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Abstract

Nowadays, most control systems are manipulated by control algorithms that are
implemented as software components. In many practical applications, such soft-
ware components execute on platforms characterized with constrained resources,
such as in embedded systems. To ensure the correct timing behavior of the con-
trol software, real-time kernel is employed to schedule several such components
running on the same platform and sharing the same limited resources. However,
the integration of real-time systems and control systems needs careful analysis and
deliberate design with new techniques.

In this dissertation, the design problem for real-time control systems in resource-
constrained platforms is investigated. The background knowledge of real-time sys-
tems and control systems is introduced, and the state of the art is reviewed. Several
new approaches are proposed to contribute to the existing technologies.

The limited-preemption is utilized to improve the responsiveness of control
tasks and hence improve the control performance, without jeopardizing the schedu-
lability of the whole system.

A general framework for real-time control design is presented where the delay
and jitter effect are incorporated into the performance optimization. The resource
constraints are characterized using the convex approximation of theEDF deadline
space, and a two-step procedure for period and deadline selection is proposed.

The utilization of multiprocessor platform is investigated. A search algorithm
is presented to exploit the internal parallelism of an application and partition it into
several flows that are then implemented using resource reservation to guarantee the
timely behavior and provide temporal isolation. The benefits of using this method
is shown by a control application involved with a ball-and-plate system.
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Chapter 1

Introduction

1.1 Motivation

Computer-controlled systems are nowadays prevailingly employed in many fields.
Practically speaking, almost all the control systems are now computer-controlled
systems rather than analog systems, due to various advantages brought by the un-
derlying computing platform such as enhanced functionality and extended flexibil-
ity.

The traditional design approach for computer-controlled systems often involves
two steps. In the first step, the controller is obtained through discretization of the
design in continuous time domain, or by directly using sampled control theory. It
is often assumed a constant sampling period in this step. Once acquired in its dis-
cretized form, during the second setup, the controller is implemented as a software
component and then scheduled to execute on computing platform where, in most
cases, real-time systems are used to guarantee the timely behavior. The equidistant
sampling period assumption, among others, helps build up a separation between
the control community and the scheduling community. The control engineers are
relieved from no worrying about the implementation detailsand how scheduling is
performed, while computer engineers are allowed to focus onthe platform issues
and pay no attention to the potential impact on control performance. From a his-
torical point of view, such a separation facilitates both sides to concentrate on its
own area and produce considerable outcomes.

However, there are various problems induced by the ignorance of the mutual
influence. The control community often assumes a too simple task model and a
deterministic platform. The influence of the shared and limited resources is usually
not considered during the controller design. In fact, the controller is sometimes
envisioned to run as a simple loop on a dedicated computing unit. On the other
hand, the scheduling community assumes the controller can always be model as
a task and makes scheduling design trade-off without consideration of the control
performance.

In practice, many control applications are nowadays running on systems char-

1



CHAPTER 1. INTRODUCTION

acterized with non-determinism and timing uncertainties,which might be induced
by several sources:

• Low-cost mass-market products.Most of the control applications are imple-
mented using inexpensive hardware. Only in extreme applications, such as
nuclear power plants, can the cost of the computing hardwarebe neglected
in the overall development cost [Cer03]. These low-cost hardware platforms
are often characterized with limited resources, such as computing capacity,
memory, battery power, etc. Meanwhile, due to the same reason on price
cut, the usage of mass-market hardware and operating systems reduces the
cost and increases the flexibility of the system design, however leading to
less efficiency and predictability than the ad-hoc solution, e.g. Application-
Specific Integrated Circuits (ASIC).

• Multitasking environment.Due to the need of low cost solution and demand
for high functionality, there is trend to incorporate more software compo-
nents into the same computing platform. Such software components include
user interface, logging, or even other control tasks. In this multitasking en-
vironment, multiple tasks compete for the shared resources, leading to task
status like preemption and blocking. Besides, caches are used to improve
the overall performance, but may give rise to cache misses resulting in in-
constant and unpredictable computation time.

• Networked control system.When subsystems inside the control loop are
connected using networks, extra delays are introduced intothe system such
as network interface delay, queuing delay, transmission delay, propagation
delay, link layer resending delay, etc. Moreover, packet loss should also be
considered.

In other words, the implementation issues have significant impact on the orig-
inal control design, and hence the separation of control design and computer im-
plementation is no longer capable of sufficing the needs of the modern control
systems. In general, the negative effects of the separated design approach include:

• Impaired schedulability.When control engineers assign parameters such as
periods to the controller tasks without considering the limited resource con-
straints, the set of software components may not be schedulable by the exe-
cution platform.

• Degraded control performance.The scheduling-induced delay and jitter
bring non-determinism which violates several assumptionsmade in the con-
trol design, such as equidistant sampling and zero-or-constant latency, lead-
ing to degradation of control performance or even instability.

• Repetitive design process.The whole design procedure tends to be repetitive
and tedious whenever the system is found to be unschedulableor the control
goal can not be met with the provided platform.
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1.2. PROBLEM

Therefore, the integration of control and real-time scheduling is necessary to
bridge the two communities, and mutual understanding is encouraged to achieve
better system design. This dissertation aims to explore several possible ways to
improve performance and increase flexibility for the real-time control co-design in
resource-constrained systems.

1.2 Problem

The control and scheduling co-design problem is formally defined in [Cer03] as:

Given a set of processes to be controlled and a computer with lim-
ited computational resources, design a set of controllers and schedule
them as real-time tasks such that the overall control performance is
optimized.

and an alternative view to this is to minimize the resource usage while still meeting
the performance requirement. There are indeed several specified types of resources
within real-time control systems, e.g. CPU, memory, I/O ports, battery, etc. How-
ever, without loss of generality, this work will focus on theCPU time.

The integrated design of control and scheduling needs knowledge from both
area. To exploit the potential in the integration, several factors can be utilized:

• Control Theory. New theories and design criterion help to overcome or com-
pensate the extra delay and jitter caused by the scheduling platform.

• Task model. Dedicated task model can be used to better fit for the controller
implementation.

• Scheduling policy. Modification of existing scheduling policies may benefit
the system performance.

• Design framework. To avoid the repetitive design process, new design frame-
work is desirable.

• Hardware. With the advent of multiprocessor platform, the potentialof com-
putation capability is largely extended, which can be employed to augment
the system performance.

This work will review existing researches utilizing one or several of these fac-
tors, and present some new methodologies. In particular, a scheduling policy dif-
ferent from the traditional one is employed to improve control performance. A
design framework is proposed to relief the traditional repetitive design process.
Dataflow programming model is suggested to be used for enhancing applications
on multiprocessor platform.
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CHAPTER 1. INTRODUCTION

1.3 Structure

The main consideration of this dissertation is to make real-time control co-design
with respect to the intersection of control and real-time scheduling domains. The
outline is described as follows:

Chapter 2 shows the background of the work. It first gives a brief introduction
of the real-time systems theory and control theory. It then talks about the main is-
sues in the real-time control integration. It reviews the state-of-the-art technologies
following several major directions. Finally, it introduces several tools that help to
analyze and simulate the real-time control systems.

Chapter 3 suggests to use scheduling policy where preemptions are limited to
enhance the system behavior. This method allows to improve control performance
without affecting the schedulability of the whole system.

Chapter 4 presents a general framework which treats the real-time control co-
design as an optimization problem, so that the traditional repetitive design process
is avoided. The proposed framework allows to select task periods and deadlines
under schedulability constraints, taking into account theeffect on control perfor-
mance from the scheduling-induced delay and jitter.

Chapter 5 proposes to use dataflow programming model and multiprocessor
platform to improve the system performance and flexibility.In particular, a method
is presented to partition the control application into several flows, which then as-
signed to resource reservation onto multiprocessors.

Chapter 6 concludes the contents of the dissertation and gives suggestion on
the future work.
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Chapter 2

Background

2.1 Real-time systems

Real-time systems are computing systems that must react within precise time con-
straints to events in environment [But97]. The correctnessof a real-time system
depends on not only its computed values but also the time at which the results are
produced [Sta88]. There are numerous applications where real-time systems play a
crucial role, including flight control systems, vehicle collision avoidance, military
appliance, industrial automation, etc.

The essential goal of applying real-time theory is to ensurethe timing behavior
of the system. Testing, to some extend, provides a partial verification of the system
behavior but fails to make such guarantee. Therefore, rather than using average
measures in general purpose systems, the full predictability of the real-time sys-
tem’s timing behavior is only achievable by elaborated analysis using pessimistic
assumptions.

2.1.1 Task model

As illustrated in Figure 2.1, the computation entity that a real-time system deals
with is namedtask, denoted asτi, which is usually characterized by the following
parameters:

• Arrival time ai is the time at which a task becomes ready for execution. It
is also referred to asactivation timeor release time(denoted byri);

• Start time si is the time at which a task starts executing;

• Finishing time fi is the time at which a task finishes its execution;

• Absolute deadlinedi is the time before which a task should complete its
execution;

• Worst-case execution time (WCET)Ci is the maximum time needed for
the processor to execute the task without interruption;
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CHAPTER 2. BACKGROUND

• Relative deadlineDi is the deadline with respect to the arrival time, that is
Di = di − ai.

τi
t

ai si fi di

Ci

Di

Figure 2.1: A typical real-time task.

Depending on thetask criticality, that is the strictness of complying with the
timing constraint imposed by the deadline, tasks can be distinguished into two
classes:

A Hard taskmust finish its execution within the relative deadlineDi or otherwise
causes catastrophic consequences to the system.

A Soft taskonly decreases performance if it misses a deadline.

A real-time taskτi usually generates an infinite number of identical activities,
called instancesor jobs, denoted byτi,k, k ∈ N

1. Depending on the regularity of
the activation mode of jobs, tasks can be classified asperiodic taskandaperiodic
task, corresponding to thetime-triggeredandevent-triggeredfashion, respectively.
A periodic task regularly generates its jobs everyTi, defined as theperiod of the
task. Hence, if the activation time of the first instance is denoted byφi (therelease
phase), then the arrival time of thek-th job is ai,k = φi + (k − 1)Ti. On the
contrary, an aperiodic task activates it jobs at an irregular rate. To perform off-line
guarantee of the criticality of the aperiodic tasks, it is most of interest to analyze
the peak-load situation by assuming its maximum arrival rate. That is the time
between two successive activations of an aperiodic task is delimited by a minimum
value. The task is then calledsporadic task, and this minimum value is defined as
minimum inter-arrival time, also denoted byTi. Figure 2.2 shows an example of
task instances for a periodic task and a sporadic task.

In most cases, a periodic or sporadic task can be completely characterized by
the 3-tuple(Ci,Di, Ti). The acquisition of the worst-case execution timeCi usu-
ally resorts to either static analysis involving both software code and hardware
platform, or measurement-based approaches. The relative deadlineDi and the pe-
riod (or the minimum inter-arrival time)Ti are typically specified by the system
designer, whereDi is often set equal toTi.

Task constraints

The task model described above concernstiming constraintsof the real-time tasks.
Besides, there are other types of constraints that can be additionally imposed, listed

1In this dissertation,N denotes the set of positive integers{1, 2, ...}, whileN0= N ∩ {0} means
the set of non-negative integers{0, 1, 2, ...}.

6



2.1. REAL-TIME SYSTEMS

t
φi ai,k = φi + (k − 1)Ti

Ti

(a) Activation of a periodic taskτi

t

Ti

ai,k+1 ≥ ai,k + Ti

(b) Activation of a sporadic taskτi

Figure 2.2: Sequence of instances for a periodic task and a sporadic task.

as follows.

• Precedence constraints.The precedence relations between tasks can be de-
scribed using a directed acyclic graph (DAG)G, where tasks and relations
are represented by nodes and arrows, respectively. Notation τi ≺ τj denotes
thatτi is apredecessorof τj, meaning thatτj cannot start executing before
the completion ofτi. Notation τi → τj denotes thatτi is an immediate
predecessorof τj , meaning that there is an arc directed fromτi to τj.

An example of a precedence graphG is shown in Figure 2.3. It is clear that
only taskτ1 has no predecessors which means it can start executing at any
time. Onceτ1 completes execution, taskτ2 andτ4 are able to start.τ3 has
to wait for the completion ofτ2, while τ5 can not start until bothτ2 andτ4
finish executing. Tasks with no predecessors, e.g.τ1, are calledbeginning
tasksor root nodesin the DAG. Tasks with no successors, e.g.τ3 andτ5, are
calledending tasksor leaf nodesin the DAG.

τ1 τ2 τ3

τ4 τ5

Figure 2.3: A precedence graph.

• Shared resource constraints.This type of constraints requires synchroniza-
tion mechanism, e.g. semaphores, to achieve mutual exclusion among dif-
ferent tasks and thus keep data consistency. Resource access protocols, such
as Priority Inheritance and Priority Ceiling [SRL90], are necessary to avoid
the priority inversion phenomenon.

7



CHAPTER 2. BACKGROUND

2.1.2 Real-time Scheduling

A real-time system considers a set of concurrent tasks and manages to assign the
processor to these tasks according to some predefined criterion, calledscheduling
policy. A scheduleis a particular assignment of tasks to the processor, so thateach
task is executed until its completion. It can be mathematically described as:

Given a task setτ = {τ1, . . . , τn}, a schedule is a mappingσ :
R
+ → N such that∀t ∈ R

+,∃t1, t2 : t ∈ [t1, t2) and∀t′ ∈ [t1, t2) :
σ(t) = σ(t′). In other words,σ(t) is a step function as follows:

σ(t) =

{

i > 0 if τi is running

0 if the processor is idle

An example of a schedule and the correspondingσ(t) function is shown in
Figure 2.4. At time instantst1,t2,t3,t4 and t5, the processor performs acontext
switch. At time instantt2, the execution ofτ1 is suspended and the processor is
assigned to taskτ2 according to the scheduling decision (usually due toτ2 having
a higher priority). This operation is calledpreemption.

1

3

0

2

t

t

t

t

σ(t)

τ1

τ2

τ3

t1 t2 t3 t4 t5

Figure 2.4: Example of schedule andσ(t).

A schedule is said to befeasibleif all the tasks are able to complete within a
set of constraints, e.g. to all finish execution before deadlines. A task setτ is said
to beschedulableif there exists a feasible schedule for it.

In general, the scheduling problem deals with the problem toassignm proces-
sorsP = {P1, P2, . . . , Pm} and l types of resourcesR = {R1, R2, . . . , Rl} to
n tasksτ = τ1, τ2, . . . , τn in order to complete all tasks under the imposed con-
straints [Bla96]. This problem has been shown to be NP-complete in its general
form [GJ79], and hence several assumptions have to be made toreduce its com-
plexity, e.g. restrict to uniprocessor platform, remove the precedence and shared
resource constraints, or assume homogeneous task sets (with only periodic or only

8



2.1. REAL-TIME SYSTEMS

aperiodic tasks). These assumptions lead to various scheduling polices that are
typically classified as follows:

• Off-line. The schedule of the task set is decided before the actual taskacti-
vation, due to the fact that the complete information of the task set is known
to the scheduling policy. In this case, the resulting schedule is stored in a
table and the activation of tasks are accordingly triggeredby the dispatcher
during runtime. Therefore this kind of scheduling is also called table-driven
scheduling[BS88].

• On-line. The scheduling decision is made during runtime, whenever a new
task arrives or a running task terminates. This offers more flexibility than the
off-line scheduling but also introduces larger overheads.A typical diagram
of the implementation of the on-line scheduling is shown in Figure 2.5. Tasks
that are activated will be first put into aready queue, waiting for execution.
The ready queue is sorted by theschedulerwith respect to the ordering of
priorities. The first task in the queue with the highest priority is dispatched to
execute on the processor. If the task is preempted during theexecution, it is
put back to the ready queue. Otherwise, it will terminate after its completion.
Notice that the scheduler acts like a priority assigner to tasks within the ready
queue. Therefore, the algorithm used by the scheduler, i.e.the scheduling
algorithm, is also referred to aspriority assignment scheme.

Execution
TerminationDispatching

Activation

Preemption

...
Ready Queue

Scheduler

Processor

τ1τ2τ3

Figure 2.5: Diagram of on-line scheduling.

• Preemptive.Preemptive scheduling algorithms allow the running task tobe
interrupted at any time. The interruption causes the suspension of the cur-
rently running task and the assignment of the processor to a chosen task.

• Non-preemptive.With non-preemptive scheduling algorithms, once the task
is started, it is executed by the processor until completion. Therefore there
is no interference from other tasks.

With the advent of multiprocessor computing platform, there is increasing at-
tention paid beyond the classic uniprocessor area. The scheduling algorithms in
multiprocessor context can be further classified into:

9



CHAPTER 2. BACKGROUND

• Global. A system-wide queue is used for all the ready tasks. The dispatcher
then picks several of them to each execute on an available processor.

• Partitioned. Tasks are statically assigned to one of the processors and each
processor keeps a ready queue. The scheduling algorithm plays locally on
each ready queue as for a uniprocessor.

Figure 2.6 illustrates the difference between global scheduling and partitioned
scheduling.

...

Processor1

Processor2

Processor3

(a) Global scheduling

...

...

...

Processor1

Processor2

Processor3

(b) Partitioned scheduling

Figure 2.6: Difference between global scheduling and partitioned scheduling.

Optimal scheduling algorithms

To ensure the predictable behavior of a real-time system (especially hard real-time
system), the feasibility of the task set should be guaranteed before the execution of
tasks assuming worst-case scenario. The feasibility analysis for a task set means to
find a feasible schedule if there exists one. However, it willbe intractable if this is
performed by checking the schedulability of the task set under numerous schedul-
ing algorithms. Therefore it is important to introduce the concept ofoptimality,
which refers to the fact that if the task set is not schedulable under the optimal
scheduling algorithm, then it will not be schedulable underany other scheduling
algorithms in the same category, that is using the same assumptions.

Concerning scheduling independent task set on uniprocessor, there exist two
major scheduling algorithms,Rate-Monotonic(RM) and Earliest-Deadline-First
(EDF), both considered as optimal scheduling algorithms in their respective cate-
gories.

• Rate-Monotonic scheduling.It assigns higher priorities to tasks with higher
activation rates. Since the priorities are assigned according to static param-
eters and can be decided before runtime, it is considered asfixed-priority
scheduling algorithm. It has been proven in [LL73] thatRM is optimal
among all the fixed-priority scheduling, ifDi = Ti for all the tasks. No-
tice that whenDi ≤ Ti, theDeadline-Monotonic(DM) [LW82] scheduling
algorithm is optimal, where priorities are assigned according to the relative
deadlines. Actually,RM is just a special case of DM.

10



2.1. REAL-TIME SYSTEMS

• Earliest-Deadline-First scheduling.It assigns priorities to tasks according
to the time to their absolute deadlines. The shorter time to the deadline,
the higher priority is given to the task. Therefore,EDF is considered as a
dynamic-priorityassignment. Actually, as shown in [Der74],EDF is optimal
among all the dynamic-priority scheduling algorithms, foreither periodic or
aperiodic task set.

2.1.3 Schedulability analysis

With the concept of optimality, the feasibility of the task set is verified by perform-
ing the schedulability analysis under the optimal scheduling algorithm. Some sim-
ple results on the schedulability analysis methods of Rate-Monotonic and Earliest-
Deadline-First scheduling are hereby presented.

Utilization bound

Given a set ofn periodic tasks, theutilization (also calledbandwidth) Ui of each
task is defined as the ratio between computation time and period, that isUi =
Ci/Ti, and thetotal utilizationU of the task set is the sum of the utilization of all
the tasks:

U =

n
∑

i=1

Ci

Ti
(2.1)

A sufficient condition for the schedulability of a task set under Rate-Monotonic
scheduling is [LL73]:

U =

n
∑

i=1

Ci

Ti
≤ n(21/n − 1) (2.2)

The right part of the inequality can be interpreted as the utilization bound of a task
set in terms of schedulability underRM, and it converges toln 2 ≈ 0.69 asn→∞.
This bound is expanded in [BBB03] named asthe hyperbolic bound:

n
∏

i=1

(Ui + 1) ≤ 2 (2.3)

whose geometrical interpretation can be found later in Section 2.1.4.
UnderEDF scheduling, the utilization bound approach applies as a necessary

and sufficient condition whenDi = Ti for all the tasks [LL73]. All the tasks meet
their deadlines if and only if

U =
n
∑

i=1

Ci

Ti
≤ 1 (2.4)

which implies that the processor can be always fully utilized.
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CHAPTER 2. BACKGROUND

Response time analysis

Given the following definition:

• Response timeRi,k of a job τi,k is defined as the time between the arrival
time and the finishing time, i.e.

Ri,k = fi,k − ai,k (2.5)

• Worst-case response timeRi of taskτi is the maximumRi,k of all jobs:

Ri = max
k

Ri,k (2.6)

a necessary and sufficient schedulability condition forRM has been presented in
[JP86] where the worst-case response time of each task is calculated and compared
with its corresponding deadline. The worst-case response timeRi of taskτi under
RM is acquired by taking into account all the interference fromother tasks with
higher priorities and can be computed using the following recursive equation:

Ri = Ci +
∑

τj∈hp(τi)

⌈

Ri

Tj

⌉

Cj (2.7)

wherehp(τi) represents the set of tasks with higher priorities thanτi. Therefore,
the task set is schedulable if and only ifRi ≤ Di for all the tasks. Notice that this
condition is suitable forDi ≤ Ti.

The worst-case response time computation forEDF is more complicated than
that for RM, and thus is not suggested for the schedulability analysis.However, it
can still be used as a measure of task responsiveness, and hence will be described
in Chapter 3.

Processor demand criterion

ConcerningEDF scheduling, the condition in Eq. (2.4) is only necessary when
Di ≤ Ti. To perform the exact schedulability analysis in this case,[BRH90]
presented the processor demand criterion whose basic idea is that during any time
interval [t, t+ L), the processing time required by the task set must not exceedL.
The processor demand is defined as the cumulative computation time required by

Therefore, assuming a set of periodic tasks with deadlines less than periods is
schedulable byEDF if and only if

∀L ≥ 0

n
∑

i=1

(⌊

L−Di

Ti

⌋

+ 1

)

Ci ≤ L (2.8)

where the set of check points ofL can be restricted to a limited number (see [BRH90]
for more details).

