Issues in authentication by means of

smart card devices

Ph. D. Thesis
by
Tommaso Cucinotta
Scuola Superiore Sant’Anna, Pisa, Italy

cucinotta@sssup.it

July 14, 2004






Issues in authentication by means of

smart card devices

Ph. D. Thesis
by
Tommaso Cucinotta
Scuola Superiore Sant’Anna, Pisa, Italy

cucinotta@sssup.it

July 14, 2004

Candidato

Dott. Tommaso Cucinotta

Relatori

Prof. Paolo Ancilotti

Prof. Marco Di Natale

Dott. Giuseppe Lipari

Dott. Paolo Bizzarri







Contents

Contents

Background

Introduction . . . .. .. ..

The need for smart cards . .

The problem of smart card interoperability . . . . . . . ... ...

The proposed approach . . .

Smart card middleware

Background on smart card middleware . . . . . . ... . ... ..

Standard protocols and APls

A protocol for programmable smart cards

Motivations . . . . . . . ..
Protocol overview . . . . . .
Implementation notes . . . .

Existing solutions . . . . ..

Comparing protocols for smart cards

Requirements analysis . . . .

Technical comparison . . . .

Conclusions and future work

11
11
14

21
22
23
39
43



Contents

The host-side architecture

Architecture overview . . . . . . . . .
APl overview . . . . . . .
Related projects . . . . . . . . . ...

On-board fingerprint verification

Introduction . . . . . . . ..
Related work . . . . . . . . . .

Implementation notes . . . . .. .. ... ... ...

Conclusions and future work . . . . . . . . . ... ...

A middleware for digital signatures

Preface . . . . . . . . . .
Introduction . . . . . ... L
The need for open architectures . . . . . . . . .. ... ... ..
National background . . . . . . . . . .. ...

Project overview . . . . . . . . ...

Application of the proposed architecture

QSign . . L
JMuscleCard . . . . . ..,
JC Emulator . . . . . . .

Table of acronyms

Bibliography

Vi

105
105
106
108
109
112

117
117
119
120

125

127



Preface

Data security is currently one of the basic requirements in computer soft-
ware design, and it is most commonly achieved in the software industry by
means of cryptographic algorithms and protocols. The adoption of such
techniques can only guarantee protection of the application data as long
as the cryptographic keys are securely created, stored and managed. Such
bit strings constitute the weakest point of the overall “security chain”, where
compromise of even a single cryptographic key related to an application may
lead to the compromise of the entire data managed by that application.
Management of the cryptographic keys is thus a crucial point to be
addressed in the design and development of a secure system/application,
the most effective means for protecting them, today, being the adoption
of smart card technology [49]. This thesis discusses issues in realizing se-
cure solutions based on the adoption of smart card devices for the purpose
of securely managing a user cryptographic keys, with a clear focus on the
availability of the techology on open systems. Despite the growing number
of applications, libraries and software components that are available on such
platforms and are already used in the daily life by every user, and the rel-
atively low cost of smart card devices today, such devices are struggling in
being supported by applications and secure software components, especially
on open systems. This happens essentially because integration of smart card
technology implies dealing with a high number of reader and card devices
different in nature and capabilities. This situation results in the presence

on each computer of a certain number of cryptographic keys which, even

Vil



Contents

if protected by passphrases or similar means, are every day at risk of be-
ing compromised due to the great number of malicious software programs
overpopulating the Internet, today.

The situation is unacceptable, especially when looking to one of the
most interesting application of the technology today, namely law compliant
digital signatures. More and more countries, today, embed into their legal
framework rules and technical regulations which allow an electronic docu-
ment digitally signed to have the same legal value as the corresponding paper
document with a handwritten signature would have. This constitutes a great
potential for the increase of the efficiency of public and private administra-
tions, potential that is hindered in the first place by the availability of such
technology on only those platforms which are of interest for the smart card
market, i.e. the Microsoft operative systems. In order for such technology
to have a great impact on the citizens, it is of paramount importance that
they are given the possibility to digitally sign documents by substaining a
very little cost, as it is the case for a handwritten signature, which required
a sheet of paper and a pen.

The open smart card architecture which is being proposed in this thesis,
in the author’s opinion, will help both in simplifying the development cycle
of a smart card driver, and in easying engagement of this technology by
applications with basic security requirements, especially on open platforms,
so to increase the chances of availability and finally of use of smart card

technology on these systems.

viil



Background

This chapter introduces common issues in smart card interoperability, dis-
cussing how such issues have been faced with by standard organization in
the past, and giving a hint on why standard documents issued by those or-
ganizations have not completely succeeded in solving the problem. Also,
the JavaCard standard by SUN is introduced, which has constituted one
of the latest step towards interoperability among different-vendor devices,
and which has been largely adopted by card manufacturers, thanks to the
platform independence inherited by the design of the Java language.

Introduction

Different protocols have been developed to allow interoperability among
smartcard devices within various application contexts [27, 30, 31, 22, 19,
20]. Although they provide a common set of commands for exposing smart-
card services, the goal of a common, multi-application, device-independent
and application-independent card protocol was not achieved. It is not pos-
sible to write a host-side software that accesses basic storage and crypto-
graphic facilities of most widely used crypto cards only relying on the stan-
dardized commands. The protocol which is being introduced in Chapter
has been designed around most widely needed card services among com-
monly used applications. Its voluntary limited complexity and completeness
at the same time make it a suitable minimal protocol for using programmable
crypto cards in a generic, multi-application, and secure fashion.

1



Background

The smartcard world has some kind of intrinsic complexity due to the
existence of varying kinds of both card readers and card devices. The ISO
standards establishing physical and electrical characteristics and those defin-
ing the T=0 and T=1 low-level communication schemes have been widely
accepted and adopted by the industry. No further documents standardizing
smartcard cryptographic commands [30, 31, 22] have had the same success
so far.

This has happened for two reasons: excess of complexity and deficiencies
in completeness. To cite an example, these were common problems of
the ISO standards for storage and cryptographic services [27, 30]. These
documents defined commands to access files and keys on a card, ranging
from simple commands like those for PIN management to sophisticated
hierarchical filesystem browsing and certificate verification, but there was
no specification of how to create such resources on the card. This pushed
card manufacturers to embed custom, proprietary commands in their devices
for the purpose of creating resources. As a result, a standard compliant
software can use the resources already on the card, but has no standard way
of creating them. Usually only a card manufacturer provides the software
needed to initially “personalize” the card and “manage” it afterwards.

Furthermore, smartcard manufacturers have seen interoperability as an
enemy, because of their will to tie their customers as long as possible. So
card vendors also embed their own features, only accessible with their own
custom commands (or a variation on the standard commands), only imple-
mented in their own software. This is done to give some kind of added value
to their solutions with respect to the concurrent ones. This situation dis-
courages wide adoption of smartcard technology, because developers do not
have a direct way to write an interoperable, card independent, smartcard
plugin for their crypto-aware programs and they don't want to cope with
proprietary extensions of each and every card and token manufacturer.

Application developers today can use standard interfaces like PKCS-11
[45] for accessing crypto services in a generic way. Installation of the proper
implementation of such interfaces provided by a card manufacturer auto-

2



Introduction

Crypto Aware
Applications

PKCS#11 PKCS#11 PKCSH11
Software HW Accel Smartcard
Module ) Modules Modules

Figure 1: The common API approach for embedding cryptography into
applications.

matically enables a card to be used by those applications (see Figure 1).
Unfortunately, most of such implementations are commercial products and
are only available on Windows platforms. Public specifications for smartcard
operating systems or cryptographic applets are rare. Even with some open
specifications it is common for the manufacturer to require you to license
some piece of software or documentation in order to make use of the device.
This behavior disrupts and discourages a wide adoption of these devices. It
also breeds poor public perception of these devices in a world where open

standards such as USB and others exist.

After all the advances in technology there still does not exist an inter-
operable, pluggable, portable, and freely useable smartcard solution that
achieves the basic goals of the smartcard existence: user authentication
and digital signature. We believe that the basic design around the Muscle-
Card Card Edge protocol, together with the open source, freely available,
portable host-side middleware [15] that uses it, will widen smartcard tech-
nology adoption in applications that handle sensitive data. It must be noted
that the proposed solution is not actually suitable for all possible applications
of smartcards. Prepaid cards, electronic cash and mobile phone are all ex-
amples of applications that could require additional specific [20] operations
to be performed on the card side.



Background

The need for smart cards

Smart card technology allows to enclose into the physical boundaries of an
Integrated Circuit Card (ICC) one or more cryptographic keys, which are
directly used by the on-card circuits, logics, operating systems and appli-
cations. Furthermore, smart cards are built in such a way to be physically
tamper proof, i.e. it is very difficult and expensive to try to recover the on-
board memory contents by physical inspection (at what degree such property
is applicable depends on a device-by-device basis). The on-board logics is
still enough simple so to allow to have a real control on what software runs
onto a smart card device, and the on-board software may be done func-
tionally correct, what is practically impossible within traditional computer
systems, where the much higher software complexity led to a situation in
which evey PC has flawn which may be used by viruses, computer pirates
and hackers to get remotely total control of the machine. Antivirus and
intrution detection systems are, of course, just a medicine which is useful
after the intrution/break-in has occurred, rarely they manage to prevent a
new attack. Last, but not least, a smart card owner has physical protection
on the device, which resides almost always into his/her pocket. This greatly
reduces the chances for such devices to fall into unauthorized hands. This
is not the case for traditional computer systems, unless physical surveillance

procedures are undertaken which usually lead to unsustainable costs.

The problem of smart card interoperability

In spite of the growing need for smart card integration into applications and
the great benefit these devices incorporate, smart card devices are struggling
for a wider use in network security applications. This is mainly due to the
complexity inherent to their integration within software applications, which

exists for several reasons.

e There exist different types of card devices, as it will be underlined in

Section : storage only, crypto-enabled, with general purpose CPU,



The problem of smart card interoperability

programmable in Java, Assembler, Basic, etc...

Various card devices talk to the outside world using different proto-
cols. In spite of the effort made by standard organizations [27, 29, 30,
31, 22], still card devices have many restrictions, uncommon filesys-
tem approaches, and different cards have typically different ways to
accomplish the same function, i.e. a file creation.

Many smart cards have closed protocols and functionalities, what
makes their use within open solutions impossible.

Some of the existing standards for card interoperability addressed from
the beginning only the usage issue, leaving the personalization of a
card to proprietary extensions. As an example, the ISO 7816-4 [27]
standard described the commands to browse an on-card filesystem,
saying nothing about its creation and management. Only later, the
ISO 7816-9 [31] standard fixed the hole, when tenths of card devices
were already on the market with proprietary protocol extensions. Fur-
thermore, these standards described a too complex protocol to be

implemented on programmable devices commonly available today.

The card life cycle is short. By the time a card is supported on lower

priority systems like Unix-like ones, it ceases to be manufactured.

To further the argument for on-card interoperability let's look at today’'s

trend in computer hardware. In nearly every hardware sector, manufacturers

are unifying devices’ interfaces by using open standards, like PCl or USB.

Keyboards, scanners, mice, etc...no longer exist in a proprietary fashion,

but conform to the USB HID class specification, thus requiring only one

driver for all the devices which meet the specification. The smart card world

still ties to a “proprietary” approach in which every manufacturer deliberately

deviates from standards in order to give to their products some sort of

added value and to link their customers to the company as long as possible.

Application developers are forced to link their applications to a specific card

5



Background

in order to use smart card services. If that card is no longer manufactured
in six months, they can just hope the manufacturer has a new card which
inter operates with the old one at the software level. The other alternative
is to go to another card manufacturer and replace the entire software stack.

This situation discourages smart card integration and has the conse-
quence of a reduction in the overall smart card usage hindering their evolu-

tion in security software and frameworks.

The world of smart card devices

The world of smart cards is characterised by various card-reader and card
device types. Card readers can be connected through the serial, PS/2 or
USB ports. Some of them have multiple slots for the insertion of multiple
cards at the same time. Others have an on-board pin pad allowing the user
to enter the PIN code in a more secure way than the traditional solutions
for PCs, where the user is required to enter the PIN code onto the PC
keyboard. Some readers are also capable of wireless communications with
the card, that is without any need of inserting the card into a slot.

Different types of card devices exist as well. Storage-only cards are
traditionally used for storing, in a protected and mobile way, some kind of
information, and a few on-card logics is used to perform basic operations
on the stored information such as data retrieval or decrease of some on-
card counters. A typical application is constituted by a pre-paid card, where
the information stored onto the card corresponds to the amount of money a
user paid for accessing some service, such as telephone calls or access to the
services of an Internet Point, and the user is required to insert the card into
a terminal as long as he uses the service. The only operations the terminal
can request to the card are typically retrieval of the residual pre-paid service
time and its decrease of a prefixed amount. Usually, such cards have no
way to authenticate users before the card use, or in some cases a PIN code
verification is requested before the on-card data can be read.

A cryptography-enabled smart card, instead, is able to perform sophisti-



The problem of smart card interoperability

cated cryptographic operations, usually for the purpose of authenticating to
a system on behalf of the legitimate owner. In such cases, the card stores the
user authentication cryptographic key, and proves to the system possession
of it during a challenge-response cryptographic protocol that is run between
the target system and the card device. The cryptographic key is securely
stored onto the tamperproof smart card device and is directly used by the
card itself. It is never revealed to the outside world. A different kind of
application is digital signature, where a document is signed by using the on-
card user’s signature private key, where the signature operation is computed
on the card device itself. In the digital signature application, sometimes the
card is also requested to perform other operations such as data digesting
and padding, for the purpose of increasing security of the system. Some-
times cryptographic smart cards may also have a means to authenticate
the host system in a cryptographic way, so to prevent unauthorized use of
the device. In such cases, the card runs a cryptographic challenge-response
protocol with the host PC, where this time the host PC has to prove to the
card device possession of its own authentication cryptographic key.

GSM-enabled smart cards are a special kind of cryptographic smart cards
which are widely used in the Global System Mobile (GSM) telephony world,
as Subscriber Identity Modules (SIMs) which authenticate users to the mo-
bile telephony provider for the purpose of accounting the telephone calls
made by a mobile phone. Such cards expose the required cryptographic
capabilities by means of the GSM standard protocol [20].

A programmable smart card is usually a cryptographic smart card with
a general-purpose CPU on-board, so that a program can be dynamically
loaded onto the device for the purpose of implementing a custom application
through the implementation of a custom protocol for interacting with the
host PC. This kind of devices offer the highest flexibility to applications,
which may be designed so to delegate the most security-critical operations
to be performed onto the protected on-card environment. These devices
are usually programmed by using a subset of a well-known programming

language, such as Java, Assembler or Basic.



Background

Smart cards and open systems

Even if smart cards have been widely adopted and supported on proprietary
platforms, they are not being used at all on open platforms. On these sys-
tems many Open Source libraries and software applications exist embedding
cryptography for protecting their data, but the achieved security level is
strongly limited because of the use of software-only cryptography. Only a
few solutions exist supporting just one or a poor set of smart card devices.

Furthermore, on open platforms a strong demand by the developers’
community exists for the use of unrestricted libraries and applications. Open
source software and open solutions are probably the right match for this
demand, where smart card solutions manufacturer do not usually provide
open source components, nor they make public any of the protocols used
in their products. This makes integration of such devices quite difficult,
as witnessed by the fact that, although many Open Source programs exist
which embed cryptographic services, most of them still lack the support for

external cryptographic smart cards.

The Java Card standard

One step towards interoperability of smartcards has been done with the
issue of the Java Card("™) standards [50, 51, 52]. These documents define
a standard API for a Java Applet which runs onto a smartcard to access
crypto services onboard. Because of the intrinsic complexity of the Java
language, a standard subset of it and of the Java Runtime Environment has
been defined for implementation onto smartcards. This way it is possible
to write a program that runs on any compliant smartcard, implementing a
custom protocol for communicating with the host. Fortunately this standard
is being adopted by card manufacturers.

A classic way of handling Java Cards is by designing a specific protocol
and writing a Java Applet implementing it for the particular application that
the card has to cope with. The resulting solution is not suitable for other
applications or contexts. Instead the protocol presented in Chapter has

8



The proposed approach

been designed to allow use of the card by the most widely used applications,

remaining as generic and application independent as possible.

The proposed approach

The open approach which is being introduced in the next chapters consti-
tutes a step toward openness in smart card middleware design and implemen-
tation. In the author’s opinion, the protocol introduced in Chapter , along
with the open middleware components and prototype applications discussed
in Chapter and Chapter which have been developed on the host-side, will
promote adoption of these devices on open platforms, increasing the chance

for their worldwide adoption in the daily life within computer systems.






Smart card middleware

This chapter aims to overview basic concepts about smart card architec-
tures and protocols. First, Section depicts what is the typical architecture
of a smart card middleware, and introduces basic concepts around standard
protocols and Application Programming Interfaces (APIs) widely used in the
world of smart cards. Then, for the sake of completeness, Section briefly
surveys such standards, focusing specifically on the International Standard
Organization (ISO) 7816-x set of standard protocols, on the RSA Labs’
PKCS#11 API and on the PCSC smart card standards by the PCSC Work-
group.

