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ABSTRACT
Wireless Sensor Networks are now being considered for use inin-
dustrial automation and process control. These applications present
different characteristics with respect to classical WSN application
domains. In particular, the nodes may have high computational
load due to the high sampling frequencies; moreover, they present
real-time constraints, as data must be processed and transmitted
with bounded delay.

In this paper, we presentRTNS, a simulator for distributed real-
time systems that allows to model and simulate the temporal be-
havior of network protocols, real-time Operating System and dis-
tributed applications. The tool has been developed as a plug-in
extension of the popularNS-2 simulator, hence it is possible to re-
use most of the packages already available forNS-2. The aspects
related to real-time Operating System, the overhead of interrupt
handlers and protocol management, and the set of concurrenttasks
executing on each node, are modeled using theRTSim simulator.
With respect to a previously documented version, the package now
has an extended scope and can model complex multi-hop scenarios.

After presenting the simulator structure, we show how the tool
can be used to model and simulate realistic WSN scenarios. Hereby,
three examples are presented with the aim of showing how possi-
ble failures in the nodes or a load suddenly appearing in gateways
connecting neighbor clusters for structured topologies can cause a
worsening in the end-to-end transmission delays. We show that the
adoption of a real-time Operating System in the nodes along with a
proper scheduling policy for tasks can avoid (or at least keep under
control) unpredictable effects in end-to-end delay.

1. INTRODUCTION
The development of wireless sensor networks (WSN) was orig-

inally motivated by military applications. However, WSN are now
being used in many civilian applications, including environment
and habitat monitoring, healthcare applications, agricultural man-
agement and control. Usually, these applications do not require
tight real-time constraints. The typical frequencies at which data
needs to be sampled and processed are quite low, below 1 Hz. As
a consequence, the amount of computational load in each node,
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and the amount of message transmissions, is very small. For these
applications, much of the research has been focused on reducing
the power consumptions of the systems, by putting nodes in sleep-
mode for the longest possible interval of time.

Recently, WSNs are being considered for use in different appli-
cation domains. A very promising application of WSN is for indus-
trial automation and process control [18, 1, 11]. One urgentneed
of industrial automation systems that motivates the use of WSNs
is to reduce the amount of physical wires in an industrial plant.
Reducing cables can significantly reduce the cost for building and
maintaining the system. Moreover, with less cables it is easier to
dynamically re-configure the machines, and implement plug-and-
play components. An example of research effort in this senseis
the RI-MACS project [15], whose goal is to increase reconfigura-
bility and adaptiveness of industrial automation platforms by using
WSNs in selected cases.

However, the requirements of these systems are substantially dif-
ferent from those of other domains of WSN. In addition to require-
ments for increased robustness and fault tolerance, each node is ex-
pected to perform a substantial amount of computation in real-time.
First of all, the rate at which data must be sampled is quite high (up
to hundreds of Hz). Second, several tasks may need to be executed
concurrently. For example, we may have tasks for data filtering,
actuation, diagnostic, logging, communication, etc. In practice, the
computational load on each node (in terms of amount of processing
time needed by the application tasks) may become relevant. In ad-
dition, such applications exhibit real-time constraints,sometimes
hard real-time ones. Late sensor messages may not be considered
acceptable. Many activities, like sampling and actuation,must be
triggered periodically and executed with bounded responsetime,
otherwise the system may not work properly. A real-time schedu-
lability analysis must be performed to guarantee that the system
will work properly under worst-case load conditions.

Unfortunately, the use of proper real-time mechanisms in WSN
has not been deeply investigated until now. TinyOS [19], themost
popular Operating System for WSN, does not support predictable
real-time scheduling mechanisms although recent works[3]have
imported preemption in scheduling mechanisms. At the network
level, mechanisms for real-time communication and qualityof ser-
vice control (like the Collision Free Period access included in IEEE
802.15.4 standard) are not implemented or not enabled. Whatis
missing is a proper comparative study and evaluation of the im-
pact that various communication protocols and Operating System
policies have on the real-time behavior of the system.

