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ABSTRACT
New1 trends in Wireless Sensor Networks envisage deployments
for distributed applications requiring real-time support at the kernel
level and Quality of Service at the network level.

In this domain, at the design stage, particular attention must be
devoted to individual data packets as those entities carrying unique
(not redundant) information. The performances of the deployed
system (hereby felt as a black box) must be tracked against the
reliability and timeliness offered in message delivery.

A Visual Tracking case study is discussed throughout this pa-
per with the support of a simulation package modelling real-time
scheduling policies at the device node kernels and bandwidth al-
location techniques for network reliable communications as stan-
dardized in the IEEE 802.15.4 suite of protocols.

A set of results is carried out estimating the performances of the
Visual Tracking system in two contexts (those of a monitored junc-
tion in an airport taxiway and in a parking area) very different for
criticality and average volume of network traffic.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
WSN, Operating Systems, Simulation, Data Analysis

1. INTRODUCTION
The philosophy underlying the standardization of the IEEE

802.15.4[9] protocol for low-rate Wireless Personal Area Networks
(WPAN) is to support the large majority of present, planned, and
envisioned networked applications deployed through cost-effective
and autonomous wireless nodes.

The standard appropriately encompasses features coming from
scheduled-based (through the so-called Guaranteed Time Slots,
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GTS) and contention-based (through the CSMA/CA mechanism)
medium access paradigms thus supporting real-time and best-effort
traffic types. Moreover particular attention is devoted to energy
policy issues (for battery life extension) allowing the nodes in a
network to synchronously sleep and wake up according to a broad-
casted schedule.

In the Wireless Sensor Networks research domain, the device
nodes are thought to have self-configuring, adaptiveness, and re-
activeness capabilities to reduce the need of any kind of human
intervention in the network procedures.

In recent years, many application scenarios with diversified con-
straints investing the communication policies have been proposed
(and sometimes deployed) stressing some of the peculiarities of
WSNs.

The most challenging proposals refer (but are not limited) to
telemedicine, health care [11], industrial assembly [19], traffic con-
trol [4]. At the sensor level, peripherals providing simple scalar
information (like temperature and illumination) are now comple-
mented by more complex devices providing vector-type readings.
Examples are given by a set of gyroscopes [25] defining the po-
sition with respect to a uniform magnetic field, and a set of ac-
celerometers defining the acceleration vector in a reference frame.
At the same way, CMOS and CCD manufactured cameras can be
connected to Sensor Boards, to provide 1-D[27] or 2-D[20] photo
frames; these devices (geometrically displaced in a volume) can
build up a Multi-View Vision system to exchange data and recon-
struct a scene[17].

Due to the limitation in node equipments (notably speed and
memory) and network resources (like bandwidth), these applica-
tions are only possible with a coherent design at node and network
levels. Simulation studies complement off-line analytical mod-
els and offer a good insight on the impact induced by low level
mechanisms (e.g. intra-node settings like message queue size and
scheduling policies) and high level protocols (e.g. in-network pro-
cessing of sensor readings) to the performances of a system thought
as a black box.

Especially when real-time and best-effort transmissions are sched-
uled together (by means of parallel active data flows) and the node
kernels run multiple tasks sharing some local resources (notably
CPU and memory), the capabilities carried out by simulation pack-
ages must appropriately model the hardware and software architec-
ture of real-world set-up’s. Throughout this paper we will show
that Real Time Network Simulator (RTNS)[15, 16, 21], a real-time
extension of the NS-2 simulator, is a novel, unique and effective
response to this need in the domain of Wireless Sensor Networks.



1.1 Related work
In discrete event simulation, the operation of a system is repre-

sented as a chronological sequence of events. Each event occurs at
an instant in time and marks a change of state in the system.

Discrete event simulators are usually implemented making use
of a re-sizeable event queue where to post and pop events for ap-
propriate processing. For instance, time-triggered activities regu-
larly post expiration events into the queue to produce a periodic
sequence of actions. The queue is re-ordered at every post to al-
ways keep the closest event in front; the physical notion of time is
discretized and incrementally elapses by the interval between the
two latest expiration events at every pop.

Popular simulators like OPNET[14], NS-2[12], and TrueTime[3]
support most of the features of the IEEE 802.15.4 standard for
WPANs especially those related to the MAC layer mechanisms for
network formation and management and contention-based trans-
missions (via the CSMA/CA scheduling algorithm). The support
for GTS is absent in TrueTime whereas is provided by external
contributions to OPNET [8] and NS-2 (this work).