Background on smart card middleware

The simplest way of increasing an application or system security through the
use of smart card technology is by delegating management and use of one
or more cryptographic keys to the card device. For PKI applications, one or
more public key certificates can be stored on the card for easing mobility of
the card among various physical locations.

In spite of the effort made by standard organisations [28, 22], card de-
vices have many restrictions and non-standard filesystem structures. Differ-
ent cards have typically different ways to accomplish the same function, i.e.
a file creation, thus interoperability at the software level is usually achieved

through common, high-level, application programming interfaces that sup-

11



Smart card middleware

SC-Aware
Applications High Level
:I: — — API (PKCS#11,
PCSC Part 6, ...)
Card Card
Driver | * ™" | Driver
PCSC Part 5
-- — —— (ICC Resource
Manager API)

Resource Manager

:t —— —— CT-API/IFD-Handler

Reader Reader
Driver § " | Driver

Serial / PS2/USB
‘l‘ - _l' OS Primitives

Figure 2: Architecture of a generic smart card middleware

port on-card operations in a manner that is independent of the card and
reader devices.

Two APIs that have been defined for this purpose are PKCS#11 [45]
by RSA Labs, and PCSC [37], Part 6, by the PCSC Workgroup. While the
former has been widely adopted on various systems and platforms, most of
them proprietary, the latter is only used on Microsoft platforms. Such high
level APIs are made available to applications through a smart card middle-
ware that requires various drivers to be installed on the system, depending
on the actual reader and card devices that are going to be used. A generic
smart card middleware architecture is depicted in Figure 2.

At the bottom layers, a resource manager component is required for
managing the smart card readers that are available on the system, and
making their services available to higher level components, in a way that
is independent of the hardware connected to the system. This is done
through the PCSC ICC Resource Manager interface [37, Part 5], which
provides function calls for listing the available readers, querying a reader
about the inserted card(s), enabling or disabling the power to an inserted
card, and establishing an exclusive or shared communication channel for

data exchanges with a card. The reader driver takes care of translating the

12



Background on smart card middleware

requests into the low-level Protocol Data Units (PDUs) to be transmitted
to the reader through the low level serial OS primitives. Reader drivers
implement the CT-API or the PCSC IFD-Handler API [37, Part 3, Appendix
A], and the resource manager translates calls to the PCSC Part 5 interface
to the appropriate lower level APl calls. The higher software stack, once
a communication channel with a card device is established, performs data
exchanges through command APDUs compliant to the ISO T=0 or T=1
protocols [26] (see Section for details).

The top level component of the middleware is traditionally a monolithic
component, provided by card vendors, that implements the PKCS#11 or
PCSC Part 6 interfaces. These APIs have calls that allow the application to
locate, manage and use cryptographic keys and public key certificates that
are available on the card. The card driver translates such requests into the
appropriate lower level ISO T=0 or T=1 command APDUs to be exchanged
with the card. Typically, it supports a range of similar card devices provided
by the same vendor. Furthermore, it must comply with the higher level API,
what requires additional tasks to be performed in the component, such as
session management and transaction handling. Such tasks are quite similar
in the driver implementations provided by different vendors, where the only
changes regard the specific way information is exchanged with the card by
means of APDU exchanges. This is why an investigation has been made
on the possibility of introducing a further abstraction layer, breaking the
traditional driver architecture through the use of a middle-level API.

In fact, in the architecture that is being introduced in Chapter , function-
alities are grouped into separate components: a lower level (LL) driver, which
formats and exchanges command APDUs with the card device, and a higher
level (HL) one, which performs the additional management tasks required
for the compliance with the higher level interface. This is done through
the introduction of a middle-level API, clearly identifying the boundary and
commitments of the two sublayers around which the two functionalities just
cited are split. As it will be shown in Chapter , the main benefit of such

an approach is that it is possible to write the high level API specific man-

13



Smart card middleware

agement code only once. Interoperability among card devices is achieved by
writing, for each card, a different low level driver implementing the common
middle-level API.

Standard protocols and APIs

The T=0 and T=1 protocols

The T=0 and T=1 protocols define, respectively, an asynchronous half du-
plex character oriented transmission protocol and a block oriented one for
exchanging data between an interface device (i.e. a smart card reader) and a
smart card. These protocols require that each action be started by the host
by sending a command APDU to the card, composed of a mandatory header
and an optional, variable length, data field. After having performed some
internal computations, the card sends back a response APDU to the host,
composed of an optional, variable length, data field and a mandatory status
word (see Figure 3). Only an overview of how the T=0 protocol works is
provided, in order to allow a better understanding of the architecture that
is being introduced. The complete specifications can be found in [26]. The
header is composed of five bytes. The class byte CLA and the instruction
byte INS identify the command to be performed, while the bytes P1 and P2,
along with the optional data that eventually follows, are used to feed input
parameters to the command. The P3 byte contains either the length of the
optional data sent by the host after the header in the command APDU, or
the expected length of the optional data sent by the card before the status
word in the response APDU. The status word in the response APDU is a
two bytes sequence used to notify if the command completed successfully

(usually this corresponds to a value of 0x9000) or not.

Note that, usually, for each command-response APDUs only one device,
either the card or the host, are allowed to send data, not both. Basically,

four modes of operation are allowed:

14



Standard protocols and APlIs

@ Smart Card

T
I
|CLA|INS|P1|P2|LEN||DATA| !
I
1

| | DATA || SwWl | SW2 |

i) |

Figure 3: Generic invocation of a smart card command by exchanging ISO
APDUs.

the host sends no data, the card responds with no data, i.e. only with

a satus word indicating weather the operation was successful or not

the host sends some data, the card responds with no data

the host sends no data, the card responds with some data

both the host and the card send some data

All but the last mode of exchanges may happen within a single command-
response APDU pair. However, whenever the card device needs to provide
some data as a response to a command APDU containing also some data,
it responds with a special status word (0x61XX) containing, in the second
byte, the length of the data to be transmitted to the host. The host is
then supposed to retrieve such data by using a special command APDU,
namely the GetResponse APDU. Also, note that various extensions are
standardized that allow each command-response APDU to be more flexible
in the way data is transmitted, especially when more than 256 bytes need
to be transmitted at each exchange. Though, not all card devices comply

with such extensions.

15



Smart card middleware

The PKCS#11 Standard

The Cryptographic Token Interface Standard specifies an application pro-
gramming interface (API), called Cryptoki, to mobile devices which hold
cryptographic information and perform cryptographic operations, such as
smart cards, PCMCIA cards and smart diskettes. Main goals of the API
design have been, among others, independence from the specifics of a secu-
rity device and resource sharing, so to allow multiple applications to share
access to a single device, as well as to access multiple devices, presenting
to applications a common, logical view of the device called a cryptographic
token.

Cryptoki provides an interface to one or more cryptographic devices that
are active in the system through a number of slots. Each slot, which corre-
sponds to a physical reader or other device interface, may contain a token.
Typically, a token is "present in the slot" when a cryptographic device is
present in the reader or interface device.

The kinds of devices and capabilities supported will depend on the par-
ticular Cryptoki library and supported devices. The standard specifies only
the interface to the library, but not all libraries support all the mechanisms
(algorithms) defined in the interface (since not all tokens are expected to
support all the mechanisms).

The logical view of a token is a device that stores typed objects and
performs cryptographic operations. Each object type, or class in the Cryp-
toki terminology, is associated a set of metadata information, available as a
set of attributes, i.e. name-value pairs. Some attributes are general, such
as whether an object is private or public, and there are also attributes that
are specific to a particular type of object, such as the modulus of an RSA
key. Classes are arranged in a hierarchical fashion, where each class inherits
attributes of the parent class. Cryptoki defines three main classes of ob-
jects: certificates, keys and data. A certificate object stores a public-key
certificate. A key object stores a public key, a private key, or a secret key.
Each of these types of keys has subtypes for use in specific mechanisms. A

16



Standard protocols and APlIs

data object is a container whose contents is application-dependent.

Objects are also classified according to their lifetime, visibility, and access
control. Token objects are persistently stored onto the token, even after
token extraction, and are visible to all applications that connect to the
token. Session objects are temporary objects which are only visible to the
application which created them, and their lifetime is tied to the session in
which they were created.

Public objects may be accessed without any prior authentication of the
application. Private objects, on the other hand, require the application or
user to authenticate to the token through the use of a PIN code or some
other token-dependent method (for example, a biometric device).

Cryptoki defines functions to create and destroy objects, manipulate
them, and search for them. It also defines functions to perform crypto-

graphic functions with an object.

Cryptoki recognizes two user types: the security officer (SO) and the
normal user. The SO is responsible for initialization of a token and for set-
ting the normal user’'s PIN and possibly to manipulate some public objects.
Only the normal user is allowed to access private objects on the token, and
the access is granted only after the normal user has been authenticated.
Some tokens may also require that a user be authenticated before any cryp-
tographic function can be performed on the token, whether or not it involves
private objects.

The PKCS#11 standard also defines how the API behaves with respect
to concurrent accesses by multiple tasks and threads to the same slot or
token.

This interface is used both on proprietary platforms and on open systems
like Linux. Unfortunately, on the latter platforms, it is rare that a vendor

provides a PKCS#11 module for one or more of their smart-card devices.

17



Smart card middleware

The PCSC Standard, Part 5

The part 5 of the PC/SC Workgroup's architecture defines the /CC Re-
source Manager component, which is responsible for managing the other
ICC-relevant resources within the system and for supporting controlled ac-
cess to Interface Devices (IFDs) and, through them, individual Integrated
Cicruit Cards (ICCs). The ICC Resource Manager solves three basic prob-
lems in managing access to multiple IFDs and ICCs. First, it is responsible
for identification and tracking of resources. Second, it is responsible for
controlling the allocation of IFD resources across multiple applications. It
does this by providing mechanisms for attaching to specific IFDs in shared
or exclusive modes of operations. Finally, it supports transaction primitives
on access to services available within a given ICC. This is extremely im-
portant because current ICCs are single-threaded devices that often require
execution of multiple commands to complete a single function. Transactions
allow multiple commands to be executed without interruption, ensuring that

intermediate state information is not corrupted.

The functional interface exposed by the ICC Resource Manager is de-
scribed, in an object-oriented fashion, in terms of object classes and meth-
ods on object instances of those classes, along with required parameters
and expected return values. The interface definition is language and system

independent.

The class ResourceManager provides the methods necessary to create
and manage Contexts, which are needed for communicating with the |CC
Resource Manager. The class ScardTrack encapsulates functionality that
supports determination of the presence or absence of specific card types
within the available readers. This information is made available based on
selection criteria provided by the calling application. The class ScardComm
encapsulates a communication interface to a specific card or reader. It
provides methods for managing the connections, controlling transactions,
sending and receiving commands, and determining card state information.

A fundamental method of this class is the ScardTransmit function, which

18



Standard protocols and APlIs

allows exchange of ISO/IEC T=0 and T=1 APDUs with an ICC device.

This APl is a standard component on Microsoft platforms, and, thanks
to the MUSCLE project?, it is available on many open Unix-like platforms
too, such as Linux, OpenBSD and Mac OS-X.

The PCSC Standard, Part 6

The part 6 of the PC/SC Workgroup's architecture defines the Service
Provider (SP) component, composed of two fundamental subcomponents:
the ICC Service Provider (ICCSP) and the Cryptographic Service Provider
(CSP).

The ICCSP is responsible for exposing high-level interfaces to non-cryptographic
services. This exposure is expected to include common interfaces, defined
in the specification, for managing connections to a specific ICC, as well
as access to file and authentication services. In addition, the ICCSP may
implement interfaces that the vendor defines for features specific to the ap-
plication domain. The ICCSP interface provides mechanisms for connecting
and disconnecting to an ICC. In addition, the ICCSP exposes file access
and authentication services which encapsulate functionality defined by ISO
7816-4, along with natural extensions for functionality such as file creation
and deletion. The file access interface defines mechanisms for locating files
by name, creating or opening files, reading and writing file contents, closing
a file, deleting files, and managing file attributes. The authentication in-
terface defines mechanisms for cardholder verification, ICC authentication,
and application authentication to the ICC.

The CSP, in contrast to the ICCSP, isolates cryptographic services be-
cause existing regulations imposed by various governments affect import and
export. The CSP allows applications to make use of cryptographic services
in @ manner that compartmentalizes the sensitive elements of cryptographic
support into a well-defined and independently installable software package.

IMovement for the Use of Smart Cards in a Linux Environment,
http://www.musclecard.com

19



Smart card middleware

The CSP encapsulates access to cryptographic functionality provided by a
specific ICC through high level programming interfaces. Its purpose is to ex-
pose general-purpose cryptographic services to applications running on a PC,
like key generation, key management, digital signatures, message digesting,
bulk encryption services, and key import and export.

Relevant classes defined in this part of the standard include:

e the FileAccess class, which defines a high level interface to a ISO
7816-4 based on-card file system;

e the CHVerification class, which provides an application with the
ability to force a Card Holder Verification (CHV, i.e. a PIN code in
the PCSC terminology) or allow the user to change a CHV code;

e the CardAuth class, which exposes the interfaces to the authentica-
tion services that may be supported by an ICC, i.e. it allows to run
cryptographic challenge-response protocols for the authentication of
the host PC application or the card;

e the CryptProv class, which exposes the primary methods for accessing

cryptographic services.

Unfortunately, this API is only available on Microsoft platforms, and it
constitutes the standard way a smart card vendor integrates its own devices
with widely known applications such as Internet Explorer and Outlook. On
open platforms, instead, the few vendors who provide a high level API,
usually provide a PKCS#11 module.

20



A protocol for programmable

smart cards

This chapter presents an open protocol for interoperability across multi-
vendor programmable smart cards, which allows programmable card devices
to expose storage and cryptographic services to host applications in a uni-
fied, card-independent way. Its design, inspired by the standardization of
on-card Java language and cryptographic API, has been kept as generic and
modular as possible, allowing to embed future extensions for additional cryp-
tographic primitives and user identification schemes. As a proof of concept,
a biometric extension has been recently developed allowing on-card finger-
print verification for the purpose of authenticating the owner before use. The
protocol security model has been designed in order to allow multiple applica-
tions to use the services exposed by a same card, with either a cooperative
or a no-interference approach, depending on application requirements.
With respect to other existing protocols for smart card interoperabil-
ity, requiring the cards to implement sophisticated services, the presented
protocol exposes a reduced set of functionalities, achieving a simpler man-
agement of the on-card resources, resulting in a size contained code when
implemented on programmable cards. The reduced functionalities suffice
to most smart card enabled applications that use card devices for authen-

tication and digital signature purposes, comprising PKI based applications,

21



A protocol for programmable smart cards

constituting a better solution to be implemented with programmable card
devices due to the on-board resource constraints.

An open source card-side implementation of the protocol has been devel-
oped as an Applet for Java Card 2.1.1 compliant cards. Also an open source,
pluggable, host-side middleware has been developed, that is portable on a
multitude of open source and UniX-like platforms (see Chapter ). The mid-
dleware includes a full protocol implementation and exports a new smart
card Application Programming Interface to the upper smart card middle-
ware layers or applications. Even if the API original design aimed at a
one to one mapping with the protocol commands, the resulting interface
is enough generic to be implemented on any card supporting storage and
cryptographic APDUs. The resulting smart card middleware allows for dy-
namic loading of the correct smart card plug-in, based on the card Answer
To Reset. The host-side implementation of the cited protocol is currently
just one of the available plugins, supporting any Java Card compliant card,
once loaded with the Applet. Other plug-ins have also been developed for

some non programmable smart cards.

Motivations

Today many smart card aware applications exist on closed platforms that
use smart cards for the only purpose of securely storing and managing user
cryptographic keys and a few related data. Some examples are PKI? based
applications, like digital signature programs, secure on-line web services, se-
cure e-mail. These applications face with the interoperability problem by
adopting common interfaces at a software level, like the PKCS#11 [45] or
PCSC [37] ones. Unfortunately, the modules implementing these interfaces
are usually provided by card vendors only for those platforms that are con-
sidered of commercial interest. Rarely they provide an implementation for
open platforms. This situation discourages smart card integration and has

2Public Key Infrastructures.

22



Protocol overview

the consequence of a reduction in the overall smart card usage, hindering

their evolution in security software and frameworks.

On the other hand, programmable smart cards have always been used
in the context of secure solutions with different and application specific
tasks to be performed by the external device. Usually a custom program is
loaded on the card implementing a custom protocol to exchange data with
the specific application. A common example is a prepaid card, where the

on-board program is used to manage an electronic wallet.

In this chapter an hybrid approach is introduced, where a program is
loaded onto a programmable card allowing exposure of cryptographic and
storage services to generic applications by means of an open protocol. The
advantage of this approach is that it is possible to both use the generic ser-
vices provided by the program, and to implement custom commands in order
to satisfy specific application requirements. Existing standard protocols are
too much complex to be implemented on such devices, where the on-card
program must be of contained size in order to leave enough space on the

card for cryptographic keys, user data and other extensions.

In the author’s opinion, the introduction of an open, well-designed, un-
restricted protocol for programmable devices, along with an open source
card-side implementation and an open host-side smart card middleware us-
ing it, will lead to a wider use of these devices.

