gitto-
ceedings of The Workshop on Languages, Compilers, and farols

114

BIBLIOGRAPHY

[HHKO3]

[JAOS]

[JHCO7]

[JP86]

[JSMO1]

[Kim98]

[KKAAQ6]

[LAOS]

[LBO3]

Embedded Systems (Snow Bird (UT), U.S.A.), June 2001, pp. 64
72.

T.A. Henzinger, B. Horowitz, and C.M. KirscltGiotto: a time-
triggered language for embedded programmiRgoceedings of the
IEEE91 (2003), no. 1, 84-99.

Praveen Jayachandran and Tarek Abdelzebelay composition
algebra: A reduction-based schedulability algebra fortdimited
real-time systemsProceedings of the@9" IEEE Real-Time Sys-
tems Symposium (Barcelona, Spain), December 2008, pp. 259—
269.

Erik Johannesson, Toivo Henningsson, and AntorviGeSpo-
radic control of first-order linear stochastic systenfroceedings
of the 10" International Conference on Hybrid Systems: Compu-
tation and Control (Pisa, Italy), April 2007.

Mathai Joseph and Paritosh K. Pandiyagling response times in a
real-time systemirhe Computer Journ2P (1986), no. 5, 390-395.

K. Jeffay, D. Stanat, and C. Mart€n non-preemptive scheduling
of periodic and sporadic task®roceedings of the 12th Real-Time
Systems Symposium (San Antonio, Texas), IEEE Computer Soci
ety Press, December 1991, pp. 129-139.

Byung Kook Kim, Task scheduling with feedback latency for real-
time control systemsProceedings of the 5th International Con-
ference on Real-Time Computing Systems and Applicatioris (H
roshima, Japan), October 1998, pp. 37—-41.

Yu kwong Kwok, Ishfaq Ahmad, and Ishfag Ahmadynamic
critical-path scheduling: An effective technique for akiding task
graphs to multiprocessor$EEE Transactions on Parallel and Dis-
tributed Systemg (1996), 506-521.

Hennadiy Leontyev and James H. Andersénhierarchical mul-
tiprocessor bandwidth reservation scheme with timing gotees
Proceedings of the0™ Euromicro Conference on Real-Time Sys-
tems (Prague, Czech Republic), July 2008, pp. 191-200.

Giuseppe Lipari and Enrico BiniResource partitioning among
real-time applicationsProceedings of the5" Euromicro Confer-
ence on Real-Time Systems (Porto, Portugal), July 20031 5~
158.

115

BIBLIOGRAPHY

[LCO2]

[LL73]

[LM87]

[LSA+00]

[LSTS99]

[LVMO8]

[LW82]

[Mar02]

[MFCO1]

[MFFRO1]

[MLB +04]

Bo Lincoln and Anton CervinJitterbug: A tool for analysis of
real-time control performangeProceedings of thé1St IEEE Con-
ference on Decision and Control (Las Vegas, NV U.S.A.), Dece
ber 2002.

C. L. Liu and James Layland&gcheduling algorithms for multipro-
gramming in a hard real-time environme®dpurnal of the ACM20
(1973), no. 1, 46-61.

Edward Ashford Lee and David G. Messerschnfitatic schedul-
ing of synchronous data flow programs for digital signal pres-
ing, IEEE Transactions on Compute3§ (1987), no. 1, 24-35.

Chenyang Lu, J.A. Stankovic, T.F. Abdelzaher, Gang Taé].
Son, and M. MarleyPerformance specifications and metrics for
adaptive real-time systenReal-Time Systems Symposium, 2000.
Proceedings. The 21st IEEE, 2000, pp. 13-23.

C. Lu, J. Stankovic, G. Tao, and S. H. S@®gsign and evalua-
tion of a feedback control EDF scheduling algorithRroceedings

of the Real-Time Systems Symposium (Phoenix, AZ), IEEE Com-
puter Society Press, December 1999.

Camilo Lozoya, Manel Velasco, and Pau MaiThe one-shot task
model for robust real-time embedded control systdBE Trans-
actions on Industrial Informatic$ (2008), no. 3, 164-174.

Joseph Y.-T. Leung and J. Whitehedain the complexity of fixed-
priority scheduling of periodic real-time taskBerformance Eval-
uation2 (1982), no. 4, 237-250.

Pau Marti,Analysis and design of real-time control systems with
varying control timing constraini$h.D. thesis, Automatic Control
Department, Technical University of Catalonia, July 2002.

Aloysius K. Mok, Xiang Feng, and Deji CheResource partition
for real-time system#roceedings of the" IEEE Real-Time Tech-
nology and Applications Symposium (Taipei, Taiwan), Ma@20
pp. 75-84.

P. Marti, J.M. Fuertes, G. Fohler, and K. Ramalnanit, Jitter com-
pensation for real-time control systej®eal-Time Systems Sym-
posium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, Ded.,200
pp. 39-48.

Pau Marti, Caixue Lin, Scott A. Brandt, Manuel Velasemd
Josep M. Fuerteptimal state feedback based resource alloca-
tion for resource-constrained control tasiroceedings of thest!

116

BIBLIOGRAPHY

[MPO5]

[MVFFO1a]

[MVFFO1b]

[NBWOS]

[OHCO7]

[OPRSF06]

[PACT00]

[RGROS]

[RHO8]

[Rot64]

IEEE Real-Time Systems Symposium (Lisbon, Portugal), Bece
ber 2004, pp. 161-172.