Another important problem is the lack of simulation tools that
can model not only the functional but also the temporal behavior
of system, both at the network level and at the node level. Simu-
lation plays and important role both for research and for industrial



practice. In academic research, simulation is a fundamental tool to
compare different algorithms and protocols, and to assess the per-
formance of proposed solutions on complex realistic settings. In
industrial design, it is important to simulate the system before de-
ployment for early assessment of performance, for system dimen-
sioning, and to identify potential bottlenecks and problems.

In this paper we propose theReal Time Network Simulator
(RTNS), a tool that addresses precisely this problem: how to prop-
erly simulate the temporal behavior of the application, taking into
account not only the delay due to network, but also the delay due to
the Operating System overhead and the computational load inthe
node.

Unfortunately, previous to our proposal, no simulator allowed to
model at the same time the temporal behavior of the application
tasks and the real-time Operating System in the node, and thetem-
poral behavior of the network protocols. In most simulators, it was
possible to analyze the effect of network protocols on message de-
lays (see for example [4, 12] for an overview of the state of the art
on simulation tools). However, for the kind of applicationswe con-
sider in this paper (industrial automation and process control), the
effects of the Operating System scheduler, and the overheaddue to
the protocol stack and due to the interrupts, cannot be neglected.

Also, such effects are highly non-linear, and cannot be easily
approximated by simple equations. For example, according to the
holistic analysis [14, 5], the worst-case end-to-end delayof a chain
of task can be upper-bounded by a complex recursive set of equa-
tions. Moreover, in most cases actual worst-case delays aremuch
lower than the estimated upper bound.

The effect that the task scheduling algorithm in the node hason
the end-to-end delay of messages has been shown in [12]. The pa-
per compares the FCFS scheduling policy (used by TinyOS 1.x)
against fixed priority scheduling used by most Real-Time Operat-
ing Systems (RTOSs).

1.1 Contributions of this paper
The proposed simulation tool allows to model and simulate:

• RTOS and scheduling algorithms;

• applications in terms of concurrent tasks executing in each
node;

• messages, protocols, and transmission delays over the net-
work.

The tool is a combination ofNS-2 [9, 7] andRTSim [17] sim-
ulators. NS-2 is a popular simulation framework for simulating
network protocols, both for wired and wireless networks.RTSim
is a simulation tool for RTOSs.

The RTNS co-simulator allows to simulate the networking as-
pects viaNS-2 as well as the real-time Operating Systems aspects
via RTSim.

A share ranging from 40% to 70% [7] (depending on the network
layer) of the existing simulations in the world are run through the
NS-2 package which plays the role of a “de facto” standard. The
back-end (i.e. the skeleton classes) of the package is written in
C++, whereas the OTcl scripting language plays the role of front-
end to ease the generation of network scenarios and activities. The
transmission is simulated at the packet level and the propagation
models are built in the package.

In the Operating System area, there is not such a widely used
simulation package asNS-2. RTSim [13] is a software package
written in C++ for the simulation of real-time Operating Systems,
available as open source [17]. It includes support for many real-
time scheduling policies and typical real-time task models(i.e. pe-
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Figure 1: RTNS co-simulator architecture.

riodic and event-driven tasks, and interrupt handlers). Inthis paper,
we propose to combineRTSim with NS-2 for the simulation of
real-time distributed systems.

By combining these two, we couldre-usethe huge amount of ex-
isting work onNS-2 and the capabilities ofRTSim. With respect
to an earlier work [12], we improved the tool by adding the capa-
bility to model multi-hop networks and end-to-end message delays.
In particular, we can now model the overhead of the network pro-
tocols, and specifically of the routing protocol. This extension re-
quires severe modifications in theNS-2 core libraries, as explained
in Section 2.2.

The execution time overhead due to the inclusion of OS mech-
anisms is adding an order of magnitude in execution time if com-
pared with ordinaryNS-2 simulations. We proved the scalability
property up to 2500 nodes, remarkable especially for highlydense
WSNs.