12
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2.1.4 Sensitivity analysis

While schedulability analysis tries to answer the yes-or-no question of whether a
task set is schedulable or not, thesensitivity analysissolves the problem of how
much changes of parameters can be made keeping the task set feasible. Rather,
it gives a measure of the affordable modifications on task parameters in the sense
that the feasibility of the task set is not jeopardized. Thisis useful, for instance,
when a certain degree of uncertainty is allowed for the WCET estimation in system
design stage, or when deciding how to change the task periodsin order to bring an
unfeasible task set back to feasible.

The sensitivity analysis usually finds afeasibility regionwithin which the task
set is feasible. Therefore, the feasibility margin can be interpreted as the distance
from the current parameter setting to the boundary of the feasibility region. An
example of the feasibility region in terms of computation time under fixed priority
scheduling [BDNB06] is shown in Figure 2.7. Task setτ is unfeasible because

C1

C2

τ

τ ′

Figure 2.7: Sensitivity analysis in theC-space with 2 tasks.

it is outside the feasibility region (theC-space) denoted by the gray region. The
distance from the point of the current computation times to the boundary of the
feasibility region measures how much modification needed tomakeτ feasible. The
dotted vertical and horizontal lines mean the minimum required changes on only
C1 or C2, respectively. On the other hand, task setτ ′ is feasible since it resides
within theC-space, and its location tells the margin of its feasibility. In the rest of
this section, some results of sensitivity analysis relatedto this dissertation will be
briefly described.

Utilization space

The utilization bound described in Section 2.1.3 for schedulability analysis can be
envisioned as thefeasible utilization regionin the coordinate system of task utiliza-
tion (theutilization spaceor U-space). An illustration involving 2 tasks is shown
in Figure 2.8. Notice that the feasible region for 2 tasks under RM scheduling,
given by either Eq. (2.2) or Eq. (2.3), is smaller than the feasible region underEDF

scheduling restricted by theU = 1 bound. However, recall that the utilization
bound condition forRM is only sufficient, which means the region between the hy-

13
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+

+

+

1

0.83

10.83

EDF
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U1

U2

Figure 2.8: The feasible utilization region in the U-space of 2 tasks.

perbolic bound and theU = 1 bound remains unknown in terms of schedulability
underRM.

BeingUi =
Ci

Ti
andCi fixed, the utilization space can also be directly related

to thef -space, where frequencyfi = 1
Ti

. The exact feasiblef -region underRM is
described in [BDNB06].

EDF Deadline space

In [BB09b], the authors give the description of the deadlinespace underEDF

scheduling. Given the computation timesC = (C1, . . . , Cn) and the periods
T = (T1, . . . , Tn) of n tasks, the exact feasible deadline region is given by the
following formula:

S =
⋂

k∈Nn

⋃

i:ki 6=0

{D ∈ R
n : Di ≥ k ·C− (ki − 1)Ti}

The geometrical interpretation of a simple task set consisting of 2 periodic tasks
with parameters ofC = (2, 3) andT = (4, 7) is plotted in Figure 2.9. TheEDF

deadline space and its usage in helping real-time control design will be detailed in
Chapter 4.

2.1.5 Resource reservation

Theresource reservationreflects the idea of reserving a certain amount of resource
for one or a group of computing activities. In case of CPU time, the processing
capacity of a cpu can be partitioned into a set of reservations, each equivalent to
a virtual processor with reduced speed. Resource reservation can be implemented
using server mechanism in the operating system, where each server may host one or
several tasks. A desirable property of resource reservation is to providetemporal
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Figure 2.9: An example of the feasible region in EDF D-space of 2 tasks.

isolation between applications, in the sense that the occurrence of misbehavior
such as overruns within one server will not affect the rest ofthe system. This can
be applied to hybrid task sets comprising hard/soft real-time tasks and/or non real-
time tasks, where the timing constraints of hard real-time tasks are guaranteed to be
met while the average response times of soft and non real-time tasks are reduced.

An example of such a mechanism is presented in [AB98] where the Constant
Bandwidth Server (CBS) is introduced to reserve a specified bandwidth to each
server that is characterized by a pair(Qs, Ts), whereQs is the maximum budget
andTs is the server period. The ratioUs = Qs/Ts is called server bandwidth. The
bandwidth isolation property of the CBS reveals the fact that, in any time interval
L, a task served by a CBS with bandwidthUs will never demand more thanUsL.

Besides CBS, there are numerous other different server mechanisms proposed
in the literature. To ease the analysis and provide common interface between differ-
ent mechanisms and implementations, the(α,∆) parameter pair has been proposed
in [FM02] to characterize resource reservation mechanisms. Briefly speaking,α
represents the bandwidth, and∆ means the time granularity, that is the maximum
time an application may need to wait for being assigned some resource by the
server. The(α,∆) server will be explained further in Chapter 5.

2.2 Control Systems

Control system theory has continuously served the modern industry and society
for almost two centuries. There are various definitions of control systems, from
different points of view. The one from [CDHB04] is cited here:

A control systemis an interconnection of components forming a sys-
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tem configuration that will provide a desired response.

The basic assumption for analysis of control systems is the cause-effect relation-
ship for the components in a system. Therefore, a system component orplant 2 can
be represented as a block, which accepts input and produces output, as shown in
Figure 2.10. This cause-effect relationship representation allows to view the plant
as a ‘Black Box’, facilitating the decomposition and analysis of the whole system.

Plant
OutputInput

Figure 2.10: Plant as a block.

To obtain the desired output, an actuator is connected to theplant, which forms
up a open-loop control system, shown in Figure 2.11. However, the open-loop

Output
PlantActuator

Desired output

Figure 2.11: Open-loop control system.

control system usually fails to serve the purpose in the sense of producing desired
response, if the precise information of the system is not available or an unexpected
disturbance occurs.

To overcome the deficiency of the open-loop system, the revolutionary idea of
feedback is introduced into the control system, where the actual output signal of
the plant is measured and fed back to compare with the desiredoutput value. The
controller then makes decision on the compared result, thatis the difference be-
tween two signals (which is also the reason why a negative operator is used on the
feedback signal), and take action on the controlled plant. Such a system is called
feedback control systemor closed-loop control system. Figure 2.12 illustrates the
diagram of the general form of a feedback control system. Thesignals in the closed
loop are:

• r is the desired output, often calledreference;

• y is the measurement of the actual output, calledoutput variable;

• e is the difference (error) between the desired and the measured output;

• u is thecontrol signal, also calledinput variableof the controlled plant.

In practice, a control system can be physically or logicallydivided into three
subsystems, a sensory subsystem, a controller subsystem and a actuator subsystem.

2In control community, the controlled system is also widely called process. However, to avoid
the name conflict with theprocessin the terminology of computer engineering, in this dissertation,
the nameplant will be mostly used.
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Controller Plant
yue

−

+r ∑

Figure 2.12: Diagram of feedback (closed-loop) control system.

The sensory subsystem measures the output of the controlledplant, sending the
measurement signal to the controller subsystem. The controller produces control
signal according to the measurement and sends it to the actuator subsystem. The
actuator performs the action on the plant. Subsystems can begeographically sep-

Actuator

Sensory

Controller
Subsystem

Subsystem

Subsystem

Plant

Figure 2.13: Subsystems in a feedback control system.

arated. For example, indistributed control systems, subsystems can be remotely
connected through communication media (hence they are alsocalled networked
control systems). On the other hand, subsystems can also be grouped together, like
in embedded systems.

There are two major problems considered in control theory, depending on dif-
ferent design concerns:

• The servo problem(or tracking problem), as depicted in Figure 2.12, con-
centrates on following the reference signal;

• Theregulation problemmainly focus on making the system tolerant to exter-
nal disturbances, e.g. measurement noise. The basic diagram of the problem
is shown in Figure 2.14.

Controller Plant
yu

Disturbance

Figure 2.14: The regulation problem.
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2.2.1 Control systems analysis

Model

Building up the mathematical models makes it possible to understand and ana-
lyze the complexity of the systems and perform control strategy. Because of the
dynamic property, systems can be usually modeled by differential equations, uti-
lizing physical laws, e.g. Newton laws, Euler-Lagrange laws, and Hamilton laws.
By natural, all the physical systems are non-linear. However linear approximation
is often possible within certain range of the system variables, i.e. assume small-
signal conditions [CDHB04]. Moreover, if the system’s response does not depend
on the time at which the input is received, then the system istime-invariant. From
a mathematical point of view, this means the coefficients of the differential equa-
tions are constants. In this work, we mainly considerlinear time-invariant (LTI)
systems.

With the system model in the form of differential equations,the system re-
sponse can be obtained by solving the equations. However thelinear time-invariant
assumption allows to useLaplace transformto convert the model fromtime domain
to frequency domain, and ease the difficulties of resolving differential equations.
Thetransfer functionmodel of a linear time-invariant system is then defined as the
ratio of the Laplace transform of the output variable to the Laplace transform of the
input variable, with all initial conditions assumed to be zero [CDHB04]. The trans-
fer function model is also calledinput-output modelbecause it clearly express the
cause-effect relationship between system input and output. Figure 2.15 illustrates
the relation between time domain and frequency domain and reveals the nature of
Laplace transform.L(·) means Laplace transform, ands is the Laplace variable
which can be interpreted as the differential operator. Oncethe output in frequency
domainY (s) = G(s) · U(s) is calculated, theinverse Laplace transformcan be
performed to obtain the output in time domain, which is equivalent to the solution
of the differential equationf(t).

Time domain

Frequency domain

u(t)

U(s)

y(t)

Y (s)

f(t)

G(s)

L(u(t)) L(f(t)) L−1(Y (s))

Figure 2.15: Laplace transform.
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There exist numerous analysis methods and design principles for transfer func-
tion model. However it only fits forsingle-input single-output (SISO)systems.
For amultiple-input multiple-output (MIMO)system, one must use thestate-space
model, which is essentially a group of first-order ordinary differential equations.
It utilizes the states inside the system and describes theirrelations with input and
output. Therefore the state-space model is sometimes called internal model, while
in contrast the transfer function model is calledexternal model. The general form
of the state-space model is

dx

dt
= f(x, u)

y = g(x, u)

wherex = [x1, x2, . . . , xn] is thestate vectorandn is the system order. Inputu
and outputy are scalars (for SISO systems) or vectors (for MIMO systems). The
state-space model of a linear time-invariant system can be expressed as

dx

dt
= Ax+Bu

y = Cx+Du
(2.9)

whereA is the state matrix,B is the input matrix,C is the output matrix, andD is
the feedforward matrix3. The solution of Eq. (2.9) is given by

x(t) = eAtx(0) +

∫ t

0
eA(t−δ)Bu(δ)dδ (2.10)

y(t) = CeAtx(0) +

∫ t

0
CeA(t−δ)Bu(δ)dδ +Du(t) (2.11)

Stability analysis

In the analysis and design of control systems, stability is the key issue of most
importance. According to textbooks, the stability of a system is defined as fol-
lows [CDHB04]:

A stable system is a dynamic system with a bounded response toa
bounded input.

This is often referred to asBounded-input Bounded-output (BIBO)stability.
Considerable attention has been devoted to the finding of various stability cri-

teria in the evolution of control theory. A compendious description is given as
follows:

• Poles condition. Defining thecharacteristic equationas the denominator
polynomial of the system transfer function, thepolesare the roots of the

3D is zero matrix when the system has no feedforward.
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characteristic equation. A feedback system is stable if andonly if the real
parts of all the poles of the system transfer function are negative. The con-
dition geometrically means all the poles should lie on the left side of the
s-plane, as shown in Figure 2.16.
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Figure 2.16: Stability region in the s-plane.

• Routh-Hurwitz criterion.This is the method for investigating the stability of
a linear system by checking the coefficients of the characteristic equation. It
allows to know the number of poles with positive real parts without actually
computing their values.

• Eigenvalues condition.Eacheigenvalueλi(A) of the state matrixA cor-
responds to a root of the characteristic equation. Therefore, the system’s
stability is equivalent to that all the eigenvalues of the system have negative
real parts.

• Nyquist stability criterion.By drawing theG(iω) on a polar diagram asω
varies from 0 to∞, the stability of the system can be investigated counting
the number that the drawn contour encircles the (-1,0) point. This method is
handy to determine the stability of the closed-loop system giving its open-
loop model.

• Lyapunov stability theorem.The Lyapunov second theorem on stability uses
a Lyapunov functionV (·) : Rn → R to in some sense act like an energy
function of the system. The system is stable if the Lyapunov function decays
over time, which can be visualized that the system loses energy and rests at
some final state. Notice that the theorem is only sufficient condition, and is
used on systems without input, i.e. autonomous systems.

The stability analysis discussed above is concerned with continuous-time do-
main (both time domain and frequency domain), while in Section 2.2.2 stability
analysis for sampled control systems will be reviewed.

Control performance

The performance characterization of a control system is usually described by met-
rics in the transient response and the steady-state response to a unit step input.
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Figure 2.17 depicts the response of a standard second order control system.

Input(1.0)

0.9

Transient
State State

t

Steady
0

Maximum
overshoot

0.1

Mpt

y(t)

tr

t′r

tp ts

1.0 + δ

1.0− δ

ess

Figure 2.17: Unit step response of a standard second order control system.

As plotted, after the step input enters the system at timet = 0, the system
enters thetransient state, where the response of the system first rises, goes over
the input, giving a overshoot, and then oscillates until it keeps in a small range
around the input value, that is, when the system enters thesteady state. This range
is defined as±δ whereδ is specified as a certain percentage of the input amplitude.
Typical percentage values used in practice are2% and5%. The system is said to
be underdampedwhen it oscillates to reach the steady state, while in contrast an
overdampedsystem does not oscillate and hence has no overshoot.

The performance measures of the transient response and the steady-state re-
sponse of the system are given by the following metrics:

• Maximum overshoot is the difference between thepeak valueMpt and the
input amplitude;

• Peak timetp is the time when the response reaches its maximum overshoot.
Notice that for an overdamped system,tp does not exist;

• Rise timetr is defined as the time required for the response to rise from 0%
to 100% of the final value for an underdamped system. For an overdamped
system, the 10-90% rise timet′r is used;

• Settling time ts is the time required for the system to stay within the range
±δ, that is the finishing time of the transient state and the start time of the
steady state;

• Steady-state error ess is the difference between the final value of the re-
sponse and the input amplitude. This error exists due to the inner nature of
the system.
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Summarily speaking, the performance of the response in the transient state is
described with two aspects:

• Theswiftnessis represented by the peak time and the rise time;

• Thecloseness(or accuracy) is represented by the maximum overshoot and
the settling time.

And the performance of the response in the steady state is described with only the
closeness(or accuracy), represented by the stead-state error. Control design re-
quires a trade-off between the transient performance and the steady-state accuracy.

In modern control theory,performance indexis used as a quantitative measure
of the performance of a control system, which enables to makeoptimal control
design based on mathematical computation rather than in an empirical way. The
basic intention behind the performance index is similar to the performance met-
rics described above, that is, to consider both the swiftness and the accuracy of
the response. Therefore, the performance index is expectedto measures the error
with respect to the desired response along the time. In [CDHB04], several such
performance criteria are presented:

• Integral of the squared errorISE =
∫ tf
0 e2(t)dt

• Integral of the absolute errorIAE =
∫ tf
0 |e(t)|dt

• Integral of the time-weighted squared errorITAE =
∫ tf
0 t · e2(t)dt

• Integral of the time-weighted absolute errorITAE =
∫ tf
0 t · |e(t)|dt

wheree(t) is the response error, andtf is the final time for the performance mea-
surement. Although in theorytf should be∞, it is usually substituted by a large
enough time, e.g. some time beyond the rising timets. Notice that, the latter two
criteria make emphasis on the errors occurring later in the response, thus treat the
steady state more important than the transient state.

Some other performance criteria consider also the input variableu(t), i.e. the
output of the controller, and make a weighted combination with the error. This can
be interpreted as the spent control energy. For instance, consideringu(t) into ISE
(with w being the weighting factor) results in:

ISE′ =

∫ tf

0

(

e2(t) + w · u(t)
)

dt

Let Q1 andQ2 be the weighting matrices, the performance index for state-
space model can be expressed in the similar manner as:

J =

∫ tf

0

(

xTQ1x+ uTQ2u
)

dt

which measures the system states variation and the expenditure of the control en-
ergy.
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Controller design

Controller design is the action to make the system respond inthe way such that
stability and performance specifications are met. There arenumerous techniques
to design a controller among which a few are listed here:

• PID controller is a simple but powerful technique that has been widely used
in industry. The main idea is to combine the proportional, integral, and
derivative parts4 in the controller to provide desired behavior of the closed-
loop system.

• Root-locus designmethod draws a so-called root locus according to the
changes in the system’s feedback characteristics and otherparameters, and
shows how these changes influence the system poles.

• Bode plotdepicts the magnitude curve and the phase curve of a system in
frequency domain. It is also helpful for checking theGain marginandPhase
margin that are two important metrics to measure the relative stability5.

• Pole placementallows to arbitrarily choose the location of the system poles
to reach the desired transient dynamics and steady state. Being L thestate
feedback gain vector, the pole placement can be easily realized usingstate
feedbackwhere the control signal is produced in a linear feedback manner:

u = −L · x (2.12)

• Optimal and stochastic controlhas been a popular design tool for control
systems. Optimal control means to design a controller that minimizes a
specified cost function, usually a performance index. The stochastic con-
trol models the disturbances in the linear systems as randomprocesses, and
involves a quadratic cost function in the optimal design. When the distur-
bances are modeled as Gaussian processes, it is called theLinear-Quadratic-
Gaussian (LQG) control problem, and the resulting controller is aLQG con-
troller which is also in the form of state feedback.

2.2.2 Computer-controlled systems

In the previous section, the described control systems regard with continuous-time
domain, which is mostly fundamental in the era of analog control. Nowadays,
almost all the control systems have computing units within the control loop, as
depicted in Figure 2.18 (taken from [ÅW97]).

Compared with the general closed-loop control system in Figure 2.12, in computer-
controlled systems, the role of the controller is realized by a digital computer. The

4In some cases, only one or two terms are used, e.g. PI controller or PD controller.
5The relative stability answers the question of how stable isthe system, rather than a simple

yes-or-no question.
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continuous-time signaly(t) of the plant output is converted into digital signal by
the analog-to-digital (A-D) converter and then delivered as a sequence of numbers
{y(tk)} to the computer, wheretk is the sampling instant at which the conversion is
done. The computer then handles the sampled signal, processes according to some
algorithm, and generates a sequence of control signals{u(tk)}. This sequence is
converted to analog signal by a digital-to-analog (D-A) converter, usually being a
zero-order-holder (ZOH) which keeps the control signal constant during two suc-
cessive conversions. The operation events are synchronized using a real-time clock
in the computer.

Clock

Computer

A−D Algorithm
Control

D−A Plant
{y(tk)} {u(tk)} u(t) y(t)

Figure 2.18: Diagram of a computer-controlled system.

In computer-controlled systems, both continuous-time signals and discrete-
time (sampled) signals exit in the same control loop, leading to extra difficulties
in analysis and design. However, there are basically two approaches that have suc-
cessfully shown the capability of coping with the problem:

• Discretizationof the continuous-time design means that the controller is de-
signed in continuous-time domain and implemented by approximation using
fast sampling. The approximation can be performed in several ways, such as
Tustin’s (or bilinear) approximation, Forward differences (Euler’s method),
and Backward differences. However, some approximation methods may lead
to inaccurate mapping of the stability region [ÅW97]. Moreover, the fast
sampling6 required by the approximation may sometimes be too costly, es-
pecially in embedded systems with limited resources.

• Sampled (Discrete-time) control theoryconsiders the system behavior at the
sampling instants. The system is modeled by considering only the specific
time instants and then can be analyzed and synthesized usingsimilar ap-
proaches as in continuous-time domain, e.g. pole placementand optimal
control design.

In sampled control theory, the sampling interval is usuallyassumed to be piece-
wise constant, and has to comply with the Nyquist-Shannon Sampling Theorem.

6It is suggested in[FPEN94] that the discretization yields reasonable results at sample rates of
20 times the natural frequency, and can be used with confidence for sample rates of 30 times the
bandwidth or higher.
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Besides, various rules of thumb suggest the choice of sampling periods depending
on the dynamics of the control system and the desired controlperformance. For
example, [̊AW97] suggests that the sampling periodh can be chosen to give

ωnh ≈ 0.1 − 0.6 (2.13)

whereωn is the desired natural frequency of the closed-loop system.Notice that, a
long sampling interval saves resource consumption such as I/O operation and CPU
usage, but may induce potential problems because the systemevolves in open-loop
between the sampling instants so that the disturbance can not be captured until the
next sampling point.

Model

Difference equationsare used to describe the input-output behavior of the discrete-
time systems at the sampling instants, and play the same rolein the analysis of
discrete-time systems as the differential equations do with continuous-time sys-
tems. Additionally,Z-transformis the discrete-time analogy of the Laplace trans-
form, and is devised to solve the linear difference equations.

State-space model remains its powerful capability in the discrete-time domain.
Basically, the discrete-time state-space model comprise agroup of first-order dif-
ference equations. The sampled version of Eq. (2.9) can be expressed by only
considering the states at the sampling instants:

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)

y(tk) = Cx(tk) +Du(tk)
(2.14)

where

Φ(tk+1, tk) = eA(tk+1−tk)

Γ(tk+1, tk) =

∫ tk+1−tk

0
eAsdsB

For periodic sampling, the model becomes linear time-invariant by utilizing tk =
k · h:

x(kh+ h) = Φ(h)x(kh) + Γ(h)u(kh)

y(kh) = Cx(kh) +Du(kh)
(2.15)

where

Φ(t) = eAt

Γ(t) =

∫ t

0
eAsdsB
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Stability analysis

A brief introduction of stability criteria in discrete-time domain is given bellow.

• Poles/Eigenvalues condition.The discrete-time system is stable if and only
if all its poles are within the unit circle of thez-plane. Therefore the stabil-
ity region of the left half plane of the s-plane (as shown in Figure 2.16) is
mapped to the unit-circle in z-plane. The poles of a discrete-time system can
be obtained by calculating the roots of the denominator of its pulse-transfer
function. Besides, since each eigenvalueλi(Φ) of the matrixΦ corresponds
to a pole, it is handy to acquire the poles with the state-space model.
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Figure 2.19: Stability region in the z-plane.

