
Rapid prototyping suite of IEEE 802.15.4-compliant Sensor Networks

Mangesh Chitnis1, Paolo Gai2, Giuseppe Lipari1, Paolo Pagano1, and Antonio Romano1

1Scuola Superiore Sant’Anna 2Evidence s.r.l.
Piazza Martiri della libert̀a, 33 Via Moruzzi, 1

56127 Pisa (I) 56124 Pisa (I)
{m.chitnis, lipari, p.pagano, a.romano}@sssup.it pj@evidence.eu.com

Abstract

This paper presents a toolsuite for rapid prototyping and
implementation of real-time applications on Wireless Sen-
sor Networks. The work is motivated by the need to use
WSNs in industrial control contexts, where the sampling
rate, the workload is much higher than typical current ap-
plications of WSNs, and the real-time constraints are much
tighter. We present a simulator for early evaluation of
the real-time behavior of a WSN application; and a real-
time operating system that implement appropriate real-time
scheduling policies to allow timing analysis and guarantee
timing constraints. We provide a demo based on a simple
but realistic network scenario showing that simulation is in
agreement with experimental results.

1 Introduction

Many companies have recently started to consider the
use of Wireless Sensor Networks (WSN) in industrial au-
tomation systems and process control. The most urging mo-
tivation is the need to reduce the amount of physical wires in
a industrial plant. Reducing cables can significantly reduce
the cost for building and maintaining the system. Moreover,
with less cables it is easier to dynamically reconfigure the
machines, and implement plug-and-play components. An
example of research effort in this sense is the the RI-MACS
project [5], whose goal is to increase reconfigurability and
adaptiveness of industrial automation platforms by using
WSNs in selected cases. In the context of RI-MACS, we
are investigating the possibility to use WSNs for process
control and configuration.

However, the requirements of these systems are substan-
tially different from those of other domains of WSNs. In
addition to requirements for increased robustness and fault
tolerance, each node is expected to perform a substantial

1-4244-1455-5/07/$25.00c©2007 IEEE.

amount of computation in real-time. The rate at which data
must be sampled is higher than typical WSNs application
for environmental monitoring. For example, the sampling
rate of a sensor can go up to hundreds of Hz. Also, many
tasks may need to be executed concurrently. For example,
we may have tasks for data filtering, actuation, diagnos-
tic, logging, communication, etc. In practice, the compu-
tational load on each node (in terms of amount of process-
ing time needed by the application tasks) may become rel-
evant. In addition, such applications exhibit real-time con-
straints, sometimes hard real-time ones. Many activities,
like sampling and actuation, must be triggered periodically
and executed with bounded response time, and late sensor
messages may not be considered acceptable, otherwise the
system may not work properly.

In a real-time system, it is important to guarantee system
predictability. The designer must check at system design
time that the timing constraints will be respected under all
conditions. A schedulability analysis for real-time applica-
tions must be performed to guarantee that the system will
work properly under worst-case load conditions.

Unfortunately, the use of proper real-time mechanisms
in WSNs has not been deeply investigated until now. While
few real-time Operating Systems have been proposed in the
research literature and in the commercial market, TinyOS
is by large the most popular Operating System for WSN.
Unfortunately, TinyOS does not support predictable real-
time scheduling policies. At the network level, mechanisms
for real-time communication and Quality of Service (QoS)
control (like the Collision Free Period access included in
IEEE 802.15.4 standard[3]) are not implemented. But most
importantly, what is missing is a proper comparative study
and evaluation of the impact that various communication
protocols and Operating System policies have on the real-
time behavior of the system.

Another problem concerns the lack of proper simulation
tools. Simulation plays an important role both for research
and for industrial practice. In academic research, simula-

tion is a fundamental tool to compare different algorithms
and protocols, and to assess the performance of proposed
solutions on complex realistic settings. In industrial design,
it is important to simulate the system before deployment for
early assesment of performance, for system dimensioning,
and to identify potential bottlenecks and problems.

2 The rapid prototyping suite

We propose to the community under GPL license:

• the RTNS [6] package, able to model and simulate,
not only the functional but also the temporal behavior,
both at the network level and at the CPU level;

• the Erika Enterprise [2] Operating System customized
for Wireless Sensor Network.