In this paper we show two interesting applications of our tool.
By analyzing the results of the simulations, we show that:

• the use of a non-real-time scheduling policy in the nodes can
have a tremendous impact on the end-to-end delay of a mes-
sage transmission in a multi-hop network;

• the effect of an overloaded (or failed) node in the network
on the routing protocol depends on the priority at which the
routing protocol stack is executed in the RTOS;

• the priority of the different activities in the nodes must be
carefully calibrated in order to fulfill the real-time constraints
of the application.

2. RTNS
RTNS is obtained linking togetherNS-2 andRTSim at config-

ure time. The following sections describe theRTNS architecture
and the modifications brought to theNS-2 core classes.

2.1 Co-simulator Architecture
In NS-2, protocols are implemented as Agents: any class that

implements a protocol has to extend the Agent class. Instances of
an agent class are the endpoints of wired and wireless connections.
They are identified by INET address and port and are the lowest
layer able to pack and inject messages into the network. Applica-
tion code is modeled by the Application class. Applicationsuse
agents to send and receive messages.

To simulate the behavior of the Operating System running on a
node we construct anNS-2 Application calledRT-App abstracting
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all the features of a Real-Time Kernel (see Figure 1). Whenever it’s
required from the TCL script, the simulator creates an instance of
RT-App which is attached to anNS-2 Agent (RT-Agent) to send
and receive data packets. TheRT-App creates aperiodic tasks for
“Send”, “Receive”, and for “Routing” purposes (see Section2.2)
and schedules them adopting one of the policies implementedin
RTSim (as FCFS, EDF, FP, etc.).

These tasks get blocked as soon as they are spawned and re-
main in the “blocked” state waiting for an event corresponding to
a send and receive of a data packet. Whenever they are activated
by means of external interrupts they enter the ready queue together
with other existing computational (dummy) tasks to create atun-
able load within the CPU. The Operating System puts these tasks
into the “running” state following the adopted scheduling policy
selected at the time whenRT-App is instantiated.

Because of the adopted scheduling algorithm, the tasks can be
delayed by some time from the activation as shown in Figure 2.
In case of a priority-based scheduler the preemption of the CPU
depends on the difference in priority between the running task and
the one which has been suddenly activated. In a scheduler based
on activation times, the tasks are queued up and executed in FIFO
order. In the latter case, the user is not asked to specify a priority
and the delays are strongly dependent on the load of the node.

In Figure 2 the timing behavior of running tasks scheduled by
FCFS policy is shown. The activation order corresponds to the
position in the queue of ready tasks (reported in a table at the right
side of the figure), thus to the order of execution.

The corresponding case adopting FP scheduling would depend
on the priorities assigned to each type of task (Send, Receive, Rout-
ing, and Dummy). In our case studies, we will assign to Network
tasks (Send, Receive, and Routing) higher priority with respect to
the others. This solution works only as matter of example (ofa case
limit) since in the real world there may be computational tasks more
important than networking and a finer tuning to set the priorities is
required.

2.2 Modification to Node Structure
As already mentioned in Section 2.1 theNS-2 RT-App class ab-

stracts the operations done by the Operating System. However,
in a wireless multi-hop scenario, the intermediate node, inthe act
of routing a packet, fails to acknowledge the presence ofRT-App
hence neglecting any delay caused by the concurrent processing of
other tasks by the CPU. In this section we will address the problem
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of RT-App invisibility in intermediate nodes and propose a modifi-
cation to theNS-2 architecture to solve the problem. The solution
described in this paper will help to simulate a wireless multi-hop
scenario, which is typically used in WSNs and provide an accurate
measure of delay of the packets.

The typical structure of a unicast node inNS-2 is shown in Fig-
ure 3. A node has a unique network address and contains an entry
point, an address classifier and a port classifier, a set of agents, and
a Routing Module.

On reception of a packet, the node examines the destination ad-
dress field in its header and takes action on its basis.