• Spectral radius condition.The spectral radius of a matrix is defined as
the supremum among the absolute values of the eigenvalue, i.e. ρ(A) =
maxi(|λi|). The discrete-time closed-loop system is stable if and onlyif the
spectral radius of the closed-loop matrix (Φcl = Φ − ΓL, whereL is the
state feedback gain vector) is less than 1, i.e.Stable ⇔ ρ(Φcl) < 1. This
condition also allows to analyze the stability of a time-variant system. For
example, in [MVFF01b], the spectral radius condition is used to perform the
stability analysis for a control system with on-line compensated controller.

Other stability analysis methods [ÅW97] for discrete-time systems can be found
to be similar to their continuous-time counterparts, including the Schur-Cohn-
Jury’s stability test, the Nyquist criterion, and the Lyapunov’s Second theorem.

2.3 Real-time Control Integration

2.3.1 Control loop timing

In the traditional discrete-time control theory, the sampled version of the system
model usually considers an equidistant sampling interval named assampling pe-
riod, as expressed in Eq. (2.15). Moreover, due to the time neededto compute
the control algorithm, it can be incorporated in the model a computational latency,
which is often assumed to be constant. This can be clarified byplotting the timing
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of the controller, shown in Figure 2.20. The plant output signal y(t) is sampled at
time instantstk = kh (k = 0, 1, 2, . . .), separated by a constant sampling interval
h. The sampled datay(tk) is sent to the controller, who calculates the control sig-
nal u(tk) and puts it to the ZOH. This process consumes a fixed amount of time
δ, and therefore the latest active control signal is imposed on the plantδ time after
the sampling.

t

t

y(t)

u(t)

tk−1 tk tk+1 tk+2

y(tk−1)

y(tk)

y(tk+1)
y(tk+2)

u(tk−1)

u(tk)

u(tk+1)

u(tk+2)

δ

δ

δδ

Figure 2.20: Ideal timing of a control task.

Assuming a constant delay less than the sampling period, i.e. δ < h, the model
of Eq. (2.15) is then extended to be

xk+1 = Φ(h)xk +Φ(h− δ)Γ(δ)uk−1 + Γ(h− δ)uk

yk = Cxk
(2.16)

Notice that a simplified notation is used, where the suffixk denotes time instantkh
and hencexk is equivalent tox(kh). Plus, feedforward matrixD is assumed to be
0. The expression shows that in order to model the dynamics ofthe sampled system
with constant delay, control signal of 1 sampling period before must be embodied
into the equation. In other words, there is an extra stateuk−1 in the extended state
vector, and the state evolution equation of Eq. (2.16) can bereconstructed as

[

xk+1

uk

]

=

[

Φ(h) Φ(h− δ)Γ(δ)
0 0

] [

xk
uk−1

]

+

[

Γ(h− δ)
I

]

uk (2.17)
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While longer delay exists, more extra states, i.e. previouscontrol signals, must
be taken into account. According to [ÅW97], if

δ = (d− 1)h + δ′ 0 < δ′ ≤ h

whered is an integer, a number ofd previous control signals are considered to be
extra states in the expanded model.

The discrete-time state-space model (2.15) and its extended version (2.16) have
shown that the timing issue can be addressed using the mathematical formulation.
Therefore, the implementation should guarantee the timeliness assumed in the con-
trol design stage. In practice, real-time system theory is preferable to enforce such
timing determinism.

There are several options to guarantee the timing assumed inthe control design
using real-time methodology. The off-line scheduling could be one of the candi-
dates. In fact, the cyclic executive method is widely used inindustry and served
its original purpose. However, such static scheduling makes it arduous to modify
and extend the already established application, and extremely difficult to adapt to
resource availability and application changes. To overcome these issues, on-line
scheduling is adopted by using real-time operating system support to fundamen-
tally increase analyzability, feasibility, maintainability, and extensiblity.

Different choices of models exist for implementing a controller as a real-time
task. For instance, sampling and actuation can be realized as interrupts, separated
from the calculation part. However this solution increasesthe difficulty in ana-
lyzing schedulability and loses generality. Therefore, a naif control task model is
often used in the real-time control systems. As shown in Figure 2.21, the plant
of (2.16) is controlled by taskτi. The equidistant sampling fashion is enforced by

Input Output

tai ai+1si fi di

Ci

Figure 2.21: Naif control task model.

setting the task periodTi = h. Sampling and actuation occur at the beginning and
termination of each job’s execution, i.e. the start timesi and the finishing timefi,
respectively. Task deadlinedi = ai + Di is used to bound the delay. It is worth
mentioning that, from the computer’s point of view, the sampling is the input to the
controller while the actuation is the output. Hence the input and output are inverse
of the ones for the controlled plant, where the input variable is the control signal
and the output variable is the sampled signal (see Section 2.2).

Notice that, ifDi is set equal toδ in the extend model of (2.16), then the task
model can be used to precisely describe the sampled system’sbehavior (assuming
constant computation time). However, this may cause significant impairment on
the schedulability of the real-time system. On the other hand, if Di is relaxed to
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be larger thanδ, the actual delay becomes different fromδ and inconstant during
runtime. In other words, the naif task model brings timing uncertainty (temporal
nondeterminism) into the control system.

In general, when a control taskτi runs with other tasks on the same processor,
it suffers interferences and experiences variable sampling period and inconstant
delay, which is illustrated in Figure 2.22. Input and Outputare abbreviated us-

OI I O OI

tai,k−1 ai,k ai,k+1

∆s
i,k−1 ∆s

i,k ∆s
i,k+1∆io

i,k−1 ∆io
i,k ∆io

i,k+1

hi,k−1 hi,k

Figure 2.22: Timing uncertainty of a control taskτi.

ing notationI andO. To characterize the timing of the control task, thetiming
attributesare commonly used and are described below.

Each job of the control task experiences two types of latency, defined as

• Sampling delay∆s
i,k is the latency from the ideal sampling instant to the

actual sampling instant, that is the time between the arrival time ai,k and the
start timesi,k of each job:

∆s
i,k = si,k − ai,k (2.18)

• Input-output delay (IO delay) ∆io
i,k is the latency from the sampling instant

to the actuation instant, that is the time between the start time si,k and the
finishing timefi,k of each job:

∆io
i,k = fi,k − si,k (2.19)

The sampling delay∆s
i,k is induced by the blocking after the control task is

released, due to a running task with higher priority, and is variable from job to
job. Similarly, the interferences (preemption or blockingon a mutual exclusive
resource) from other tasks, as well as the varying computation time, make the
input-output delay∆io

i,k inconstant. The variation of these two types of latency are
denoted by

• Sampling jitter si is the maximum difference between∆s
i,k of all the jobs:

si = max
k

∆s
i,k −min

k
∆s

i,k (2.20)

• Input-output jitter (IO jitter) ioi is the maximum difference between∆io
i,k

of all the jobs:
ioi = max

k
∆io

i,k −min
k

∆io
i,k (2.21)
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Note that the sampling jitter leads to jitter in the nominal sampling periodhi. In
fact, the actual sampling periodhi,k is not invariable, clearly shown in Figure 2.22,
whose variation is denoted by

• Sampling period jitter hi is the maximum difference between all the actual
sampling periodhi,k, which is quantified by

hi = max
k

hi,k −min
k

hi,k (2.22)

and according to [Cer03], it is upper bounded by

hi ≤ 2si

It has been widely acknowledged that delay and jitter have significant impact
on the correct behavior of control systems, which implies that, if not properly taken
into account, they may result in degradation of the control performance, and even
lead to instability of the system [MVFF01a, CHL+03]. Therefore, analysis of
control loop timing and understanding of how the timing affects the control system
are of great importance in real-time control co-design.

2.3.2 State of the art

In this section, some existing methods for real-time control co-design are reviewed.
These methods are categorized into several tendencies based on [ÅCES00].

Task models

In Section 2.3.1, a naif control task model was introduced. This general task model
facilitates to perform real-time analysis, e.g. schedulability check, but may not
achieve the best control performance. Therefore several improved task models
are proposed by different researchers to enhance the control performance during
system runtime.

[Cer99] proposes to split the control task into two subtasks, where the first
subtask calculates the control signal and the second subtask updates the internal
states of the controller. In this way, the control signal canbe output as soon as it is
ready, reducing the latency in the control loop.

[CRA99] proposes to partition the control task into three parts: data acquisi-
tion, algorithm evaluation and action delivery, and the variable delay of the control
activities is reduced by determining the minimum interval where the control action
has to be allocated.

In [HHK03], the proposed task model uses two synchronization points, i.e.
sampling and actuation, which are located at the release time of the current job
and the next job. This method gives precise timing of the control task and thus
allows to achieve better modeling and controller design. However, the introduction
of synchronization points leads to several drawbacks, including the difficulty in
schedulability analysis and the longer delay in the controlloop.
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The one-shot model presented in [LVM08] improves the above model where
only one synchronization point is used at each actuation instant, while the sam-
pling requires no synchronization point and is assumed to take place at the start
time of each job. Therefore, the model allows the state-space controller to know
the latency from the sampling instant to the actuation, and incorporate it into the
system evolution equations.

Although these task models show the higher capability of predicting timing
behavior and improving control performance, the naif task model is still suitable to
use due to its generality. This dissertation will mostly usethe naif task model.

Delay/Jitter Compensation

To cope with the problem of delay and jitter in real-time control applications, dif-
ferent techniques have been developed.

[NBW98] analyzes the performance and stability of real-time control systems
with varying delays, and derives an optimal stochastic controller to compensate
for jitter. The controller uses timestamps to track the sensor-to-controller and
controller- to-actuator delays.

[LC02] uses a more realistic approach where the output jitter experienced in
one period is compensated for in the next period. The resulting jitter-compensating
controller can be viewed as a generalization of the well-known Smith predictor,
and the design of the compensator does not require a full process model.

[MFFR01] presents a method to on-line compensate the control performance
degradation caused by jitter. The compensation is achievedby adjusting the param-
eters of the controller at each job with the help of timing measurements provided
by the real-time operating system. The stability analysis for such kind of controller
is presented in [MVFF01b]. This kind of compensation method, when used on-
line, introduces extra computation overhead into the system. If such overhead is
significant, then controller parameters should be pre-calculated off-line and stored
in a lookup table, which requires extra memory space.

Parameter selection

Parameter selection refers to the integrated approach of choosing task parameters to
meet both control performance requirement and resource utilization requirement.

[SLSS96] presents an integrated approach where task frequencies (periods) are
selected to comply with the schedulability constraints andan optimization problem
is solved to minimize the control performance difference between the continuous-
time design and the discrete-time implementation. This performance difference is
approximated as an exponential function of the sampling frequency.

Instead of the period parameter, [RS00] uses the time slot length as the granu-
larity of the schedule, and presents a method to decide the best off-line static cyclic
schedule of several control tasks to optimize the overall system performance.

More related work will be reviewed in Chapter 4.
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Feedback scheduling

When the control plant or the system workload is highly dynamic, it could be
advantageous to adapt the task parameters on-line. In [SLS99, LSTS99, LSA+00]
and other similar works, feedback mechanism is employed to keep the real-time
system acting with a stable behavior. This type of feedback scheduling is also
known asresource manager.

However, the more control-related cases consider control tasks rather than reg-
ular real-time tasks in the system. Therefore, the feedbackscheduler makes deci-
sion based on not only the system workload situation, e.g. deadline miss ratio, but
also the status of the controllers implemented by the control tasks.

[EHÅ00] proposes to use a recursive optimization procedure to on-line change
sampling periods of a group of control tasks to keep the system utilization at a sta-
ble level while maximizing the overall control performance. The feedback signal
is the execution time change of each task.

[MLB +04] presents a feedback-based resource management model that allows
to allocate resources to control tasks as a function the current states of their con-
trolled systems. It is shown that using this dynamic allocation mechanism based
on the actual needs of the controllers, the available resources are well utilized to
provide better control performance than using static resource allocation.

[HC05] presents a feedback scheduling strategy to dynamically adjust sam-
pling rates for a set of LQ-controller tasks. The control performance is analytically
expressed as a function of the sampling period and the state of controlled system,
and is used for on-line sampling period adjustment.

Resource reservation

Some control applications may have highly variable execution times, such as vi-
sual tracking. In these cases, the controller normally executes with short compu-
tation times under most situations and only occasionally experiences the worst-
case execution time. Therefore, the WCET assumption might lead to significant
under-provision of computing resources, and hence is inefficient for performance
optimization.

[CBS00] proposes to use the nominal computation times instead of the WCETs
in optimizing sampling periods. Task overruns are handled by the presented Hard
CBS (CBShd) algorithm.

[PAC+00] suggests that certain amount of deadline misses may be tolerant
due to the inherent robustness of the control systems. Therefore strict deadline
constraints can be relaxed to enable higher sampling rates.The deadline miss ratio
can be bounded by CBS if the probability distribution function of the execution
times of the control task is known.

[CE03] presents the Control Server which gives small latency and jitter, and
isolates timing misbehavior between unrelated tasks. A keyproperty of the model
is that both schedulability and control performance of a control task will depend
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on the reserved utilization factor only.

Event-driven control

Recent researches have shown that if the equidistant sampling period constraint is
relaxed, computing resources usage may be reduced while thecontrol performance
is maintained. This leads to interesting topics in the integration of event-driven
control and real-time systems theory. However, since this dissertation will focus
on periodic control, only a brief review will be listed.

[JHC07] presents the analysis and performance evaluation of the event-based
control of first-order stochastic systems. A minimum inter-event time is defined to
treat the control tasks as sporadic tasks so that the system schedulability is guaran-
teed. The results indicate that the sporadic control can achieve better performance
than periodic control in terms of reduced process state variance and control action
frequency.

[DLCHZ07] proposes a self-triggered control task model which decides its next
release time at each job execution to enforce upper bounds onthe inducedL2 gain
of a linear feedback control system. To ensure the schedulability of the system,
the self-calculated release time is sent to the elastic scheduling algorithm [BAL98]
which assigns the actual release time to the control task.

[VMB08] presents a framework to accommodate several existing event-driven
control approaches and shows the schedulability analysis for a set of control-driven
tasks using both Fixed Priority and Earliest Deadline First.

2.3.3 Analysis Tools

Owning to complex relations between control performance and timing attributes,
as well as between timing attributes and implementation parameters [TH̊A+06], it
might be intractable to express such relations in analytical way. However, several
tools have been acknowledged to support the analysis of complicated nature of the
real-time control problem.

Jitterbug

Jitterbug is a Matlab-based toolbox that allows the computation of a quadratic per-
formance criterion for a linear control system under various timing conditions [LC02].
The toolbox is built on the LQG theory and jump linear systems.

In Jitterbug, a control system is built by a signal model and atiming model. The
signal model includes a number of inter-connected continuous-time and discrete-
time systems, in either state-space form or transfer function form, and are each
associated with a continuous-time quadratic cost functionfor performance evalu-
ation. The timing model consists of a group of timing nodes, each corresponding
to zero or more discrete-time systems in the signal model. Timing nodes are con-
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nected so that a next node will be activated after the previous node is finished7. At
each activation of a timing node, the corresponding discrete-time systems will be
updated.

The timing model therefore is used to describe the timing behavior of the ac-
tual runtime of a real-time system. The first timing node can be activated in a
periodic fashion (everyh seconds) or aperiodic fashion to model the time-driven
or event-driven controller. Between two timing nodes, a latencyδ with a discrete-
time probability density function can be specified to model the delay and jitter in
runtime. Notice that in periodic systems, when the total delay exceeds the period
h, the remaining timing nodes are skipped for activation. This models the behavior
in hard real-time systems where control tasks must finish before the next sampling,
however brings some limitation which will be mentioned in Chapter 4.

It is worth mentioning that Jitterbug toolbox also providesa convenient func-
tion to make LQG design. Thelqgdesignfunction designs a discrete-time con-
troller for a continuous-time LTI plant with a constant timedelay and a continuous-
time cost function (see Jitterbug manual [CL06] for more details).

TrueTime

TrueTime is a Matlab/Simulink-based simulator, which facilitates co-simulation of
controller task execution in real-time kernels, network transmissions, and continu-
ous plant dynamics [OHC07, CHL+03].

A TrueTime simulation is constructed by connecting standard simulink blocks,
which gives flexibility to easily build control systems. Besides, a few TrueTime-
specific blocks are provided by the toolbox, including:

• TrueTime kernelis a block to simulate a real-time kernel. It was originally
assumed for only uniprocessor, and starts to support simulating multiproces-
sor platform since TrueTime 2.0.

• TrueTime networkssimulates medium access and packet transmission in a
local area network, including a wired version and a wirelessversion. The
possible network models are

– For wired networks: CSMA/CD (e.g. Ethernet), CSMA/AMP (e.g.
CAN), Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP),
and Switched Ethernet.

– For wireless networks: IEEE 802.11b/g (WLAN) and IEEE 802.15.4
(ZigBee).

• TrueTime batteryis a block to mimic the battery charging and recharging.

7There is possibility to have alternative execution path, inthe sense that the next activation timing
node is picked among a group of candidates.
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To customize the different configuration for these blocks, initialization scripts
should be written. Moreover, executive scripts during simulation can also be spec-
ified. All these scripts can be written as either Matlab M-files or C++ codes. The
former one gives ease of using the familiar Matlab syntax andAPIs and requires
no compilation, while the latter one increases the simulation speed.

The initialization scripts define the setup of the real-timekernel, as well as
the networks, and create tasks, interrupt handlers, timers, events, monitors, etc for
the simulation. The scheduling policy of the real-time kernel can be one of the
predefined classic scheduling algorithms likeEDF or RM, or it can be any user-
defined priority function. The execution of the tasks and interrupt handlers, written
in user scripts to perform jobs like I/O and control, are thenscheduled according
to the scheduling policy during the simulation.

Because of the seamless connection with Matlab/Simulink, TrueTime is con-
sidered to be a powerful tool to make extensive simulation, detailed analysis and
system-wide real-time control co-design.

S.Ha.R.K

S.Ha.R.K (Soft andHard Real-timeKernel) is a highly configurable uniprocessor
real-time kernel designed for supporting hard, soft, and non real-time applications
on PC of x86 architecture. It includes device drivers for most common hardware,
making it possible to easily interact with the environment.For example, it can be
used on PC to act as a controller, with the help of I/O devices,and hence enables
experiments on integrated real-time control systems.

The modular component-based interface for the specification of scheduling al-
gorithms makes it extremely easy to utilize and evaluate existent or new scheduling
policies. Moreover, the hierarchical structure of the scheduling modules further fa-
cilitates the system-level composition and interchangeability of multiple schedul-
ing algorithms. This is illustrated in Figure 2.23. Each task is associated with a

Module A

Module B

Module D

Module C

Level 0

Level 1

Level 2

Level 3

Figure 2.23: Hierarchical structure of scheduling modules.

scheduling module. Modules are ordered from top to bottom aslevels. All the
events of a task is scheduled by its associated module, in foreground of the tasks
belonging to a lower-level module. In other words, each taskhave an extra fixed
global priority specified by the index of the level at which its belonged module
stays.

35



CHAPTER 2. BACKGROUND

2.4 Conclusion

In this section, the background knowledge of real-time control integration has been
introduced. In particular, basic concepts in the real-timesystems have been de-
scribed, and popular technologies have been presented, including scheduling poli-
cies, schedulability analysis, sensitivity analysis and resource reservation. A brief
introduction of control systems has been given, as well as the discrete-time control
theory for computer-controlled systems. The timing characterization for real-time
control integration has been detailed. Finally, state of the art has been reviewed
and several analysis tools have been described.
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Chapter 3

Improved responsiveness using
limited-preemption

3.1 Introduction

Limited-preemptionEDF scheduling (LP-EDF) has been introduced by Baruah in
[Bar05] to join the beneficial effects of both preemptive andnon-preemptive schedul-
ing. The main benefit of non-preemptive scheduling is indeedthe reduced num-
ber of context switches, with a limited scheduling overheaddue to cache misses
and to the additional need of storing the state of a preemptedtask in order to
safely retrieve it when the task will be resumed. On the otherside, executing
each task non-preemptively might lead to limited schedulability performances due
to the large blocking imposed on tasks with smaller deadlines. With LP-EDF,
instead, a task is executed non-preemptively as long as thisdoes not cause the
system to become unschedulable. When the task executed for the maximum al-
lowed non-preemptive interval, the processor is surrendered to the ready task hav-
ing earliest deadline, according toEDF. Pseudopolynomial complexity algorithms
are presented in [Bar05, BB09a] to compute the durations of the maximum Non-
Preemptive (NP) chunks for each task in the system. In this way, one can take
advantage of the optimality of preemptiveEDF with a reduced system overhead.

However, the benefits of limited preemptionEDF are not limited to the smaller
number of preemptions introduced in the system. This chapter exploits this tech-
nique to increase the responsiveness of a selected set of tasks, improving the control
performance of a control system.

3.2 Related Work

In this section, we briefly remind the main results on non-preemptive and limited-
preemption scheduling.

In [JSM91], Jeffayet al. proved thatEDF is optimal even among non-preemptive
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work-conserving scheduling algorithms1 for periodic or sporadic task sets. For
these systems, a necessary and sufficient schedulability test with pseudo-polynomial
complexity is provided. Moreover, it is shown that both the scheduling problem —
find an algorithm that is able to schedule a feasible task set —and the feasibility
problem — decide if a set of tasks can be scheduled without anydeadline be missed
— are NP-hard in the strong sense for concrete periodic task systems scheduled by
non-preemptive algorithms2.

Baruah and Chakraborty analyzed in [BC06] the schedulability of non-preemptive
task sets under the recurring task model and showed that there exist polynomial
time approximation algorithms for both preemptive and non-preemptive schedul-
ing.

Mok and Poon presented in [MP05] sufficient conditions to guarantee the ro-
bustness (a.k.a. sustainability) of non-preemptive task systems, i.e., guaranteeing
that the schedulability is not affected by the relaxation ofone or more task timing
requirements (like a decrease in the computation time or an increase in the period).