Protocol overview

This section features a technical overview of the protocol, underlining how
the project goals have been accomplished. The discussion only addresses
protocol’s main features, and explains main design choices. The complete

protocol specification [16] is available for download at the URL: http://www.musclecard.com.

23



A protocol for programmable smart cards

Objectives and design choices

ISO standards impose a high level of complexity on data storage and crypto-
graphic services exposed by a smart card, constituting a powerful and flexible
solution that is suitable for a wide range of applications. Though, an imple-
mentation of these standards onto a programmable device existing today,
like a 32K Java Card, would result in a so big program that a few on-board

memory, if any, would be left for application data and cryptographic keys.

The new protocol introduced in this thesis, instead, has been designed
with the aim of satisfying the requirements that a smart card stands for:

protecting user keys.

The project has been focused from inception on the release of an open,
simple, card independent, complete and freely available card protocol that
allows a host application to talk to any programmable smart card, in or-
der to access cryptographic and storage facilities on the card. The main
goal in protocol design was retaining enough generality to catch and sat-
isfy requirements of a multitude of target applications, comprising digital
signature, secure e-mail, secure login, secure remote terminal and secure
on-line web services, both PKI based and not. These requirements have
been identified in having a means of generating, importing, exporting, and
using cryptographic keys on the card. Also required is having a means of
creating, reading, and writing generic data on the card in separate “contain-
ers’. This is useful, for example, to store a public key certificate associated
with a private key on the card. The access to some of these resources needs
to be granted only after host application and user authentication. Another
requirement is the independence of the managed data chunks from the lower
level T=0 APDU size limitations, so to preserve the ability to handle large
keys and data chunks that will be needed in a near future. The fundamental
constraint on the protocol design was due to the limited card memory of
todays’ programmable devices (ranging from 16 to 64 KBytes), resulting in
the requirement of a size-contained code for the on-board protocol imple-
mentation. This resulted in serious constraints on the protocol complexity,

24



Protocol overview

that needed to be as simple as possible.

The result has been a simple and light protocol that is more suitable
than already existing ones to be implemented on programmable card devices,
given the limited amount of available memory and computational resources.
As a remark, the developed Applet, implementing the entire protocol, has
a code size of around 10 KBytes. On a Schlumberger Cyberflex Access
32K card, this leaves enough free space on the card for keys, certificates,
additional application data, and further Applets to be loaded on the card for
additional services to be used in a joint or alternative fashion.

The protocol design explicitly addresses initialization issues, such as how
data or key objects are created on the card, and what authorizations are
needed for these operations to succeed. The protocol does not address so-
phisticated card services that can be required by some specific applications.
For example applications for “digital money” or “pre-paid cards” can require
special operations to be performed on stored data. Multi-key digital signa-
tures and authentication schemes can require specific cryptographic proto-
cols to be performed on multiple cards. These applications can still benefit
of the exposed protocol and open implementation, by extending them with
the required functionalities.

Protocol command set

With respect to the T=0 and T=1 protocols (see Section ), standing at
the transport layer according to the terminology defined in [21], section
7, our protocol stands above, at the application layer, identifying a set of
commands that a smart card program should support. The protocol spec-
ification exactly defines what class, instruction, parameter and data bytes
must be provided by the host for each command, and what data is expected
in response, if any, from the card, along with the possible error codes that
identify abnormal conditions during command execution.

A general overview of the commands available in our protocol specifica-
tion is reported in table 1, while specific details about various commands are

25



A protocol for programmable smart cards

CreateObject, DeleteObject
Data Storage WriteObject, ReadObject
ListObjects

Cryptographic GenerateKeyPair, ComputeCrypt
Key ImportKey, ExportKey
Management ListKeys
PIN CreatePIN, ChangePIN
Management UnblockPIN, ListPINs

. VerifyPIN, ISOVerify
f/leacr?;:g(}a/n?;sius GetChallenge, ExtAuthenticate

GetStatus, LogOutAll

Table 1: MUSCLE Card Protocol command set.

reported in the following sections.

Data storage services

The protocol encapsulates applications’ data into simple containers, called
objects, identified by means of a 32 bit object identifier (OID). Access con-
trol is enforced on a per-object and per-operation basis, distinguishing among
create, read, write and delete operations. More details on this are given in
section . The defined data storage service suffices to the target applications
cited above, by allowing them to store, retrieve and manage data onto a
card in a secure and controlled way. This is a minimum set of operations
and access constraints that is needed from host applications and suffices to
securely store, retrieve and manage data onto a smart card. This does not
preclude a hierarchic organization of applications’ data into a filesystem-like
fashion. That could be achieved on the client side on a per-application basis,
or in an inter-application fashion if further documents came up standardizing
particular objects to be used for filesystem information. This way consis-
tency of the achieved hierarchy would be up to the host-side applications
and could not be enforced by the card. Still this approach would be suitable

for environments where the hierarchy is created statically and needs not to

26



Protocol overview

be changed dynamically.

The protocol does not provide hierarchic arrangement of objects, nor
typed objects, conversely to other approaches [22] in which both special file
types and special file contents have been standardized for a particular appli-
cation context. However, a range of object identifiers has been reserved for
future use and cannot be used by applications. This could be used in the
future to support extended features, like file or certificate directories, that
could be managed by the card with a set of extension commands. The pro-
tocol does not define specific object contents, leaving to applications total
freedom on what to store onto a card: user private information, application
specific data, public key certificates, etc.... This is highly dependent on the
application itself and cannot be established on a document like our protocol
specification, that instead still leaves space for other documents to come up
standardizing object identifiers to be used to store special information with
an inter-application relevance.

The protocol specification does not address issues like how objects should
be created and managed on the card, how many objects are allowed to exist
due to management constraints (i.e. allocation tables), how free object
memory is to be handled by applications (i.e. by use of compaction or full
defragmentation of free blocks). Applications have only a view of the total
available memory, and whether an object of that size can be really created or
not depends on the specific on-board memory management that is performed
on the card.

Some smart card devices tend to separate among a public and a private
memory space. The first one typically contains public information that can
be read or sometimes changed at any time (like user preferences). The latter
is reserved for personal data to be handled by an application and its use is
allowed only after a PIN verification. The approach introduced in this chap-
ter is completely different in that we have a unique memory space, where
single created objects are associated with access control rules specifically
customized for each object and operation. So our model allows reconfig-

uration of the memory space as public or private according to application

27



A protocol for programmable smart cards

requirements. The section will explore in more detail the adopted security

model.

Cryptographic services

The protocol allows up to 16 keys to be stored and managed on the card,
identified by means of a numeric key identifier. A full key pair can also be
stored using two key identifiers. Key types are those provided by the Java
Card 2.1.1 API: RSA, DSA, DES, Triple DES, Triple DES with 3 keys. The
protocol is designed in such a way to allow further key types to be easily
added in the future.

Operations provided on cryptographic keys are import/export from/to
the host, calculation of cryptograms, and listing of keys, that provides size
and type information. All key operations but key listing can be allowed
only after proper host application/user authentication. The protocol allows
asymmetric key pairs to be directly generated on board guaranteeing the
private key can never be exposed outside of the card. In this case the public
key can be obtained by the host application with an ExportKey operation to
be performed after the key pair generation (see figure 22). When a key pair
is created on-board, the host application specifies under what conditions
subsequent reading, overwriting and use operations are allowed for each of
the keys in the pair. The same rules can be specified when importing a new
key from the outside world by means of an ImportKey command. Further
details on access control and security model enforced by the protocol will

follow in paragraph .

Input and output objects

Objects have also been used to overcome the T=0 protocol’s limitation of
256 bytes per APDU exchange®. This is due to the fact that the LEN field in
the APDU header is a single byte and indicates either the length of the data

3Extended data length fields and the Envelope command, as defined in [27], are not
implemented on all smart cards

28



Protocol overview

Host Smartcard
Application Program

I
|
GenKeyPair |
|
|
hal
[] ExportKey

I
' -

A\

Ok

Figure 4. Sequence of commands for an on-board key pair generation with
the subsequent export of the generated public key value, to be read after
the ExportKey command from the output object.

Host Smartcard
ApplTation Program
T T
|
r] CreateObject (InObj) o |
' o |
- Ok

WriteObject (InObj,KeyBlobData)

ImportKey (KeyID)

Figure 5: Use of the input object during a key import operation.

29



A protocol for programmable smart cards

to be transmitted to the card with the command APDU or the maximum
length of the data to be received from the card with the response APDU,
limiting such data to have a size between 0 and 256 bytes. The protocol
allows commands that need to transfer more than 256 bytes to or from a
card, like key exchange. When dealing with reading or writing an object
contents, the problem has been solved by introducing an offset field as a
parameter to the ReadObject and WriteObject commands, so that reading
or writing of a long data chunk can be performed by invoking multiple times
the commands with increasing offset values. When dealing with exchange
of cryptographic keys or cryptograms, instead, this limit was overcome by
reserving two object identifiers for an input object and an output object.
These are used for providing and retrieving long data to and from other
commands. For example, in order to import a key into the card, the key data
must be provided into the import object, then an ImportKey command simply
reads the key data from that object (see figure 5). Similarly, to export a key,
the ExportKey command calculates the key data and leaves it into the export
object to be retrieved in subsequent commands by the host application (see
figure 6). In the latter case it’s also up to the application to delete the output
object after retrieval of contained information. A few commands have been
specified in such a way that it is possible to provide the data parameter
bytes either within a single APDU or by using the |/O objects, depending
on the length of exchanged data. In these cases a command option field,
called data location byte, is provided by the application to specify if the
variable size part of the command data bytes is provided “inline” in the
command APDU, or if it must be read from the input object. For example,
this paradigm has been used in the ComputeCrypt and ExtAuthenticate
commands for a “quick” exchange of cryptograms, usually shorter than 256
bytes due to the current size of on-card cryptographic keys. In fact a 64
bit DES key requires computation of 8 data bytes at a time, a 128 bit 3-
DES key requires computation of 16 data bytes at a time, a 1024 bit RSA
key requires computation of 128 data bytes at a time. By setting the data
location properly, larger cryptograms can still be managed by the protocol

30



Protocol overview

Host Smartcard
Appplication Program

r] ExportKey (KeyID)

I
|
|
|
Ok
-

d

ReadObject (OutObj)

DeleteObject (OutObj)

A
“gj

Figure 6: Use of the output object during a key export operation.

with key sizes that a smart card will have to deal with within a near future.

|/O objects can contain sensitive information like key values or applica-
tion plain text data, so special attention must be paid to their management.
In fact operations using the |/O objects must be split in 3 or more pro-
tocol commands, where only the last one deletes the involved 1/O object.
If execution of the command sequence is interrupted for any reason, this
object would not be deleted, retaining its contents. These problems have
been avoided by requesting that the 1/O objects should be deleted as soon
as possible, and at the card reset. For example, each operation that uses
the input object must delete it before returning. When granting security of
operations involving the export object, instead, it's up to the host applica-
tion to read the contained data as soon as possible, and to finally delete
the object from the card. In both cases security of the composite operation
is granted both by the operative system resource manager that does not
allow other applications to interfere with the current multi-command oper-
ation, and by the object deletion at card reset that avoids attacks relying
on a sudden extraction of the device by the user before the object has been
deleted. In order for these mechanisms to achieve the desired security level,
the application must acquire access to the smart card reader in an exclusive

mode before starting any composite operation. This is also required before

31



A protocol for programmable smart cards

issuing any authentication command to the card, like a VerifyPIN or an Ex-
tAuthenticate command, in order to avoid that other applications access

protected on-card resources.

Security model and access control enforcement

A simple Access Control List (ACL) is defined, allowing operations to be
performed only after proper host application and user authentication. This
may be performed by means of a PIN code verification, a challenge-response
cryptographic protocol, or a combination of both of these methods. Fur-
thermore the protocol has been designed to allow future support for other
identification schemes like fingerprint verification or generic biometric verifi-
cation. As a proof of concept, a prototype implementation has been recently
developed for on-board fingerprint verification. Even though additional com-
mands have been added to the protocol for biometric template management,
the new authentication mechanism fits well into the protocol, allowing, in
example, the restriction of a key use or an object reading only after a suc-
cessful fingerprint verification.

Access rules for on-card resources are specified in terms of the authen-
tication needed to access each operation on each key or object. This has
been achieved by defining the concept of identity. This term refers to one of
several authentication mechanisms that host applications and users can use
to be authenticated to a smart card. ldentities, PINs, and cryptographic
keys are referred to by means of numeric identifiers. Different types of
identity are defined: (see also table 5) identities n.0-7 are said PIN-based
and are associated, respectively, with PIN codes n.0-7; identities n.8-13 are
said strong and are associated, respectively, with cryptographic keys n.0-5
for the purpose of running challenge-response cryptographic authentication
protocols; identities n.14-15 are reserved, their behavior is not defined by
the actual version of the protocol and is reserved for other authentication
schemes to be incorporated in the future®.

4The fingerprint verification mechanism recently developed uses identity n.14.

32



Protocol overview

Identity number Identity type Linked to

0 PIN-based PIN n.0
1 PIN-based PIN n.1
7 PIN-based PIN n.7
8 Strong Key n.0
9 Strong Key n.1
13 Strong Key n.5
14 Reserved Undefined
15 Reserved Undefined

Table 2: Association between identity, PIN and cryptographic key numbers.

PIN n.2 and n.3 PIN 2 and Key 1
Verified Verified
. A
ith

VerifyPIN
with PIN n.2

VerifyPIN
with PIN n.3

ExtAuth
with key n.1

VerifyPIN
with PIN n.2

Card
Reset

Unauthenticated

Figure 7: Subset of possible security state transitions allowed by the proto-
col.

A successful run of one of the authentication mechanisms causes the
log in of the associated identity, in addition to identities already logged
in. This way a host application can gradually switch to a higher security
level that grants access to more and more of the card’'s capabilities, as
it runs additional authentication mechanisms. Furthermore the LogOutAll
command allows a host application to return back to the unauthenticated
security status. A little subset of possible security states and transitions due
to successful authentication commands is shown in figure 23.

Logged identities control which operations are allowed on an object or

33



A protocol for programmable smart cards

Object ACL Key ACL
| Read ACW | | Read ACW |
| Write ACW | | Write/Del ACW |
| Delete ACW | | Use ACW |

Figure 8: Composition of the Access Control List for objects and keys.

on a key by means of an ACL specifying which identities are required to be
logged in to grant access to each operation of each object or key. Object
operations are read, write and delete. Key operations are overwrite (either
by means of regeneration or by means of import), export, and use. An
ACL associated with an object or key is specified by means of three Access
Control Words (ACW), each one relating to an operation (see figure 24). An
ACW has each bit corresponding to one of the 16 total identities that can be
logged in. An all-zero ACW means that the operation is publicly available,
that is a host application can perform it without any prior authentication.
An ACW with one or more bits set means that all of the corresponding
identities must be logged in at the time the operation is performed. An
all-one ACW means that the operation is disabled and cannot be performed,
independently of the connection security status. This is useful to disable

reading of private keys, for example. Table summarizes the situation.

The discussed security model has enough freedom to allow at least four
levels of protection for card services. An operation can be always allowed if
the ACW requires no authentication, PIN protected if the ACW requires a
PIN verification, strongly protected if the ACW requires a strong authenti-
cation, and disabled if the ACW is all-ones, forbidding its execution. As an
example, use of a private key onto a smart card is usually PIN protected, but
some applications could require a strong protection. Reading of a private
key is usually disabled. Public objects may always be readable, but their
modification could be PIN protected. Private objects could require PIN pro-

34



Protocol overview

Binary ACW Meaning

0000 0000 0000 0000 Operation always allowed

0000 0000 0000 0010 Operation allowed only if PIN n.1 has been veri-
fied

0000 0000 0000 0101 Operation allowed only if both PIN n.0 and PIN
n. 2 have been verified

0000 0001 0000 0000 Operation allowed only if a successful External
Authenticate command has been performed us-
ing key n.0

0000 0001 0000 0010 Operation allowed only if both a successful Exter-
nal Authenticate command has been performed
using key n.0 and PIN n.1 was successfully veri-
fied

1111 1111 1111 1111 Operation never allowed

Table 3: Some Access Control Word example values and their meaning.

tection for reading and possibly strong protection for writing. The model
has enough flexibility to allow all of these access policies, and more, to be
enforced.

PIN management

APDUs have been defined for PIN management, enabling to create, verify,
change and unblock PINs. Several PIN codes are allowed to exist and be
managed onto a single card. A special PIN (transport PIN, n.0) is assumed
to already exist right after the program has been loaded and instantiated on
a card, and it must be verified to allow a host application to create further
resources on the card. This has been imposed to prevent allocation of card
resources without the user knowledge. It is highly suggested that applica-
tions format a smart card by creating an application specific PIN code, and
using it for protecting application specific data and keys. With a proper set-
ting of the ACLs on the card, an application can “format” the card in such
a way that further usage of the card is dependent on a different PIN than

the transport one or on a different authentication scheme, like a challenge-

35



A protocol for programmable smart cards

response cryptographic protocol. This way after the user has entered the
PIN code from an untrusted terminal, the only allowed operations are ex-
actly those specified at the format time (typically use of a key or reading
of an object) with no possibility for that terminal to interfere with other

applications.