The possible values of the destination address are mapped toan
outgoing interface object to reach the next downstream recipient of
the packet. InNS-2, this task is performed by a simpleclassifier
object. A classifier provides a way to match a packet against some
logical criteria and retrieves a reference to another simulation ob-
ject based on the matched results. Each classifier contains atable of
simulation objects indexed by slot number. The job of a classifier
is to determine the slot number associated with a received packet
and forward that packet to the object referenced by that particular
slot.

Every implementation of theRouting Modulecontained in a wire-
less node consists of aRouting Agent, in charge of exchanging rout-
ing packets with neighbors, and a collection of rules, oftencalled
Routing Logic, used to calculate the actual routes from the infor-
mation gathered by the agent. To perform packet forwarding the
node makes use of theRouting Tables.

The default setting for a wireless node adopts theBase Routing
Moduleprovided by theNS-2 package and uses a Hash Classifier
to decide on packet forwarding within the node. Here we describe
the working of the wireless node using Hash Classifier and high-
light the problem of multi-hop described earlier.



r 5.004704067 _2_ MAC --- 0 AODV 48
[0 ffffffff 0 800] --

r 5.004729067 _2_ RTR --- 0 AODV 48
[0 ffffffff 0 800] --

s 5.011660641 _2_ RTR --- 0 AODV 48
[0 ffffffff 0 800] --

s 5.014592000 _2_ MAC --- 0 AODV 55
[0 ffffffff 2 800] --

-----
-----
r 5.057504000 _2_ MAC --- 0 RT 90

[0 2 0 800] --
r 5.057529000 _2_ RTR --- 0 RT 90

[0 2 0 800] --
f 5.057529000 _2_ RTR --- 0 RT 90

[0 2 0 800] --

Figure 5: Trace file depictingNS-2 default behavior using Hash
classifier.

Consider the wireless scenario as shown in Figure 4 (the same
will be considered in a case study in Section 3.2). It consists of 4
wireless nodes, each adopting a Base Routing Module. Node 0 and
Node 1 are the source nodes and Node 3 is the sink Node. Node
2 is used as a gateway to route packets to the destination. We use
part of theNS-2 trace file as shown in Figure 5 to elaborate on the
working of the classifier to forward the packets within the node; an
example of a trace for a tcp packet is as follows:

r 50.093884945 _6_ RTR --- 3 udp 170
[b2 4 6 800] - [...]

Here we see a “udp data packet” being received by a node with
id of 6 at time 50.093884945. The unique identifier of this packet
is 3 with a common header size of 170. The MAC details shows an
IP packet (ETHERTYPE_IP is defined as 0x0800), MAC-id of this
receiving node is 4. That of the sending node is 6 and expectedtime
to send this data packet over the wireless channel is b2 (hex2dec
conversion: 176+2 sec). The rightmost part of the line of thetrace
file contains information specific to the module producing the trace
file and are not commented because they are not relevant within
this context. The format of the trace file is extensively explained in
section 16.1.6 of theNS-2 manual [10].

As shown in the trace file, we see that when a packet is received
at Node 2 the MAC layer forwards it to RTR (theRouting Agent),
AODV in this example. RTR is responsible for deciding the outgo-
ing link. The decision to forward the packet from MAC Layer to
RTR is done by the classifier. The classifier is unable to interpret
the presence ofRT-App which is assigned to a well defined port
(port # 0 in our implementation) operated by a single agent (RT-
Agent). The classifier forwards the packet to the actual recipient,
the Routing Agent on port # 255.

Because of this behavior the simulator is unable to address the
delay induced by the processing load present in the Node. This
delay is quite significant and models the actual processing behavior
of a Wireless Sensor Node.

We propose a new classifier which will handle the forwarding
of packets in a way that would consider the presence ofRT-App
and thus take into effect the Operating System behavior in packet
forwarding.