The idea of deferring preemptions until pre-determined points inside the task
code has been first introduced by Burns in [Bur94]. An algorithm called Fixed
Priority with Deferred Preemptions (FPDP) has been proposed, describing as well
an associated response time analysis. However, a flaw in the analysis has been later
corrected by Brilet al. in [BLV07].

With a similar idea, Baruah analyzed in [Bar05] the Limited PreemptionEDF

scheduling algorithm (LP-EDF). The maximum amount of time for which a task
may execute non-preemptively, without missing any deadline, is computed. Dif-
ferently from the model adopted in [Bur94, BLV07], there areno fixed preemption
points, but the position of Non-Preempting Regions (NPR) may float inside the
task code (provided it is shorter than the allowed length). The computation of the
maximum NPR lengths has been later improved in [BB09a].

A response time analysis for preemptiveEDF has been described by Spuriet
al. in [SB96, SSRB98]. Such analysis has been extended to systems scheduled
with non-preemptiveEDF by Georgeet al. in [GRS96]. Palencia and Gonzalez
applied similar techniques for more general (distributed)task systems in [GH05].

The idea of exploiting non-preemptive scheduling to improve control perfor-
mances has been adopted by Buttazzo and Cervin in [BC07], where non-preemptive
EDF is used to reduce task jitter.

3.3 System Model

We will consider a setτ composed byn periodic and sporadic real-time tasks. Each
taskτi is defined by a worst-case execution requirementCi, a relative deadlineDi

1A scheduling algorithm is work-conserving if the processoris never idled when a task is ready
to execute. Note thatEDF is not optimal among general non-preemptive schedulers (including non
work-conserving ones).

2A concrete periodic task is a periodic task that comes with anassigned initial activation.
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Qi

Figure 3.1: Placement of the final NP chunk of a taskτi.

and a period, or minimum interarrival time,Ti (all parameters are assumed in the
real numbers domain). Such a sporadic task generates an infinite sequence of jobs
τi,k, k ∈ N, with the first job arriving at any time, and successive job-arrivals
separated by at leastTi time units. Each jobτi,k has an arrival timeai,k, a finishing
time fi,k, and a deadlinedi,k = ai,k +Di. The starting timesi,k of job τi,k is the
first time it is scheduled for execution.

We consider the scheduling of sporadic task systems upon a single processor,
using theEarliest Deadline First (EDF) scheduling algorithm [LL73] with limited
preemption (LP-EDF) [Bar05, BB09a]. For each taskτi, we will assume to know in
advance the maximum amount of time for which it can execute non-preemptively.
Such value can be computed using the techniques described in[Bar05, BB09a],
and will be denoted asQi. Note thatQi ≤ Ci,∀i. WheneverQi = Ci, the taskτi
will always be executed non-preemptively.

3.3.1 Placement of NP chunks

In order to improve control performances for one or more tasksτi, we will place an
NP region with lengthQi at the end of its worst-case execution, i.e., at timeCi−Qi,
as shown in Figure 3.1. This can be done considering the code executed by the task
when it produces the largest worst-case execution time, andplacing a preemptions
disable command as close as possible to the instruction executedQi time-units
before the end. When this is not possible, for instance because at timeCi −Qi the
task is inside a loop, or it is calling a remote function whichcannot be modified,
the preemptions disable instruction is placed as soon as possible, resulting in a
smaller non-preemptive region. Without losing generality, we assumeQi to denote
the effective length of such non-preemptive region.

3.3.2 Timing Attributes

To investigate the responsiveness of limited-preemptionEDF, we will consider the
timing attributes defined by Eq. (2.18)-Eq. (2.21) in Section 2.3.1. Besides, we also
consider the response time as a measure of the responsiveness of a real-time task.
The response time of a jobτi,k is defined with Eq. (2.5) in Section 2.1.3. Here, the
definition of its variation is given as:

• Response Jitterri is the maximum difference betweenRi,k of all the jobs:

ri = max
k

Ri,k −min
k

Ri,k (3.1)
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Moreover, for each one of the job-based attributesXi,k (beingX one ofR
(response time),∆s (sampling delay) and∆io (input-output delay)), we define the
corresponding task-based averageX̄i values, taking the average among all jobs of
a taskτi:

X̄i = lim
m→∞

∑m
k=1Xi,k

m
(3.2)

3.4 Response Time Analysis

The worst-case response time of a task in a system scheduled with EDF has been
computed by Spuri et al. in [SB96, SSRB98]. We briefly remind here the adopted
technique.

Definition 1 (Deadline Busy Period). A deadline-d-busy period is an interval of
continuous execution in which only instances with absolutedeadline befored are
scheduled3.

Theorem 1 (from [SB96, SSRB98]). The worst-case response time of a taskτi is
found in a deadline busy period in which all tasks butτi are released synchronously
from the beginning of the deadline busy period, and at their maximum rate.

3.4.1 Worst-Case Response Time of EDF

Exploiting Theorem 1, it is possible to compute the worst-case response time of
each taskτi, considering all deadline-(a +Di)-busy periods for a meaningful set
of possible release timesa of jobs of τi, and taking the maximum response time
among such jobs, as follows [SB96, SSRB98]:

1. The maximum busy period lengthL is found considering a situation in which
all tasks are released synchronously and at their maximum rate. Therefore,
L is the smallest positive value satisfying the following equation:

L =
∑

τi∈τ

⌈

L

Ti

⌉

Ci.

2. For each taskτi, the maximum deadline-busy periodLi is found considering
all tasks butτi synchronously released at timet = 0. An algorithm for the
computation of allLi values is presented in Figure 3.2.

3. The lengthLi(a) of the deadline-(a + Di)-busy period of a job of taskτi
that arrivesa time units after the synchronous arrival of all other tasks is the

3Note that abusy period(without referring to any particular deadline) is instead just an interval
of continuous execution.
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COMPUTE BUSY PERIOD LENGTHS(τ)

1 A
.
= {a < L | a = kTj +Dj , 1≤j≤n, k ∈ N ∪ {0}}

2 Ln+1 ← L
3 for (i = n) down to 1
4 repeat
5 a← max{` ∈ A | ` ≤ Li+1 − Ci +Di} −Di

6 until (Li(a) > a)
7 Li = Li(a)
8 return L1, . . . , Ln

Figure 3.2: Algorithm for the computation of the maximum deadline busy period
lengths.

smallest positive value satisfying the following equation:

Li(a) =

(

1 +

⌊

a

Ti

⌋)

Ci+ (3.3)

∑

j 6=i
Dj≤a+Di

min

{⌈

Li(a)

Tj

⌉

, 1+

⌊

a+Di−Dj

Tj

⌋}

Cj.

4. The maximum response time ofτi can be found as

Ri = max
a∈Ai

{Li(a)− a}, (3.4)

where

Ai
.
= {a < Li | a = kTj +Dj −Di, ∀j, k ∈ N ∪ {0}}.

As proved in [GRS96], if the task set utilization is strictlylower than1,L exists
and is pseudopolynomial, so that the algorithm may convergein a pseudopolyno-
mial number of steps. If instead the total utilization is1, the maximum busy period
lengthL is bounded by the least common multiple of the periods of the tasks, when
such value exists. In that case, the complexity of the algorithm is exponential.

In the next section, we will show how to modify the algorithm in order to take
into account non-preemptive regions.

3.4.2 Worst-Case Response Time of LP-EDF

George et al. presented in [GRS96] a method to compute the worst-case response
time for task systems scheduled with non-preemptiveEDF. The method takes into
account the effect of priority inversion for the computation of the deadline busy
period and can be used as well in analyzing the limited preemption EDF case.
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t1 t2 = t1+Dit3 t4

NP chunk ofτj

Deadlinet2 busy period

NP chunk ofτi

Figure 3.3: Worst-case response time scenario for Limited preemption EDF.

Theorem 2. The worst-case response time of a taskτi is found in a deadline busy
period forτi in which:

• τi has a job released at timea (and possibly other jobs released before);

• all tasks with relative deadline smaller than or equal to(a+Di) are released
synchronously at timet = 0 and at their maximum rate;

• a further taskτj with relative deadline greater thana + Di, if any, starts
executing a non-preemptive region of lengthQj , an arbitrarily small amount
of time beforet = 0.

Proof. We adapt the proof contained in [GRS96] to the case under consideration.
Consider the scenario in Figure 3.3 whereτi has a job with arrival timet1 and
absolute deadlinet2 = t1 + Di. Let t4 be the start time of the NP chunk ofτi,
according to the rule defined in section 3.3.1. The actual execution time of the NP
chunk is≤ Qi. Finally let t3 be the last time before or att1 such that there are no
pending jobs with absolute deadlines before or att2.

By the choices made,t3 must coincide with the release time of at least one job,
and there cannot be idle time betweent3 andt4. This means that the execution of
τi’s NP chunk of the job arrived at timet1 is preceded by a busy period of those
instances released betweent3 andt4, and that have absolute deadlines before or at
t2, plus at most one other NP chunk released beforet3 with absolute deadline after
t2.

Consider now the scenario in which:

• all tasks butτi with relative deadline less than or equal to(t2 − t3) are re-
leased from timet = 0 at their maximum rate;

• beinga = (t1−t3), τi is released at time
(

a−
⌊

a
Ti

⌋

Ti

)

,
(

a−(
⌊

a
Ti

⌋

− 1)Ti

)

, . . . , a;

• the taskτj, if any, that attains the maximum values ofmaxDj>(t2−t3){Qj} is
released an arbitrarily small amount of time beforet = 0. That is,τj causes
the worst possible priority inversion w.r.t. the absolute deadlinea+Di.
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In the new scenario, the workload in the interval preceding the start time of the
NP chunk of the considered instance ofτi, released at timea = t1 − t3, cannot be
less than in the previous scenario: the busy period preceding this NP chunk can-
not be shorter, since it includes the worst-case priority inversion w.r.t the absolute
deadlinea+Di, as well as the largest deadline-(a+Di)-busy period preceding it.
Therefore,τi’s response time cannot diminish.

Using Theorem 2, it is possible to adapt the algorithm described in Section 3.4.1
for the computation of the worst-case response time of a taskτi to the limited pre-
emption case. We will prove that we will only need to replace Equation (3.4) with

Ri = max
a∈Ai

{Li(a)− a+Qi}. (3.5)

and Equation (3.3) with

Li(a) = max
Dj>a+Di

{Qj}+
(

1 +

⌊

a

Ti

⌋)

Ci −Qi+ (3.6)

∑

j 6=i
Dj≤a+Di

min

{

1 +

⌊

Li(a)

Tj

⌋

, 1+

⌊

a+Di−Dj

Tj

⌋}

Cj .

Proof. Differently from the worst-case response time analysis forpreemptiveEDF,
where the considered busy period ends at the finishing time ofthe reference job
of τi, in LP-EDF we focus on the busy periodprecedingthe execution of the final
non-preemptive region of the reference job (timet4 in Figure 3.3). Hence all jobs
released before this time should be taken into account.

Consider the scenario described in the proof of Theorem 2. Let Li(a) be the
length of the busy period starting at timet = 0 and preceding the start time of the
last non-preemptive region of a job ofτi released at timea. Let τi,k be such job.
The response time ofτi,k is given byLi(a) − a + Qi. Taking the maximum over
all jobs released byτi, Equation (3.5) follows.

Now, to prove that the lengthLi(a) can be determined by finding the smallest
solution of Equation (3.6), note that the first term on the RHSaccounts for the max-
imum possible priority inversion w.r.t. the absolute deadline a + Di. The second
and third terms correspond to the time needed to execute the jobs ofτi released
before or at timea, excluding the final NP chunk ofτi,k. Finally, the last term
represents the time needed to execute the jobs of tasksτj 6=i, with absolute dead-
lines≤ (a + Di), that are released before the beginning of the last NP regionof
τi,k. Note that this term is slightly different from the corresponding term used in
Equation (3.3), to make sure that the last NP region ofτi,k has already started4.

4The analysis can be tightened adopting techniques used in [BLV07] for Fixed Priority schedul-

ing. In particular, the term
(

1 +

⌊

Li(a)
Tj

⌋)

can be replaced by the tighter term
(⌈

Li(a)
Tj

⌉)

, whenever

there is a positive blocking term (i.e., ifmaxDj>a+Di
{Qj} > 0). See [BLV07] for further details.
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Observing Eq. (3.6), it is clear that the length of the busy period used to com-
pute the worst-case response time ofτi is not affected by NP regions of any task
τj havingDj ≤ Di. In other words, the responsiveness of a task does not change
if NP regions are introduced inside the code of one or more tasks having shorter
deadlines.

By taking advantage of this observation, we will analyze in Section 3.5 the
performances of the controller task having the largest relative deadline among tasks
that have non-negligible NP regions.

3.5 Experimental Results

3.5.1 Experiment Setup

We consider a system withn = 7 hard real-time tasks. We will monitor the timing
attributes listed in Section 3.3.2 for taskτ1, having periodT1 = 50ms and execu-
tion timeC1 = 5ms (and, therefore, utilizationU1 = 0.1). The other 6 tasks are
generated usingUUNIFAST algorithm [BB04], with periodTi uniformly distributed
in [10, 100] ms and utilizationUi chosen according to a 6-dimensional uniform
distribution to reach the desired total utilization. No particular task ordering is
assumed. For all tasks, includingτ1, Di equalsTi.

The system utilization varies from 0.2 to 1 with steps of 0.1.For each utiliza-
tion, 500 task sets are randomly generated. For each task setτ , three scheduling
policies are tested:

• Fully preemptive Earliest Deadline First policy, denoted as EDF;

• Limited-preemptionEDF, placing the largest possible non-preemptive re-
gions (whose lengthsQi are computed using the algorithm described in [Bar05])
at the end of the execution of each task; this policy will be denoted as
LP-EDF;

• Limited-preemptionEDF, placing the largest possible non-preemptive re-
gions at the end of the execution of those tasks having a relative deadline
≤ D1, and scheduling the remaining ones with preemptiveEDF; this policy
will be denoted asLP-EDF∗ ;

A schedule is generated for each one of the above policies, for a simulation length
of 40 seconds, running in TrueTime [CHL+03].

We will measure the average values defined in Section 3.3.2, approximating
Equation (3.2) with the the following expression:

X̄i =

∑mi

k=1Xi,k

mi
, (3.7)

wheremi is the total number of jobs ofτi generated during the40s of simula-
tion. Since the simulation time is very large, Equation (3.7) approximates well
Equation (3.2).
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3.5. EXPERIMENTAL RESULTS

3.5.2 Responsiveness Results

In Figure 3.4, we show the worst-case and average response times of taskτ1. The
worst-case response time is computed with the method described in Section 3.4,
while the average response time is derived as described above.
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(a) Worst-case Response Time ofτ1
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(b) Average Response Time ofτ1

Figure 3.4: Response Time ofτ1.

The results show that the smallest worst-case response times are obtained with
LP-EDF∗ , thanks to the NP region of taskτ1. The largest worst-case response
times are instead obtained withLP-EDF, due to the blocking imposed by the non-
preemptive regions of lower-priority tasks. The lower subgraph shows that, with
limited preemption scheduling, the system can achieve better average response
time. More specifically,LP-EDF∗ gives always the best (shortest) average response
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CHAPTER 3. IMPROVED RESPONSIVENESS USING LIMITED-PREEMPTION

time, which are from 20% to 30% smaller than the average response times of pre-
emptiveEDF. UnderLP-EDF, instead, the average response time is comparable to
theEDF case, being slightly shorter only when the system utilization is below 0.4,
or above 0.85.

To highlight the improvement over preemptiveEDF, we found it useful to in-
troduce theRelative Response Time Improvement̂RA

i , defined as the difference
between the average response time under preemptiveEDF and under a particular
scheduling policyA, divided by the task period, i.e.,

R̂A
i =

R̄EDF
i − R̄A

i

Ti

whereR̄A
i is the average response time ofτi under a policyA. Notice thatR̂A

i > 0
means that the response time ofτi is reduced (improved) under the policyA w.r.t.
preemptiveEDF.

TheOverall Relative Response Time Improvement̂R is defined as the mean
of R̂i among all tasksτi:

R̂ =

∑

τi∈τ
R̂i

n
.
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Figure 3.5: Relative Response Time Improvement (U1 = 0.1).

In Figure 3.5, the two solid curves forLP-EDF and LP-EDF∗ show that the
average response time is improved usingLP-EDF∗ and LP-EDF in highly loaded
system, w.r.t the preemptiveEDF case. Moreover, underLP-EDF∗ , τ1 achieves
alwaysa much lower average response time, andR̂LP-EDF∗

1 > 0 for all tested
utilizations.

The dashed curves, however, show that the overall relative response time im-
provementR̂ of the whole task set is negative, both forLP-EDF∗ andLP-EDF. This
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can be explained by the response-time “redistribution” that takes places when intro-
ducing NP regions: the average response times of shorter-period tasks are increased
due to the extra blocking time from lower priority tasks; instead, the average re-
sponse time of longer-period tasks are reduced, thanks to the non-preemptive exe-
cution of their NP regions. However, because of the smaller periods, the increase
in the relative response time of shorter-period tasks is more significant than the re-
duction for longer-period tasks. Nonetheless, the negative effect is relatively small
in LP-EDF∗ , since there are less priority inversions for shorter-period tasks.
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Figure 3.6: Timing Attributes ofτ1 (U1 = 0.1).

Figure 3.6 shows the timing attributes ofτ1. As depicted, bothLP-EDF and
LP-EDF∗ perform well in minimizing IO delay∆io

1 and IO jitterio1 . It can be easily
proved that the IO delay with limited preemptions isalwayssmaller than with
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preemptiveEDF, due to the smaller interference suffered by a task in its last chunk.
Moreover, since once a task starts executing, it cannot be preempted by tasks with
larger relative deadlines, the IO delay ofτ1 with LP-EDF is always identical to the
IO delay withLP-EDF∗ , as shown in the figure. Both algorithms have IO delay∆io

1

very close toC1 = 5ms (and IO jitterio1 close to zero), meaning that most ofτ1’s
jobs will be able to execute entirely non-preemptively.

Regarding the start delay∆s
1 and the start jitters1, LP-EDF∗ has the same per-

formances as preemptiveEDF. This can be explained by noting that no jobτ1,k
of taskτ1 can be blocked by the NP regions of tasks having smaller relative dead-
lines, since either they have an absolute deadline earlier thand1,k, or they arrive
after a1,k. Instead, both the start delay∆s

1 and the start jitters1 increase with
LP-EDF, due to the blocking of lower priority tasks.

Finally, the response jitterr1 is influenced by boths1 and io1 , beingR1,k =
∆s

1,k + ∆io
1,k. The smallest response jitter is obtained withLP-EDF∗ , while the

larger response jitter ofLP-EDF is due to its large start jitter.
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Figure 3.7: Relative Response Time Improvement (U1 = 0.2).

Similar results are obtained changingτ1’s execution time. Due to space rea-
sons, we include here only the case withC1 = 10ms (andU1 = 0.2). The results
for R̂ and the other timing attributes are shown, respectively, inFigure 3.7 and 3.8.
Note that increasingτ1’s utilization, there is a more significant improvement (over
preemptiveEDF) in the average response time ofτ1 for bothLP-EDF andLP-EDF∗ ,
as testified by the positive values ofR̂LP-EDF

1 andR̂LP-EDF∗
1 . Jitters and delays

are similar to the previous case. Note thatτ1’s IO delay and jitter are not always
constant, but they increase for heavy loads, meaning thatτ1 is not always able to
execute non-preemptively. Nevertheless, the values of∆io

1 andio1 for LP-EDF and
LP-EDF∗ are still significantly smaller than withEDF.
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Figure 3.8: Timing Attributes ofτ1(U1 = 0.2).

3.5.3 Control Performance Results

When a controller is implemented as a hard real-time task running in a multi-
threaded environment, the scheduling-induced delay and jitter affect assumptions
like the constant sampling period and the null, or constant,input-output delay, de-
grading control performances [Mar02, BC07]. In general, a control task achieves
better performance if it experiences smaller delay and jitter at runtime. To show
how limited preemption scheduling can be exploited to increase the responsive-
ness and, accordingly, the performances of a controller tasks, we considered the
following benchmark control system, inspired by the example shown in [BC07].

An inverted pendulum with natural frequency of6 rad/s is controlled by a
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Linear Quadratic Gaussian (LQG) controller [ÅW97]. The state-space model of
the inverted pendulum is:

dx

dt
=

[

0 1
36 0

]

x+

[

1
0

]

u+

[

1
0

]

v

y =
[

0 1
]

x+ e

wherev is a continuous-time Gaussian white-noise process with zero mean and
variance1, ande is a discrete-time Gaussian white-noise process with zero mean
and variance0.1.

A quadratic cost functionJ is provided to design the LQG controller as well
as to evaluate the control performance.

J = E lim
tp→∞

1

tp

∫ tp

0

(

xT
[

0 0
0 10

]

x+ u2
)

dt

where[0, tp] is the time span to be considered. Although from a theoretical point
of view tp should be∞, in practice we could use a large enough value to evaluate
the control performance. In our experiment,tp is set to the simulation time, i.e., 40
seconds. Notice that the cost function is defined so as to minimize the state error
and control energy. Therefore, a larger cost implies a worsecontrol performance
(see [BC07]).

The simulation setup is the same as in Section 3.5.1 with taskτ1 being the
controller task. Hence, the sampling period of the controller is 50ms. Assuming
sampling (input) and control signal actuation (output) happen, respectively, at the
start time and at the finishing time of each job ofτ1, the lateness of the controller
is equal the lateness ofτ1.
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Figure 3.9: Control Performance ofτ1.

From Figure 3.9, we notice that by employing limited-preemption schedul-
ing, the control performance improves (the cost is reduced)w.r.t. standardEDF,
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owing to the reduction of IO delay and jitter. The performance improvement of
LP-EDF, however, is smaller than withLP-EDF∗ because of the negative effect on
sampling delay and jitter. Nevertheless, the results demonstrate that the enhanced
responsiveness obtained with limited preemption scheduling helps achieving better
performances in real-time control systems.