The authors of [8] motivates the selection of OPNET criticiz-
ing the (not native) support of NS-2 for wireless communications.
Actually numerical comparisons of the two packages in consistent
conditions are rare in literature. Those who tried to perform this
comparative analysis sometimes ruled out both of them [10]. Re-
cently [7], many arguments supporting the wireless model of NS-
2 have been proposed justifying the unreliable results (sometimes
obtained in simulation runs) as driven by a bad setting in some pa-
rameters of the wireless modules. The authors show that tuning
these parameters permits a strict adherence between real world and
simulated data.

Furthermore the remarkable strict adherence to the
IEEE 802.15.4 standard of the NS-2 WPAN module [26] and the
long debugging stage (from the release 2.26 to 2.31) which has
patched the module to fix imprecise behaviors (see for example
Chapter “Changes made to the IEEE 802.15.4 Implementation in
NS-2.31” in the reference manual [13]) legitimate the use of NS-2
as simulator in the WSN context.

The imitation of kernel mechanisms are natively included in True-
Time (by means of a Kernel block), added by COTS to NS-2 (us-
ing the RTNS extension) and totally absent in OPNET. In Table 1
a naïve comparison of the simulators shows that RTNS represents
the only software solution, to the best of authors knowledge, for
modelling distributed WSN applications with real-time constraints
acting both at node and network levels.

Kernel 802.15.4 802.15.4
imitation CSMA/CA GTS

TrueTime N N A
NS-2 (RTNS) EC N EC
Opnet A N EC

Table 1: Comparison among simulation packages. N = Native,
A = Absent, EC = External Contribution.

1.2 Contribution of this work
At the design stage of a networked application, it is beneficial

to model each aspect of the chain connecting the world of the phe-
nomena with the world of the recorded data. To achieve this goal,
in this paper we make use of a sophisticated simulation framework
capable to model some phenomena and to retrieve the response ob-
tained by a WSN against a set of software design choices and net-
work conditions.

In RTNS, intra-node policies for resource management and task
scheduling (usually handled by a lightweight kernel) are modeled
together with network-related phenomena by means of a cosimula-
tor engine joining the NS-2 and RTSim[18, 22] packages.

The case studies hereby debated refer to an information system
performing target tracking by composing the camera views of wire-
less nodes installed along the possible trajectories of the moving
vehicle.

Some limitations in NS-2 have been overcome to model event-
driven transmissions and to support the MAC layer bandwidth al-
location procedures introduced in the IEEE 802.15.4 standard and
not included in the native WPAN module of the NS-2 package.
Moreover a naive image processing module has been included in
the node S/W architecture to take into account the discrete nature
of the CPU response to stimuli coming from the external world.

The remaining sections are organized as follows: in Section 2 we
briefly introduce the IEEE 802.15.4 standard and its instantiation
in the WPAN module of the (enhanced) NS-2 simulator; moreover
we describe the visual tracking model implemented in RTNS; in
Section 3 we introduce the tracking scenario based on distributed
vision and the performance metrics we focus on; in Section 4 we
discuss the results obtained in the two case studies; in Section 5 we
will comment on the results and propose a possible continuation
for this research.

2. MODELING WSN IN RTNS

2.1 The IEEE 802.15.4 Standard
The IEEE 802.15.4 protocol specifies the Medium Access Con-

trol (MAC) sub-layer and the Physical Layer of Low-Rate Wireless
Personal Area Networks (LR-WPANs). The SSCS (Service Spe-
cific Convergence Sublayer) abstracts the Access Point of some
services offered by the MAC to upper layers.