Multiple applications, one single card

The protocol has been designed to allow multiple applications to use the
same card and, on that card, the same program instance, without inter-
fering each other. While on a Java Card device this could be allowed in a
simple way by creating multiple instances of the same Java Applet, such
an approach would suffer of a static allocation of card resources. In fact
the total memory to be reserved for an Applet instance must be specified
at instantiation time. By allowing multiple applications to use the same
Applet instance, we allow a dynamic allocation of card resources to single
applications as needed®. The general idea is that each application must be
able to have and manage its own PIN, data objects and keys. This has
been accomplished in two ways: requiring verification of the transport PIN
to allow creation of new PINs, objects and cryptographic keys, and allowing
an application to create additional identities by means of creating further
PIN(s) or cryptographic key(s); these identities can be required in ACLs of
application specific objects and keys that are “sensitive” for the application.
For example, when “formatting” the card, an application should create a new
PIN and require all of its data and keys to be protected by that PIN. This
way every time the user interacts with that application, she is required to
only enter the new PIN value, resulting in the guarantee that the application
cannot manipulate other application’s resources or create further resources
on the card.

S5A static pre-allocation of part of the object space can still be performed by an ap-
plication by creating a “fake” object with the required size and properly resizing it when
additional objects must be created.

36



Protocol overview

Transactions and related issues

Different kind of error conditions can occur during a smart card operation.
It is possible that the host provides an incorrect class code for the currently
inserted card, an incorrect instruction code for the specified command class,
or incorrect parameters to the specified command. Furthermore, a host
can cause an access violation when trying to access a resource/operation
on the card that is forbidden with privileges of the actual session. It can
happen that the software component that is currently either providing data
to or retrieving data from the card suddenly interrupts its operation (i.e. an
application crash or a system shutdown). Finally, the card can be suddenly
extracted by the user during a command execution.

The protocol specification explicitly deals with first four conditions, by
specifying, for each command, what error codes must be returned by the
device when some of these conditions occur. These can be regarded as
“graceful” failures because they assume that both the host and the card are
still operating correctly and can run the needed error recovery procedures
to handle the condition. Last two error types are also very important with
respect to a smart card life, because they raise transactions issues due to a
sudden reset or power down of the device. In fact after a host-side applica-
tion crash, usually, the device is again under control of the resource manager,
that should issue a “reset” or “power down” command (see Figure 25) to the
reader in order to guarantee security of data and keys that were handled by
that application (if it was using the device in exclusive mode). Furthermore
a card extraction always powers down the card. If the device was updating
its internal data during the command execution, it is very important that
this is done in a transactional way, so to guarantee consistency of data in
such cases. The really important property that must be guaranteed is con-
sistency of internal “directories’ of objects and keys, including access control
information. Data contained in objects does not need to be handled in a
transactional way. Consider the case of a power-down during execution of a
command that is overwriting an object contents. First of all, other objects

37



A protocol for programmable smart cards

Resource Smartcard
Manager Application Program

| |

I Command |
Power Down

|

Figure 9: Sudden application crash causing a reset or power-down of the
card during a command execution.

must not be affected anyway by the event. Second, the access control in-
formation related to this object must not be affected anyway by the event,
otherwise it would be possible to set-up attacks based on this kind of events.
A desirable property is also the transactional update of object contents, that
is either the contents are updated or the old contents are recovered, but it
is not really required, as it should be anyway considered at an application
level.

The provided implementation of the protocol is a Java Card Applet run-
ning into the Java Card Runtime Environment [51], that already implements
transactions on every updates to permanent card data during a single com-
mand execution, up to a maximum amount of changed bytes. This allowed
to write the Applet without any additional code for implementing the trans-
actional behavior.

When implementing the protocol onto a programmable, non Java Card,
device, it is of fundamental importance that the program explicitly addresses
transactional issues, guaranteeing consistency of at least internal key and
object “directories”, and access control data.

Extendibility

Our protocol does have limitations. These are due to the main purpose

of its design: to allow new generation programmable cards to expose basic

38



Implementation notes

cryptographic and data storage facilities to host applications in a way that
does not depend on the specific card. So particular attention has been paid
to extensions that could be needed in the future.

In order to allow such extensions to be performed without compromis-
ing software that has already been written and will eventually be written,
the protocol has versioning built into it. The version information is avail-
able through the GetStatus command, by means of minor and major version
numbers. An increment in the minor version number should still retain com-
patibility with already written software. This could occur, for example, if
commands needed to be added to the protocol itself, without changing be-
havior of already existing ones. An increment in the major version number,
instead, would not retain such a compatibility, and would mean a change in
some of the protocol core features.

Simple extensions of the first type could be done to embed into the
protocol alternative user/application authentication schemes, different from
the classic PIN verification and cryptographic challenge/response verifica-
tion. Two identity numbers were reserved in the protocol for this purpose
and could serve as a means for adding on-card biometric pattern matching

without affecting the original protocol.

Implementation notes

The introduced protocol has been implemented and used with various ap-
plications. On the card-side, an open source Java Card Applet has been
developed, fully compliant to the protocol specification, and tested both
on Schlumberger Cyberflex Access 32K and Gemplus P11/PK cards. On
the host-side, a new smart card middleware has been developed, exposing
to upper layer software an open smart card API that almost maps one to
one with the protocol itself. The API resulted to be enough generic to allow
development of plug-ins for different types of cards, within the same middle-
ware. On the top of this layer, an open source PKCS#11 module has been

developed, allowing integration of all available applications supporting this

39



A protocol for programmable smart cards

standard on open platforms. Mozilla and Netscape Communicator are exam-
ple softwares now able to perform secure access to web sites (by means of
the HTTPS protocol) and to sign e-mail messages using the exposed Applet
and protocol. Furthermore, the new smart-card APl has been used to di-
rectly integrate smart card technology into the OpenSSH software, an open
source implementation of the Secure Shell protocol [58] for secure remote
terminal. An open source Pluggable Authentication Module[47] (PAM) has
also been developed, allowing smart card based secure login, and smart card
based access to all applications using this mechanism. A command line
application for digital signatures has also been developed directly with this
new API. XCardll, a GUI based smart card manager, and MuscleTools, a
command line one, have also been developed directly on the top of the new
smart card API. All software components have been developed and tested
on a variety of open platforms, including various Linux distributions and
Mac OS/X, and are available for free download either from the Muscle Card
web site (http://www.musclecard.com), or from the Smart Sign web site
(http://smartsign.sourceforge.net).

As a proof of concept, the protocol extension mechanism has been used
recently for providing a biometric extension to the Applet. This allows man-
agement of a new identity type, that logs in after a successful run of an
on-card fingerprint verification algorithm. The extended Applet allows, for
example, to use an on-board private key or to read an on-board object con-
tents, only after the user has been authenticated by matching the fingerprint
template provided by the host against the on-board stored one. A scheduled
task is integration of other applications with this biometric extension.

Final software architecture is depicted in figure 10.

In this section we briefly expose some implementation issues around the
MUSCLE Card Protocol, showing how they have been managed in our im-
plementation.

40



Implementation notes

Host Smart Card
MUBCLE Card MuscleCard

— T = = ~| aet Applet

MuscleCard Java Card

Layer APT ---—- 7T -

l JVM

Layer

! I

MUSCLE Card Protocol

Figure 10: MUSCLE Card software architecture.

Memory Management

The protocol specification only gives to applications a view on the total
available free memory on the card, leaving maximum freedom to developers
to implement the most appropriate memory management scheme for specific
cards. This means that applications and users must be aware of the fact

that it could not be possible to allocate a single object of that size.

In our implementation we chose to pre-allocate a single Java byte-array
at the Applet instantiation time. The array is used to store all of the object
related information: OIDs, ACL, size, contents. Also a compaction of con-
secutive free memory blocks is performed on object deletion, but memory
defragmentation has been retained to be too much complex to be performed
and not really required. In fact memory fragmentation is typically the re-
sult of many block allocation and deallocation operations. Most smart card
applications, instead, “format” the card during the issuance process that typ-
ically stores a user certificate on the card. In most cases such information
does not need any further changes, or changes happen very rarely.

In the future we expect an increase on the available memory to smart
card devices, as well as on the transfer speed with the hosts. This could
result in a more dynamic management of data on the cards, and an on-
board memory defragmentation operation could become a requirement. This

41



A protocol for programmable smart cards

could be implemented either in a “transparent” and automatic fashion during
execution of other commands (i.e. an object creation command that fails),
or by means of an explicit invocation of a new protocol command to be
added as a protocol extension.

Resource reclaim

Our Applet has been developed according to the Java Card 2.1.1 specifica-
tions. This implies that we do not have a means of actually freeing memory
resources used by Java objects after they have been created. A drawback
of this behavior of the Java Card Runtime Environment is that, once a
cryptographic key has been instantiated into the Applet, even if the object
reference was overwritten, really the associated memory would still be un-
usable garbage. For this reason we chose to recycle existing key objects as
much as possible, allowing overwriting of existing keys with imported keys
or re-generated keys of the same size and type. Our Applet does not allow
to import or re-generate a key object with another one with a different size
or type, actually. There is a similar problem with deletion of on-card PIN
codes, once they have been created.

PIN policies

Our Applet implements some example on-board PIN policies. These are
useful to force users to avoid weak PIN codes for protecting their keys,
leading to a slightly higher security level of the protected data or services.
Another application of PIN policies is within environments with, for example,
numeric pin-pad terminals, in which the user must not be allowed to set up
a literal PIN code from his home PC. This feature has been implemented in
our Applet essentially as a proof of concept, and like other Applet features,
can be entirely disabled from the code compilation process.

PIN policies are embedded in a transparent way with respect to the
protocol, that does not currently contain any concept of “PIN policy”. The
Applet is able to perform various checks on a PIN value when the user tries

42



Existing solutions

to change it by means of an ChangePIN command. The implemented checks
include, among others, a check on the minimum length of the code, a check
on the allowed character sets (i.e. numeric only, lowercase only, etc...) and
a check on the mixture of character sets (i.e. at least 1 digit and a letter,
etc...). When the code does not satisfy the policy, the command fails giving
to the application an invalid parameter return value.

Selective disabling

Given the limited resources on the card, we the Applet sources have been
given the ability to exclude some parts of the code in the final compiled byte-
code, if not required by applications. This allows a smaller program size,
leaving more space on the card for applications’ data with respect to the
full Applet. Features that can be selectively enabled or disabled include the
availability of specific cryptographic key types (RSA, DSA, etc.) and modes
of operation (encryption, signing/verification), the ability to import/export
keys and the ability to perform external authentications. For example, dis-
abling the DSA cryptographic algorithm, not implemented yet on most Java
Card devices, leads to the elimination, from the compiled Applet, of one
third of the key management code, that would remain unused on those de-
vices that do not support it. A capability feature, that will be embedded
in the protocol in a near future, will allow applications to know in advance
what are the features supported by a particular smart card/Applet. At the
moment, trying to use a disabled feature leads to an unsupported feature

error.

Existing solutions

In this section some existing protocols for smart card interoperability are
described. These protocols define protocol data units (APDUs) that are
exchanged between a host and a smart card, relying on the T=0 or T=1

[26] lower level protocols, which have been described in Section . Proba-

43



A protocol for programmable smart cards

Host Smartcard
Application Program
T T
|

GetChallenge o

I Ll
| Random Challenge | |

- ]
|
Encrypted Challenge

|
! k||
' [¢)
-4 i

Figure 11: A challenge-response authentication protocol.

bly the most commonly implemented standard protocol for smart cards is
the ISO 7816-4 [27]. In short, this document defines commands to browse
an on-board filesystem, read/write data from/to files, allow reciprocal au-
thentication of the card and external users and applications, manage multi-
ple logical communication channels with a card, and perform authenticated
and/or encrypted APDU exchanges (secure messaging). Different types of
files are defined: dedicated files store directory information, while elemen-
tary files store application data. Elementary files are also distinguished in
transparent if the content is merely a sequence of bytes, linear if the con-
tent is a sequence of records, with the possibility to have both fixed-size and
variable-size records, and cyclic if the records are to be handled in a cyclic
fashion.

Authentication of external users/applications can be performed by means
of a PIN code verification, or cryptographic challenge-response protocol. In
the first case the user or host application is required to prove knowledge
of a PIN code, typically a short alphanumeric string, that is compared by
the card with the on-board one. In the second case, a host application is
required to prove knowledge of a cryptographic key, by using it to encrypt a
random sequence of bytes, called challenge, generated by the card itself (see
figure 11). The card decrypts the encrypted challenge using the on-board
key, then compares it with the original generated challenge. A challenge-

44



Existing solutions

response authentication protocol can be performed by using both symmetric
and asymmetric cryptography. In the first case the host-key and the on-
board key are the same, while in the second case they are respectively the
private and the public key of a key pair. Also authentication of the card
to external applications can be performed by means of challenge-response
protocols.

The ISO 7816-4 standard addressed from inception only issues related to
card use, while commands for creating the on-card filesystem, as well as the
ones for loading, using and managing cryptographic keys on the card, were
completely missing. Only later the ISO 7816-8 [30] and ISO 7816-9 [31]
standards fixed the missing specifications, when tenths of card devices were
already on the market with proprietary protocol extensions. The final proto-
col arising from ISO standards is very powerful and flexible. It has command
APDUs for: calculation of cryptographic primitives and hash functions; cal-
culation and verification of digital signatures; verification of on-board public
key certificates; data encryption and decryption; and creation and manage-
ment of security environments (SE) and security associations (SA), allowing
the definition, for each card resource and operation, of complex access con-
trol rules (ACRs). It is possible to require multiple authentication mecha-
nisms, with an and or or semantics, and, in the expanded format, ACRs can
be combined into arbitrarily complex boolean expressions. Furthermore, an
inheritance mechanism is defined that allows ACRs associated to directories
to hold for all the contained elements.

On a related note, the PKCS#15 standard [44] defines, in the con-
text of an ISO on-card filesystem, a file and directory format for storing
security-related information on cryptographic tokens, like digital certificates,
cryptographic keys, and authentication data (i.e. PIN codes).

The ISO 7816-7 standard [29] defines a set of command APDUs that
allow a smart card to expose advanced data retrieval facilities to applications.
This way an application can specify a SQL-like search query, and retrieve only
those records that match the query. With incoming smart cards with more

and more on-board memory, this is supposed to leverage the needed transfer

45



A protocol for programmable smart cards

bandwidth between the card and the applications by performing searches on
the card-side, and transferring to the host only the required data.

A further protocol for smart cards is the US Government SC Interop-
erability Specification [22], defining specific commands for an interoperable
use of smart cards in the US Government context. In example, file formats
are defined for the general information file, containing personal user informa-
tion like name, surname, title, etc. . ., for the protected personal information
file, containing Social Security Number, date of birth, etc..., and for the
X.509 certificate files. The standard defines a set of ISO 7816-4 compliant
commands for on-card filesystem, PIN verification and host/card authenti-
cation, plus additional commands for computing RSA digital signatures and
encryption operations, and for retrieval of a public key certificate associated
with an on-board key. The card access control model allows a predefined set
of protection modes for card resources: always allowed, allowed after PIN
verification, allowed after strong external authentication, a simple and or or
combination of last two modes, allowed only when a secure channel is used,
and never allowed. This protocol is tied to a specific context, and does not
provide extension mechanisms for allowing, in example, different key types
than RSA to be used for public key operations in the future.

Interoperability issues among cryptographic smart card devices are faced
with in a different way by the Java Card("™) standards [50, 51, 52]. These
documents refer to cards with an on-board Java Virtual Machine (JVM),
that are able to execute custom Java programs, called Applets. The stan-
dards define a subset of the Java language and Runtime Environment (JRE)
that must be supported by the on-card JVMs, and a standard API that must
be exposed to the Applets in order to allow access to on-board crypto facil-
ities. This way it is possible to write a program that runs on any compliant
smart card, implementing a custom protocol for communicating with the
host. Fortunately this standard is being adopted by different card manufac-
turers. Both for its success, and for the well designed on-card cryptographic
API, this platform has been chosen for implementation of the protocol in-
troduced in this thesis.

46



Existing solutions

Instead, the MuscleCard Card Edge protocol has been designed to allow
use of the card by the most widely used applications, remaining as generic

and application independent as possible.

47






Comparing protocols for smart

cards

In this chapter the protocol introduced in Chapter is compared to other
existing protocols for smart card interoperability, which have been defined
by standard organization in the past. Because of the high level of complex-
ity that such standards impose on data storage and cryptographic services
exposed by a smartcard, a compliant protocol would fail to be the best one
to be implemented on board in software, because of the size constraints to
which the program is subject to.

First, a requirements analysis is presented in Section , catching what are
the basic features that need to be really exposed by a smart card in order to
achieve its primary goal: protecting user keys. Then, a technical compari-
son is made in Section between the data storage, cryptographic and PIN
management services exposed by the new protocol, and the corresponding
features as defined by the existing standards, highlighting features and lim-
itations of the new approach. Finally, Section summarizes main results of

the comparison.

Requirements analysis

In this section we make a brief survey on the requirements that a smart-

card must meet in order to allow a host application to provide secure user

49



Comparing protocols for smart cards

authentication, digital signature and data secrecy services. Our attention
is focused on these services only, so our discussion does not consider card
requirements in different contexts, like electronic cash or mobile phone ap-
plications, where additional operations or services could be needed.