3.6 Conclusion

The application of limited preemptionEDF scheduling is proposed to improve the
responsiveness of selected tasks in a uniprocessor real-time system. In particular,
it is suggested to execute non-preemptively the last chunk of code of each control
task, in order to improve the control performances. For eachsuch task, an algo-
rithm to compute the worst-case response time is provided, extending a previously
proposed method for non-preemptive systems. The proposed policy is evaluated on
a randomly generated task distribution, measuring averagetiming parameter that
determine the performance of a control system. The simulations, together with an
example case-study, showed the effectiveness of the proposed approach.
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Chapter 4

Parameter Selection in an
Integrated Framework

4.1 Introduction

As mentioned in Chapter 1, the typical approach adopted during the design of a
control system is to separate performance requirements from architecture and im-
plementation issues. In a first stage, the control law is designed assuming an ideal
behavior of the computing system on which the controller executes, where tasks
run smoothly on the processor without considering any kind of interference. This
is equivalent of synthesizing a controller in the continuous time domain without de-
lay. When computational resources are taken into account inthe design, the limited
processing power of the system is considered by assigning a fixed sampling rate to
the controller, whereas other types of interference are cumulated by considering a
fixed input-output delay in the control loop. In this case, a controller can either
be discretized or directly designed in the discrete time domain using sampled-data
control theory.

In a second stage, once performance requirements are ensured by the control
laws, control loops are mapped into periodic tasks and schedulability analysis is
performed to verify whether the timing constraints assumedby the control designer
can be met. If so, the system is implemented, otherwise the control laws must be
designed by assuming different sampling rates and/or delays, and the process must
be repeated.

Even when timing constraints are verified through feasibility analysis (using
predicted values), the actual system implementation may reveal overload condi-
tions and longer delays that force further refinement steps in the design process,
unless very pessimistic assumptions are considered on the system [BMV07]. Fig-
ure 4.1 illustrates the typical refinement process of the classical design methodol-
ogy.

Such a separation of concerns facilitates both control design and implementa-
tion, allowing the system to be developed by teams with different expertise. In fact,
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constraints?
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Design of control laws

Schedulability analysis

Feasible?
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Task parameters

Architectural
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Figure 4.1: Typical design cycle of a real-time control system.

control experts can focus on system-level goals, such as stability, robustness, and
control performance, whereas computer engineers can concentrate on task map-
ping, schedulability analysis, resource management and code generation to ensure
a reliable support to the application [ÅCES00].

Unfortunately, however, such a repetitive design methodology has the follow-
ing disadvantages:

• Long and expensive development. Since design is performed following a
trial and error strategy, several refinement steps can be required to find a
suitable solution, especially when computational resources are scarce and
the application consists of several concurrent and interacting activities.

• Suboptimal performance. The myopic search in the space of solutions does
not guarantee that the found solution leads to the best performance. A dif-
ferent setting of parameters could guarantee feasibility with a significant in-
crease in the performance.
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• Suboptimal use of the resources. Since resource constraints are not taken
into account in the design process (except for verifying feasibility), a feasi-
ble solution does not guarantee optimal resource exploitation, which would
be of crucial importance in embedded systems where resources are scarce.
For instance, optimal resource usage would allow to minimize energy con-
sumption while meeting performance requirements.

The major problem in such a design practice is that the assumptions made at
the first stage of control design are difficult to meet in the implementation, unless
delays are assumed equal to sampling periods [HHK01]. However, it has been
shown [BC07] that, in most cases, a shorter and varying delayleads to a better
performance than a fixed but longer delay. Sampled-data control theory usually as-
sumes a negligible or at least constant input-output delay,whereas in resource con-
strained implementations (as the case of embedded systems and networked control
systems) many concurrent tasks competing for computational resources may cause
transient or permanent overload conditions, as well as introduce variable input-
output latencies in control loops. Such non-deterministiceffects can significantly
degrade the overall system performance and possibly lead tothe violation of some
properties achieved during the control design phase, including system stability.

As a result, a trade-off between control performance and resources usage should
be wisely considered during the whole design process. In particular, architecture
constraints (as processing power, memory size, maximum power consumption)
and operating system effects (as runtime overhead, blocking time, response time,
intertask interference) should be properly modelled to possibly optimize the design
towards a precise control objective.

In this chapter, an integrated approach to enhance the control performance of a
system through proper selection of task periods and deadlines, under EDF schedul-
ing. A general framework is proposed to extend Seto’s methodto optimize perfor-
mance with respect to not only sampling periods but also other timing attributes.
In particular, task deadlines are chosen to balance the scheduling-induced perfor-
mance loss of each controller task exploiting the feasibility region in the space of
EDF deadlines [BB09b]. Detailed simulations are also provided to demonstrate the
usage of the proposed methodology and verify its effectiveness over other methods.

4.2 Related Work

To distribute the limited computing resources to differentcontroller tasks, Seto et
al. [SLSS96] proposed to formulate the real-time control co-design problem as an
optimization problem, where the control performance index, expressed as a func-
tion of the sampling period, is constrained by the feasibility condition of the task
set. By solving the optimization problem, the sampling period for each controller is
computed to maximize the overall system performance. This methodology, further
extended by many researches, is referred to as theperiod selection problem. Bini
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and Di Natale [BDN05] applied Seto’s methodology to a set of controller tasks
scheduled by Fixed Priorities.

To cope with the problem of delay and jitter in real-time control applications,
different techniques have been developed. Nilsson [NBW98]analyzed the perfor-
mance and stability of real-time control systems with varying delays, and derived
an optimal stochastic controller to compensate for jitter.Cervin et al. [CLE+04]
introduced the concept ofjitter margin, defined as the upper bound of the input-
output jitter of a control task that guarantees the stability of the controlled sys-
tem. Martı́ et al. [MFFR01] presented a method to online compensate the con-
trol performance degradation caused by jitter. Another approach for reducing
delay and jitter is to use non-preemptive or limited-preemptive scheduling poli-
cies [BB09a, YBB09]. For example, Chapter 3 discussed the benefits of using EDF
with limited preemptions to reduce input-output delay and jitter without impairing
the schedulability of the task set.

Another widely adopted method to reduce delay and jitter is to limit the exe-
cution interval of each task by setting a proper relative deadline. Like period se-
lection, this method can be referred to asdeadline selection. Different algorithms
for computing the minimum deadline have been proposed in theliterature. Some
methods [HBJK06, BRC06] allow to minimize the relative deadline of a single
task at a time, following a given order. In this way, however,the first task in the se-
quence experiences the most significant deadline reduction, leaving little slack for
the remaining tasks. A more uniform deadline reduction can be achieved by scaling
all deadlines by the same factor [BRC06], but the improvement achieved in terms
of delay and jitter is not significant and, in some cases, the schedule could even
remain unchanged. Other methods [BBGL99, HB07] use binary search to reduce
task relative deadlines as much as possible according to given reduction factors,
while keeping the task set schedulable. These methods, however, are mainly fo-
cused on schedulability aspects and barely considered control issues; moreover, it
is not clear how reduction factors can be assigned to tasks.

Different delay/jitter reduction methods have been discussed and compared
in [BC07], where it is shown that the effectiveness of a particular method depends
of the characteristic of the controlled system, although the deadline reduction ap-
proach is the simplest and most effective for most control systems.

Ryu and Hong [RH98] used a heuristic method to select periodsand deadlines
with respect to performance specification and schedulability constraints. The con-
trol performance was specified in terms of steady state error, overshoot, settling
time, and rise time, which were expressed as functions of thesampling period and
input-output latency. At each step of the heuristic method,the periods and dead-
lines were derived using the Period Calibration Method solving a nonlinear opti-
mization problem. The optimization goal, however, was to minimize the utilization
of the task set.

Kim [Kim98] suggested to express the control cost as a function of both periods
and delays, where periods were found assuming that the delays were given. Then,
the new delays were computed by simulating the schedule of all the tasks up to
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the hyperperiod, and iteratively the periods were updated assuming the new delay
values. However, this method considered only fixed priorities and was extremely
time consuming.

Palopoli et al. [PAC+00] proposed to use resource reservation to serve control
tasks as soft real-time threads. It was revealed that control tasks may tolerate a
certain amount of deadline misses owing to their inherent robustness, therefore re-
laxing the hard timing constraints allows higher activation rates, which may lead to
improved performance. However, no optimization was performed to select reser-
vation parameters and only experimental results were presented.

Chantem et al. [CWLH08] proposed a heuristic search algorithm to find feasi-
ble period-deadline pairs, based on the assumption that task deadlines are piecewise
first-order differentiable functions of their respective periods. However, this work
mainly focused on schedulability issues.

Bini and Cervin [BC08] approximated the delays as a functionof task periods
and incorporated the delay consideration into the performance optimization, while
the resource constraint remains to be the feasibility region with respect to task
periods. This method only applies to fixed priority systems,because in dynamic
priority systems delays are functions of both periods and deadlines.

4.3 System model

This work considers a setτ of n periodic real-time tasks that are executed on a
uniprocessor system under the Earliest Deadline First (EDF) scheduling policy.
The task setτ is logically divided into 2 subsets: one subsetτctrl, consisting of
nctrl controller tasks that are each implemented using the naif task model described
in Section 2.2.1, and another subsetτnctrl, consisting ofnnctrl regular tasks that
are not related to control. Each taskτi is characterized by the followingscheduling
parameters:

Ci the worse-case execution time (WCET);

Cb
i the best-case execution time (BCET);

Dmin
i the minimum allowed relative deadline;

Dmax
i the maximum allowed relative deadline;

Tmin
i the minimum allowed period;

Tmax
i the maximum allowed period;

Di the actual relative deadline, whose value has to be selectedwithin the range
[Dmin

i ,Dmax
i ];

Ti the actual period, whose value has to be selected within the range[Tmin
i , Tmax

i ].
For control tasks,Ti is set equal to the sampling period.
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It is assumed thatCi,Cb
i ,Dmin

i ,Dmax
i , Tmin

i andTmax
i are known, whereasTi

andDi are thedesign parametersto be selected. Notice that, to derive more general
results, relative deadlines are allowed to be less than, equal to, or greater than
periods. In addition, the utilizationUi of each task can range within[Umin

i , Umax
i ],

whereUmin
i =

Cb
i

Tmax
i

, andUmax
i = Ci

Tmin
i

. Similarly, U , Uctrl, Unctrl denote the

total utilization of the whole task set (U =
∑n

i=1 Ui), the utilization of all the
controller tasks (Uctrl =

∑

τi∈τctrl
Ui), and the utilization of all the regular tasks

(Unctrl =
∑

τi∈τnctrl
Ui), respectively.

4.4 The General Framework

4.4.1 Integrated Design approach

To avoid the repetitive design process, we propose to use a general framework
that extends Seto’s method [SLSS96] to achieve optimal performance and optimal
resource usage. The extended framework considers not only the sampling periods
but also other timing attributes. Figure 4.2 illustrates the basic idea of the proposed
design methodology, whereas Figure 4.3 depicts a typical performance function
in the space of the design parameters. The shadowed area denotes the feasible
region where task parameters satisfy the required timing constrains. Notice that
the optimal control performance must take such constraintsinto account and can
only be achieved by wisely selecting the task parameters setting.

Sampling period
Generic control laws

Resource constraints characterization

Optimization process

Task parameters

Jitter

Delay

System performance characterization

Figure 4.2: Proposed design methodology.
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Figure 4.3: Relation between control performance and task parameters

4.4.2 The performance loss index

The primary goal of a control system is to meet stability and performance require-
ments, such as transient response and steady-state accuracy [BMV07]. Beyond
such requirements, controller design attempts to minimizethe system error, de-
fined as the difference between the desired response and the actual response. The
smaller the difference, the better the performance. Hence,performance criteria
are mainly based on measures of the system error. Traditional criteria (reported in
control text-books, e.g. [CDHB04]), such as IAE (Integral of the Absolute Error),
ITAE (Integral of Time-weighted Absolute Error), ISE (Integral of Square Error)
or ITSE (Integral of Time-weighted Square Error), provide quantitative measures
of a control system response and are used to evaluate (and design) controllers.

More sophisticated performance criteria, mainly used in optimal control prob-
lems, account both for the system error and for the energy that is spent to accom-
plish the control objective. The higher the energy demandedby the controller, the
higher the penalty paid in the performance criterion. The system error and control
energy can be multiplied by a weight to balance their relative importance.

The performance index used in this work is the same as the one used in Linear
Quadratic Gaussian (LQG) controller design (e.g. [ÅW97]). The performance of a
control task is given by a quadratic cost function

J = E lim
tp→∞

1

tp

∫ tp

0

(

xTQ1x+ uTQ2u
)

dt, (4.1)

wherex is the state vector,u is the control signal vector,[0, tp] is the time span
to be considered, andQ1, Q2 are weighting matrices. The performanceJ can be
interpreted as the weighted sum of state errors and control energy. Higher values
of J indicate larger deviation from the desired states or largerenergy spent for
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control, which means worse control performance. For this reason, in the remainder
of the paper,J is referred to as theperformance loss index.

Previous work on period selection has considered the performance loss index
as a function of the sampling periodT ,

J = J(T ).

In most realistic cases, for a reasonable range of sampling intervals, the perfor-
mance loss (4.1) is an increasing function of the sampling period. Cervin et al. [CEB̊A02]
argued that the performance loss index can often be approximated by a linear func-
tion of the sampling period,

J ≈ α+ βT,

or by a quadratic function of the sampling period,

J ≈ α+ βT + γT 2.

Delay and jitter in the control task execution can have a large impact on the
control performance, especially if the sampling frequencyis too low compared to
the speed of the closed-loop system. It would hence be desirable to include the
delay and jitter in the performance loss index. The relationship between these
timing attributes and the resulting control performance ishowever very complex.
The solution proposed in this work is to include the relativedeadlineD in the cost
function:

J = J(T,D). (4.2)

As will be shown in Section 4.5, the relative deadlineD upper limits the amount of
delay and jitter the controller can experience. KnowingT andD, it is hence possi-
ble to predict the worst-case performance degradation introduced by the schedul-
ing. In generalJ(T,D) is a nonlinear function. It is realistic to assume that it is
an increasing function in bothT andD, since the control performance typically
degrades as the sampling period, delay, or jitter increases, as later shown in Fig-
ure 4.14 of Section 4.7.1.

4.4.3 The optimization problem

Theperiod selectionproblem has received considerable attention in the real-time
literature. It can be expressed as an optimization problem to find the best periods
for the controller tasks that minimize the performance losswhile guaranteeing the
system schedulability. Such an optimization problem underEDF can be expressed
as follows:

min
{Ti}

J =
∑

τi∈τctrl

Ji(Ti)

s.t.
∑

τi∈τctrl

Ci

Ti
+

∑

τi∈τnctrl

Ci

Ti
≤ 1
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where the objective function is the sum of all the controllertasks’ performance
in dices, which are assumed to be function of the sampling period. For the con-
straints, the first equation relates the sampling periods with the task periods, while
the second equation imposes the schedulability constraintfor the given scheduling
policy (EDF).

To take the impact of delay and jitter on control performanceinto account, the
relative deadlines are included in the performance loss indexes and the optimization
problem is generalized to

min
{Ti,Di}

J = Fτi∈τctrl(Ji(Ti,Di))

s.t. {Ti,Di} ∈ S, ∀τi ∈ τ
(4.3)

whereF : Rnctrl → R is a system-wide function used to combine the individual
performance indices of control tasks into a global system performance index, and
S is the set of resource constraints, i.e. schedulability conditions, imposed by the
scheduling platform. The choice of functionF depends on the user’s interest and
can be, for instance, a linear combination of all the individual performance loss
indices, or the maximum among the performance loss indices.

4.5 Linking Task Parameters to Control Performance

This section explains how to derive the performance loss index given in Eq. (4.2)
in a simulative or experimental fashion, describes the relation between control per-
formance and scheduling parameters, and formalizes the optimization problem ex-
pressed by Eq. (4.3).

4.5.1 Characterization of the delay and jitter

Assuming that the task set is schedulable, each job will finish no later than its
absolute deadline. This puts a limit on the amount of delay and jitter that a control
task with periodTi and relative deadlineDi can experience.

Consider the worst-case scenario depicted in Figure 4.4. Inthis scenario, task
τi releases 3 consecutive jobs, where jobτi,0 finishes with best-case execution time
Cb
i , job τi,1 starts at its release time and finishes at its deadline, and finally, job

τi,2 startsDi − Ci before its deadline to ensure that it will not cause an overrun.
By analyzing the worse-case scenario, the following boundson the delays can be
derived:

max∆io
i,k = ∆io

i,1 ≤ Di

min∆io
i,k = ∆io

i,0 ≥ Cb
i

max∆s
i,k = ∆s

i,2 ≤ Di −Ci

min∆s
i,k = ∆s

i,1 ≥ 0

(4.4)
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Also, the following relations on the jitter hold:

ioi ≤ Di − Cb
i

si ≤ Di − Ci

(4.5)

τi,0 τi,1 τi,2Cb
i Ci

Figure 4.4: Worst-case scenario for delay and jitter.

Notice that the reported worst-case scenario must not necessarily take place
in an actual schedule, since the interference on taskτi depends on the scheduling
parameters of other tasks as well. Therefore, the relationsderived above represent
only the lower or upper bounds of the actual delay and jitter.

The analysis above shows that a shorter relative deadline implies both shorter
delays and less jitter, which should imply better control performance. How to find
the actual performance loss index is treated next.

4.5.2 Performance loss index derivation

In most cases, it is impossible to evaluate the exact value ofthe performance loss
index (4.1) for a controller executing in a real-time system. An execution of the
real-time system will generate an infinite sequence of sampling and input-output
delays,{∆s

i,0,∆
io
i,0,∆

s
i,1,∆

io
i,1,∆

s
i,2,∆

io
i,2, . . .}, for each control taskτi. The de-

lays are in general random and depend on the execution-time characteristics of the
control algorithm and the preemption pattern created by thescheduling algorithm,
which in turn depend on the execution of the other tasks in thesystem.

Using the bounds on the delay and jitter derived in the previous subsection, var-
ious approaches can be used to evaluate the performance lossindex approximately:

• Taking a stochastic approach, one can assume that{∆s
i,j ,∆

io
i,j}∞j=0 describe

a sequence of independent two-dimensional uniform random variables with
bounds given by (4.4). The performance index can then be evaluated nu-
merically using a tool such as Jitterbug [LC02]. A limitation of Jitterbug,
however, is that the maximum delay variation allowed is bounded by the
sampling period. Hence, some cases whereDi > Ti are not possible to
evaluate.

• Taking a worst-case approach, one may try to evaluate the largest theoreti-
cally possible performance degradation given the delay bounds (4.4). For the
case of pure input-output jitter, the jitter margin [CLE+04] can be used. Un-
fortunately, however, no performance degradation theoremfor mixed sam-
pling jitter and input-output jitter exists today.
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• A third option, which is advocated in this paper, is to do a quantitative anal-
ysis with respect to delay and jitter to determine which factor has the larger
influence on the performance degradation. From previous experience, the
worst case with respect to the bounds (4.4) is often achievedwhen∆s

i,j = 0,
∆io

i,j = Di, i.e., the worst control performance is typically obtainedfor
zero jitter and a constant input-output delay ofDi. The quantitative anal-
ysis can be carried out using Jitterbug, simulation (using tools like True-
Time [HCAÅ06] or RTSim [CBLL98, PAC+00]), or by experiments on the
real system.

The last option is elaborated upon in the rest of this section.

4.5.3 Quantitative performance degradation analysis

As mentioned above, an approximative performance loss index for a control task
can be derived in a simulative or experimental fashion. Whenthe system model is
not available or it is not accurate, the control performancecan be directly monitored
using a real-time kernel, like S.Ha.R.K [GAGB01], that allows to enforce desired
and precise delays in task executions. The method presentedhere can be used
on any real-time platform, either real or simulated, to derive the performance loss
index of a single controller task at a time, as a function of configurable timing
attributes.

The most intuitive solution to generate a sampling delay is to defer the start
time of the job of the controller task by inserting a delay primitive before the input
procedure. Similarly, the input-output delay can be introduced by inserting a de-
lay primitive before the output procedure, as shown in Figure 4.5, whereδsi,k and
δioi,k represent the injected artificial sampling delay and the IO delay for each job
τi,k, respectively. Figure 4.6 illustrates this intuitive method. Notice that, assum-
ing Input andOutputoperations consume negligible computation times, the actual
input-output delay is∆io

i,k = δioi,k + Ci, while the actual sampling delay is always
equal to the artificial one, that is∆s

i,k = δsi,k.

CONTROLLER-TASK()

1 Delay(δs
i ,k )

2 sampled-data ← Input()
3 control-signal ← Calculation(sampled-data )
4 Delay(δio

i ,k )

5 Output(control-signal )

Figure 4.5: Pseudocode for controller taskτi with artificial delays.

A problem with this implementation is that, when deadlines are larger than
periods, delays can be larger than expected, as depicted in Figure 4.7. In fact,
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δsi,k δioi,k

Figure 4.6: Inserting artificial delays.

δsi,k δioi,k δsi,k+1 δioi,k+1

∆s
i,k+1

ai,k ai,k+1

Figure 4.7: Problem when deadlines are larger than periods.

when thekth job of taskτi completes after the beginning of the next period, the
actual sampling delay results to be higher than the specifiedδsi,k+1, and in particular
equal to

∆s
i,k+1 = δsi,k+1 + fi,k − ai,k+1.

To solve this problem, the controller task is split into three subtasks: a peri-
odic subtask and two aperiodic subtasks, as illustrated in Figure 4.8. At the end
of each job of the periodic subtask (subtask1), a system-level event is posted to
activate the first aperiodic subtask (subtask2) after a given amount of time, equal
to the specified sampling delayδsi,k. Such an aperiodic subtask performsInput and
Calculationand then it posts another system-level event to activate thesecond ape-
riodic subtask (subtask3) after the specified input-output delayδioi,k. The second
aperiodic subtask performs theOutputand finishes the control job. The two aperi-
odic subtasks are scheduled with a lower priority with respect to the periodic task
to ensure the proper activation sequence.