As shown in Figure 6 we introduce a new Module called WSN-
RoutingModule. This Module is used to incorporate the classifier
(RTMobile) which handles the flow of Routing and Data Packets
exchanged between theNS-2 agents. RTMobile Classifier extends
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AODV Routing Agent
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Figure 6: Modified architecture of Wireless Node inNS-2.

if (destinationPort = AODV_Agent AND
destAddr <> NodeAddr AND
sourceAddr <> NodeAddr){

#check if I’m
#an intermediate node

if packetArrived = false;
#if RTApp hasn’t got it

destinationPort = Port_RTAgent;
else

packetArrived = true;
forward(packet); #follow the normal logic

}

Figure 7: Pseudocode representing packet flow control logic
within RTMobile Classifier.

the functionality of Hash Classifier.
The pseudo-code in Figure 7 explains the logic used by the clas-

sifier. Whenever the classifier of a node receives a packet, itchecks
if it is an intermediate hop along the path, and examines the type
of packet (e.g. it might be AODV or some kind of data packets as
“RT” in our example).

If the received packet is of type AODV, the classifier changesthe
port in the packet header to that ofRT-Agent for a first “default”
classification. In this way the routing packets are examined(fol-
lowing the scheduling policy decided for the node) by theRT-App
which notifies theRT-Agent on job done.

WheneverRT-Agent gets this notification it will forward the
packet back to the classifier (which in turn will let the packet follow
the normal iter), thus introducing delay in packet transmission.

The introduction of RTMobile Classifier makes the simulator
aware of the presence ofRT-App in each node even for those types
of packets (as the routing ones) which are not explicitly addressed
to that port. The appropriate task running in the node performs the
job of examining the packets and re-transmitting them to thenext
downstream recipient. This introduces some delay depending on
the load present in the node as opposed to the default implementa-
tion of NS-2 in which receive and forward of routing messages is
instantaneously performed by theRouting Agent.

The flow of packets reported in Figure 8 for the case of a RT-
Mobile classifier corresponds to the same application as in Figure
5.

The trace file shows the introduction ofRT-Agent in the packet
flow within the intermediate node: before sending the packetto
RTR (i.e AODV Agent), the packet resides for some time within
the agent AGT (i.eRT-Agent). As it can be seen from the trace



r 5.004704067 _2_ MAC --- 0 AODV 48
[0 ffffffff 0 800] --

r 5.004729067 _2_ AGT --- 0 AODV 48
[0 ffffffff 0 800] --

s 5.181500000 _2_ AGT --- 0 AODV 48
[0 ffffffff 0 800] --

r 5.181500000 _2_ RTR --- 0 AODV 48
[0 ffffffff 0 800] --

s 5.185636857 _2_ RTR --- 0 AODV 48
[0 ffffffff 0 800] --

s 5.187392000 _2_ MAC --- 0 AODV 55
[0 ffffffff 2 800] --

-----
-----
r 5.331744000 _2_ MAC --- 0 RT 90

[0 2 0 800] --
r 5.331769000 _2_ AGT --- 0 RT 90

[0 2 0 800] --
s 5.331800000 _2_ AGT --- 0 RT 90

[0 2 0 800] --
r 5.331800000 _2_ RTR --- 0 RT 90

[0 2 0 800] --
f 5.331800000 _2_ RTR --- 0 RT 90

[0 2 0 800] --
s 5.336512000 _2_ MAC --- 0 RT 97

[0 3 2 800] --

Figure 8: Trace file depicting NS-2 behavior using RTMobile
classifier.

file there is an additional introduction of delay between MAClayer
and RTR layer in case of Data (of type “RT”) as well as for routing
packets (of type “AODV”).

3. SIMULATION ACTIVITY
In this section, we describe the latency induced by the presence

of localized and diffused load in selected Wireless Personal Area
Network (WPAN) topologies. Moreover we present the methodol-
ogy we adopted to gather statistical data in order to organize the
simulation results.

We will describe three different case studies of WPAN activities.
In each of them we vary some parameters such as load, task features
and kernel scheduling policies affecting the end to end delay of the
packets.

3.1 Methodology
In each of the case studies a base TCL script is used to gen-

erate the network scenario, construct the wireless nodes with the
WSN-RoutingModule enabled, and start the data traffic. The appli-
cation models CBR traffic between one or more source nodes and
a single destination in the network. The traffic generators run at a
frequency of 5 Hz injecting into the network, packets with payload
of 70 bytes.