A smartcard provides a portable, reasonably tamper proof mechanism
for protecting user’s keys. It provides the most effective way of protection,
in that it can never reveal the key value® to the outside world. In order to
achieve this, smartcards must be able to manage cryptograms internally, so
they must implement on-board algorithms for using the cryptographic keys
they are responsible for. Furthermore these devices need to store additional
information in a permanent way. Such information is completely dependent
on the application and should be regarded by the card itself as “generic
data”. In order to protect the card from misusage by unauthorized users or
applications, access control must be enforced by the card itself.

Basically a smartcard needs to expose to host applications the following
services (see fig.12):

cryptographic services to store and manage crptographic keys
data storage services to store and manage specific application data

access control services to specify and enforce access control rules on the
card resources, so to prevent information leakage in cases of attack
by an untrusted host or misusage by an unauthorized user.

Further details are discussed separately for each card service.

Data Storage Services

The most common example of data that is stored onto a smartcard is a
public key certificate associated with the private signature key on the card.
This is very useful to avoid scenarios where each application has to retrieve

8|f such devices are really tamper resistant and what level of security they realize are
topics out of the scope of this thesis.

50



Requirements analysis

Key Storage
& Management

ACR Storage
& Enforcement

Data Storage

& Retrieval

Figure 12: Set of services that a smartcard protocol must expose

such a certificate from an online public repository. In case of a hierarchi-
cal arrangement of multiple certification authorities, a chain of certificates
could be needed to reside on the smartcard, if enough space exists. Even
if a card has not enough space for a digital certificate, the user's Common
Name should be stored, so that an application can easily browse an on-line
certificate directory for getting the user’s public key certificate. However,
application of smartcard technology should not be restricted or tied to the
concept of Certification Authority. Infact in a PGP like approach [12] such
a concept would not exist, and public key certificates would not exist. Other
examples of user information that can be stored onto a smartcard include
personal data about the user, numeric identifiers used by applications to
uniquely associate the card with external data or processes’, user prefer-
ences,® and others. Finally we should consider use of the same smartcard
for multiple applications, where each of them could require different data
and/or shared data to be stored on the card. So we realize that a smart-
card must have a means for storing and managing multiple data in separate
“containers” (see fig.13).

We define the following operations in the data storage facility:

Creation of a data container This operation creates a new data container

"Think of the certificate/key identifier that is temporarily stored onto a smartcard
during the online interaction between the card and the certification authority web site.

8Think of a login application that identifies a user by means of a smartcard, then
retrieves from the card itself information about the preferred graphic environment options.

51



Comparing protocols for smart cards

Smartcard device

Public Key
| Certificate(s)

User Personal

| B Information | |

| Application |
Temporary Data

Figure 13: Example data that needs to be stored onto a smartcard

on the card to be addressed in further operations by means of its name.
Because of resource constraints in a smartcard, usually the size of the
container must be specified at creation time because of the memory
that is reserved with such an operation. Access control rules for the
container should also be defined in this phase. In order to avoid DoS
attacks due to a hacked host, such an operation must be allowed only
after a user or application authentication to the card.

Reading of data from inside a container This operation reads data from
one of the available containers on the card. Depending on the type of
the contained information this operation may be allowed either always
or only after an authentication phase.

Modifying data inside a container This operation overwrites data that is
already stored in one of the available containers. Usually this opera-
tion should only be allowed after an authentication phase, but some
application data could be allowed to be always modifiable by a user.

Resizing a container This operation changes a container size, allowing it
to grow or shrink according to the application requirements. The
constraints in terms of available on-card memory impose applications

to have containers whose size fits as much as possible contained data

52



Requirements analysis

size. Therefore a resize operation would be useful, even if not really
required. This operation should only be allowed after an authentication

phase.

Deleting a container This operation deletes a container given its name.
This is useful when an application needs to create a container just to
store temporary data and can also be used to resize a container on
the card, fitting actually used space or increasing its size for additional
data. This operation should only be allowed after an authentication

phase.

For a proper specification of these operations, a naming scheme for con-
tainers needs to be defined. When using smartcards for authentication or
digital signature applications, considering the constraints in terms of avail-
able memory, a simple and flat naming scheme seems to be appropriate.
From this point of view, a smartcard protocol shouldn't require exposition
of a hierarchical arrangement of the contained data, as this would lead to
a need for a more sophisticated code for handling the hierarchy. We rec-
ommend using a flat filesystem for the management of data containers. An
additional note on this can be found in section .

In order to complete a the data storage service specification, we need
to define how access control rules can be specified and how they should be
enforced by the card. This will be discussed in section .

Cryptographic Services

Multiple keys are required if different applications use the same smartcard
or different type of keys need to be protected by the card. For example, a
user could have an identification keypair, used for authentication only, and a
signature keypair, used for signing electronic documents °. In a well designed
protocol the set of allowed cryptographic algorithms must be expandable in

9This is required, for example, in the “Electronic Identification Profile” defined in the
PKCS-15 standard [44].

53



Comparing protocols for smart cards

Key Security Key Recovery
Requirements Requirements

A

Figure 14: Usually there is a trade-off between key security and recovery
requirements.

order to allow future versions to cope with new crypto algorithms that could
be developed. Some applications need to protect their data at such a high
level of a security that they require the assurance that the private key relative
to a user’s keypair is not known by any other entity than the smartcard itself.
So enhanced security is gained if a card is able to generate onboard a keypair,
where the public generated key can be exported after generation, while the
private key can never be revealed to the outside world.

On the other hand, some applications want to give users the assurance
that even if their smartcard is damaged there exists a copy somewhere of
their private keys, and a new smartcard can be issued for the user® (see fig.
14).In some contexts such a behavior could be enforced by laws (cfr. key
escrow). This requires for full key import/export facilities to be supported
by a smartcard protocol, where the imported/exported data can optionally
be encrypted using another key on the card so that the local host that is
driving the card cannot gain information about such keys.

Often a smartcard’s private key is not used to authenticate to the local
machine where the card is actually inserted. Instead it is used to authenticate
the user to a remote system. In these situations, it should be possible
for a remote application to access smartcard resources without necessarily
trusting the machine that is local to the user. This is achieved by establishing
a secure communication channel between the remote application and the
card, where every command to the card and exchanged data are secured

through a cryptographically secure channel*! (see fig. 15).

10sually one or more trusted third party can store the user’s private keys, entirely or
partitioned by means of a secret splitting scheme.
1This is traditionally referred to as “secure messaging’.

54



Requirements analysis

Local
Remote Host Smartcard
Host (untrusted) Device

Network Serial
<t > <

Comms Comms

- — T~
/ N
( Untrusted )
Network
N -

~ —

Figure 15: In this scenario the machine local to the smartcard acts only as an
untrusted gateway to the remote host to which authentication is performed.

Finally we can require the following cryptographic related operations to

be supported by a smartcard protocol!?:

Key import This operation allows the card to import an externally provided
key. This is useful when the card has no on-board generation facilities
and when it needs to load a specific key value on the card. This
operation could also overwrite an already existent key on the card.
We recommend that a key import is allowed only after user/application
authentication.

Key export This operation allows the card to export a key value to the
outside world. For what stated above is should be possible to do both
a plain export and an encrypted export, where the exported blob is
encrypted using another cryptographic key. We recommend that a
key export be wither forbidden or protected by means of requiring a

strong application authentication or exporting an encrypted keyblob.

Key generation This operation allows generation of a new keypair on the

card. On-board generation of symmetric keys is still possible but is not

2|n this discussion, we include the key storage facility in the cryptographic service
definition. Other approaches place it in the data storage facility [44], defining special data
containers reserved for the purpose of storing cryptograhic keys.

55



Comparing protocols for smart cards

really required, as the key has to be shared with other entities. This
operation could also overwrite an already existing key on the card. It
should be allowed only after a strong application authentication.

Key usage This operation computes a cryptographic operation on exter-
nally provided data, returning the output to the host. Operations to
be performed can be defined as encrypt and decrypt for symmetric
keys, and encrypt, decrypt, and sign for asymmetric keys. The verify
operation is not required to be available on the card, as it usually relies
on the asymmetric key that is publicly available. Different modes of
operations are available for different crypto algorithms and operations.
It is recommended that the set of available modes is easily expandable
in future releases of the protocol. In order to prevent unauthorized
use of a cryptographic key, this operation should require at least a
user authentication.

key replacement This operation overwrites a key with either a new inter-
nally generated one or an externally provided one. This operation is
just a special case of the “generate” and “import” operations. We can
notice that a key replacement can require additional authentications,
depending on the access control rules associated with the key being

replaced.

key deletion This operation deletes a cryptographic key from the card mem-
ory, freeing all of the additional resources that are tied to it, like inter-
mediate buffers needed during encryption operations. This operation
also should require application authentication.

A smartcard stores and manages secret keys and private keys, so im-
proper or unauthorized invokation of key operations could lead to a weakness
of the entire system. Therefore an application must be able to selectively
restrict operations on certain keys, so that either they are not allowed at all

or they are allowed after a proper user and/or application authentication.

56



Requirements analysis

Untrusted Smartcard
Host Device

VerifyPIN

»
|

OK

A

UseKey

\

OK

A

ReplaceKey

OK

A

Figure 16: Successful attack by a hostile terminal to a single-PIN smartcard
allowing key replacement.

Access Control Specification and Enforcement

A basic requirement of a smartcard is that it must reasonably protect the
contained resources even if it is exposed to a “hostile” machine. This is due
to the fact that, being a portable device, a smartcard is very likely to be
connected to a host machine that is out of the control of the cardholder. In
such cases, the information leakage must be as low as possible, while the key
material leakage must be zero. The effectiveness of such an attack depends
on the access control model that the card enforces. For example, if the card
protects everything inside with a single PIN code, once that the code has
been inserted by the legitimate user, a hostile machine can take control of
the card (see fig.16). A well designed card must have at least multiple PIN
codes granting different access levels on the resources on the card, so that
an attack like above would be limited to granting access to only a restricted
set of allowed operations (fig.17).

Furthermore, we require that different operations on a single resource
are protected differently. For example, public user data could be always
readable but never modifiable, or modifiable only after user and/or applica-
tion authentication. A private key usage should be allowed only after user
authentication by means of a PIN code verification, while key overwriting
or exporting should either be always forbidden or only allowed after a strong

57



Comparing protocols for smart cards

Untrusted Smartcard
Host Device

VerifyPIN

»
| .

OK

A

UseKey

\/

OK

A

ReplaceKey

\/

Unauthorized

Figure 17: Unsuccessful attack by a hostile terminal to a smartcard allowing
key replacement only after verification of a second PIN.

application authentication.

We can define the following schemes for authenticating external entities
to a smartcard:

PIN code This is typically an ASCII encoded numeric value that is entered
on a pinpad by the cardholder and compared by the the card with the
on-board stored one. Some unsuccessful attempts are allowed to hap-
pen, as this code is interactively entered by a human, but consecutive
failures in the verification must cause a block of the operation so that
exhaustive searching of the code is not possible by an untrusted host
or user.

Strong authentication This is achieved by means of a cryptographic chal-
lenge response protocol where the private key is known to a host ap-
plication while the public one is stored onto the smartcard. As such an
authentication is run by a program it would make no sense to tolerate
unsuccessful attempts.

Biometrics This is achieved by means of a biometric information (com-
monly a fingerprint scan) that is grabbed by the host by means of a
biometric device and is sent to the card, where an on-board match-
ing algorithm compares it with the data stored on the card. Due to

58



Requirements analysis

the lack of standards in this field, we require that a smartcard pro-
tocol supporting biometrics has enough “freedom” to allow this kind
of authentication, where the single details could vary according to the
specific adopted algorithm.

For those cards not supporting on-board biometrics algorithms, it is still
possible to use the card for simply storing the biometric data, that is retrieved
by the application each time it is required, with a decrease of the achieved
security level. Such an approach can rely only on simple storage facilities on
the smartcard and nothing else is required on the protocol side. Furthermore
in this case the biometrics verification does not affect the security level of
the session with the smartcard, as only the host application is aware that a
biometric identification of the user has been performed.

On a further note, we must notice how a common requirement in the
smartcard security model is the availability of different levels of authoriza-
tions for different operations. For example, a public key certificate could
always be readable from the outside world, but it should not be writable. In
order to prevent improper card use in case it has been stolen, computations
using private keys should only be allowed after a user authentication, by
means of a PIN verification. Furthermore it is often required that private
keys' use is restricted depending on their purpose. For example, for improved
security, a key for digital signatures could be enforced to only process data
after a hashing and padding phase, so to avoid choosen plaintext attacks.
This leads to a possibility to specify more complex key management rules,
also known as “key policies”.

Both the certificate data and the user’s private key could need to be
replaced in case of a renewal process. Rewriting such objects could be
either denied at all, or protected by means of a strong authentication of the
C.A. application.

This takes to different access control rules to be enforced on differ-
ent resources and on different operations (or operation classes) on the

same resource. Access control rules must be able to require that exter-

59



Comparing protocols for smart cards

nal users/applications have been authenticated at a certain security level.

In common applications, it is easy to think of a key whose usage requires a
preliminary PIN verification by the cardholder. A more sophisticated applica-
tion could require that the user uses a key only with that specific application
or with an application class. This could lead to an additional application
authentication to be performed by the card before allowing the operation.
A second PIN verification could be sufficient for some applications, where a
challenge/response scheme could be required for a stronger security level.

A well designed smartcard protocol must allow the session to start at
the lowest authorization level (“public level”), then to gradually switch to-
wards higher authorization levels as the card runs more and more successful
authentications. It must be possible to exactly specify what authentications
are required before each operation is allowed on each resource (key or data
container).

It is evident that access control rules and authentication mechanisms
constitute additional data that has to be stored and managed by the card,
so they require additional commands in the protocol. We suggest specifying
access control rules within the command creating the resource to which the
rules apply. Authentication mechanisms, instead, require a separate set of

commands for their management:

Mechanism creation This command creates a new authentication mech-
anism providing all of the necessary data. Each mechanism requires
specific parameters to be specified. Cryptographic challenge-response
based mechanisms would require as parameter a reference to the stored
public cryptographic key. The set of allowed mechanisms should be
expandable with future releases of the protocol

Mechanism verification This command runs the authentication mecha-
nism by providing necessary data to the card. Challenge-response
based mechanisms require a preliminary retrieval of random data from

the card, then a second command performs the authentication itself.

60



Technical comparison

Mechanism parameter change This command modifies parameters of an
authentication mechanism. This is commonly required when a user
PIN code or an authentication private key have been someway com-
promised; for strong authentication mechanisms this can be performed
with an import operation on the cryptographic key to which the mech-
anism is tied.

Mechanism unblock This command unblocks an authentication mecha-
nism that has been blocked by the card after multiple successive failures
of the authentication (to avoid exhaustive searching of the secret).

Technical comparison

In this section we analyze how the new M.U.S.C.L.E. Card Edge protocol
satisfies the requirements defined in the previous sections, also making a
comparison with some of the standards existing today in the smartcard in-
dustry world. Remainding to the specification document for details about
the protocol, our attention in this chapter is focused on a technical compar-
ison between different approaches to interoperability across card devices.

Cryptographic services

For what discussed in the previous sections, we argue that the set of crypto
related commands that a smartcard protocol incorporates must be as generic
as possible, being untied to particular applications or particular concepts de-
fined inside applications. This approach leads to a protocol where the smart-
card is seen as a crypto processing unit with a complete set of commands
to access its functionalities, where proper access control rules can limit the
allowed operations depending on the accessed resource and operation and
on the authorization level of the host side application.

This is not the case for the ISO set of cryptographic commands [30], for
example, where at a first glance we immediately notice that the concept of

digital certificate is heavily embedded into the protocol. Infact one of the

61



Comparing protocols for smart cards

possible operations of the “Perform Security Operation” command is a cer-
tificate verification. This operation has also an operation mode that allows
extraction of the contained public key from the certificate for a successive
use. While such an operation could turn out to be useful in PKI based appli-
cations, we push towards not having such operations on board. First of all a
certificate parsing operation is not trivial, so it can take several resources on
the card to be accomplished. Second, a good certificate verification would
need not only a digital signature verification, but also a temporal validity
check, then a check that the type of certificate and eventual attribute ex-
tensions match the intended use of the contained public key, and so on. All
of these operations are unlikely to be performed by a smartcard device, and
most of all only the final application is aware of the purpose of a public key or
certificate. Furthermore, public key operations can usually be conducted on
an external host without diminishing security level of the involved protocols.

In the protocol specified in the Government Smartcard Interoperabil-
ity Specification [22], on the other hand, we can find an “RSA Compute”
command, making the protocol strictly tied to a very specific cryptographic
algorithm. We strongly discourage such practices, where a more generic, al-
gorithm independent approach should be followed. In spite of the existence
of many cryptographic algorithms, only a few of them has enough credits to
be widely adopted. This is the case of the RSA [46] 2-primes algorithm, DSA
[55] and of triple DES [54], that are supported by most common crypto-
aware applications. Elliptic Curves [41] are also gaining much interest in the
smartcard world. This has been reflected by smartcard manufacturer, that
basically implement just a few algorithms in their devices. However, it is not
a good design choice to tie a smartcard protocol to a particular algorithm
just because it seems to be widely adopted and accepted. Situation could
change in a near future.