The timeline at the top of the figure shows the equivalent execution of the con-
troller task with the proper enforced delays. It can be easily seen that, except for
a negligible overhead due to the subtask activation, the specified sampling delay
δsi,k and input-output delayδioi,k are not affected by the task finishing time. It is
worth mentioning that the second aperiodic subtask is assigned a priority higher
than that of the first aperiodic subtask, because theOutput is less time consum-
ing and should not be preempted by the execution of the first aperiodic subtask.
Also notice that this approach allows generating tasks witharbitrary jitter as well,
obtained by introducing random activation delays in the subtasks.

The pseudocode of the controller subtasks is listed in Figure 4.9, 4.10 and 4.11,
wherePost-Kernel-Event(t , e) is a function that posts a system-level evente at
time t , andtcur is the current system time.
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δsi,k

δsi,k

δioi,k

δioi,k

δsi,k+1

δsi,k+1

δioi,k+1

δioi,k+1

Figure 4.8: Sequence of subtasks to generate delays larger than periods.

SUBTASK1()

1 Post-Kernel-Event(
tcur +δsi,k,
event-activate-subtask2

)

Figure 4.9: Pseudocode for subtask1 ofτi.

SUBTASK2()

1 sampled-data ← Input()
2 control-signal ← Calculate(sampled-data )
3 Post-Kernel-Event(

tcur +δioi,k,
event-activate-subtask3

)

Figure 4.10: Pseudocode for subtask2 ofτi.

4.5.4 Example of analysis results

As an example of the quantitative performance analysis, theLQG control of a
double integrator process with the sampling intervalT = 0.02sec is studied. The
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SUBTASK3()

1 Output(control-signal )

Figure 4.11: Pseudocode for subtask3 ofτi.

performance loss as a function of the amount of sampling jitter, constant input-
output delay, and input-output jitter is plotted in Figure 4.12. The figure makes
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Constant IO delay ∆io = x

IO jitter io = x
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Figure 4.12: Comparison of the influence of delay and jitter for a double integrator
with T = 0.02sec.

a comparison of the separate effects on control performanceof different timing
attributes∆io

i (constant),ioi andsi . The values ofx can be as large as twice the
sampling period. Notice that the constant sampling delay isnot considered in the
comparison, since a taskτi where all jobs have a constant sampling delay∆s

i is
equivalent to a task with a release offset of∆s

i and sampling delay equal to0 for
all jobs. It is seen that, in this case, the IO delay is the mostsignificant timing
attribute influencing the control performance. Hence, the worst case respecting the
bounds (4.4) occurs when∆io

i = Di andjsi = jio = 0.
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4.6 Resource Constraints Characterization

Since the performance loss index is assumed to decrease as the period or the dead-
line of the controllers decrease, the solution of the designproblem is to find the
smallest values forTi andDi that guarantee schedulability.

To determine the feasible task parameters under EDF, the processor demand
criterion proposed by Baruah et al. [BRH90] is used. According to this test, a task
set is schedulable by EDF if and only if:

{
∑n

i=1
Ci

Ti
≤ 1

∀t ∈ dlSet
∑n

i=1max
{

0,
⌊

t−Di+Ti

Ti

⌋}

Ci ≤ t
(4.6)

wheredlSet is an opportune subset of absolute deadlines.
Unfortunately this test does not provide a description of the feasible parameters

that is well suited for maximizing the performance. In fact,since periods and
deadlines appear within the floor operator, the shape of the boundary necessary to
apply constrained optimization techniques (such as the Lagrange multipliers) is not
easy to derive.

To overcome such a problem, the following two-step approachis adopted:

1. First, considerDi = Ti for all the tasks and find the periods that minimize the
performance loss index, using the Liu and Layland necessaryand sufficient
test for EDF

n
∑

i=1

Ci

Ti
≤ 1 (4.7)

which is linear and it can be used in the optimization process[SLSS96].

2. Then, fix the task periods as derived in the previous step, relax the assump-
tion Di = Ti, and perform the optimization in the space of the feasible
deadlines [BB09b].

Due to the regularity of the constraint expressed by Eq. (4.7), the first step can
be made by applying standard convex optimization techniques. If the performance
function conforms to a class of some special functions (suchas linear, exponential
or logarithmic) then a closed solution can also be found [SLSS96, AMMMA01].

The second step can be accomplished by exploiting the geometric properties
of the space of feasible deadlines. Bini and Buttazzo [BB09b] proved that given
the computation timesC = (C1, . . . , Cn) and the periodsT = (T1, . . . , Tn), the
region of the feasible deadline can be expressed as follows:

S =
⋂

k∈Nn

⋃

i:ki 6=0

{D ∈ R
n : Di ≥ k ·C− (ki − 1)Ti} (4.8)

To clarify the geometry of the space of feasible deadlines wepropose an ex-
ample with two periodic tasks, whose parameters areC = (2, 6) andT = (4, 12).
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Figure 4.13: The region of feasible deadlines.

According to Eq. (4.8), the resulting space of feasible deadlines is illustrated in
Figure 4.13.

Since the performance always improves as deadlines become smaller (i.e. ∂Ji∂Di
≤

0), then all the corners of the region of the feasible deadlines are a local optima. An
optimization routine should then test the performance value at all these local op-
tima and select the best performing solution. In the exampleshown in Figure 4.13,
local optima are in the setS = {(8, 6), (6, 8), (4, 10), (2, 12)}.

Unfortunately, the cardinality of the set of local optima does not increase poly-
nomially with the number of tasks, hence this method can be time consuming for
large task sets. An alternative solution is to use a convex subregion of the exact
space. In [BB09b], it is proved that if the following set of linear constraints are
satisfied

{

Di −Dj ≤ Ti ∀i, j
Dj (1−

∑n
i=1 Ui) +

∑n
i=1 UiDi ≥

∑n
i=1 Ci ∀j

then the resulting deadline assignment is feasible. Noticethat the number of the
linear constraints isn2. Moreover, if in the first step of the optimization procedure
the periods are assigned such that the total utilization

∑

i Ui reaches1 (i.e. the
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computing resource is fully exploited), the convex constraint becomes
{

Di −Dj ≤ Ti ∀i, j
∑n

i=1 UiDi ≥
∑n

i=1Ci

(4.9)

whose region is delimited byn · (n − 1) + 1 linear constraints. In Figure 4.13
the convex subregion is depicted in light gray. Although Eq.(4.9) provides only
a sufficient test, the convexity of the region allows implementing a very efficient
algorithm for finding a deadline assignment.

In a system composed by both controller tasks and regular tasks, the number of
constraints can be further reduced, if the deadlines of regular tasks are equal to the
periods, i.e.Di = Ti,∀τi ∈ τnctrl.

From the first equation of Eq. (4.9), it follows that:
{

Di −Dj ≤ Ti ∀τi, τj ∈ τctrl

0 ≤ Di ≤ Ti + Tj ∀τi ∈ τctrl, τj ∈ τnctrl

From the second equation of Eq. (4.9), it follows that:
∑

τi∈τctrl

Ci +
∑

τi∈τnctrl

Ci ≤
∑

τi∈τctrl

UiDi +
∑

τi∈τnctrl

Ui Di

=
∑

τi∈τctrl

UiDi +
∑

τi∈τnctrl

Ui Ti

=
∑

τi∈τctrl

UiDi +
∑

τi∈τnctrl

Ci

Hence,
∑

τi∈τctrl

UiDi ≥
∑

τi∈τctrl

Ci

Therefore Eq. (4.9) can be written as:










Di −Dj ≤ Ti ∀τi, τj ∈ τctrl

0 ≤ Di ≤ Ti +minTj ∀τi ∈ τctrl, τj ∈ τnctrl
∑

τi∈τctrl
Ui Di ≥

∑

τi∈τctrl
Ci

(4.10)

Notice that whenτnctrl 6= ∅, i.e.nctrl < n, the number of constraints is reduced to
n2
ctrl + nctrl + 1.

4.7 Experimental results

This section illustrates how the proposed methodology can be used for selecting pe-
riods and deadlines in a system consisting of both controller tasks and regular tasks.
The overall performance of the system is evaluated by simulating the runtime of
the whole system scheduled by EDF on uniprocessor using TrueTime [HCAÅ06]
in Matlab.
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4.7.1 The control systems

Two types of plant have been considered with highly different dynamics to control.
The first type, denoted asPlant A, is a double integrator with the following state-
space model:

dx

dt
=

[

0 0
1 0

]

x+

[

1
0

]

u+

[

1
0

]

v

y =
[

0 1
]

x+
√
0.1e.

The cost function used for both LQG design [ÅW97] and control performance
evaluation is

J = E lim
tp→∞

1

tp

∫ tp

0

(

xT
[

0 0
0 10

]

x+ u2
)

dt.

The second type, denoted asPlant B, has the following state-space model:

dx

dt
=

[

0 1
−3 −4

]

x+

[

0
1

]

u+

[

35
−61

]

v

y =
[

2 1
]

x+ e

with its corresponding quadratic cost function

J = E lim
tp→∞

1

tp

∫ tp

0

(

xT
[

700 20
√
35

20
√
35 20

]

x+ u2
)

dt.

This plant is a modification of the one investigated in [NBW98], where the LQG
design results in a controller that is extremely sensitive to delay and jitter.

For all the plant models,v is a continuous-time zero-mean white noise process
with unit intensity, ande is a discrete-time zero-mean white noise process with unit
variance. In the cost function,[0, tp] is the time span to be considered. Althoughtp
should be∞ in LQG design, when evaluating control performance, it is reasonable
to use a suitable large value, which in this case was set to 50 seconds, also equal to
the simulation time of the experiment.

The control performance loss index with respect to samplingperiod and rel-
ative deadline was derived for both types of plant. To obtainsuch an index, a
performance derivation procedure using the method in Section 4.5.2 was set up in
TrueTime. The adjustable ranges of sampling period are [4, 20] ms for Plant A
and [30, 70]ms for Plant B, respectively. For both types of plant, the values of dif-
ferent timing attributes can be as large as twice the sampling period. The evaluated
performance loss indices are plotted separately in Figure 4.14.

To facilitate the comparison of the performance between different plants, each
performance loss index has been normalized so that the minimum performance
value is 1. Figure 4.14a shows thatPlant A is only sensitive to sampling period,
and quite tolerant to relative deadline, especially when sampling period is small.
On the contrary, Figure 4.14b shows thatPlant B is much more sensitive to relative
deadline than to sampling period.
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(a) Performance loss index ofPlant A.
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(b) Performance loss index ofPlant B.

Figure 4.14: Derived performance loss indices.

4.7.2 Experimental setup

The considered task setτ consists ofn = 7 hard real-time tasks scheduled by EDF
on a uniprocessor. Among those tasks,nctrl = 3 are controller tasks, conceptually
grouped asτctrl, and the rest arennctrl = 4 regular tasks denoted asτnctrl. The
3 controller tasks inτctrl are labeled asτ1, τ2 andτ3, whereτ1 andτ2 control a
Plant A type, whereasτ3 controls aPlant B type. The derived performance loss
indices of both types of plant are saved as 2-D lookup tables,which allows the
optimization procedure to interpolate the cost value.

Let the variable ranges of task periods be the same as the ranges of sampling
periods in the evaluation of the performance loss indices inSection 4.7.1, and sim-
ilarly assume the WCET of each controller task is equal to 4ms. Then, the max-
imum and minimum utilization of each task was obtained, as shown in Table 4.1.

Table 4.1: Summary of the controller tasks

Task WCET(ms) Period(ms) Utilization(100%)
τ1 4 [4, 20] [0.2, 1]
τ2 4 [4, 20] [0.2, 1]
τ3 4 [30, 70] [0.057, 0.133]

Uctrl [0.457, 2.133]

Notice that the utilization of all controller tasksUctrl ranges from 45.7% to
213.3%, meaning that the controller tasks cannot be scheduled in EDF at their
maximum sampling rates.

To investigate situations under different system loads, the utilization of all the
controller tasksUctrl was fixed to 0.5 throughout the simulation, and the total uti-
lization of the whole task setU was varied from 0.6 to 1 with a step of 0.1. The
tasks withinτnctrl were generated using theUUNIFAST algorithm [BB04], with
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computation timeCi uniformly distributed in[1, 10] ms and utilizationUi chosen
according to a 6-dimensional uniform distribution to reachUnctrl = U−Uctrl. For
eachU , N = 100 subsets ofτnctrl were randomly generated.

4.7.3 Period and deadline selection

To select the scheduling parameters that optimize the overall control performance,
the functionF in Eq. (4.3) has been chosen as follows to form up a global perfor-
mance loss index:

J =

3
∑

i=1

wi · Ji(Ti,Di)

wherew = [w1, w2, w3] is a weight vector. For this case, all weights have been set
to 1, meaning that all plants have the same importance.

As long as the utilization of all controller tasksUctrl is decided, period selection
can be performed without consideration of any regular tasks, using the resource
constraint of

∑

τi∈τctrl
Ci

Ti
≤ Uctrl, as the first step described in Section 4.6. By

solving the optimization problem with deadlines equal to periods, the results shown
in Table 4.2 were obtained.

Table 4.2: Results of period selection

Task Period(ms) Utilization(100%)
τ1 0.0189 0.212
τ2 0.0189 0.212
τ3 0.0528 0.076

Uctrl 0.50

Once periods have been derived, deadline selection can thenbe performed in
the deadline space. The advantages of the proposed method has been evaluated
with respect to other two approaches under three different scenarios:

• Standard: Deadlines of tasks are equal to periods, therefore task deadlines
are not utilized to limit delay and jitter.

• Binary Search: The deadlines of the three controller tasks are uniformly re-
duced by binary search. This method can be found in [BBGL99] or [HB07].

• D-convex: The deadlines of the three controller tasks are selected using the
deadline convex space, as proposed in Section 4.6.

Notice that only the deadlines of the controller tasks are selected, while the
deadlines of the regular tasks are equal to their periods, i.e. ∀τi ∈ τnctrl,Di =
Ti. The results of deadline selection are reported in Figure 4.15, which shows the
average value of the ratio of the selected deadlineDi and the periodTi. Note that
a ratio larger than 1 means that deadline is extended beyond the period. The ratios

72



4.7. EXPERIMENTAL RESULTS

of τ1 andτ2 are the same due to the same performance loss index and the same
weight, and thus reported in the same figure.
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Figure 4.15: Ratio of selected deadline and periodDi

Ti
.

In both subfigures, the ratios under theStandardscenario stay at 1, whereas
the ratios underBinary Searchhave the same value due to the uniform deadline
reduction. However, as shown in Figure 4.15a, applying theD-convexmethod, the
ratio ofτ1 andτ2 becomes greater than 1, meaning that their deadlines are extended
beyond their periods, to achieve a greater reduction ofτ3’s deadline. Indeed, Fig-
ure 4.15b shows that, usingD-convexmethod,τ3’s deadlines can be reduced more
than underBinary Search.

The resulted control performance loss under the three considered cases is il-
lustrated in Figure 4.16. As shown in the figure, under theStandardscenario and
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Figure 4.16: Control performance under different strategies.

Binary Search, when system load is high, the performance loss of the whole sys-
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tem tends to infinity. This means that, in a highly loaded system, the interference
introduced on the execution ofτ3 leads to instability of the plant (Plant B). How-
ever, under scenarioD-convex, the performance loss is kept at an acceptable level,
even if the system is highly loaded. This is possible becausetheD-convexmethod
allows a more aggressive reduction ofτ3 deadline, limiting its delay and jitter to
maintain the stability.

A specific simulation was performed to compare the three methods in highly-
loaded systems. All the conditions remain the same, while the total utilization is set
to be 1. The result of performance over the simulation time isshown in Figure 4.17
which clearly demonstrates that using theStandardand Binary Searchmethods
the system went unstable after certain time, while using theD-convexapproach the
system was stable and maintained a sufficiently good performance.
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Figure 4.17: Control performance over time under differentstrategies.

The schedules of the three controller tasks obtained in thissimulation underBi-
nary SearchandD-convexare reported in Figure 4.18a and Figure 4.18b, respec-
tively. The upwards arrows denote the arrival times and the downwards arrows
indicate the deadlines. For each task, the 3 different levels of the step function
mean (from top to bottom) running, ready and idle states of the task. Notice that
the tasks are initially released with random offsets. It is shown thatτ3 experiences
much less delay and jitter after using the proposed method for deadline selection.

4.8 Conclusion

In this chapter, the problem of task parameter selection forreal-time controller
tasks has been addressed. In particular, a general framework has been proposed
to make integrated real-time control design that attempts to avoid the traditional
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Figure 4.18: Partial schedule.

repetitive design procedure and to achieve optimal performance and resource ex-
ploitation. A general method has been proposed to derive thecontrol performance
loss index in either a simulative or experimental way, with respect to various tim-
ing attributes, and arbitrary deadlines, which are allowedto be less than, equal to
or greater than the periods. Task periods and deadlines werethen selected by op-
timization upon the convex approximation of EDF deadline space, considering the
delay and jitter effects on control performance.

Extensive simulations have been performed where a comparison was made be-
tween the proposed methodology and other methods. The results have shown that
the proposed method managed to keep the performance loss at an acceptable level
even in highly loaded systems which might lead to instability using other methods.
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Chapter 5

Parallel control application on
multiprocessor platform

5.1 Introduction

Multi-core architectures represent the next generation family of processors for pro-
viding an efficient solution to the problem of increasing theprocessing speed with
a contained power dissipation. In fact, increasing the operating frequency of a
single processor would cause serious heating problems and aconsiderable power
consumption.

However, analyzing multi-core systems is not trivial, and the research commu-
nity is still working to produce new theoretical results or extend the well established
theory for uniprocessor systems developed in the last 30 years. Also, fully exploit-
ing the computational power available in a multi-core platform requires new pro-
gramming paradigms, which should allow expressing the intrinsic parallel structure
of the applications in order to optimize the allocation of parallel execution flows to
different cores.

Moreover, the complexity of modern embedded systems is growing continu-
ously, and the software is often structured in a number of concurrent applications,
each consisting of a set of tasks with various characteristics and constraints, and
sharing the same resources. In such a scenario, isolating the temporal behavior of
real-time applications is crucial to prevent a reciprocal interference among criti-
cal activities. As described in Section 2.1.5, temporal isolation can be achieved
throughResource Reservationtechnique. When moving to multiprocessor sys-
tems, however, the meaning of reservations has to be revisited, and the research
community just started to address this issue.

This chapter proposes a method for allocating a parallel real-time application,
described as a set of tasks with time and precedence constraints, on a multi-core
platform. To achieve modularity and simplify portability of applications on dif-
ferent multi-core platforms, we abstract the virtual platform by the Multi Supply
Function (MSF) [BBB09]. The advantage of using the virtual platformMSF is
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that, if the hardware platform is replaced with another one with a different num-
ber of cores, the set of reservations does not need to be changed, and only the
server mapping to physical processors has to be done. Also, to be independent of
a particular reservation algorithm, a virtual processor reservation is expressed by a
bounded-delay time partition, denoted by the pair(α,∆), whereα is the allocated
bandwidth and∆ is the maximum service delay. This method, originally proposed
by Mok et al. [MFC01], is general enough to express several types of resource
reservation servers.

To better exploit the existing parallelism available in thecomputing platform,
the application precedence graph is partitioned into a set of flows, each consisting
of a subset of tasks to be sequentially executed on a virtual processor. For each flow,
we determine its computational requirements and compute the minimum server
bandwidth needed for executing it. Since the bandwidth requirements depend on
the specific partition, the proposed method can be used to identify the partition that
minimizes a given cost function (e.g., the overall bandwidth consumption or the
maximum degree of parallelism).

A simple control application involving a ball-and-plate plant is used to exem-
plify the utilization of the proposed methodology in real-time control design. By
exploiting the software parallelism of the controller and execute it on multipro-
cessor platform, smaller sampling period and control loop latency are possible to
achieve than on a uniprocessor, hence leading to better control performance.

5.2 Related Work

The most natural abstraction of a multi-core platform is probably the uniform mul-
tiprocessor model proposed by Funk, Goossens and Baruah [FGB01], where a col-
lection of sequential machines is abstracted by their speeds. In this paper, the
authors also showed that a set of tasks scheduled by globalEDF (with migrations)
and requiring an overall bandwidth of120% has higher chances to be successfully
scheduled upon two virtual processors with bandwidth100% and20%, rather than
on other two with the same bandwidth of60%. However, when no task migra-
tion is allowed, packing the bandwidth into full reservations is not always the best
approach. In fact, consider a periodic applicationΓ consisting of 5 tasks with com-
putation times 1, 1, 5, 6, 6 and period equal to 10 (deadline = period). In this case,
the bandwidth required by the application isUΓ = 190%, and a feasible sched-
ule can be found using 3 reservations, equal to80%, 60% and50%. However, no
feasible solution exists if the bandwidth is provided by tworeservations equal to
100% and90%.

Otero et al. [OPRS+06] applied the resource reservation paradigm to inter-
related resources (processor cycles, cache space, and memory access cycles) to
achieve robust, flexible and cost-effective consumer products.

Shin et al. [SEL08] proposed a multiprocessor periodic resource model to de-
scribe the computational power supplied by a parallel machine. In their work,
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a resource is modeled using three parameters(P,Q,m), meaning that an overall
budgetQ is provided by at mostm processors every periodP .

Leontyev and Anderson [LA08] proposed a multiprocessor scheduling scheme
for supporting hierarchical reservations (containers) that encapsulate hard and soft
sporadic real-time tasks.

Very recently, Bini et al. [BBB09] proposed to abstract a setof m virtual pro-
cessors by the set of them supply functions [FM02, LB03, SL03] of each virtual
processors. In this paper we borrow such an abstraction of a virtual multi-core
platform.

In all these works, however, the application is modeled as a collection of spo-
radic tasks, and no precedence relations are taken into account.

A more accurate task model (generalized multiframe task) considering condi-
tional execution flows, expressed by a Directed Acyclic Graph (DAG), has been
proposed by Baruah et al. [BCGM99]. However, multiple branches outgoing from
a node denote alternative execution flows rather than parallel computations.

The problem of managing real-time tasks with precedence relations was ad-
dressed by Chetto et al. [CSB90], who proposed a general methodology for as-
signing proper activation times and deadlines to each task in order to convert a
precedence graph into timing constraints, with the objective of guaranteeing the
schedulability underEDF. Their algorithm, however, is only valid for uniprocessor
systems and does not consider the possibility of having parallel computations.