Together these tools play the role of a rapid protyping
suite, permitting to simulate and test in real hardware a va-
riety of protocols and distributed applications suitable for
real-time operations of WSN.

2.1 The simulator

The RTNS simulator is a combination of the popularNS-
2 package [4] for network protocol simulation, and ofRT-
Sim [7] for Real-Time OS (RTOS) simulation. Thanks to
our simulator, it is possible to model the real-time tasks run-
ning on each node, with their priority, execution time, and a
high-level pseudo-code modelling their functional behavior,
and the network protocol used for communication between
nodes. In this way, it is possible to model end-to-end activi-
ties, and measure the delay in transferring data from sensor
to destination.

TheRTNS allows to simulate the networking aspects via
NS-2 as well as the real-time Operating Systems aspects
via RTSim. In NS-2, protocols are implemented as Agents:
any class that implements a protocol has to extend the Agent
class. Instances of an agent class are the endpoints of wired
and wireless connections. They are identified by INET ad-
dress and port and are the lowest layer able to pack and
inject messages into the network. Application code is mod-
eled by the Application class. Applications use agents to
send and receive messages.

To simulate the behavior of the Operating System run-
ning on a node we construct anNS-2 Application called
RT-App abstracting all the features of a Real-Time Kernel.
The simulator creates an instance ofRT-App for each node,
and enables the connected agent (RT-Agent) to send and
receive data packets.RT-App creates aperiodic tasks for
“networking” and “computational” purposes and schedules
them adopting one of the policies implemented inRTSim,
e.g. First Come First Served (FCFS), Earliest Deadline First
(EDF), Fixed Priority (FP), etc.

The Operating System puts these tasks into the Running
status following the scheduling policy selected at the time
whenRT-App is instantiated.

Because of the adopted scheduling algorithm, the tasks
can be delayed by some time from the activation. In the case
of a priority-based scheduler like FP, the preemption of the
CPU depends on the difference in priority between the run-
ning task and the one which has been suddenly activated. In
a scheduler based on activation times, the tasks are queued
up and executed in FIFO order. In the latter case, the user
is not asked to specify a priority ad the delays are strongly
dependent on the load of the node.

RTNS can simulate single and multi-hop communica-
tions for all the network topologies defined in the IEEE
802.15.4 standard. The MAC and Physical layers of the
Network Stack are natively simulated byNS-2 andRTNS
only wraps these services into tasks handled byRT-App.

2.2 The Operating System

The OS counterpart in this prototyping suite is ERIKA
Enterprise (EE) commercialized by Evidence srl. EE con-
sists of a single and multi-processor real-time OS ker-
nel implementing a collection of APIs similar to those of
OSEK/VDX standard for automotive embedded controllers.
It implements a shared memory model for a layered archi-
tecture composed by a substrate Kernel acting on a Hard-
ware Abstraction Layer (HAL) dependent on the specific
platform. A set of software modules implements the task
management and the scheduling policy.

It is well suited to respond to the stringent pre-requisites
of Wireless Sensor Networks, because of:

• the minimal footprint in terms of RAM (about 3
KBytes), partially dependent on the hardware platform
and the adopted configuration;

• the hard real-time compliance, because it complements
FP scheduling providing support for Immediate Prior-
ity Ceiling and Preemption Thresholds on single CPU
systems;

• the supported Atmel AVR 5 architecture, very popular
in WSN contexts;

• the application layer customizable to fit diversified sce-
narios where WSN are deployed.

To implement the Network Stack substrate we adapted
the libraries provided by Atmel[1] and compliant with the
IEEE 802.15.4 standard. The Atmel set of functions, or-
ganized as a network library, have been linked to ERIKA
core.

To the best of the authors knowledge, in so far only a few Operat-
ing Systems have been ported to AVR 5 architecture; namely Nano-RK,
TinyOS and recently ERIKA.

Conditional compilation is used to customize the cases
of ordinary devices and Personal Area Network (PAN) co-
ordinator.