The IEEE 802.15.4 Physical Layer uses a 16-ary encoding alpha-
bet (4 bits/symbol) in Direct Sequence Spread Spectrum (DSSS)
modulation over three operational frequency bands: 2.4 GHz (16
channels); 915 MHz (10 channels); 868 MHz (1 channel). The
IEEE 802.15.4 MAC layer supports two operational modes: (1)
the non beacon-enabled mode, in which the MAC is simply ruled
by non-slotted CSMA/CA; (2) the beacon-enabled mode, ruled by
slotted CSMA/CA, in which beacons are periodically sent by a
special node (called network coordinator) to synchronize (in time)
nodes that are associated with it, and to carry additional informa-
tion about the transmission structure. In beacon-enabled mode, the
Coordinator defines a SuperFrame structure (Fig. 1) which is con-
structed based on: (1) the Beacon Interval (BI), which defines the
time between two consecutive beacon frames; (2) the SuperFrame
Duration (SD), which defines the active portion in the BI, and is
divided into 16 equally-sized time slots, during which frame trans-
missions are allowed. Optionally, an inactive period is defined if BI
> SD. During the inactive period (if it exists), all nodes may enter
in a sleep mode (to save energy).

BI and SD are determined by two parameters - the Beacon Order
(BO) and the SuperFrame Order (SO):

BI = aBaseSuperFrameDuration · 2BO

SD = aBaseSuperFrameDuration · 2SO

assuming 0 ≤ SO ≤ BO ≤ 14, aBaseSuperFrameDuration
= 15.36 ms (operating at 250 kbps in the 2.4 GHz band), corre-
sponding to the minimum SuperFrame duration at SO = 0. During
the SuperFrame Duration, nodes compete for medium access using
slotted CSMA/CA, in the Contention Access Period (CAP). IEEE



Figure 1: SuperFrame Structure in the IEEE 802.15.4 stan-
dard. In beacon enabled mode, the beacon interval can be sub-
divided into a Contention Access Period (CAP) and eventually
into a Contention Free Period (CFP) and Inactive Period.

802.15.4 also supports a Contention-Free Period (CFP) within the
SD, by the allocation of Guaranteed Time Slots (GTS). It can be
easily observed in Fig. 1 that low duty-cycles can be configured
by setting small SO values as compared to BO, resulting in longer
sleep (inactive) periods. The standard supports three network topolo-
gies: Star, Mesh and Cluster-Tree, illustrated in Fig. 2.

Figure 2: WPAN star, mesh, and cluster-tree network topolo-
gies.

In the Star topology (Fig. 2.a) communications must always be
relayed through the coordinator; Star networks can operate in both
beacon-enabled and non beacon-enabled modes. In the Mesh topol-
ogy (Fig. 2.b), each node can directly communicate with any other
node within its radio range or through multi-hop; Mesh networks
must operate in the non beacon-enabled mode. The Cluster-Tree
topology (Fig. 2.c) is a special case of a Mesh network where there
is a single routing path between any pair of nodes and a distributed
synchronization mechanism (operates in beacon-enabled mode).

2.2 The WPAN module in NS-2
In Figure 3 the network stack standardized in the IEEE 802.15.4

suite is shown. In the superimposed call-outs, the corresponding
services implemented in the native WPAN module in NS-2 (release
2.33) and the modifications introduced by this research project are

Figure 3: The networking stack as standardized in the IEEE
802.15.4 protocol for WPAN. In the call-outs the services im-
plemented in the NS-2 WPAN module and the functional ex-
tensions added within this work.

specified: we namely refer to the GTS mechanism and the link with
the RTNS framework.

The scarce documentation about the WPAN package in NS-2
refers to the mechanisms exported to the final user interface in some
TCL scripting examples[5]: these mechanisms refer for instance to
network start-up, node association, network topology and beacon
order selection, etc.

Following a strict adherence to the standard, the
MLME-GTS.request, MLME-GTS.confirm, and
MLME-GTS.indication MAC primitives have been implemented
for the GTS allocation as shown in Figure 4.

Figure 4: Sequence diagram for a GTS allocation request by a
device node.

When an (associated) node wants to transmit (or receive) data
in real-time, it makes use of the GTSs. A MLME-GTS.request is
generated at Network layer; afterwards the node sends a Command
frame to the coordinator. The device waits for the coordinator ac-
knowledges receipt and then parses the list of GTS descriptors in
the forthcoming beacon to identify the starting slot assigned to it.
After the transmission of the ACK frame to the device, the MAC
layer of the coordinator calls the MLME-GTS.indication notifica-
tion procedure to its agent. At the reception of the beacon, the
MAC layer of the device notifies the success to its agent by calling
the MLME-GTS.confirm procedure.

A GTS can be deallocated whenever the device node formulates
an explicit request as shown in the collaboration diagram of Figure
6/a with a sequence of function calls very similar to the previous



Figure 5: The UML sequence diagrams for sending (left) and receiving (right) reports.