Partitioning and scheduling tasks with precedence constraints onto a multipro-
cessor system has been shown to be NP-Complete in general [Sar89], and vari-
ous heuristic algorithms have been proposed in the literature to reduce the com-
plexity [ACD74, ERL90, kKAA96], but their objective is to minimize the total
completion time of the task set, rather than guaranteeing timing constraints un-
der temporal isolation. One category of such algorithms, called List scheduling
[ERL90, ACD74], is based on proper priority assignments to meet the application
constraints. Another technique, called Critical Path Heuristics [Sar89, kKAA96],
was developed to deal with non-negligible communication delays between tasks.
The idea is to assigns weights to nodes to reflect their resource usage and to edges
to reflect the cost of inter-processor communication, and then shorten the length of
the Critical Path of a DAG by reducing the communication between tasks within a
cluster.

Collette et al. [CCG08] proposed a model to express the parallelism of a code
by characterizing all possible durations a computation would take on different num-
ber of processors. Schedulability is checked under globalEDF, but no precedence
relations are considered in the analysis.

Lee and Messerschmitt [LM87] developed a method to statically schedule syn-
chronous data flow programs, on single or multiple processors. Precedence rela-
tions are considered in the model, but no deadline constraints are taken into account
and temporal protection is not addressed.

Jayachandran and Abdelzaher [JA08] presented an elegant and effective alge-
bra for composing the delay of applications modeled by DAGs and scheduled on
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distributed systems. However, they did not provide temporal isolation among ap-
plications.

Fisher and Baruah [FB09] derived near-optimal sufficient tests for determining
whether a given collection of jobs with precedence constraints can feasibly meet all
deadlines upon a specified multiprocessor platform under global EDF scheduling,
so partitioning issues and resource reservations are not addressed.

5.3 System model and background

A real-time application is modelled as a set of tasks with given precedence con-
straints, specified as a Directed Acyclic Graph (DAG). An application is consid-
ered to be sporadic, meaning that it can be cyclically activated with a minimum
interarrival periodT and must be completed within a relative deadlineD, which
can be less than or equal to the period. Each task consists of asequential portion
of code with known worst-case execution time (WCET)Ci.

Note that the DAG represents a description of the application considering the
maximum level of parallelism. This means that each task represents a sequential
activity to be executed on a single core. Tasks can be preempted at any time and
do not call blocking primitives during their execution. Figure 5.1 illustrates an
example of DAG for an application consisting of five tasks, with execution times:

C1 = 4, C2 = 1, C3 = 5, C4 = 2, C5 = 3.

The entire application starts at timet = 0 and is periodically activated with a period
T = 20. We consider a relative deadlineD equal to the period.

τ1 τ2 τ3

τ4 τ5

Figure 5.1: A sample application represented with a DAG.

To better illustrate the parallel execution of an application and identify the max-
imum number of required processors, we adopt a different description that visual-
izes the computation times of each task in the timeline, as ina Gantt chart. In
such a diagram, denoted as thetimeline representation, each task starts as soon as
possible on the first available core, assuming as many cores as needed. For the
application shown in Figure 5.1, the timeline representation is illustrated in Figure
5.2, where synchronization points coming from the precedence graph are repre-
sented by arrows.

An advantage of the timeline representation is that it clearly visualizes the in-
trinsic parallelism of the application, showing in each time slot the maximum num-
ber of cores needed to perform the required computation. This means that adding
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Figure 5.2: Timeline representation.

other cores will not reduce the overall response time, because the DAG already
expresses the maximum level of parallelism.

5.3.1 Terminology and notation

First, to shorten the expressions, we may denotemax{0, x} as(x)0. Moreover,
throughout the paper we adopt the following terminology andnotation.

• Application Γ. It is a set ofn tasks with given precedence relations ex-
pressed by a Directed Acyclic Graph (DAG). The application is sporadic,
meaning that it is cyclically activated with a minimum interarrival timeT
and must complete within a given relative deadlineD, which can be less
than or equal toT . This allows asserting that only one instance of the appli-
cation is running at any time.

• Task τi. It is a portion of code that cannot be parallelized and must be
executed sequentially.τi can be preempted at any time and is characterized
by a known worst-case execution timeCi > 0. τi is also assigned a deadline
di and an activation timeai relative to the activation of the first task of the
application. The assignment of deadlines and activation times is investigated
in Section 5.4.1. Tasks are scheduled byEDF.

• Precedence relationR. It is formally defined as a partial orderingR ⊆
Γ × Γ. Notationτi ≺ τj denotes thatτi is a predecessorof τj, meaning
thatτj cannot start executing before the completion ofτi. Notationτi → τj
denotes thatτi is animmediate predecessorof τj, meaning thatτi ≺ τj and

τi ≺ τk ≺ τj ⇒ (τk = τi or τk = τj).

• Path P . It is any subset of tasksP ⊆ Γ that is totally ordered according to
R; i.e.,∀τi, τj ∈ P eitherτi ≺ τj or τj ≺ τi.
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• Execution time function C(·). It is a functionC : P(Γ) → R that, applied
to any subsetA of Γ, returns the total execution time of the tasks inA:

∀A ⊆ Γ C(A)
def
=

∑

τi∈A

Ci.

• Sequential Execution TimeCs. It is the minimum time needed to complete
the application on a uniprocessor, by serializing all tasksin the DAG. It is
equal to the sum of all tasks computation times:

Cs def
= C(Γ).

For the application illustrated in Figure 5.2, we haveCs = 15.

• Parallel Execution Time Cp. It is the minimum time needed to complete
the application on a parallel architecture with an infinite number of cores. It
is equal to

Cp def
= max

P is a path
C(P ). (5.1)

Notice that the application relative deadline cannot be less thanCp, other-
wise it is missed even on an infinite number of cores. For the application
illustrated in Figure 5.2, we haveCp = 10.

• Critical path (CP). It is a path P havingC(P ) = Cp.

• Virtual processor VPk. It is an abstraction of a sequential machine achieved
through a resource reservation mechanism characterized bya bandwidth
αk ≤ 1 and a maximum service delay∆k ≥ 0.

• Flow Fk. It is a subset of tasksFk ⊆ Γ allocated on virtual processorVPk,
which is dedicated to the execution of tasks inFk only. An applicationΓ is
partitioned intom flows.

• Flow computation time CF
k . It is the cumulative computation time of the

tasks in flowFk:

CF
k

def
= C(Fk).

Dividing an application into parallel flows allows several options, from the ex-
treme case of defining a single flow for the entire application(where no parallelism
is exploited/necessary and all tasks are sequentially executed on a single core) to
the case of having a flow per task (maximum parallelism). The way in which
flows are defined may affect the total bandwidth required to execute the applica-
tion. Hence, we now address the problem of finding the best partition of flows that
minimizes the total bandwidth requirements.

Intuitively, grouping tasks into large flows improves schedulability, as long as
each flow has a bandwidth less than or equal to one. To better explain each step of

82



5.3. SYSTEM MODEL AND BACKGROUND
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Figure 5.3: Parallel flows in which the application can be divided.

A5

A1 A2 A3

A4
F1

F2

Figure 5.4: An alternate parallel flow selection.

the process, we consider a reference application consisting of five tasks, previously
illustrated in Figure 5.1. For this example, we divide the application in two flows,
as illustrated in Figure 5.3. Notice that there can be several ways for selecting flows
in the same application. An alternative solution is shown inFigure 5.4.

5.3.2 Demand Bound Function

SinceEDF is used as a scheduler, here we recall the concept of demand bound
function that is used to estimate the amount of required computational resource.
The processor demand of a taskτi that has activation timeai, computation time
Ci, periodTi, and relative deadlinedi, in any interval[t1, t2] is defined to be the
amount of processing timegi(t1, t2) requested by those instances ofτi activated in
[t1, t2] that must be completed in[t1, t2]. That is [BHR90],

gi(t1, t2)
def
=

(⌊

t2 − ai − di
Ti

⌋

−
⌈

t1 − ai
Ti

⌉

+ 1

)

0

Ci.

The overall demand bound function of a subset of tasksA ⊆ Γ is

h(A, t1, t2)
def
=

∑

τi∈A

gi(t1, t2)

where we made it depend on the beginning and the length of the interval.
As suggested by Rahni et al. [RGR08], we can use a more compactformulation

of the demand bound function that depends only on the lengtht of the time interval
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[t1, t1 + t]:

dbf(A, t)
def
= max

t1
h(A, t1, t1 + t). (5.2)

5.3.3 The (α, ∆) server

Mok et al. [MFC01] introduced the “bounded delay partition”to describe a reser-
vation by two parameters only: a bandwidthα and a delay∆. The bandwidthα
measures the amount of resource that is assigned to the demanding application,
whereas∆ represents the worst-case service delay.

Before introducing theα and∆ parameters, it is necessary to recall the concept
of supply function [LB03, SL03], that represents the minimum amount of time that
a generic virtual processor can provide in a given interval of time.

Definition 2 (Def. 9 in [MFC01], Th. 1 in [LB03], Eq. (6) in [EAL07]). Given a virtual
processorVPk, its supply functionZk(t) is the minimum amount of time provided
by the reservation in every time interval of lengtht ≥ 0.

The supply function can be defined for many kinds of reservations, as static
time partitions [MFC01, FM02], periodic servers [LB03, SL03], or periodic servers
with arbitrary deadline [EAL07]. For example, for the simple case of a periodic
reservation that allocatesQ units of time every periodP , we have [LB03, SL03]:

Z(t) = max{0, t − P +Q− (k + 1)(P −Q), kQ} (5.3)

with k =
⌊

t−P+Q
P

⌋

.

Given the supply function, the bandwidthα and the delay∆ can be formally
defined as follows.

Definition 3 (compare Def. 5 in [MFC01]). GivenVPk with supply functionZk,
thebandwidthαk of the virtual processor is defined as

αk
def
= lim

t→∞

Zk(t)

t
. (5.4)

The∆ parameter provides a measure of the responsiveness, as proposed by
Mok et al. [MFC01].

Definition 4 (compare Def. 14 in [MFC01]). GivenVPk with supply functionZk

and bandwidthαk, thedelay∆k of the virtual processor is defined as

∆k
def
= sup

t≥0

{

t− Zk(t)

αk

}

. (5.5)
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Informally speaking, given a VPν with bandwidthαν , the delay∆ν is the
minimum horizontal displacement such that the lineαν(t −∆ν) is a lower bound
of Zν(t).

Once the bandwidth and the delay are computed, the supply function ofVPk

can be lower bounded as follows:

Zk(t) ≥ αk(t−∆k)0. (5.6)

If the (α,∆) server is implemented through a periodic server [LB03, SL03]
that allocates a budgetQk every periodPk, we have a bandwidthαk = Qk/Pk

and a delay∆k = 2(Pk − Qk). In practice, however, a portion of the processor
bandwidth is wasted to perform context switches every time aserver is executed. If
σ is the runtime overhead required for a context switch, andPk is the server period,
the effective server bandwidth can be computed as:

Bk = αk +
σ

Pk
.

ExpressingPk as a function ofαk and∆k we have

Pk =
∆k

2(1 − αk)
.

Hence,

Bk = αk + 2σ
1− αk

∆k
. (5.7)

From previous results [SL03], we can state that a subsetA is schedulable on
the virtual processor characterized by bandwidthα and delay∆, if and only if:

∀t ≥ 0 dbf(A, t) ≤ α(t−∆)0. (5.8)

5.4 Partitioning an application into flows

This section describes the method proposed in this paper to determine the optimal
partition of an application into flows. A sample partition isdepicted in Figure 5.5.

The possible partitions into flows are explored through a branch and bound
search algorithm, whose details are given later in Section 5.4.3.

For a given partition (i.e., selection of flows), we first transform precedence re-
lations into timing constraints by assigning suitable deadlines and activation times
to each task, as illustrated in Section 5.4.1.

Once deadlines and activations are assigned, the overall computational require-
ment of each flowFk is evaluated through its demand bound function and the pa-
rameters of the corresponding virtual processorVPk are computed, as explained in
Section 5.4.2.

Then, if the objective is to minimize the total bandwidth, the overall bandwidth
required by the entire partition is computed by summing the bandwidths computed
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dbf(F1, t) dbf(F2, t) dbf(F3, t)

VP1 VP2 VP3

F1

F2

F3

τ1

τ2
τ3

τ4

τ5

τ6

τ7

τ8
τ9

Figure 5.5: A sample partition into three flows.

for each flow using Equation (5.7) and, finally, the partitionwith the minimum
bandwidth is determined as a result of the branch and bound search algorithm.
A different metrics is also presented in Section 5.4.3 to minimize the maximum
degree of parallelism.

5.4.1 Assigning deadlines and activations

Given a partition{F1, . . . , Fm} of the application intom flows, activation times
ai and the deadlinesdi are assigned to all tasks to meet precedence relations and
timing constraints. The assignment is performed accordingto a method originally
proposed by Chetto-Silly-Bouchentouf [CSB90], adapted towork on multi-core
systems and slightly modified to reduce the bandwidth requirements. The algo-
rithm starts by assigning the application deadlineD to all tasks without successors.
Then, the algorithm proceeds by assigning the deadlines to ataskτi for which all
successors have been considered. The deadline assigned to such a task is

di = min
j:τi→τj

(dj −Cj) (5.9)

The pseudo-code of the deadline assignment algorithm is illustrated in Figure 5.6.
For the application shown in Figure 5.1, considering that the overall deadline

isD = T = 20, by applying the transformation algorithm, we get:

d3 = 20

d5 = 20

d2 = min(d3 − C3, d5 − C5) = min(15, 17) = 15

d4 = d5 − C5 = 17

d1 = min(d2 − C2, d4 − C4) = min(14, 15) = 14.
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ASSIGN DEADLINES(τ)

1 for all (nodes without successors) setDi = D;
2 while (there exist nodes not set){
3 select a taskτk with all successors modified;
4 setdk = min

j:τk→τj
(dj − Cj);

5 }

Figure 5.6: The deadline assignment algorithm.

Activation times are set in a similar fashion, but we slightly modified the
Chetto-Silly-Bouchentouf’s algorithm to take into account that different flows can
potentially execute in parallel on different cores. Clearly, τi cannot be activated
before all its predecessors have finished.

Let τj be a predecessor ofτi and letFk be the flowτi belongs to. Ifτj ∈ Fk,
then the precedence constraint is already enforced by the deadline assignment given
in Eq. (5.9). Hence, it is sufficient to make sure thatτi is not activated earlier than
τj. In general, we must ensure that

ai ≥ max
τj→τi,τj∈Fk

{aj} def
= apreci . (5.10)

On the other hand, ifτj /∈ Fk, we cannot assume thatτj will be allocated on
the same physical core asτi, thus we do not know its precise finishing time. Hence,
τi cannot be activated beforeτj deadline, that is

ai ≥ max
τj→τi,τj /∈Fk

{dj} def
= dpreci . (5.11)

In general,ai must satisfy both (5.11) and (5.10). Moreoverai should be as
early as possible so that the resulting demand bound function is minimized [BHR90].
Hence, we set

ai = max {apreci , dpreci } . (5.12)

The algorithm starts by assigning activation times to root nodes, i.e., tasks with-
out predecessors. For such tasks, the activation time is setequal to the application
activation time that we can assume to be zero, without loss ofgenerality. Then, the
algorithm proceeds by assigning activation times to a task for which all predeces-
sors have been considered. Figure 5.7 illustrates the pseudo-code of the algorithm.

Indeed, the transformation algorithm proposed by Chetto, Silly, and Bouchen-
touf was designed to guarantee the precedence constraints,regardless of the pro-
cessor demand. In fact it assigns deadlines as late as possible. However activations
may coincide with some deadline as well. If an activation is too close to the cor-
responding deadline, then the demand bound function can become very large. To
address this issue, in this work we propose an alternative deadline assignment that
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ASSIGN ACTIVATION TIMES(τ)

1 for all (nodes without predecessors) setai = 0;
2 while (there exist nodes not set){
3 select a taskτk with all predecessors modified;
4 setai = max {apreci , dpreci }
5 }

Figure 5.7: The activation assignment algorithm.

reduces the processor demand of the flow by distributing tasks deadlines more uni-
formly along the time line. IfCp is the computation time of a critical path andUp

is defined as

Up =
Cp

D

we propose to assign task deadlines as follows:

di = min
j:τi→τj

(dj − Cj/U
p) (5.13)

instead of according to Eq. (5.9).
The following lemma shows that such a deadline assignment issound, in the

sense that all relative deadlines are greater than the cumulative computation times
of the preceding tasks in a path.

Lemma 1. If each taskτi of a pathP is assigned a relative deadline

di = min
j:τi→τj

(dj − Cj/U
p)

whereUp = Cp/D, then it is guaranteed that all the tasks inP have relative
deadlines greater than the cumulative execution time of thepreceding tasks, that is

di ≥
∑

τk∈P,τk≺τi

Ck.

Proof. Given any nodeτi, let τi+1, τi+2, . . . , τL be the sequence of successors of
τi such thatτL is a leaf node (hencedL = D) and

∀j = i, . . . , L− 1 dj = dj+1 − Cj+1/U
p.

Then we have:

di = di+1 −
Ci+1

Up
= D −

∑L
j=i+1Cj

Up
.

If P is a path includingτi, τi+1, . . . , τL, we can write:

di = D −
C(P )−∑i

j=1Cj

Up
= D − C(P )

Up
+

∑i
j=1Cj

Up
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and sinceUp = Cp/D we have

di = D − C(P )

Cp
D +

∑i
j=1Cj

Up
.

SinceC(P ) ≤ Cp for anyP , andCp ≤ D, we have:

di ≥
∑i

j=1Cj

Up
≥

i
∑

j=1

Cj.

Thus, the lemma follows.

For the application shown in Figure 5.1, we have that:

a1 = 0

D = T = 20

Cp = 10

Cs = 15

Up =
Cp

D
= 0.5

Hence, the proposed transformation algorithm (Eq. (5.13))produces the following
deadline assignment:

d3 = 20

d5 = 20

d2 = min(20− 5/0.5, 20 − 3/0.5) = min(10, 14) = 10

d4 = 20− 3/0.5 = 14

d1 = min(10− 1/0.5, 14 − 2/0.5) = min(8, 10) = 8.

If, for example, we select the flowsF1 = {τ1, τ2, τ3} andF2 = {τ4, τ5}, the
activation times result to be:

a1 = 0

a2 = 0

a3 = 0

a4 = d1 = 8

a5 = max(a4, d2) = max(8, 10) = 10

The demand bound functions of the two flows are reported in Figure 5.8 and
Figure 5.9, respectively.
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Figure 5.8: Demand bound function of flowF1.

5.4.2 Bandwidth requirements for a flow

Once activation times and deadlines have been set for all tasks, each flow can
be independently executed on different virtual processorsunderEDF, in isolation,
ensuring that precedence constraints are met.

To determine the reservation parameters that guarantee thefeasibility of the
schedule, we need to characterize the computational requirement of each flow. By
using the demand bound function defined in Equation (5.2) we have that a flowF
is schedulable on the virtual processorVP characterized by bandwidthα and delay
∆ if and only if:

∀t ≥ 0 dbf(F, t) ≤ α(t−∆)0. (5.14)

Now the problem is to select the(α,∆) parameters among all possible pairs
that satisfy Eq. (5.14). We propose to select the pair that minimizes the bandwidth
B used by the virtual processor, as given by Eq. (5.7), which accounts for the cost
of the server overhead. Hence, the best(α,∆) pair is the solution of the following
minimization problem:

minimize α+ ε
1− α

∆
subject to dbf(F, t) ≤ α(t−∆)0, ∀t ≥ 0

(5.15)

with ε = 2σ.

This problem have a very efficient solution that exploits theconvexity of the
domain and the quasiconvexity of the cost function (see Appendix A for the proof).
More details of how to obtain the optimal(α,∆) pair for a flow can be found
in [BBW09].
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Figure 5.9: Demand bound function of flowF2.

5.4.3 The branch and bound algorithm

This section illustrates the algorithm used for selecting the best partition of the
application into flows. Two different objectives have been considered in the opti-
mization procedure.

As a first optimization goal, we considered minimizing the overall bandwidth
requirement of the selected flows, that is

B =
m
∑

k=1

Bk =
m
∑

k=1

(

αk + 2σ
1 − αk

∆k

)

. (5.16)

Clearly, the numberm of flows has to be determined as well.
As a second optimization goal, we considered minimizing themaximum degree

of parallelism, defined as

β = max
k=1,...,m

∑m
i=k Bi

Bk
. (5.17)

The selection of this metric is inspired by the globalEDF test on uniform multi-
processors [FGB01]. In fact, in uniform multiprocessor scheduling, ifB1 ≥ B2 ≥
. . . ≥ Bm are the speeds of the processors, a platform with a low value of β has

91



CHAPTER 5. PARALLEL CONTROL APPLICATION ON MULTIPROCESSOR PLATFORM

higher chance to schedule tasks due to the lower degree of fragmentation of the
overall computing capacity1.

To show the benefit of adopting the cost of Equation (5.17), let us consider a
virtual platform withm identical processors, each providingBk = B/m. While
the cost according to Eq. (5.16) isB, hence independent of the number of virtual
processors, the cost according to Eq. (5.17) ism. It follows that the minimization
of β leads to the reduction of number of flows in which the application is parti-
tioned. Nonetheless, the minimization ofβ also implicitly implies the selection of
a partitioning with low overall bandwidth requirementB. In fact we have that

B =
m
∑

i=1

Bi ≤
∑m

i=1Bi

B1
≤ max

k=1,...,m

∑m
i=k Bi

Bk
= β.

Henceβ is also an upper bound of the overall bandwidthB, and a minimization of
β leads indirectly to the selection of a low value ofB as well. Later in Figure 5.14
we will show that in our experiments the difference betweenβ andB is very small.

The search for the optimal flow partition is approached by using a branch and
bound algorithm, which explores the possible partitions bygenerating a search tree
as illustrated in Figure 5.10.

......... ......... ...........................

1 3 22 31 2 31

21

1

1 2

2 312 31

Figure 5.10: The search tree.