A set of simulation runs are spawned under different conditions
by providing an appropriate value for the following parameters:

• LOAD, to set the simulated CPU load in a node;

• SCHED, to adopt a scheduling policy used inRT-App. In
our simulation it can take the value of FCFS (First Come
First Served) or FP (Fixed Priority).

To achieve good statistical significance and to properly usethe
pseudo-random number generation, for each combination, the final
value for the selected metrics are estimated averaging over10 dif-
ferent pairs of seeds (RTSIM-SEED/NS-SEED) provided toNS-2

andRTSim engines. The simulation results under each condition
are computed on the basis of 20,000 transmitted packets.

To log the simulation results and generate histograms we used
the ROOT [2] Data Analysis Platform developed at CERN. The re-
sults provided the information on the total time required for pack-
ets to reach the destination. This time depends on the overhead
incurred at the source node to send the packet (∆Tsend), the net-
work transmission time (

∑
i ∆T i

routing +∆T i
propagation), and the

overhead incurred at the sink to receive the packet (∆Trec):

∆T = ∆Tsend +
∑

i

∆T
i
routing + ∆Trec , (1)

where the summation is done upon the intermediate nodes.
The network transmission time is dependent on the load in the

intermediate nodes. Any delay in forwarding the packet by inter-
mediate nodes is seen by the destination node as a congestionin the
network.

The error for the time overhead is calculated as the varianceof
the sample obtained in identical simulation conditions (i.e. varying
the seeds pair only):

s
2(∆T ) =

1

9

∑
(∆Ti − 〈∆T 〉)2 (2)

For each simulated transmission we estimate maximum, mini-
mum and mean delays of packet transmissions. The simulation
adopts theNS-2 TwoRayGround wave propagation model.

3.2 Simulation 1: Fetch and Forward
In this section we refer to a WSN consisting of four wireless

nodes placed as in Figure 4. For Physical and MAC layers we
adopted the default WPAN settings ofNS-2, namely an order 3,
beacon-enabled superframe without Granted Time Slots (GTS).

The topology has been kept as simple as possible to easily extract
communication patterns and calculate the most relevant metrics.
Obviously the scenario in Figure 4 can be complicated as needed
in order to accommodate hundreds of nodes interconnected intens
of clusters.

The communication range is such that Nodes 0, 1, and 2 are
connected through single hop paths; Node 2 (acting as PAN coor-
dinator) can hear every other node including Node 3. The network
is thus composed by two interconnected clusters, Node 2 being the
gateway between them.

We imagine that, for cost minimization in industrial deployments,
the number of stations is kept as low as possible and Node 2 is in-
volved in ordinary computational tasks apart from the activity de-
scending from the role of gateway.

The simulated distributed application consists in transporting sen-
sor data from the left to the right cluster: Nodes 0 and 1 periodically
send packets to the sink placed in Node 3.

The simulation makes use of AODV routing algorithm to find
a multi-hop path from source to destination and route the packets
along that.

AODV does not embed any real-time feature; nevertheless, due
to the lack of more appropriate protocols (e.g. SPEED[6] andRAP[8])
in NS-2 following the same line as in the examples provided in the
NS-2 802.15.4 library, we decided to adopt it for its light over-
head enforcing the compatibility with WSN. The need of improv-
ing AODV by means of real-time added features is commented in
section 3.4.

RTNS keeps trace of every single transmission in the hypothesis
that the nodes must respond to some parameters of QoS. The trans-
mission time is ordinarily simulated byNS-2 and has a random be-
havior as shown in the top plot of Figure 9. In case of presenceof a
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Figure 9: Network transmission time as function of the message
ID for the cases of gateway without computational load (top
plot) and with a load of 80% (bottom plot). The Y scales differ
from plot to plot.

certain load in the gateway, if the kernel adopts a FCFS scheduling
policy, a regular pattern in Network Transmission Time shows up
as in the bottom plot of Figure 9.