Figure 6: Sequence diagram for a GTS deallocation request by
a device node (a). Explicit removal by the coordinator (b).

case.
Moreover the coordinator can deallocate a GTS (see Figure 6/b)

inserting that GTS descriptor into the list of “removed” GTS in
the forthcoming beacon packets whenever one of these conditions
happen:

• the upper layers of the coordinator require the deallocation;

• the device did not make use of the GTS (in reception/ trans-
mission) for 2n SuperFrames where n = 28−BO if 0 ≤
BO ≤ 8 and n = 1 if 9 ≤ BO ≤ 14.

To fulfill these functionalities, a GTS DataBase structure has
been created. By means of appropriate classes the database is in-
stantiated in both the coordinator and devices memories allowing
for:

• preparing the list of the GTS descriptors to be attached to the
beacon frame periodically broadcasted by the coordinator;

• activating the hardware timers for transmitting (receiving)
data within the CFP of the MAC SuperFrame;

• enabling the GTS re-location and extending the CAP time
interval when GTSs are de-allocated.

2.3 Visual tracking in RTNS
The ambitious goal of this work is to make use of a software tool

suited to assess the performances of a visual tracking networked
application, by means of a comprehensive (although simplified)
model acting at the node and network levels.

Figure 7: A pictorial view of the simulation and analysis en-
vironment for visual tracking in WSN developed within the
RTNS package.

A pictorial view of the simulation and analysis environment,
based on RTNS and proposed in this work, is shown in Figure 7.

The device nodes are equipped with detection peripherals like
pin-hole cameras: each camera captures the portion of the back-
ground scene covered by its solid angle. The topology support of-
fered by NS-2 has been extended to introduce self-moving entities
like vehicles not involved in communication. The moving targets
act as external stimuli inducing transmissions by device nodes: net-
work activity is therefore event-driven differently from the time-
driven traffic generation which is generally adopted in NS-2 based
simulations.

Each micro-controller in an individual device node runs the same
firmware encoding the activities related to networking and Image
Processing (IP). The RTNS Kernel prototype (implemented in the
RTNSApp class) abstracts the services related to the scheduling
policy and resource access. We define task the computational unit
corresponding to one activity. A task consists of a set of instruc-
tions that, when executed, book the CPU for a finite amount of
processor ticks. The tasks can be run concurrently at a node.

The IPApp class is the specialization of the RTNSApp base class
used in this work for instantiating the node kernel. IPApp handles
the I/O from the peripherals and executes a S/W task customized for
Image Processing (IPTask). Together with IPTask, the SendTask
and ReceiveTask implementing the Network layer functionalities
for data exchange are spawned at the start-up of the device nodes.

The IPTask task is a periodic activity, parametrized with a likely
number of lines of code (Execution Time) and a Period set to the in-
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Figure 8: The Inter Arrival Time (IAT) distribution of vehicles in the taxiway and parking scenarios. The (fixed) path cover time is
superimposed in the graphs.

verse of the maximum frame rate (T = 1
]fps

) of the camera. When
the permanence of an object inside the view of a camera is such
that the processing task intercepts it, a notification in the shape of
unicasted message (“a report”) is sent to the network coordinator.
The report transmission is handled by the IPAgent class which rep-
resents the UDP-like endpoint of the network stack.

The coordinator is required to collect all the reports in a Detec-
tion Window (DW) to take action. The CoordApp class (abstract-
ing its kernel) handles the I/O from the transceiver. The UDP-like
agent CoordAgent correlates all the received reports ending in the
same DW, and, from their unique signature, predicts the target track
on the topological grid. These mechanisms are described by means
of UML sequence diagrams in Figure 5. The data coming from the
reports are organized in a Tree structure (eased by the on-line avail-
ability of the ROOT[2] package classes in RTNS) which is saved
on disk during the RTNS simulation runs. This structure is then
accessed off-line by means of an analysis toolkit to extract the per-
formances of the system in terms of global metrics as it will be
discussed in Section 4.

3. SIMULATED SCENARIO

3.1 Event distribution models
In Figure 9, five nodes build up a WSN and are in charge of

tracking a target along two possible directions. The camera views
do not overlap and the object provides a unique signature in case of
going straight (reports from nodes 0,1,2) or turning right (reports
from nodes 0,1,3).