At the root level (level1), taskτ1 is associated with flowF1. At level 2, τ2
is assigned either to the same flowF1 (left branch) or to a newly created flowF2

(right branch). In general, at each leveli, taskτi is assigned either to one of the
existing flows, or to a new created flow. Hence, the depth of thetree is equal to
the numbern of tasks composing the application, whereas the number of leaves of
the tree is equal to the number of all the possible partitionsof a set ofn members,
given by the Bell Numberbn [Rot64], recursively computed by

bn+1 =

n
∑

k=0

(

n

k

)

bk =

n
∑

k=0

n!

k! (n − k)!
bk. (5.18)

To reduce the average complexity of the search, we use some pruning condi-
tions to cut unfeasible and redundant branches for improving the runtime behavior
of the algorithm.

1Notice that in [FGB01] the authors useλ = β − 1 to express the parallelism of the platform.
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We first observe that if, at some node, there is a flowFk with bandwidth greater
than one

Bk ≥
∑

τi∈Fk

Ci

T
> 1 (5.19)

then the schedule of the tasks in that flow is unfeasible, since
∑

τi∈Fk

Ci > T ≥ D. (5.20)

Hence, whenever a node has a flow with bandwidth greater than one, we can prune
the whole subtree, since no feasible partitioning can be found in the subtree. More-
over, the pruning efficiency can be further improved by allocating tasks by de-
creasing computation times, because this order allows pruning a subtree satisfying
Eq. (5.19) at the highest possible level.

The following lemma provides a lower bound on the number of flows in any
feasible partition:

Lemma 2. In any feasible partitioning, the number of flows satisfies

m ≥
⌈

Cs

D

⌉

. (5.21)

Proof. In any feasible partitioning{F1, . . . , Fm}, we have

C(Fk)

D
≤ 1. (5.22)

Adding equations (5.22) for all the flows, we have
∑

k C(Fk)

D
=

Cs

D
≤ m

And sincem is integer,

m ≥
⌈

Cs

D

⌉

.

Nonetheless, much of the complexity of the algorithm lies inthe horizontal
expansion of the tree: in fact, the search tree keeps adding possible new flows (at
the rightmost branch) even when the number of flows is higher than the parallelism
that can be possibly exploited by the application. Hence, weprune a subtree when
the number of flows exceeds a given boundmmax. A tight value ofmmax is not
easy to find, hence we adopted the following heuristic value:

mmax =

⌈

δ
Cs

D

⌉

(5.23)

whereδ ≥ 1 is a parameter for tuning the size of the search tree. A value of δ close
to one allows a significant improvement in terms of executiontime, but at the price
of losing optimality. Larger values ofδ permit reaching optimality with reasonable
execution times. As illustrated in the next section, our simulation results show that
the optimal solution is often achieved withδ ≤ 2.
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5.5 Experimental results

To illustrate the effectiveness of the proposed search algorithm, in this section we
present a number of experiments aimed at comparing the effectiveness of the pro-
duced solution (in terms of number of flows and required bandwidth), the efficacy
of the pruning rules (in terms of reducing the number of steps) , and the advantage
of the use in control applications.

5.5.1 Effectiveness evaluation

In a first experiment, we considered the application shown inFigure 5.5, consisting
of n = 9 tasks with computation timesC1 = 2, C2 = 3, C3 = 5, C4 = 3, C5 = 4,
C6 = 3, C7 = 6, C8 = 5, andC9 = 6. From the DAG of the application, it results
that the sequential execution time isCs = 37 and the parallel execution time is
Cp = 12, corresponding to the critical pathP = {τ6, τ8, τ5}. Notice that the ratio
π = Cs/Cp provides an indication of the maximum level of parallelism of the
application. In this example, we haveπ ' 3.08. Clearly, when the application
deadlineD is less thanCp, the schedule is infeasible on any number of cores,
whereas whenD = Cp = 12, the number of cores cannot be less than 4 (see
Lemma 2).

Figure 5.11 reports the number of flows of the optimal partition found by the
algorithm as a function of the application deadlineD (ranging fromCp to Cs),
using the first optimization goal expressed by Eq. (5.16). The dashed line repre-
sents the theoretical bound given by Equation (5.21). Notice that the number of
flows is equal to 4 whenD = Cp (meaning that the application needs 4VP’s to
meet its deadline) and drops to 1 forD ≥ Cs, meaning that the application can be
completely hosted by 1VP.

The corresponding bandwidthB acquired by the optimal partition (including
the context switch overheadσ) is shown in Figure 5.12, for different value ofσ.
The figure also reports the minimum theoretical boundCs/D (without overhead)
and the worst-case bandwidth obtained by selecting one flow per task. Notice
that the solution found by the algorithm is always very closeto the ideal one and
significantly better than the worst-case curve.

Considering the second optimization goal, expressed with the cost function
reported by Eq. (5.17), Figure 5.13 reports the optimalβ achieved by the search
algorithm, as a function of the application deadline, for different values ofσ.

The difference between the bandwidth achieved by the secondand the first
optimization goal is reported in Figure 5.14. Notice that, such a difference is never
less than 0, since the first optimization goal aims at minimizing the total bandwidth.
However, the bandwidth loss resulted from the second methodwas never larger
than 0.12.

To test the runtime behavior of the search algorithm and the efficiency of the
pruning rule, we ran another experiment with a fully parallel application (i.e., no
precedence relations) with random computation times, generated with uniform dis-
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Figure 5.11: Number of flows as a function of the application deadline.
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Figure 5.12: Total bandwidth as a function of the application deadline.

tribution in [1,10]. The application deadline was set betweenCp andCs, with a
valueD = (Cp+Cs)/2. The runtime behavior of the algorithm was monitored by
counting the number of steps for reaching a solution, as a function of the number
of tasks, for different values of the pruning parameterδ. The results of this exper-
iment are shown in Figure 5.15, which clearly shows that a considerable amount
of steps are saved when small values ofδ are used. It is worth mentioning that
using a small value ofδ results in negligible bandwidth loss. Intuitively, this can
be justified by considering that a high number of flows often requires a high total
B.
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Figure 5.13:β as a function of the application deadline.
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Figure 5.14: Bandwidth loss resulted from minimizingβ.

5.5.2 A Control Example

The considered controlled plant is a ball-and-beam system,where the plate is tilted
around two axes (X-axis and Y-axis) that are mutually perpendicular. On each
axis, the rotation of the plate around that axis is actuated by a servo motor. There-
fore, it can be viewed as a ball-and-beam system on each axis,which gives the
possible parallelism of the controller. Moreover, according to works on task split-
ting [Cer99], controller can be in general split into two parts: Calculate Output
andUpdate State. TheCalculate Outputpart takes charge of producing the control
signal, while theUpdate Statepart updates the states of the controller and makes
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Figure 5.15: Runtime of the algorithm as a function ofn.

any other operation. Hence, further parallelism can be exploited.
The state-space model of each ball-and-beam plant is given by

dx

dt
=

[

0 1
0 0

]

x+

[

0
K

]

u+

[

0
1

]

v

y =
[

1 0
]

x+ 0.1e

whereK = 20 is the factor due to physical modeling,v ande are Gaussian white-
noise process with zero mean and unit variance. One LQG controller is designed
for each ball-and-beam system, according to the associatedcost function:

J = E lim
tp→∞

1

tp

∫ tp

0

(

xT
[

10 0
0 0

]

x+ u2
)

dt (5.24)

The control applicationΓbap
2 is described with the precedence graph in Fig-

ure 5.16. The tasksCal-XandCal-Ydenote theCalculate Partof the algorithm for
each ball-and-beam control, while tasksUp-X andUp-Y denote theUpdate State
part to update the controller states. It is assumed that the application has other
2 objects: data logging and LCD monitoring, whose software code can both be
parallelized, resulting in tasksLog1-4andLCD1-4, respectively. The indices and
WCETs of all the tasks are shown in Table 5.1. The sequential execution timeCs

is 36ms, and the parallel execution timeCp is 16ms.
Assume there is another taskτ13 running on the same platform, with a predicted

WCET 2ms and period8ms, giving the required bandwidth ofU13 = 0.25. To
show the benefits of using resource reservation,τ13 may misbehave in its execution
time aftert = 25sec during the simulation, giving a possible execution time in

2Abbreviationbap is short forball and plate.
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Figure 5.16: The precedence graph of the ball-and-plate control application.

Table 5.1: The tasks in the ball-and-plate application.

Task Label WCET(ms) Task Label WCET(ms)
τ1 Cal-X 2 τ2 Up-X 3
τ3 Cal-X 2 τ4 Up-X 3
τ5 Log1 3 τ6 Log2 2
τ7 Log3 4 τ8 Log4 4
τ9 LCD1 4 τ10 LCD2 3
τ11 LCD3 5 τ12 LCD4 1

[2, 4]ms. This disturbance in the real-time scheduling system will cause the off-
line guarantee of the resource given toΓbap become insufficient to fulfill its timing
constraints, if resource reservation mechanism is not utilized.

Three experiments are performed, whose different scenarios are described as
below:

• Uniprocessor On uniprocessor platform,Γbap has to be executed sequen-
tially, in the topological order of the nodes in the precedence graph. To
output the control signals as soon as they are ready, the order shown in Fig-
ure 5.17 is assumed. TaskCal-X and Cal-Y are firstly executed, and the
calculated control signal for each axis is output when the corresponding task
is finished. ThenUp-XandUp-Yare executed, and taskLCD1-4andLog1-4
will later run in topological order in accordance to their precedence relations.

Cal−Y Up−X Up−X LCD1−4, Log1−4Cal−X

Figure 5.17: Sequential execution of the ball-and-plate application on uniprocessor.
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Knowing the required bandwidth forτ13 is U13 = 0.25, the available CPU
bandwidth left for the ball-and-plate application isUΓbap

= 1−U13 = 0.75,
if EDF scheduling policy is used. That means, the maximum achievable
sampling rate forΓbap is

fΓbap
=

UΓbap

Cs
=

0.75

36
= 0.02083Hz

which is equivalent to a sampling period of48ms.

• Uniprocessor + DisturbanceAll the setup is precisely the same as the first
simulation, except for thatτ13 will misbehave aftert = 25sec.

• Multiprocessor + DisturbanceThe proposed method in the chapter is used.
The deadline and period ofΓbap are chosen to be equally25ms. Assuming
the context switch overheadσ = 0.1ms, the optimal partitioning with re-
spect to minimizing the maximum parallelism is shown in Figure 5.18. The
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Up−Y

Log1
Log3
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Figure 5.18: The optimal partition ofΓbap.

results of deadline and arrival time assignment of tasks aresummarized in
Appendix B. The(α,∆) pair of FlowF1 is (0.997037, 0.136985) and the
one of FlowF2 is (0.727272, 0.375000), which leads to CBS server param-
eters(Q,P ) of (23.047, 23.116) and (0.500, 0.688), respectively. A multi-
processor platform with two symmetric CPUs is used, whereF1 is assigned
to CPU1, andF2 is assigned to CPU2.

Same disturbance fromτ13 take place, but this timeτ13 is put in a CBS
with Qs = 2ms andPs = 8ms, which is then allocated to run on CPU2.
Therefore, total utilization of CPU2 is

Ucpu2 =
0.5

0.688
+

0.002

0.008
= 0.977 < 1

which is schedulable usingEDF.
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Figure 5.19: Control performance comparison.

All three experiments run in TrueTime 2.0 with50sec, and the control perfor-
mance is evaluated using Eq. (5.24). The results is shown in Figure 5.19. It clearly
shows that due to the disturbance brought in by taskτ13, the performance signif-
icantly degrades aftert = 25sec. However, the resource reservation mechanism
used in the 3rd experiment manages to isolate the incorrect timing behavior ofτ13.
A more interesting fact reported in the figure is that the curve of the 3rd experiment
is lower than the one from the 1st experiment, which means utilizing the proposed
method to exploit the parallelism in the controller software enables the real-time
control system to have a faster sampling rate and short end-to-end latency, hence
resulting in better performance.

Notice that, in the experiment only simple state feedback controllers are used
for theCalculate OutputpartsCal-XandCal-Y. We believe that the control perfor-
mance improvement should be largely increased if more sophisticated controllers
are involved so that our proposed method can take advantage of possibly more
parallelism in the control algorithm.

5.6 Conclusion

The chapter presented a general methodology for allocatinga parallel real-time
application to a multi-core platform in a way that is independent of the number
of physical cores available in the hardware architecture. Independency is achieved
through the concept of virtual processor, which abstracts aresource reservation
mechanism by means of two parameters,α (the bandwidth) and∆ (the maximum
service delay).

An algorithm was developed to automatically partition the application into
flows, meeting the specified timing constraints and minimizing either the overall re-
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quired bandwidthB or the maximum degree of parallelismβ. The computational
requirements of each flow were derived through the processordemand criterion,
after defining intermediate activation times and deadlinesfor each task, properly
selected to satisfy precedence relations and timing constraints.

The employment of the method in control scenario was illustrated by an ex-
ample with a ball-and-plate system. The experimental results show that the mul-
tiprocessor platform allows the control application to execute with certain degree
of parallelism such that faster sampling and shorter end-to-end latency is achieved.
The control performance is improved even when disturbance exist in the schedul-
ing system, owning to the resource reservation.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, the analysis and design for real-timecontrol systems in resource-
constrained platform is discussed. After reviewing the background knowledge and
existing state-of-the-art techniques, several new methods have been presented to
enhance the current technology for real-time controller design.

Limited-preemption scheduling is investigated for its advantages in improving
task responsiveness and control performance. It has been shown in previous re-
search that using non-preemptive EDF scheduling, the input-output delays of con-
trol tasks are minimized to their WCET, thus improving the control performance.
However, the achievement of better control performance is paid by impairing the
feasibility of the task set, because of the property of the non-preemptive schedul-
ing. In other words, non-preemptive EDF forces a reduction of the total resource
utilization. Increasing the responsiveness of a control task results in smaller de-
lay and jitter, thus improving its control performance. A trade-off can be made
by using limited-preemption, where the feasibility of the task set is maintained
while the responsiveness of certain tasks can be increased.By selectively apply-
ing limited-preemption to control tasks in dynamic priority systems (EDF), their
response times, as well as input-output delay/jitter, are reduced and the correspond-
ing control performance are improved.

In resource-constrained systems, the interference generated by the concurrent
execution of multiple controller tasks leads to extra delayand jitter, which degrade
control performance and may even jeopardize the stability of the controlled system.
A general methodology has been presented which integrates control issues and
real-time schedulability analysis to improve the control performance in embedded
systems with time and resource constraints. The performance increase is achieved
by properly selecting task periods and deadlines under feasibility constraints.

A full exploitation of the computational power available ina multi-core plat-
form requires the software to be specified in terms of parallel execution flows. At
the same time, modern embedded systems often consist of moreparallel applica-
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tions with timing requirements, concurrently executing onthe same platform and
sharing common resources. To prevent reciprocal interference among critical ac-
tivities, a resource reservation mechanism is highly desired in the kernel to achieve
temporal isolation. In this dissertation, a general methodology is proposed for par-
titioning the total computing power available on a multi-core platform into a set
of virtual processors, which provide a powerful abstraction to allocate applications
independently of the physical platform. The application, described as a set of tasks
with precedence relations expressed by a directed acyclic graph, is automatically
partitioned into a set of subgraphs that are selected to minimize either the overall
bandwidth consumption or the maximum degree of parallelism. The effectiveness
of the proposed method for real-time control systems is illustrated by experiment
on a ball-and-plate control system.

6.2 Future Work

The maturity of the techniques in designing real-time control systems requires con-
tinuous attention and efforts from both control community and scheduling commu-
nity. Regarding the presented methods in this dissertation, several extensions are
possible.

• Utilization of limited preemption. In the presented method in Chapter 3,
the non-preemptive chunk is proposed to be placed at the end of each control
task, which lead to a significant decrease of input-output delay. However, it
would be interesting to investigate the placement of the NP chunk when a
control task is divided into separated parts likeCalculate OutputandUpdate
States. It can be envisioned that if theCalculate Outputpart is completely
non-preemptive, then the input-output delay is minimized,which could lead
to even better performance.

• Parameter Selection. The proposed method for period and deadline se-
lection in Chapter 4 uses a 2-step procedure, which basically can not give
the optimal solution. To reach the optimal control performance, the feasi-
ble region of both period and deadline is required. However,the finding
of such region is not trivial and has only been studied with one single task
in [BRC09].

• Multiprocessor platform. The investigation of real-time control design
problem on multiprocessor platform has just received attention recently. It
would be interesting to see what is the effect on control performance from
different scheduling policies on multiprocessor platform. For instance, would
global scheduling policies benefit the real-time control systems, or would
partitioned scheduling policies be preferable? Regardingto the proposed
method in Chapter 5, a planned work is to investigate the relation between
(α,∆) parameter and the control performance, and to involve the perfor-
mance in the searching of the optimal partitioning.
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Appendix A

Proof of the quasiconvexity of
optimization problem (5.15)

Since thedbf is a step function, it is enough to ensure that Eq. (5.14) is verified at
all the steps. IfschedP is the set of time instants where thedbf has a step, then
Eq. (5.14) can be equivalently ensured by

∀t ∈ schedP dbf(t) ≤ α(t−∆)0.

Accordingly, the minimization problem (5.15) can the be simplified to

minimize α+ ε
1− α

∆
subject to dbf(F, t) ≤ α(t−∆)0, ∀t ∈ schedP

(A.1)

Such an optimization problem be solved very efficiently, thanks to the good
properties of both the constraint and the cost function. We first prove the convexity
of the constraint.

Lemma 3. Givent, w > 0, letD(t, w) be defined as

D(t, w) = {(α,∆) ∈ R
2 : α(t−∆) ≥ w,α ≥ 0}

thenD(t, w) is convex.

Proof. We start observing that

α(t−∆) ≥ w ≥ 0 ⇒ t−∆ ≥ 0 (A.2)

becauseα ≥ 0. To prove the convexity ofD(t, w) we use the property that

{(x, y) : f(x) ≤ y} is convex⇔ d2f

dx2
≥ 0 (A.3)

In fact we have

D(t, w) =

{

w

t−∆
≤ α

}
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Now
d2

d∆2

w

t−∆
=

2w

(t−∆)3
≥ 0

because of Eq. (A.2). Hence from the property of Eq. (A.3), the Lemma follows.

Figure A.1 shows examples of the domainsD(t, w).
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Figure A.1: Examples of the regionsD(t, w).

Regarding the properties of the cost function, we first recall the following def-
inition.

Definition 5 (Section 3.4 in [BV04]). A functionf : Rn → R is calledquasicon-
vex if its domain and all its sublevel setsSB = {x ∈ domf : f(x) ≤ B}, for
B ∈ R, are convex.

Notice that convexity implies quasiconvexity, but the viceversa is not true [BV04].
We then have the following result.

Lemma 4. The functiong : [0, 1] × (0,+∞)→ R

g(α,∆) = α+ ε
1− α

∆

is quasiconvex.

Proof. We first notice that the domain ofg, that isG = [0, 1]× (0,+∞) is convex.
From the definition of quasiconvexity we have to prove that all the level sets

SB =

{

(α,∆) ∈ G : α+ ε
1− α

∆
≤ B

}

(A.4)

are convex (see Figure A.2 for graphical representation). SinceB is interpreted
as the overall bandwidth used by the reservation, we only need to prove this for
B ≤ 1. SinceB ≥ α and∆ ≥ 0, we have that:

α+ ε
1− α

∆
≤ B ⇔ ε

1− α

B − α
≤ ∆
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and from the property of Eq. (A.3),

{

(α,∆) : ε
1− α

B − α
≤ ∆

}

⇔ d2

dα2

1− α

B − α
≥ 0

sincek > 0.
We have

d

dα

1− α

B − α
=
−1(B − α) + (1− α)

(B − α)2
=

1− v

(B − α)2

d2

dα2

1− α

B − α
= 2

1−B

(B − α)3

that is greater than or equal to zero, becauseB ≤ 1 andα ≤ B. This proves the
convexity of the level setsSB and the quasiconvexity ofg as required.
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Figure A.2: Examples of the regionsSB.

Since the cost function of the problem of Eq. (A.1) is quasiconvex (from Lemma 4)
and the feasibility region is the intersection of convex regions (from Lemma 3),
then the minimization problem is a standard quasiconvex optimization problem [BV04],
which can be solved very efficiently by standard techniques.
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Appendix B

Deadline and activation
assignment forΓbap

Table B.1: TheD, a assignment for tasks inΓbap.

Task Label ai(ms) Di(ms) Task Label ai(ms) Di(ms)

τ1 Cal-X 0 3.13 τ2 Up-X 0 7.81
τ3 Cal-X 0 3.13 τ4 Up-X 0 7.81
τ5 Log1 3.13 12.50 τ6 Log2 7.81 18.75
τ7 Log3 7.81 18.75 τ8 Log4 7.81 25.00
τ9 LCD1 7.81 15.63 τ10 LCD2 15.63 23.44
τ11 LCD3 7.81 23.44 τ12 LCD4 23.44 25.00
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Erik Årzén,How does control timing affect performance? Analysis
and simulation of timing using Jitterbug and TrueTime, IEEE Con-
trol Systems Magazine23 (2003), no. 3, 16–30.

[CL06] Anton Cervin and Bo Lincoln,Jittrbug 1.21 Reference Manual,
February 2006.

[CLE+04] Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik̊Arzén, and Gior-
gio Buttazzo,The jitter margin and its application in the design
of real-time control systems, Proceedings of the 10th International
Conference on Real-Time and Embedded Computing Systems and
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[THÅ+06] Martin Törngren, Dan Henriksson, Karl-Erik̊Arzén, Anton Cervin,
and Zdenek Hanzalek,Tools supporting the co-design of control
systems and their real-time implementation; current status and fu-
ture directions, 2006 IEEE International Symposium on Computer-
Aided Control Systems Design (Munich, Germany), October 2006.

118



BIBLIOGRAPHY

[VMB08] Manel Velasco, Pau Martı́, and Enrico Bini,Control-driven tasks:
Modeling and analysis, Proceedings of the29th IEEE Real-Time
Systems Symposium (Barcelona, Spain), December 2008.

[YBB09] Gang Yao, Giorgio Buttazzo, and Marko Bertogna,Bounding the
maximum length of non-preemptive regions under fixed priority
scheduling, Proceedings of the 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA 2009) (Beijing, China), Aug 2009.

119