The oscillatory behavior descends from the random time of packet
collection at the gateway: if the packet reaches the gatewaywhen
its CPU is booked, it will be routed to the sink after the end ofthe
running job and of all the jobs eventually activated at the sink be-
fore its arrival. The more the gateway is loaded, the larger is the
percentage of the messages forwarded after some delay.

The graph in Figure 10 shows the mean delays in network trans-
mission time as a function of the load in the intermediate node us-
ing FCFS and FP scheduling policies. Looking at the graph, asthe
load in intermediate node increases the network latency increases in
case of FCFS. However in case of FP although the load increases,
the network latency remains constant. We can’t show the results
concerning the maximum delays because in this scenario there are
two nodes requiring access to the shared medium: the occasional
collisions occurring due to these concurrent activities let the maxi-
mum delay metric behave in a non-deterministic way thus exclud-
ing it from any reliable analysis.

We don’t extensively comment upon the latency induced by the
Operating System at source (Nodes 0 and 1 ) and destination (Node
3) because these effects have already been deeply investigated in a
previous work [12]. For matter of completeness the delays related
to message reception at the sink are reported in Figure 11 anda
similar behavior is found at the source nodes.
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Figure 10: The mean delays in message elaboration due to the
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way for FCFS and FP scheduling policies.
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3.3 Simulation 2: Beacon Enabled Tree
This simulation experiment is an example coming along with

the WPAN implementation ofNS-2 (wpan_demo3). The scenario
is structured as a tree topology composed by 11 nodes as shownin
Figure 12. This scenario consists of one PAN coordinator, 5 coor-
dinators and 5 devices. The simulation works in a beacon enabled
mode with a Beacon Order of 3.

We imagine that in the RI-MACS envisioning of an assembly
zone, actuators connected to wireless sensors may need continuous
tuning of operational parameters in a tree-shaped network:nodes
placed closer to the top of the tree may want to send correctedpa-
rameters to the nodes placed on the leaves.

We thus simulate Node 1 as the source and Node 10 the destina-
tion. The routing algorithm is AODV, the routing path is sketched
as a continuous line in the figure, and the distributed application is
modeled as a CBR traffic generator with a constant load distributed
over the network.

The methodology used to experiment with this simulation is the
same as explained in the previous case. However the results here
consider the presence of PAN coordinator and Beacon mode oper-
ation.

The graph in figure 13 is a comparison of the end to end max-
imum and mean delays in packets for Beacon enabled Tree as a
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Figure 12: Network topology used in simulation 2 and 3. The
original and the alternate routing paths used by AODV proto-
col are shown on the plot.

function of the network load in the nodes.

3.4 Simulation 3: Effect due to node failure
In the third and last experiment, we used the same simulation

settings as in Section 3.3. However, here we compared the effect of
node failure on the network latency. Because of the roles of local
PAN coordinators in the intermediate branches, the beacon mode
has been disabled to avoid the network crash due to the absence of
working routes connecting the coordinator to ordinary devices; for
the rest, the simulation proceeds in a similar way as in Section 3.3.

The end-to-end transmission time is influenced by the numberof
hops in the two routing paths followed by the packets before and
after the link between node 1 and nodes 0 and 2 break down (see
Figure 12).

In Figure 14 we show how with FCFS scheduling policy, the rise
in end to end transmission delay is strongly dependent on theload
the packet finds along the alternate route. The spike connecting the
two portions of the histogram is due to path discovery algorithm
used by AODV to find an alternate path. A superimposition of
histograms related to aload-jumpof 0.5, 0.6, 0.9, 0.99 is shown.

A failure in the node may cause a worsening in the parameter of
QoS during the execution of a distributed application whichis not
expected and strongly dependent on the instantaneous load condi-
tions of the network. Of course, as usual, setting the priority for
routing packets higher than the other computational tasks lets this
rise be independent from the network conditions.

If it’s not possible to act on the kernel policies, it is probably
possible to customize the routing protocol.