The network initialization is organized by means of an
aperiodic task: on the coordinator side, such a task estab-
lishes a new network, sets the communication mode (peer-
to-peer or beacon mode, single or multiple cluster, etc.), and
runs the negotiation for device association (until the devices
are registered in the PAN Information Base, PIB); on the
device side, the task activity goes through the association
negotiation stage, ending when the device is registered in
the PIB.

Following the fixed priority scheduling policy imple-
mented in EE, the concurrent execution of computational
and network tasks is dependent on the priority assigned at
configuration time to each of them. Flattening the priorities
of all the tasks, the scheduling policy reduces to FCFS (the
one adopted in the popular TinyOS operating system).

3 Proposed demo

As a simple demo wedeploy and simulate a single clus-
tered, star shaped, WSN where four nodes located at the
edges of a square generate Constant Bit Rate (15 Hz rate)
traffic towards the PAN Coordinator, sitting in the center of
mass of the figure.

The operations are run inRTNS and in a real setup.
The latter consists of 5 Atmel STK-500/501 develop-

ment boards equipped with Atmega 128 CPU platform and
AT86RF230 2.4 GHz transceiver peripheral. We program
the micro-controller through a JTag ICE mkII debugger
making use of the facilities offered by the AVR-STUDIO
IDE.

The sink, sitting in the center, is connected to a PC
through a serial line. On the PC a server is running the Data
AcQuisition (DAQ). In the initiating devices, two tasks are
managed by ERIKA in FP: the net task taking care of the
operations related to the Network Stack and the send task
(with maximum priority) assuring a coherent trigger of pe-
riodic transmissions. In the recipient device, we modeled
the activity of the PAN coordinator with two tasks managed
either using FCFS or FP: the net task and the load task mod-
eling the computational activity.

A tunable computational activity is obtained by means
of a set of periodic tasks with fixed Period (T) and different
Execution Time (ET). The ET variations are avoided ex-
cluding conditional branches from the task body. Making
use of the external interrupt sources (the buttons placed on
the STK 500 development board), it is possible to suspend
the running task and suddenly activate another one causing
some load change.

In the Atmega 128 microcontroller, the hardware inter-
rupts raisen by the arrival of data frames triggers an Inter-

rupt Service Routine (ISR) initiating the data reception at
the Physical layer of the network stack. The reception com-
pletes at the MAC layer whenever the payload is extracted
from the incoming data frames: depending on the adopted
scheduling policy and the computational load present at the
sink, the completion may be delayed by some time.

Fixing a deadline for reception completion, the demon-
stration, making use of visualization tools, shows how the
number of deadline misses increases as a function of the
load. We display the plots coming from simulation and real
hardware to demonstrate the reliability of this prototyping
suite. In Figure 1, as a matter of possible example, the ef-
fect on the delay in message reception caused by a sudden
change in ET of the load task is shown. Adopting FCFS
scheduling policy, as the ET increases, the receive task has
to wait longer to get scheduled and sometimes misses the
deadline. Switching to FP solves the problem since the de-
lay in message reception is insensitive to the change in ET.

Message ID
0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(s

)

0

0.005

0.01

0.015

0.02

0.025

Message
deadline

LOAD 0.4

LOAD 0.2

Message ID
0

0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02
0.022
0.024

Task ET change

Figure 1. Message delay in packet reception
as a function of transmission ID adopting
FCFS scheduling policy. The message recep-
tion deadline is shown as a level in the plot.

References

[1] Atmel Corporation.http://www.atmel.com.
[2] E.R.I.K.A. http://erika.sssup.it/.
[3] The IEEE 802.15.4 standard. http://standards.

ieee.org/getieee802/download/802.15.
4-2006.pdf.

[4] Information Sciences Institute (University of Southern Cali-
fornia, Los Angeles CA, USA), The Network Simulator NS-
2. http://www.isi.edu/nsnam/ns/.

[5] The RI-MACS EU project (NMP2-CT-2005-016938).
http://www.rimacs.org.

[6] The RTNS simulator.http://rtns.sssup.it.
[7] The RTSim simulator.http://rtsim.sf.net.