We simulated two scenarios with different statistical distribu-
tions of event Inter-Arrival Times (IAT) having fixed the time needed
by the target to travel across the camera views (path covered time):

a taxiway in a big airport, and a parking area (see Figure 8).
In the first case the distributed system provides a critical ser-

vice where events expectations are rare with respect to path covered
time. If the IAT are Gaussian distributed, this analytically translates
to the constraint:

∆Tmin(events) = 〈∆T 〉 − 3 · σ > S

V
(1)

being S, V , 〈∆T 〉, and σ respectively the path length, the target
speed, the average value and the standard deviation of the IAT prob-
ability distribution. In this simplistic model, all aircrafts move at
the same speed thus path covered times are deterministically com-
putable.

If we drop the constraint 1, we can have a superposition of ar-
rival events in the scope of the cameras ending in the generation of
reports related to independent detections.

The distributed system we keep unchanged from the code per-
spective responds differently in the two cases as we will see in the
remaining part of this section.

3.2 The Data AcQuisition model (DAQ)
We model two different types of DAQ, the time-based and event-

based (see Figure 10). Since the expected signatures are {0,1,2} or
{0,1,3} , if the chain of the events is truncated and the reports split
into subsequent DWs, the event is discarded.

The time based DAQ is purely hardware, based on a timer acti-
vating at constant intervals the detection window. The reports re-
lated to the same event arrive in random order being the DW totally
uncorrelated with the report arrivals.

Alternatively we can elect Node 0 as the DAQ trigger since all
incoming vehicles pass through its hardware view. Following this



Figure 9: The scenario used for RTNS simulation. Nodes
0,1,2,3 track a vehicle using embedded pin-hole cameras cov-
ering complementary views. They send detection reports to the
coordinator whenever they recognize the target entered their
camera view.

DW

Event−based DAQ

Rep 0 Rep 1 Rep 2

t

DW

reportTime−based DAQ

Rep 0

DW

Rep 2Rep 1

t

Figure 10: The DAQ logic: the event-based opens the DW at
the arrival of a report from Node 0; the time-based opens the
DW regularly as a function of the time.

argument we model an event-based DAQ where the DW is opened
at the arrival of a report from Node 0.

3.3 A numerical example
In Figure 11 we reported a numerical example for the tracking of

a single vehicle which showed up in the view of camera 0 at time
4.3 s, it then moved to the camera 1 view at time 6.3 s and decided
to straight entering the camera 2 view at time 8.3 s. It finally left
the topological grid at time 10.3 s having a path covered time of 6
s.

In all the nodes the IPApp kernel schedules some tasks concur-
rently. The camera module installed at the wireless devices is sup-
posed to have a jitter-free frame rate equal to 2 fps. The IPTask is
chosen to execute for 250 ms every 500 ms.

If the vehicle is recognized as not (already) present in memory,
the sendTask is activated to transmit the report to the coordinator
which processes it according to the adopted DAQ mechanism.

Given these parameters (vehicle appearance time, path covered
time, CPU activity in the device nodes affecting the actual start time
of the tasks), in the figure we show the response (track detected or
miss) of the coordinator node for the two DAQ algorithms. The
vehicle appeared at 4.3 s and crossing the scene in 6 s is detected
in the case of Event-based DAQ whereas it is missed in the Time-
based.

3.4 Performance metrics and statistical con-
siderations

For simplicity (and considering statistical effects only although
systematics is expected to play a relevant role in this context) we
intend the visual tracking system as a generalization of a detector

providing binary results (0: track detected, 1: track missed).
In a real-time perspective, the system overhead for event detec-

tion is very relevant. We imagine that controller reacts whenever
the DW is closed, so that its response time for event i happening at
time T i

event is:

Ri = T i
detect − T i

event . (2)

Its average value is given by:

R̄ =

∑k
i=0R

i

k
(3)

being k the number of detected events when n is the true number
of events in the WSN scope. To estimate V(R) we take the experi-
mental Root Mean Square of R:

V (R) =

∑k
i=0R

i2

detect − R̄2

k − 1
(4)

The probability of detecting k tracks out of n by a system having
efficiency ε is given by[24]:

P (ε; k, n) = (n+ 1)

(
n

k

)
εk(1− ε)n−k

=
(n+ 1)!

k! (n− k)!
εk(1− ε)n−k . (5)

To estimate ε we take the first momentum of the probability dis-
tribution function:

ε =

∫ 1

0

ε P (ε; k, n) dε

=
(n+ 1)!

k! (n− k)!