The MuscleCard Card Edge protocol defines a “Compute Crypt” com-
mand that is able to process data using multiple cryptographic algorithms
and operation modes. Actually supported algorithms are only those con-
sidered by the JavaCard standard, while extensions for allowing additional

62



Technical comparison

algorithms and/or modes of operations (i.e. padding or hash schemes) can
be easily achieved by expanding the set of allowed values for the command
parameters.

On the other hand, a limitation of the cryptographic service defined in
current version of our protocol is that it is currently missing a key policy
specification and enforcement mechanism. This is one of the extension that
will be integrated in the next release.

Data Storage Services

Most smartcard manufacturers have cards complying more or less with the
storage service as standardized by ISO in [27]. This document defines the
concept of a filesystem-like hierarchic arrangement of files onto a smart-
card, and provides a set of protocol commands that allow a host application
browse, retrieval and change of contained data. Unfortunately the initial set
of commands was not complete, because the fundamental commands for
creating resources were completely missing. Infact the standard specified
how to verify a PIN code, but there was no specification of a command to
create it. Similarly it contained commands for navigation inside the filesys-
tem, but there were no standard commands to create directories or files.
Resource creation commands were only addressed lately by ISO [31]. In
the meantime, card manufacturers had to embed non-standard, proprietary
commands for such tasks with the result that most smartcards today can
be “formatted” and managed only by using proprietary software.

An evident advantage of the ISO hierarchical naming scheme is certainly
the possibility to allocate file names in each subdirectory independently from
other subdirectories (figure 18). This allows to have much more freedom in
allocating file names even in presence of a limited filename length like the
typical 2 bytes identifiers. We have to observe that such a feature would be
indispensable if we had to store hundreds of files onto a smartcard, but this is
not the case, given the actual memory size of these devices. The 4 bytes nu-

meric identifiers of the MUSCLE protocol are enough wide to allow freedom

63



Comparing protocols for smart cards

o )
/aroo/msor )
|—-( /3700/2301/0001 )
Jroonor )

Figure 18: Hierarchical Filesystem defined in the ISO standard for data
storage.

L ID=0x3F000000 J

T
ID=0x3FA30100 ‘]

L—‘{ ID=0x3FA30101 )

ID=0x3FA30200 ]

Figure 19: Hierarchical arrangement of object identifiers in the flat
M.U.S.C.L.E. object naming scheme.

in their allocation by applications. Furthermore, if needed, they can allow a
kind of hierarchical arrangement by splitting the 32 bits into substrings, into
a fashion that resembles allocation of 4 bytes IP addresses (fig. 19). The
“directory” containers, in such a case, could contain additional information
about the hierarchy or be absent. In order to increase interoperability among
applications, it is encouraged that a further document comes up as soon as
possible standardizing how inter-application data should be arranged onto
a card implementing our protocol, resembling what the PKCS-15 standard
[44] has done for filesystem cards. For example a specific object ID could
be reserved for storing a certificate directory, containing also the required
associations between on-board certificates and private keys. Finally we have
to observe that an application absolutely requiring a filesystem can always
provide, as a last resort, an “emulation layer” on the host side. This would
be of course an untrusted filesystem, in that its consistency could not be
enforced by the card itself.

64



Technical comparison

Maybe the main purpose of hierarchical arrangement of data onto a
smartcard is the ability to separate the contained data files into different
“security domains”. Different access control rules, external authentication
secrets and cryptographic key sets can be associated to a directory and have
them inherited by all of the contained files. This is a good feature as long as
there exist a complex scheme for specifying access control, like in the ISO
standards, so that there is no need of repeating the complex rules for each
of the resources to which the rules apply. Next session will analyze this in
more detail.

As a final note, we can observe that another advantage of directories is
to have a means for an application to statically reserve a certain amount
of memory on the card at the time of creation of the directory entry. This
can be easily achieved also with a flat filesystem, simply allocating a “fake”
data container that is resized (or deleted and created again) each time new
containers need to be created or existing ones need to be deleted by the
application.

As more and more storage space is allowed to exist onto a smartcard,
more and more data is going to be stored onboard by applications. If only
a small subset of such data is needed during a session with the host, and
the available bandwidth for communications is seriously limited (like in 9600
bps smartcards), then a need for search facilities to be implemented directly
on the card itself arises. An application could just retrieve the data that
matches its search criteria, without having to download the entire stored
material on the card. There exist today smartcards with 32K bytes storage
size, and 64K cards are to be issued. So this kind of problems will become
a reality in a near future. We have to observe that also transmission speed
between smartcards and hosts is going to improve, as we migrate from serial
to USB reader devices.

However, even if not really required today by most applications, the
command set standardized by ISO [29] for complex data storage and retrieval
is fully justified. This approach allows definition of tables onto a smartcard in

a database-like fashion. Complex data storage services like this are missing

65



Comparing protocols for smart cards

from our protocol, that focuses mainly on basic services that need to be
exposed in order to allow an interoperable use of the card for authentication,

digital signature and encryption purposes.

Access Control

The ISO security model is very complex. It requires storing of multiple “secu-
rity environment” and “security attribute” definitions, managing of a global,
file-specific and command-specific “security status”, storing of associations
between resources and security attributes. Quite everything is tied to the
hierarchical structure of the files, where access rules defined for a directory
automatically apply to all of the contained elements, unless overridden by
the element specific rules.

Specification of access control rules is powerful and flexible. It is possible
to state, for each possible operation on a resource, with a fine granularity,
what authentications must have been performed in order for that opera-
tion to be allowed. Authentications can be required in both an “and” and
an “or” fashion. In the “expanded format” a rule can apply to a custom
operation, specified by means of the CLA, INS, P1 and P2 parameters of
the command invoking it, and can be built combining multiple sub-rules
into complex boolean expressions. A similar but less powerful approach is
followed in the PKCS-15 document, where the notation syntax for a “Secu-
rity Condition” allows to specify a boolean expression arbitrarily combining
required authentication mechanisms.

In the ISO model, while an ACR definition can generically require an
“external authentication” or a “PIN verification” for an operation, it does not
contain references to what key or PIN are to be used for the purose. This is
dependent on the position where the resource is located inside the filesystem
hierarchy. Infact files can be implicitly associated with local authentication
secrets. This adds extra value to the hierarchical filesystem, making it not
only an arrangement of names, but especially an arrangement of security
domains inside the card.

66



Technical comparison

Such a scheme, in order to be well defined, requires non trivial manage-
ment protocol commands and a complex enforcement engine onboard, that
must be able to scan the security rules in order to establish if an operation
can be granted or not. For this reason it is not the best scheme to be imple-
mented in software on a Java Card or generically on a programmable card,
today. We really argue that such a scheme is over-sized for most widely used
applications, that often require just a couple of keys to be stored on the card,
with some additional information associated to them (i.e. a certificate), all
protected by a PIN code and/or an additional strong external authentica-
tion. Also there's not a real need for arbitrarily complex boolean expressions
in specifying access control rules for on-board resources and operations.

From this point of view, we argue that the Muscle Card security model
[17], being much simpler and retaining the needed level of complexity, is
much more suitable for being implemented on a programmable card.

The Muscle Card model defines multiple authentication mechanisms,
called “identities”, available for the outside world to authenticate to the
card. There exist different types of mechanisms: PIN verification, crypto-
graphic challenge-response authentication protocol, and application defined.
Everytime one of these mechanisms is successfully run, the corresponding
identity is said to be “logged in” in the current session. For each resource on
the card and for each operation class on a resource, it is possible to define
what are the minimum set of identities that must already be logged in order
for the operation to be allowed. When multiple identities are specified they
are always required in an “and” fashion. Operations on which the protocol
allows a separate access control specification are: read, write, delete for
objects and export, overwrite, use for keys.

Examples of achievable access control rules are:
e operation is always allowed
e operation is allowed after a PIN verification

e operation is allowed after a double PIN verification

67



Comparing protocols for smart cards

operation is allowed after a strong authentication

e operation is allowed after a strong authentication and a PIN verifica-
tion

e operation is allowed after a custom application mechanism (i.e. bio-

metrics)

e operation is allowed after a PIN verification and a custom application

mechanism (i.e. biometrics)

This scheme is very simple but has enough power to express all of the
access conditions specified in . Basically, in our protocol, we are actually
missing the alternative specification possibility, that could allow access to an
operation on a resource by means of an authentication by either the user or
the application (and similar). This possibility could come in handy, for exam-
ple, to allow a user not to enter her PIN code once a particular application
has been authenticated to the card. Another situation in which alternatives
in ACRs would help arises when two applications need to access a particular
operation on a shared resource on the card, but they don't want to share
the same private authentication key. Basically the possibility of specifying
multiple user authentication and external authentication mechanisms has
been designed thinking of a multi application use of a smartcard, where the
accent is much more on application indipendence than on their sharing or
cooperation. So we defined a security model that allowed an application to
define its own authentication mechanism, so that once it is run by the user,
data owned by other applications cannot be corrupted or accessed. In our
protocol an application is allowed to set up proper access control words so
to guarantee such an independence property.

So we recognize that adding an “or” behaviour in ACR specification would
add power to our scheme, that is actually sacrificed to the easiness of im-
plementation on the card itself. Infact a simple arithmetic AND operation

between the security status word and an operation ACL word, then a com-

68



Conclusions and future work

parison, is all what is required in order to check if an operation is granted
or not.

Another security model that is enough simple is specified in the Gov-
ernment Smartcard Specifications [22]. Basically that document defines 4

access control modes:
e operation is always allowed
e operation is allowed after a PIN verification
e operation is allowed after a strong authentication

e operation is allowed after a strong authentication and a PIN verifica-

tion
e operation is allowed after a strong authentication or a PIN verification
e operation is allowed only if a secure channel is used for data exchange
e operation is never allowed

This variety in access modes to card resources satisfies requirements
of most smartcard applications. Unfortunately the security model defined
in this document is restricted to a single application context, missing the
possibilities of having multiple PIN codes or authentication keys on the same
card.

Conclusions and future work

In this chapter a set of requirements has been defined which a smart card
protocol must meet in order to be generically usable by common applica-
tions that need to protect user's data with cryptographic services. Basic
requirements have been identified allowing storage, cryptographic, and ac-
cess control facilities of the card protocol. Also, it has been shown how
existing standards for smartcard interoperability satisfy such requirements,

69



Comparing protocols for smart cards

comparing their approach to the recently issued MuscleCard Card Edge pro-
tocol.

It has been underlined how the constraints in terms of storage and com-
putational resources onto a programmable smartcard make it quite unfeasi-
ble to have complex operations and services directly implemented on-board,
like some of the existing standards suggest.

On the contrary, the new protocol combines enough simplicity and com-
pleteness at the same time to be suitable for a software implementation
on programmable devices. MuscleCard protocol does not pretend to be
exhaustive with respect to existing smartcard applications. It has been de-
signed around user authentication, digital signature and data secrecy ser-
vices, where a technical comparison with other approaches evidenced how
some additional features could turn out to be useful for expanding the set
of supported applications.

An investigation needs to be done in order to integrate into the protocol
some minimal missing features that could allow a wider set of applications
to take benefit of it, still retaining the simple and clean design that allows a
feasible implementation on programmable devices without using too much
memory for the program implementing the protocol.

Specifically, features that need to be addressed in a near future for in-
clusion into the protocol are a secure messaging service for allowing remote
card administration and a key policy specification and enforcement mecha-
nism for improved key protection. Lower priority features to be added could
be a searching facility to allow selective retrieval of application data, a lit-
tle more complex security model that increases the flexibility in specifying
access control rules and a set of minimal additional operations needed to
allow integration with common payment system applications. The version-
ing mechanism already featured by the protocol would allow such extensions
maintaining backward compatibility.

70



The host-side architecture

This chapter overviews the open smart card middleware which has been de-
veloped around the new protocol introduced so far. The architectural design
is centred around the definition of a smart card API that allows protected
access to the storage and cryptographic facilities of a smart card. The pro-
posed API constitutes a new interoperability layer that allows partitioning
of a smart card driver architecture into a lower card-dependent level, that
formats and exchanges APDUs with the external device, and a higher card-
independent level, that uses the API for implementing more sophisticated
interfaces such as the well known PKCS#11 standard. Each layer can fo-
cus on a smaller set of functionality, thus reducing the effort required for
development of each component.

The proposed architecture, along with a set of pilot applications such
as secure remote shell, secure web services, local login and digital signa-
ture, has been developed and tested on various platforms, including Open
BSD, Linux, Solaris and Mac OS X. Smart cards that have been tested
with the new architecture include Schlumberger Cyberflex Access 32K and
Cryptoflex, Gemplus GemXPresso 211/PK and FIPS 64K, US DoD card
and IBM JCOP 32K, thus the development stage has proved effectiveness
of the new approach.

The chapter is structured as follows. Next section makes a brief overview
of the new architecture, while Section features an overview of the new API.

Finally, Section presents other existing open architectures for smart cards,

71



The host-side architecture

highlighting their advantages and disadvantages with respect to the proposed
solution.

Architecture overview

The MUSCLE Card project proposes an open SC middleware that is both
interoperable across multi-vendor card devices, and portable across a mul-
titude of open platforms. The middleware architecture of the MUSCLE
Card project is shown in Figure 20. At the bottom layers, the PCSC-Lite
project provides an open and stable daemon for managing the SC-related
hardware resources of the PC (e.g. serial/USB ports, connected readers).
Various readers are supported through reader drivers, most of which open
source, implementing either the CT-API or the IFD-Handler interface. De-
vices connected to serial and PS2 ports need to be already connected when
the daemon starts, while USB devices can be plugged at run-time, provided
that the drivers are installed onto the system.

At the above layer, independence from the card is achieved by using a
common API. Specifically, the Card Driver Loader, at the time the card is
inserted, identifies the inserted device through the Answer To Reset (ATR)
bytes, then loads dynamically the driver that can manage the card. Dif-
ferently from traditional approaches, in which higher level APIs such as
PKCS-11 or PCSC Level 6 are implemented by card drivers, in the proposed
architecture a card driver implements a simpler API (see Section ).

The API exposes basic storage, cryptographic and access control func-
tionality to the host machine, independently of the kind of card device the
host is using. This interface is inspired by the protocol introduced in [17], in
that most function calls are directly mapped into the APDUs of the proto-
col. This layer has been implemented in various card drivers for card devices
that are different in architecture and nature. Examples are Schlumberger
Cyberflex Access 32K and Gemplus 211/PK cards, two programmable cards
based on the JavaCard platform, which are supported once the MUSCLE
Card Applet has been loaded on-board ; the Schlumberger Cryptoflex 16K

72



Architecture overview

SC-Aware
Applic.
_I_ —— HLAPI (PKCS#11,
PCSC Part s, ...)
SC-Aware HL
Applic. Middlew.
MUSCLE Card
I N -

Card Driver Loader

I — —_MUSCLE Card
API (Internal)

Card Card
Driver | """ | Driver
-T- — — PCSC Part 5
PCSC-Lite
:t —— =—— CT-API/IFD-Handler
Reader Reader
Driver § " | Driver

Serial / PS2/ USB
‘|‘ - _l' OS Primitives

Figure 20: General architecture of the proposed smart card middleware.

card, which exposes a set of ISO 7816-4 APDUs for filesystem management,
and custom commands for cryptographic operations; the US Department of
Defence (DoD) card, which exposes a custom data model. Details on the
proposed API follow in the next subsections. On top of our API, further ap-
plication and middleware layers have been developed. Specifically, an open
source PKCS-11 module, mapping the PKCS-11 API calls into the appro-
priate sequences of MUSCLE Card API function calls, has been developed.

As an alternative, applications can directly use the proposed API in or-
der to talk to smart card devices at a lower level, and take advantage of
the exposed functionality, like access control mechanisms based on multiple
PINs or other authentication means. The API has been directly used for em-
bedding smartcard technology into a set of target applications, within the
Smart Sign project (http://smartsign.sourceforge.net): a command line dig-
ital signature application (sign-mcard), a variant of the OpenSSH software
(openssh-mcard). A PAM [47] module has been directly developed using

73



The host-side architecture

this API, allowing smartcard based user authentication for applications us-
ing PAM on Unix like systems, like the Unix login. Finally, a CSP module for
Windows platforms has also been developed, integrating functionality of the
exposed architecture into applications like MS Outlook, Internet Explorer

and Windows login.

API overview

This section features a technical overview of the proposed API. The discus-
sion is focused on the introduction of the API main features, and explanation
of the main design choices behind its development. The complete API speci-
fication [15] is available for download at the URL: http://www.musclecard.com.

Objectives and design choices [SO standards impose a high level of
complexity on data storage and cryptographic services exposed by a smart
card, constituting a powerful and flexible solution that is suitable for a wide
range of applications. Though, an implementation of these standards onto
a programmable device existing today, like a 32K Java Card, would result
in a so big program that a few on-board memory, if any, would be left for
application data and cryptographic keys.

The new protocol introduced in this chapter, instead, has been designed
with the aim of satisfying the requirements that a smart card stands for:
protecting user keys.