Aloysius K. Mok and Wing-Chi Pooriflon-preemptive robustness
under reduced system loa®TSS '05: Proceedings of the 26th
IEEE International Real-Time Systems Symposium (Wasbimgt
DC, USA), IEEE Computer Society, 2005, pp. 200-209.

Pau Marti, Ricard Villa, Josep M. Fuertes, aneti@ard FohlerOn
real-time control tasks schedulabiljtfeuropean Control Confer-
ence (ECCO01) (Porto, Portugal), Sept. 2001, pp. 2227-2232.

, Stability of on-line compensated real-time scheduled con-
trol tasks IFAC Conference on New Technologies for Computer
Control (Hong Kong), 2001.

Johan Nilsson, Bo Bernhardsson, and Bjorb WittarknStochas-
tic analysis and control of real-time systems with randametide-
lays, Automatica34 (1998), no. 1, 57-64.

Martin Ohlin, Dan Henriksson, and Anton CervimueTime 1.5—
Reference Manuglanuary 2007.

Clara Otero Pérez, Martijn Rutten, Liesbeth Steffedss van
Eijndhoven, and Paul StraverBesource reservations in shared-
memory multiprocessor SoCBynamic and Robust Streaming in
and between Connected Consumer-Electronic Devices (Beek S
ries Philips Research, ed.), Springer, Netherlands, 2006109—
137.

Luigi Palopoli, Luca Abeni, Fabio Conticelli, Marco Didtale,
and Giorgio ButtazzoReal-time control system analysis: An inte-
grated approachProceedings of the5St IEEE Real-Time Systems
Symposium (Orlando,Florida,U.S.A.), Dec 2000.

Ahmed Rahni, Emmanuel Grolleau, and Michael Ridh&ea-
sibility analysis of non-concrete real-time transactiow#th edf
assignment priority Proceedings of the6™ conference on Real-
Time and Network Systems (Rennes, France), October 2008,
pp. 109-117.

Minsoo Ryu and Seongsoo Hornfpward automatic synthesis of
schedulable real-time controllergntegrated Computer-Aided En-
gineering5 (1998), no. 3, 261-277.

Giancarlo Rotalhe number of partitions of a sgamerican Math-
ematical Monthly71 (1964), no. 5, 498-504.

117

BIBLIOGRAPHY

[RS00]

[Sar89]

[SB96]

[SELOS]

[SLO3]

[SLS99]

[SLSS96]

[SRLIO]

[SSRBYS]

[Stass]

[THA+06]

H. Rehbinder and M. Sanfridsdniegration of off-line scheduling
and optimal contrgl Real-Time Systems, 2000. Euromicro RTS
2000. 12th Euromicro Conference on, 2000, pp. 137-143.

V. SarkarPartitioning and scheduling parallel programs for exe-
cution on multiprocessorsIT Press, 1989.

Marco Spuri and Giorgio C. Buttazz8cheduling aperiodic tasks
in dynamic priority systemsJournal of Real-Time Systent)
(1996), no. 2, 179-210.

Insik Shin, Arvind Easwaran, and Insup Lekerarchical schedul-

ing framework for virtual clustering multiprocessoi8roceedings

of the 20" Euromicro Conference on Real-Time Systems (Prague,
Czech Republic), July 2008, pp. 181-190.

Insik Shin and Insup LeeReriodic resource model for compo-
sitional real-time guaranteesProceedings of the4" Real-Time
Systems Symposium (Cancun, Mexico), December 2003, pp. 2—
13.

J. A. Stankovic, C. Lu, and S. H. Sdrhe case for feedback con-
trol in real-time schedulingProceedings of the IEEE Euromicro
Conference on Real-Time (York, U.K.), June 1999.

Danbing Seto, John P. Lehoczky, Lui Sha, and Kang§hs, On
task schedulability in real-time control systenf¥roceedings of
the 17" IEEE Real-Time Systems Symposium (Washington (DC),
U.S.A.), December 1996, pp. 13-21.

Lui Sha, R. Rajkumar, and J. P. LehocZRyjiority inheritance pro-
tocols: An approach to real-time synchronizatid&EEE Transac-
tions on Computer89 (1990), no. 9, 1175-1185.

John A. Stankovic, Marco Spuri, Krithi Ramamrithaand Gior-
gio C. ButtazzoDeadline scheduling for real-time systems. EDF
and related algorithmsKluwer Academic Publishers, 101 Philip
Drive, Assinippi Park Norwell, MA 02061, USA, 1998.

J.A. StankovidReal-time computing systems: The next generation
Tutorial on Hard Real-Time Systems (J. Stankovic and K. Rama
ritham, eds.), IEEE Computer Society Press, 1988.

Martin Torngren, Dan Henriksson, KarI-Enﬁkzén, Anton Cervin,
and Zdenek HanzaleKiools supporting the co-design of control
systems and their real-time implementation; current sauod fu-
ture directions 2006 IEEE International Symposium on Computer-
Aided Control Systems Design (Munich, Germany), Octob&620

118

BIBLIOGRAPHY

[VMBOS]

[YBBOY]

Manel Velasco, Pau Marti, and Enrico Bir@ontrol-driven tasks:
Modeling and analysisProceedings of theo!" IEEE Real-Time
Systems Symposium (Barcelona, Spain), December 2008.

Gang Yao, Giorgio Buttazzo, and Marko BertogiBunding the
maximum length of non-preemptive regions under fixed pyiori
scheduling Proceedings of the 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA 2009) (Beijing, China), Aug 2009.

119