∫ 1

0

εk+1(1− ε)n−kdε

=
k + 1

n+ 2
(6)

which tends to k
n

when n is large. The variance of ε is defined as:

V (ε) = ε2 − ε2

=

∫ 1

0

ε2 P (ε; k, n) dε− ε2

=
(k + 1) (k + 2)

(n+ 2) (n+ 3)
− (k + 1)2

(n+ 2)2
. (7)

Following this formalism, we avoid the artefacts of having V(ε)
= 0 in the two extreme cases of fully efficient (k = n) and fully
inefficient (k = 0) systems as it would have been adopting a pure
binomial distribution. In fact one reasonably finds:

V (ε)|k=0,n =
n+ 1

(n+ 2)2 (n+ 3)
> 0.

For large n in this case the variance becomes lim
n→∞

V (ε) = 1/n2.

4. SIMULATION RESULTS

4.1 Parameters and metrics
In the scenario sketched in Figure 9, the node coordinator starts

up the PAN with BO = SO = 4. Depending on the adopted DAQ



Figure 11: In the plot the CPU time lines of Nodes 0,1,2 are shown in the top rows (E1,2,3). The vehicle appearance in the camera
views is marked by an arrow pointing downwards. The IPTask activation is marked by an arrow pointing upwards and its execution
by a grey-filled rectangle. The ReceiveTask is activated by IPTask when the vehicle image is processed and its execution is shown by
an empty rectangle. The bottom rows refer to the CPU activity of the coordinator implementing the DAQ models of time-driven(E4)
and event-driven (E5). The empty rectangle is DW large. The event is missed in E4 and detected in E5.

scheme, it combines the detection reports coming from the device
nodes to track the incoming vehicles. A road traffic of 400 vehicles
is simulated in each run. The report size, injected by nodes into
the medium at each novel detection, is set to 100 bytes unless ex-
plicitely mentioned. This means that, at the nominal bit rate of 250
Kbps (in the 2.4 GHz frequency band) and neglecting the overhead
for medium access, the time needed to transmit a report fits inside
a MAC slot in a SuperFrame.

The R and ε metrics defined in Equations 2 and 5 will be evalu-
ated by the estimators defined in Equations 3 and 6. The associated
statistical error bars shown in the plots are calculated from Equa-
tions 4 and 7.

The system performances are evaluated as a function of some
strategies concerning data acquisition schemes, task scheduling and
communication protocols. These results are obtained making use
of the analysis tools provided together with the RTNS package and
are presented inhere to prove the effectiveness of the suite for quan-
titative studies.

4.2 Taxiway measurements

4.2.1 The effects from the Detection Window
In this simulation study we focus on the system performances as

a function of the detection window width and the adopted DAQ
scheme. We consider CSMA/CA for medium access and First
Come First Served (FCFS) for task scheduling at the nodes kernels.

In Figure 12 the system efficiency is plotted against the DW size.
For event-based DAQ, the efficiency is maximum when DW is of
the order of the path cover time ( S

V
= 6 s). As expected the perfor-

mances degrade as the DW size increase and thus reports coming
from independent detections are mixed up.

If we adopt a time-based DAQ, reports arrivals and DW are un-
correlated. As the DW increases we collect more events reaching
the ratio of 70% with DW = 20 s.

Depending on the type of DAQ adopted at the coordinator, two
different set-points are suggested in this analysis (DW = 6 s for
Event-based DAQ and DW = 20 s for Time-based DAQ). Moreover
the following relation holds:

Figure 12: Efficiency behavior as a function of the DW width
for the two DAQ models. The embedded plot is a reminder of
vehicle IAT.

εTB ≤ εEB (8)

where εTB is the efficiency achievable with a time-based DAQ
algorithm and εEB is the corresponding event-based calculated fix-
ing the DW value.

As a side effect of the uncorrelation between reports arrivals and
DW, the average response time is strictly smaller in the case of
time-based DAQ with respect to event-based because for the sub-
sample of detected events, the DW results already open at the ar-
rival of the first report thus reducing the response time of the sys-
tem. This effect is formulated as:

R̄TB ≤ R̄EB (9)

Of course from the design requirements of the visual tracking
system (in terms of efficiency and latency) it is possible to select
the appropriate DAQ profile privileging either the efficiency or the
latency.