AODV-Awareis a modified implementation of AODV routing
protocol being developed at our institute. The modified protocol
builds the routes up in order to minimize the end to end delay suf-
fered in packet transmission in multi-hop scenarios. In order to take
into account the computational load in the network, the protocol
makes use of such information stored in a distributed DB available
through a middleware service. By means of AODV-Aware, we can
minimize the step-like behavior induced by the failure and shown
in Figure 14, by selecting the path with minimum cumulated load
in the intermediate nodes. AODV-Aware will be distributed with
the forthcoming releases of RTNS.

3.5 Comments
The case studies we presented in previous subsections try to
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Figure 13: Dependency of Network Latency (maximum in the
plot at top, mean in the plot at bottom) on load values.

replicate the real world application behavior consideringvarious
topologies compliant with IEEE 802.15.4 standard and different
operational modes (beacon enabled, peer to peer).

Our simulation results give an accurate measure of these effects
and provide the means for application and network analysis.In
each of these case studies we see that even a small amount of pro-
cessing load within the node can lead to an unpredictable behav-
ior in terms of data transmission. Looking at maximum and mean
delays in Network transmissions induced by the Operating System
running on the wireless nodes, these are found to increase asa func-
tion of the load in the network.

Although our analysis shows that using a FP scheduling for packet
transmission limits the network delay, this might not always be de-
sirable. In the first case study, we showed a scenario where com-
munication among the nodes makes use of a gateway between two
clusters. In such application the load within the gateway strongly
depends on the amount of traffic it handles. As the traffic increases
the computational load due to packet forwarding increases as well.

If the routing task is given higher priority, as done in our case
study, the gateway node might miss deadlines for the tasks associ-
ated to data processing.

Setting the task priorities is a crucial design activity andrequires
a trade off between the tolerance in network transmission delays
and the predictability for the computational tasks runningon the
sensor nodes.

4. THE PUBLISHED RELEASE
RTNS can be downloaded from the homepage at [16].



message ID
0 200 400 600 800 1000 1200 1400 1600 1800

 T
 (

s)
∆

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Network propagation time

0.99 (red)

0.90 (green)

0.60 (yellow)

0.50 (purple)

Figure 14: Temporal display of breakdown effect on network
transmission time. The superimposed plots refer to different
cumulative loads in the AODV alternate path.

The package contains the following components:

• NS-2 version 2.29 (slightly modified);

• RTNS realtime package inNS-2;

• RTSim version 1.0 (slightly modified);

• ROOT version 5.11 (for Cygwin) or 5.12 (for Linux).

The web version also includes all case studies described in this
paper along with the scripts useful to generate the commented re-
sults.

5. CONCLUSIONS AND OUTLOOK
In this paper we presented a software package simulating Oper-

ating System aspects in wireless telecommunication. The tool is
particularly suited to model wireless distributed real-time applica-
tions. The extension with respect to a previous release deals mainly
with modeling of protocol stack overhead in the real-time Operat-
ing System running on the node. Therefore, we can now realisti-
cally evaluate the impact that a computational load in the node has
on the end-to-end delay of critical messages in multi-hop networks
with a structured topology.

As extensively explained in section 3, the packet delivery is af-
fected by the computing load along the route if the routing task
(activated at the packet reception) is scheduled followinga FCFS
policy as it happens within the popular TinyOS 1.x software en-
vironment. A possible solution is to assign to routing a higher
priority with respect to the computational tasks and to adopt a FP
scheduling policy (not implemented in TinyOS). This solution (as
commented in section 3.5) is not always applicable and an effective
solution has to be found from case to case.

The package performing these simulations is organized as a plug-
in of the popularNS-2 under the name of Real-Time Network
Simulator (RTNS). We decided to freely distribute the code as ex-
plained in Section 4.

We are now progressing on AODV-Aware, the routing algorithm
extending AODV protocol to real-time functionalities.

In the next future, we plan to run an extensive comparison be-
tween data collected from real experiments and simulations. RTNS
will cover a key role for testing new communication protocols and
designing distributed systems especially for large and complex sys-
tems with hundreds of nodes.

This work has been financially supported in part by the European
Union in the framework of the RI-MACS project (NMP2-CT-2005-
016938).
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