Main aim of the API design is to provide higher layer software com-
ponents with an open, simple, card independent framework which exhibits
sufficient generality to meet the requirements of a multitude of target ap-
plications, including digital signature, secure e-mail, secure login, secure
remote terminal and secure on-line web services, both PKI based and not.

These requirements have been identified in having a means of generating,
importing, exporting, and using cryptographic keys on the card. Another
requirement is to have a means of creating, reading, and writing generic

data on the card in generic “containers”. This is useful, for example, to store

74



API overview

on the card a public key certificate associated with a private key. Access to
some of these resources needs to be granted only after host application and
user authentication.

The result is a simple and light interface that has been proved to be
effective in allowing integration of smart card technology into secure appli-
cations, as shown by our sample application cases. The API design allows
future extensions, like the use of alternative key types or authentication
mechanisms, as proved by the biometrics extensions that have recently been
added [13].

The API does not address sophisticated card services that might be
needed by specific applications. Multi-key digital signatures and authentica-
tion schemes may need specific functionalities to be provided through the
use of multiple cards. These applications can still benefit from the exposed
middleware by extending it with the required functionality, given the open
nature of the project.

API function set

The set of functions available in the proposed APl is summarised in Table 4.
API functionality has been divided into 5 general function sets, giving access
to one or more of our middleware class of services, namely: session man-
agement, data storage, cryptographic key management, PIN management,
access control, and a set of miscellaneous further functions. In the follow-
ing, we provide detailed information on the intended use of the various API
calls. For the complete API specification, the reader should refer to [15].

Session management The APl has a minimal set of functions allow-
ing the enumeration of connected readers and inserted smart cards, and
management of the connections to the card devices. Establishment of a
connection to a card device is a prerequisite for the use of any of the other
functions of the API. Specifically, the ListTokens function is able to enu-

merate readers connected to the system, readers which have a card inserted,

75



The host-side architecture

Session ListTokens_, EstablishConnection, ReleaseComection

mgmt WaltFprTokenEv_ent, CanceIEventWalt
BeginTransaction, EndTransaction

Data CreateObject, DeleteObject, ListObjects

storage WriteObject, ReadObject
GenerateKeyPair, ComputeCrypt

Cryptography ImportKey, ExportKey, ListKeys

CreatePIN, ChangePIN
PIN mgmt UnblockPIN, ListPINs
Access ctrl VerifyPIN, GetChallenge
ExtAuthenticate, GetStatus, LogOutAll
Miscellaneous || WriteFramework, GetCapabilities, ExtendedFeature

Table 4: MUSCLE Card API function set

along with the type of inserted device, and the list of all supported card de-
vices in the system. Furthermore, an application is able to block and wait
until a card insertion or removal by using the WaitForTokenEvent func-
tion. Once a card is inserted into a reader, the EstablishConnection and
ReleaseConnection functions allow to reset the device and prepare it for
subsequent commands. When connecting to a card, it is possible to select ei-
ther exclusive or shared access to the card. In the latter case, it is possible to
acquire an exclusive lock on the device with a call to the BeginTransaction
function, and release it with the EndTransaction function.

An example sequence of calls needed for the establishment of a session
with a smart card device is shown in Figure 21(b), in the case in which the
device is not yet inserted, and the application waits for its insertion.

Data storage services Our middleware allows the definition of simple
containers for The API specification encapsulates applications’ data into
simple containers called objects, identified by means of a string identifier
(OID). Access control is enforced on a per-object and per-operation basis,
distinguishing among create, read, write and delete operations (more details
will be given later). The data storage services suffice for the target applica-

tions cited in the beginning of Section , by allowing them to store, retrieve

76



API overview

Application SC Middleware

|
X ListTokens(LIST;SLqTSlL

=
%)
s
o
o
P
[
0
=
Q
o
=]
5
o
Q
a
¥
'S

ReleaseConnection

Figure 21: Sequence of calls needed for establishing a connection with a
card device

and manage data onto a card in a secure and controlled way. This is a
minimum set of operations and access constraints that is needed from host
applications and suffices to securely store, retrieve and manage data onto a
smart card. This does not preclude a hierarchic organization of applications’
data into a filesystem-like fashion. That could be achieved on the client side
on a per-application basis, or in an inter-application fashion if further doc-
uments came up standardizing particular objects to be used for filesystem
information. This way consistency of the achieved hierarchy would be up to
the host-side applications and could not be enforced by the card. Still this
approach would be suitable for environments where the hierarchy is created

statically and needs not to be changed dynamically.

The CreateObject function allows creation of an empty object on the
card, providing the object name, size and access control list (see forward for
details about this). The same information may be visioned by applications
for all existing on card objects through subsequent calls to the ListObject

7



The host-side architecture

function® . Reading and writing of data to and from objects is performed,
respectively, through the ReadObject and WriteObject functions. Execu-
tion of these functions may be restricted on a per-object and per-operation
basis. The APl does not provide, at the moment, any facility for the defini-
tion of a hierarchic structure of objects, and it does not even provide typed
objects, conversely to the intrinsic nature of ISO 7816-4 compliant devices,
which possess an on-board hierarchic filesystem. However, such functionality
could be added in the future, if needed. The API specification does not de-
fine specific object contents, leaving the applications total freedom on what
to store onto a card, like user private information, application specific data
or public key certificates. The nature of the stored data is highly dependent
on the application itself, and out of the scope of our interface specification,
which still leaves space for other documents to come up standardising OIDs
to be used to store special information with an inter-application relevance.
As far as the card storage capacity is concerned, the interface specification
gives only a view of the total available memory on the device, through the
GetStatus function. It does not deal with various aspects of on-card mem-
ory management, which depend on the specific on-board allocation strategy
performed by the device, such as: whether an object with a given size can
be created or not, how many objects are allowed to exist due to constraints
(i.e. allocation tables), how object memory is made free on the device (i.e.
by use of compaction or full defragmentation of free blocks).

Some smart card devices tend to separate among a public and a private
memory space. The first one typically contains public information that can
be read or sometimes changed at any time (like user preferences). The latter
is reserved for personal data to be handled by an application and its use is
allowed only after a PIN verification. Our approach is completely different
in that we have a unique memory space, where single created objects are
associated with access control rules specifically customised for each object
and operation. So our model allows reconfiguration of the memory space as

130rder in which objects are listed is not specified, and may vary depending on the type
of device, specifics of the driver, and order of creation

78



API overview

Host Smartcard
Application Program

|
GenKeyPair |

T >

| ok

<
-«

ExportKey

A

Figure 22: Sequence of commands for an on-board key pair generation with
the subsequent export of the generated public key value, to be read after
the ExportKey command from the output object.

public or private according to application requirements. Section will explore
in more detail the adopted security model.

Cryptographic services The API allows up to 16 keys to be managed
on the card, identified by means of a numeric key identifier. A full key pair
can be stored by using two key identifiers. Key types are those provided by
the Java Card 2.1.1 API: RSA, DSA, DES, Triple DES, Triple DES with
3 keys. The interface is designed to allow further key types in the future.
Operations provided on cryptographic keys are import/export from/to the
host, computation of cryptograms, and listing of keys, which provides size
and type information. All key operations except key listing are allowed only
after proper host application or user authentication. The API allows key
pairs to be directly generated on board guaranteeing the private key is not
exposed outside the card. In this case the public key can be obtained with
a call to ExportKey, right after the key pair generation. When a key pair
is created on-board, the host application specifies under what conditions
subsequent reading, overwriting and use operations are allowed for each of
the keys in the pair. The same rules can be specified when importing a new
key from the outside world.by means of the ImportKey function.

79



The host-side architecture

Identity number Identity type Linked to

0 PIN-based PIN n.0
1 PIN-based PIN n.1
7 PIN-based PIN n.7
8 Strong Key n.0
9 Strong Key n.1
13 Strong Key n.5
14 Reserved Undefined
15 Reserved Undefined

Table 5: Association between identity, PIN and cryptographic key numbers.

Security model and access control enforcement A simple Access Con-
trol List (ACL) based model is defined to protect on-board objects, allowing
operations to be performed only after proper host application and user au-
thentication. This may be performed by means of a PIN code verification, a
challenge-response cryptographic authentication protocol, or a combination
of both methods. Furthermore, the API has been designed to allow future
support for other identification schemes, like fingerprint verification. Access
rules for on-card resources are specified by using the concept of identity.
This term refers to one of several authentication mechanisms that host ap-
plications and users can use to be authenticated to a smart card. Identities,
PINs, and cryptographic keys are referred to by means of numeric identi-
fiers. Different types of identity are defined (see also table 5): identities
n.0-7 are labelled as PIN-based and are associated, respectively, with PIN
codes n.0-7; identities n.8-13 are said strong and are associated, respectively,
with cryptographic keys n.0-5 for the purpose of running challenge-response
cryptographic authentication protocols; identities n.14-15 are reserved 4.
A successful run of any of the authentication mechanisms causes the
log in of the associated identity, in addition to identities already logged
in. The use of multiple identities allows a host application to switch to a

14The fingerprint verification mechanism recently developed uses identity n.14.

80



API overview

A

PIN n.2 and n.3 PIN 2 and Key 1
Verified Verified
ith

VerifyPIN
with PIN n.2

VerifyPIN
with PIN n.3

ExtAuth
with key n.1

VerifyPIN
with PIN n.2

Card
Reset

Unauthenticated

Figure 23: Subset of possible security state transitions allowed by the API
specification.

Object ACL Key ACL
| Read ACW | | Read ACW |
| Write ACW | | Write/Del ACW |
| Delete ACW | | Use ACW |

Figure 24: Composition of the Access Control List for objects and keys.

higher security level that grants access to more of the card’s capabilities, as
it runs additional authentication mechanisms. Furthermore the LogOutAll
command allows a host application to return back to the unauthenticated
security status. A little subset of possible security states and transitions due
to successful authentication commands is shown in Figure 23.

An ACL specifies which identities are required to grant access to each
operation of each object or key. Object operations are read, write and delete.
Key operations are overwrite (either by means of regeneration or by means
of import), export, and use. An ACL associated with an object or key is
specified by means of three Access Control Words (ACW), each one relating
to an operation. (see figure 24). An ACW consists of 16 bits. Each bit cor-
responds to one of the 16 identities that can be logged in. An all-zero ACW
means that the operation is publicly available, that is a host application can

81



The host-side architecture

perform it without any prior authentication. An ACW with one or more bits
set means that all of the corresponding identities must be logged in at the
time the operation is performed. An all-one ACW has the special meaning
of completely disabling the operation, means that the operation is disabled
and cannot be performed, independently of the connection security status.
This is useful to disable reading of private keys. The security model has
enough freedom to allow at least four levels of protection for card services.
An operation can be always allowed if the ACW requires no authentication,
PIN protected if the ACW requires a PIN verification, strongly protected
if the ACW requires a strong authentication, and disabled if the ACW is
all-ones, forbidding its execution. As an example, use of a private key onto
a smart card is usually PIN protected, but some applications could require
a strong protection. Reading of a private key is usually disabled. Public ob-
jects may always be readable, but their modification could be PIN protected.
Private objects could require PIN protection for reading and possibly strong

protection for writing.

PIN management services Functions have been defined for PIN man-
agement, allowing to create, verify, change and unblock PINs. Specifically,
the CreatePIN function allows to create a new PIN on the card, provided
that the transport PIN has already been verified, and the ListPIN function
allows listing of the existing PIN codes. Up to eight PIN codes are allowed
in principle to be created onto a single card, though the actual maximum
number depends on the underlying device, and may be queried by using the
GetCapabilities function. The VerifyPIN function allows verification of a PIN
code, and, if successful, logs in the corresponding identity. The identities
logged in at a time may be queried by using the GetStatus function. The
API defines a unique way of logging out of the device, through the use of
the LogOutAll function, which logs out all identities at once, returning the
session to the unauthenticated state. Finally, the ChangePIN function may
be used to change the current PIN value, and the UnblockPIN function to

unblock it after it blocked due to several verification tries with the wrong

82



API overview

code. A special PIN (transport PIN, n.0) is assumed to exist right after
the program has been loaded and instantiated on a card, and it must be
verified to allow a host application to create further resources on the card.
This has been imposed to prevent allocation of card resources without user
knowledge. It is highly suggested that applications format a smart card by
creating an application specific PIN code, and using it for protecting appli-
cation specific data and keys. With a proper setting of the ACLs on the
card, an application can “format” the card in such a way that further usage
of the card is dependent on a different PIN than the transport one or on
a different authentication scheme, like a challenge-response cryptographic
protocol. This way after the user has entered the PIN code from an un-
trusted terminal, the only allowed operations are exactly those specified at
the format time (typically use of a key or reading of an object) with no
possibility for that terminal to interfere with other applications.

Multiple applications, one single card

The API has been designed to allow multiple applications to use the same
card without interfering with each other. In fact, each application can create
its own PINs and/or cryptographic keys, and require their verification for
accessing its own data and keys through the use of appropriate settings for
the ACLs of such objects.

As an example, on JavaCard devices this can be easily supported through
the interaction with the MUSCLE Card Applet, or with different resident
Applets. On ISO 7816 compliant devices, each application could define its
own Directory File (DF) in which to keep certificates, keys and PINs relative
to that application. Each application must be able to manage its own PIN,
data objects and keys. This has been accomplished in two ways: requiring
verification of the transport PIN to allow creation of new PINs, objects and
cryptographic keys, and allowing an application to create additional identities
by means of creating further PIN(s) or cryptographic key(s); these identities

can be required in ACLs of application specific objects and keys that are

83



The host-side architecture

“sensitive” for the application. For example, when “formatting” the card,
an application should create a new PIN and require all of its data and keys
to be protected by that PIN. This way every time the user interacts with
that application, she is required to only enter the new PIN value, resulting
in the guarantee that the application cannot manipulate other application’s
resources or create further resources on the card.

Transactions and related issues.

Different kind of error conditions can occur during a smart card operation.
It is possible that the host provides an incorrect class code for the currently
inserted card, an incorrect instruction code for the specified command class,
or incorrect parameters to the specified command. Furthermore, a host
can cause an access violation when trying to access a resource/operation
on the card that is forbidden with privileges of the actual session. It can
happen that the software component that is currently either providing data
to or retrieving data from the card suddenly interrupts its operation (i.e. an
application crash or a system shutdown). Finally, the card can be suddenly
extracted by the user during a command execution.

The protocol specification explicitly deals with first four conditions, by
specifying, for each command, what error codes must be returned by the
device when some of these conditions occur. These can be regarded as
“graceful” failures because they assume that both the host and the card are
still operating correctly and can run the needed error recovery procedures
to handle the condition. Last two error types are also very important with
respect to a smart card life, because they raise transactions issues due to
a sudden reset or power down of the device. In fact after a host-side ap-
plication crash, usually, the device is again under control of the resource
manager, that should issue a “reset” or “power down” command (see figure
25) to the reader in order to guarantee security of data and keys that were
handled by that application (if it was using the device in exclusive mode).
Furthermore a card extraction always powers down the card. If the device

84



API overview

Resource Smartcard
Manager Application Program

Power Down
| ! |

Figure 25: Sudden application crash causing a reset or power-down of the
card during a command execution.

was updating its internal data during the command execution, it is very im-
portant that this is done in a transactional way, so to guarantee consistency
of data in such cases. The really important property that must be guar-
anteed is consistency of internal “directories” of objects and keys, including
access control information. Data contained in objects does not need to be
handled in a transactional way. Consider the case of a power-down during
execution of a command that is overwriting an object contents. First of
all, other objects must not be affected anyway by the event. Second, the
access control information related to this object must not be affected any-
way by the event, otherwise it would be possible to set-up attacks based on
this kind of events. A desirable property is also the transactional update of
object contents, that is either the contents are updated or the old contents
are recovered, but it is not really required, as it should be anyway considered

at an application level.

The provided implementation of the protocol is a Java Card Applet run-
ning into the Java Card Runtime Environment [51], that already implements
transactions on every updates to permanent card data during a single com-
mand execution, up to a maximum amount of changed bytes. This allowed
to write the Applet without any additional code for implementing the trans-

actional behavior.

When implementing the protocol onto a programmable, non Java Card,

85



The host-side architecture

device, it is of fundamental importance that the program explicitly addresses
transactional issues, guaranteeing consistency of at least internal key and
object “directories”’, and access control data.

Extensibility Our middleware allows connectivity to smart card devices
at a lower level than the one that is usually required for the implementation
of standard PKCS#11 or PCSC interfaces. The set of functionality that is
exposed to applications has been voluntarily kept small, in order to achieve
a simple API. Particular attention has been paid to extensions that could
be needed in the future. In order to allow such extensions to be performed
without compromising the previously developed software, the middleware
has versioning built into it. The version information is available through the
GetStatus command, by means of minor and major version numbers. An in-
crement in the minor version number should retain compatibility with already
written software. This could occur, for example, if commands needed to be
added to the protocol itself, without changing behavior of already existing
ones. An increment in the major version number, instead, would not retain
such a compatibility, and would mean a change in some of the protocol core
features.