Figure 13: Average response time distribution for Event-based
and Time-based DAQ models as a function of the DW width.

4.2.2 The effects from the transmission schedule
In Section 1 we discussed the novelty of this work because of

the support for the GTS in our simulation tool. Making use of
the mechanism implementation as presented in Section 2 we can
differentiate real-time and best-effort traffic sources in simulation
and assess the benefits of communication over guaranteed band.

Figure 14: Efficiency as a function of the CBR rate of two dis-
turbing nodes for the case of CSMA/CA (empty markers) and
the GTS (filled markers).

In Figure 14 the efficiency (obtained making use of event-based
DAQ) is plotted against the rate of disturbance introduced by two
nodes generating CBR traffic with tuneable frequency. On the X-
axis the nominal rate for one node is reported, thus the disturbance
rate felt by the controller is actually the double.

The disturbing nodes attempt to inject 100 bytes packet frames
into the network at regular intervals. For example, at a disturbing
frequency of 40 Hz, this translates into 64 Kbps demand having the
network 250 Kbps as total capacity.

The nodes are associated to the coordinator and transmissions
are done at the same frequency as regulated by the IEEE 802.15.4
standard for the star-shaped networks. As it can be seen (empty

markers in the plot), although the working conditions have been
selected to produce a fully efficient set-up, this is true only in ab-
sence of parallel data flows. Already at a disturbance frequency of
40 Hz, using the CSMA/CA schedule for message transmission, the
actual value of the system efficiency is about half of the nominal.

If we schedule the traffic related to visual tracking during the
CFP, and the concurrent best effort traffic during the CAP, we per-
mit parallel flows in the network without worsening the perfor-
mances of the guaranteed services.

In this simple case study, we statically allocate a GTS, 2 slots
long (to let the transmission report fit into it), to each device
equipped with camera. The system is found insensitive to distur-
bances and the nominal value for the efficiency (filled markers in
the plot) is achieved regardless of any non-real time activity present
in the network.

4.2.3 The effect of the CPU load
So far the multi-tasking capabilities of the kernels did not play

any role because the “optional” transmission of the report on IP-
Task completion can be easily coded as an ordinary code branch.

Suppose the device nodes run other activities concurrently with
visual tracking (for example self-diagnosis, error reporting, etc.).
The effects on global metrics depend on the scheduling policy
adopted in the kernels, notably upon their preemptive capabilities.

Figure 15: Efficiency as a function of CPU load factor in de-
vice nodes for Fixed Priority (FP) and First Come First Served
(FCFS). The embedded frame contains the distribution of the
Average Response Time in semi-log scale for FCFS. Overload
condition occurs when cL

TL
= 60% > 50%.

In Figure 15 the system efficiency and latency are tracked against
the computational load introduced by a background task scheduled
concurrently with the IPTask. As reported in Section 3.3 the IPTask
provides a standalone load of cIP

TIP
= 50%, so that the overload

condition is reached whenever additional load exceeding 50% is
scheduled on the node.

If the kernel has no real-time functionality as in the case of
TinyOS[23], as the extra load increases, the absolute response time
and its jitter increase. Moreover, as the overload condition is met,
the system starts missing events and malfunctions show up like that
of events being detected after the appearance of many others: in the
plot of Latency versus Background load, the trend is discontinuous
at the overload condition where response time jumps by two orders



of magnitude meaning that the aircraft track is recognized after 300
s (5 minutes) from its appearance.

The visual tracking system deployed on top of non real-time ker-
nels does not respect safety critical constraints with respect to back-
ground task. This result encourages to adopt real-time kernels like
ERIKA[6] and Nano-RK[1] supporting Fixed Priority scheduling
whenever the nominal performances must be guaranteed in vari-
able (or even unpredictable) conditions of CPU load.

4.3 Parking area measurements

4.3.1 The effects from bandwidth limitations
When the vehicle inter-arrival times are smaller, events are more

frequent and the average network traffic generated by report trans-
mission gets larger. The effect is stronger if the inter-arrival time
is comparable with path cover time; in such a case reports related
to different vehicles are injected concurrently into the network by
different device nodes.

The limitation in bandwidth for the low rate nature of the IEEE
802.15.4 standard prevents the system from the full efficiency. Se-
lecting the most favorable options for the DAQ (the event-based),
the system achieves 80% efficiency with a DW equal to 20 s (empty
markers in Figure 16). Higher values for the DW have not been ex-
plored for reasons related to latency matters.

Figure 16: Efficiency behavior as a function of the DW width
for the case of CSMA/CA (empty markers) and the GTS (filled
markers).

As it can be seen from the plot, the GTS mechanism does not im-
prove the system performances (filled markers in the plot) and the
two curves are statistically compatible. The non-monotonic behav-
ior is explained by the fact that the system starts working properly
when the detection window is larger than the path covered time.

4.3.2 The effects from report fragmentation
The extra-value provided by the GTS is felt when the report

size is such that fragmentation is needed at the Network layer.
When the message is composed by more than one packet, using
the CSMA/CA mechanism, the node must access the channel and
back-off by a random period at least twice per packet. Given a cer-
tain probability of packet delivery, the larger the report is in number
of packets, the higher the probability of getting incomplete reports
at the sink is.

It is worth mentioning that in the CSMA/CA mechanism stan-
dardized in IEEE 802.15.4, the MAC layer tries to inject into the
medium a new packet for a maximum number of attempts (equal
to 4 in our simulation runs) before dropping it; this option is intro-
duced for fault safety reasons to avoid saturation in the Link Layer
queues.

Figure 17: Efficiency as a function of the report size for the case
of CSMA/CA (empty markers) and the GTS (filled markers).

In Figure 17 the nominal value of 80 % is reached against a large
set of values for the report size only adopting the GTS mechanism
(filled markers in the plot). The points referring to the CSMA/CA
mechanism (empty markers in the plot) show on the contrary a drop
in the performances of the order of 10% as the report size reaches
1000 bytes (10 packets).

The fragmentation introduced at Network layer (performed at
the NS-2 Agent layer) is realistic because, for the visual tracking
protocol, the reports might include a portion of the detected vehicle
transmitted in the form of raw data: in this case a payload of 1000
bytes corresponds to a square of 332 pixels maximum, as follows
from the relation:

N(pixels, RGB, 1 byte/color) =
1000− 3

3
' 332 bytes (10)

where 3 bytes have been reserved to locate the square inside the
camera view (X and Y of the top-left corner and size of the square).
Even when the lowest resolution mode is selected for camera op-
erations, say 80 × 60 pixels, this corresponds to about 7% of the
camera view only[17].

When fragmentation is included, unless sophisticated algorithms
are coded at the coordinator to reassemble the data in lossy con-
ditions, the GTS mechanism prevents the system to work ineffi-
ciently.

5. CONCLUSIONS
Wireless Sensor Networks are becoming more and more intel-

ligent extending the domain of interest to real-time applications.
Building up such kind of systems requires support for bounding
the delay in packet transmission and real-time scheduling policies
at the node kernel level. Distributed imaging techniques are partic-
ularly charming for the intrinsic load they infer at both network (for



the volume of exchanged packets) and CPU levels (for implement-
ing imaging techniques in low cost and power constrained hardware
products). Simulation is very useful in the design of envisioned ap-
plications. RTNS, for its capabilities coming from the upgraded
NS-2 (enriched by the GTS mechanism of IEEE 802.15.4 mecha-
nism) and RTSim simulation packages, permits to assess the perfor-
mances of a simplified networked application for visual tracking.

In this paper we discussed the performances in two case studies
of vehicles running in a taxiway or in a parking area. We showed
that the efficiency and response time strongly depend on algorithms
instantiated in the nodes for the scheduling of the S/W tasks, and
on medium access paradigms (contention based or contention free)
adopted to transmit data. Moreover set-up parameters as the DAQ
model in the system coordinator and the length of the report trans-
mitted at vehicle detection are very relevant and deviate the metrics
from the results obtained using a naive approach.

As a future work we want to make use of RTNS for validating dy-
namic bandwidth allocation mechanisms implemented in the Net-
work layer on top of the IEEE 802.15.4 MAC and Physical layers.
In realistic scenarios we can assess how effective are the proposed
protocols when including, on one hand redundancy of information
over set of nodes, and on the other hand the possibility of having
faulty, missed or late reports from the end devices.
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