Simple extensions of the first type could be done to embed into the
protocol alternative user/application authentication schemes, different from
the classic PIN verification and cryptographic challenge/response verifica-
tion. Two identity numbers were reserved in the protocol for this purpose
and could serve as a means for adding on-card biometric pattern matching
without affecting the original protocol.

Card specific behaviour The API which has been just introduced pro-
vides a unified means, for higher level middleware components as well as
applications, to access the described smart card services in a unified, card-
independent way. However, it must be noted that only a JavaCard device
with the MUSCLE Card Applet on-board is able to support the full set of

functionality available through this API. Each specific card generally sup-

86



Related projects

ports only a subset of such functionality. For example, each card has its
own constraints such as: the allowed key types and, for each type, the al-
lowed key length and supported modes of operation. The API provides,
through the GetCapabilities function, a means for querying what features
are supported by the particular device that is connected to the system. This
way it is possible to choose the right set of parameters for the specific card
that is being used.

Related projects

This subsection provides a quick overview of existing open architectures for
smart cards: OpenSC, SecTok, OCF, GPKCS#11 and CDSA. , highlight-
ing how these projects are placed with respect to the proposed architecture.
The OpenSC [33] project provides a library and a set of utilities for access-
ing ISO 7816 [28] and PKCS#15 [44] compliant card devices. Specifically,
the project features a programming interface with functionality for: SO
7816-4 [28, Part 4] filesystem browsing and file reading/writing; ISO 7816-
9 [28, Part 9] filesystem management; ISO 7816-8 [28, Part 8] cryptogram
computation for cards complying with the PKCS#t15 standard for storing
certificate and key information. It provides a good set of middleware com-
ponents, as well as modules for their integration within widely used secure
applications, constituting an effective solution for integration of ISO 7816-4
and PKCS#15 compliant, pre-formatted devices. Though, various cards
exist today with custom, proprietary APDUs for filesystem management,
which adhere to ISO 7816-4 only in a read-only fashion, and/or do not re-
spect the PKCS#15 standard for managing information about the on board
cryptographic material. Such devices cannot be directly supported within
this architecture, especially on the side of card-personalisation.

The SecTok [14] project provides a library for the management of files
onto an ISO 7816-4 compliant device. The library includes functions for

initialisation, reading and writing of files. It does not support cryptographic

87



The host-side architecture

functionality of the devices, thus it cannot be used in the context of cryp-
tographic smart cards.

The Open Card Framework (OCF) [36] is a Java based development plat-
form for smart card development. It aims at reducing dependence among
card terminal vendors, card operating system providers and card issuers, by
the adoption of a consistent and expandable framework. The core archi-
tecture of OCF features two main parts: the CardTerminal layer, providing
access to physical card terminals and inserted smart cards, and the CardSer-
vice layer, providing support for the wide variety of card operating systems.
in existence and the various different functions they may offer. Example
CardServices are the FileAccessCardService, providing a fairly complete set
of interfaces and classes abstracting a ISO file system’s functionality, and
the SignatureCardService, offering methods to create and verify digital sig-
natures. Further, the problem of card issuer independence is addressed sep-
arately by OCF’s ApplicationManagement component, supporting listing,
selecting, installing, uninstalling, blocking and unblocking of applications.
OCF is a promising framework for smart card integration within Java ap-
plications. Despite the modular and expandable design, its main limitations
are due to the lack of support of some readers due to the way I/O is man-
aged at the lowest levels of the architecture, and the inherent difficulties
and overhead needed in order to access such functionality from programs
written in different programming languages than Java.

The GPKCS#11 project [53] aims at providing support functionality
that ease the development of a PKCS#11 driver for cryptographic tokens.
It contains a complete software token, based on the OpenSSL library, as
well as an automated testing environment for PKCS#11 modules. The
framework provides basic services for managing PKCS#11 session handles,
object handles, and object attributes, through the use of internal lookup ta-
bles that map handles to C structures, and vice-versa. Then, a PKCS#11
driver is supposed to implement an internal APl which resembles the original
PKCS#11 API, where all handles have been substituted with the looked
up C structures, and some mandatory parameters checking dictated by the

88



Related projects

standard are already embedded within the framework. Furthermore, the
framework aims at leaveraging the programmer from the support of concur-
rent applications, by implementing the necessary locking mechanisms within
the framework. Despite the optimal principles that inspired the GPKCS#11
project, Unfortunately, the project lacked detailed documentation about its
features, and it has not been maintained since year 2000.

The Common Data Security Architecture (CDSA) [35] is an open stan-
dard introducing an interoperable, multi-platform, extensible software infras-
tructure for providing high level security services to C and C++ applications.
It features a common API for authentication, encryption, and security pol-
icy management. Intel provides an open source implementation [9] of the
standard for both Windows and different flavours of Unix!®. As far as smart
card technology is concerned, the CDSA standard supports external crypto-
graphic devices through the use of PKCS#11 modules, while the overall ar-
chitecture is designed and focused around higher level security services, such
as certificate and CRL management, verification of signatures, authentica-
tion, and others. Initiated by Intel in 1995, CDSA v2.0 was adopted by The
Open Group at the beginning of 1998. Intel also initiated a reference imple-
mentation, later moved to open-source. It is now available for both Windows
and different flavours of Unix from http://sourceforge.net/projects/cdsa
The main site for CDSA is http://developer.intel.com/ial/security/.

The architecture that is being introduced in this chapter, at the authors’
knowledge, is the only open architecture completely modular that allows
multiple heterogeneous devices to be supported through the implementa-
tion of a common lower level API, which exposes sufficient functionality
needed by most PKI applications , such as management of on-card memory,
cryptographic keys and PIN codes, since the time of issuing of the card by
a CA, up to the final use of the device by applications. The efforts needed
for the implementation of such drivers is limited, with respect to the full
implementation of one of the well known standards for smart cards, such as
PKCS#11 or PCSC level 6. Still connectivity with such standards is possible

15The implementation is available at the URL: http://sourceforge.net/projects/cdsa.

89



The host-side architecture

| Project | Lang | Limitation |
OpenSC C Only ISO 7816-4 and
PKCS#15 compliant
devices
SecTok C Only ISO 7816-4 storage
functionality
OCF Java | High overhead for non Java
applications
GPKCS#11 C Lack of documentation and
maintenance
CDSA C Architecture stands at a
higher level

Table 6: Summary of open architectures for smart cards

through the implementation of the higher level API through the MUSCLE
Card API, what can be done in a separate module, and once and for all.
As an example, our architecture provides a single PKCS#11 module that
works with all the card devices for which a plugin has been implemented.
This module, for example, can be plugged at the lowest levels of the CDSA

architecture.

90



On-board fingerprint verification

This chapter presents a hybrid fingerprint matching algorithm combining
two heterogeneous schemes, namely the texture-vector and minutiae-based
methods. The proposed technique has been designed in order to run on
a programmable smart card, with image processing and feature extraction
performed on the host, and matching performed by the card device. The two
matching algorithms have been carefully tuned in order to achieve an accept-
able performance despite the computation and memory constraints. Given
the high level of intrinsic security that smart cards already have, and the
interactive nature of target applications, the complexity of the problem has
been greatly reduced, making such an approach feasible. This is validated
by the experimental results we show, gathered from an implementation onto
a Java Card device, where acceptable false acceptance and rejection rates

are achieved at the cost of a reasonable response time of the device.

Introduction

User authentication is one of the most important issues when designing a
secure system. Traditional password based solutions, relying on the concept
that a user is authenticated by proving knowledge of a secret information,
usually offer an unacceptable security level. In fact, the secret information
can easily be revealed to (or stolen by) unauthorised users. If the password
IS not strong, it can also be easily guessed by an attacker. Use of smart

91



On-board fingerprint verification

cards, along with cryptographic authentication protocols, increases security
by requiring a user to prove both possession of a physical card, containing a
cryptographic key, and knowledge of a secret information, usually a Personal
Identification Number (PIN) protecting the card (two factor authentication).
This raises the security level with respect to remote attackers, but still it
is subject to the problem of voluntary delegation, or card stealing / PIN
extortion. Biometrics based authentication techniques solve this problem,
by requiring the user to prove possession of a unique, characteristic property
of his own body, such as fingerprints ridges, hand shape, retina, etc... When
such a technique is used in conjunction with smart card technology, a high
security level is achieved since users are required to prove, at the same
time, knowledge of a secret information, possession of a physical token, and
possession of their own physical body (three factor authentication), before

access to a system is granted.

This work is focused on systems where the authentication mechanism
relies on the cryptographic capabilities of the card, and fingerprint verifica-
tion is used by the card, in addition or alternative to PIN code verification.
An alternative target is a secure application running entirely or in part onto
a smart card, where the card itself authenticates users. A typical target
application is smart card based digital signature, where the non repudiation
property, usually established only at a jurisdictional level by dictating card
owner responsibilities, can be technically enforced by requiring a biometrics
authentication by the card, before the signing operation takes place.

This chapter is organised as follows. Section briefly reviews works found
in literature related to fingerprint verification. Section features an overview
of the proposed technique, with a detailed description of the matching mech-
anism that has been implemented on the card device. Evaluation results for
the proposed algorithm are reported in Section . Specific notes about the
algorithm implementation are reported in Section . Finally, Section draws

conclusions and presents possible areas of future investigation.

92



Related work

Related work

In recent years, the problem of merging smart card technology and bio-
metrics for the purpose of authenticating users has gained more and more
attention from research and industry altogether. Smart card based authen-
tication has been widely used whenever user authentication was required,
though the result has always been the authentication of the plastic card
itself, not the user. Biometrics promise a final solution to this problem,
achieving an integrated authentication system in which not only a user is
authenticated by proving possession of a physical token and knowledge of
a secret information, but by showing to the system some unique biological
characteristics of its own body.

Correct use of biometrics and smart cards is not as immediate as it
could seem at a first glance. Recent works [23, 40] focused on the possible
attacks a system integrating such technologies could be subject to. In [40]
eight types of attacks to a biometric authentication system are identified,
targeted either to the components themselves, or to the communication
protocols among them. Recently, the European Union has also focused
attention on feasibility of matching-on-card technologies, as in [48], where
it is underlined that, in the context of electronic signatures, the possibility
of identifying people based on biometric characteristics is of fundamental
importance due to the non-repudiation security requirement, and the need
for on-card matching is also outlined.

Feature extraction from fingerprint images has been widely studied, as
shown in [32], where a good overview is made on the general structure of
automatic fingerprint identification systems (AFIS), emphasizing the main
challenges such a system has to face with. In [24] the authors demonstrate
how an image enhancement algorithm based on Gabor filters can signifi-
cantly improve the performances of an AFIS thanks to the greater reliability
and precision gained by the minutiae extraction process, which leads to a
reduced False Rejection Rate (FRR) for a given False Acceptance Rate
(FAR). In [39], Prabhakar proposes an innovative approach to fingerprint

93



On-board fingerprint verification

analysis & matching, based on the use of a Gabor filter bank to extract
from the fingerprint image statistical information, which have been proven
to degrade much more smoothly with image quality than classical minutiae-
based algorithms. This approach has further been developed in [43] in order
to achieve comparable performances even in conjunction with small sensors,
which offer to the analysis system only a limited portion of the fingerprint. In
the same work, the authors opened a relatively new investigation direction
inspired from the so called multi modal biometric verification techniques,
where multiple kinds of a person biometric characteristics are used at once
for the purposes of authentication. Due to the independence between the
different kind of biometric information that is matched in such techniques,
a combination of them results in a higher performance, as shown in [42].

The specific problem of combining two fingerprint matching algorithms
in order to improve performance is addressed in [34], where the authors
compare three different ways of combining the scores obtained from distinct
matching algorithms (a /linear combination, a multiplicative combination and
a combination based on the logistic function) and demonstrate that the best
performance is achieved with the logistic function.

With respect to previous investigations on hybrid fingerprint matching,
the approach which is being introduced in this chapter is specifically focused
on the problem of implementing such techniques onto programmable smart
card devices. It does not aim at achieving the highest possible performance,
but achieving an acceptable performance for the cited usage context, while
keeping a sufficiently low complexity level so to allow implementation onto a
programmable card device. We give an extensive description of the adopted
algorithms, and a precise specification of how various parameters have been
tuned in the implementation. Furthermore, we present an on-card archi-
tecture for the matching algorithm, realised as a consistent extension to
the protocol and JavaCard Applet introduced in [17], and report experimen-
tal timings gathered from the execution of the proposed algorithm onto a
JavaCard device.

On a related note, fingerprint matching on JavaCard devices is not novel,

94



Hybrid matching

as industrial products already exist based on the same kind of technology, like
the one from Precise Biometrics [38]. However, implementation details and
extensive description of the experimental setup from which such measure-
ments arise are not available, making it impossible to perform a comparison

with other approaches.

Hybrid matching

Our system uses both Prabhakar’s fingercode and minutiae information in
order to perform a multi modal biometric verification of the user. Both
techniques have been split into the two fundamental steps of feature ex-
traction and feature matching. Thus, the live-scanned fingerprint image is
first analysed on the host machine in order to extract the features using the
two relatively complex feature extraction algorithms; such features are then
transmitted to the smart card device, which performs the matching phases
of both algorithms, comparing the received features with the templates pre-
viously stored into its internal memory during enroliment.

In the following, we report a description of the extraction and matching
algorithms adopted for the two techniques.

Features Extraction and Representation
Fingercode

Fingercode extraction has been implemented following the method described
in [39], where an exhaustive description of the algorithm can be found.
Briefly, it consists of the following steps (see Figure 26). First, the finger-
print image is normalised to a constant mean and variance, then a reference
point (core) is determined, defined as the topmost point on the innermost
upward ridge. A circular region of interest around the core is then tessellated
and filtered using eight Gabor filters, tuned over eight different directions.
For each of the filtered images, and for each tessel, the intensity absolute
deviation from the mean is computed. The complete list of such absolute

95



On-board fingerprint verification

Figure 26: Example of Fingercode computation: a region of interest is
determined around the core, then it is directionally filtered (only vertical
filtering is showed), tessellated and intensity absolute deviations (represented
in gray scale) are computed.

deviations, normalised in the range [0..255], constitutes the fingercode of

the original image.

Minutiae

In order to extract the minutiae from the fingerprint image, we adopted the
algorithm supplied by the National Institute of Standards and Technology
(NIST) as implemented in the NIST Fingerprint Image Software (NFIS), a
public domain software developed for the Federal Bureau of Investigation.
This algorithm can be roughly subdivided into the following phases ©.
First, the gray-scale fingerprint image is reduced to a binary, black and white
one, then analysed in order to find every singular point (bifurcations and ter-
minations) which could be a potential minutia. This operation results in false
positives (minutiae detected where none exists), due to low-quality image,
cuts, bruises or other noise. Thus, various heuristics are applied to discover

and delete such false positives (for example two facing and aligned minutiae

18For further details the reader is referred to NFIS official documentation, freely dis-
tributed by NIST (http://www.nist.gov).

96



Hybrid matching

at small distance are likely to be due to a cut determining two false termi-
nations). Finally, for each of the remaining minutiae the algorithm outputs
the position, direction (defined as the main direction of the surrounding
ridge flow) and an index of reliability, determined considering multiple fac-
tors such as local image quality and proximity to image borders. Our system
excludes from further analysis the minutiae with a reliability index under a
given threshold. The others are ordered based on increasing distance from
the core, where only the nearest num,, ones, up to a maximum number of
maxMinutiaeNumber, are considered, so to limit computation requirements
for the matching phase.

Let {m;}o<i<num, denote the set of found minutiae, where my is the fin-
gerprint core. The algorithm builds a graph representation of the minutiae,
where each minutia m; is associated a node n; in the graph, and the set
of outgoing arcs from a node n; represents the set of minutiae which are
considered neighbours of m; for the purpose of matching. The following
algorithm builds the graph:

1. determine the bounding-box of the minutiae set;

2. let ref; be the number of references to m;, initially 0;

3. let p be the list of pending minutiae; initially p contains my;
4. let ¢ be the list, initially empty, of consolidated minutiae;
5. extract next minutia mg,., from p, and add mc,. to c;

6. enumerate mg,.'s nearest neighbours, given the following restrictions:

a) a maximum of max,eign neighbours can be listed, where maxeign

is ne if Meyr = Mg, nm Otherwise;
b) minutiae in ¢ are ignored;
c) neighbour’s distance from mc,,, must be in the range [diStmin, diStmaxl;

we do not accept a neighbour too close because at small distances

97



On-board fingerprint verification

even light errors in position detection can determine large vari-
ations in direction when expressed in polar coordinates; on the
other hand we can’t accept too far neighbours because at large
distances the elastic deformation of finger's skin couldn’t be ig-

nored;

7. for each neighbour m; found

a) associate to mg,, the corresponding vector (i. e. distance and
direction from mc,, to m; and the index j);

b) increment refj; if ref; = max.s, add m; to c;

c) add m; to p, if not already present;

8. if p is not empty, continue from step 5.

If max,.es = 1, the graph becomes a spanning tree touching every minutia in
the set; the choice to allow multiple references (max.s > 1) to the same
minutia is due to the necessity to give the graph enough redundancy, which
(as discussed in Section ) reduces the probability of erroneous early abort by
the matching algorithm when comparing two corresponding fingerprints. On
the other hand, max.s has to be lower than max,egn, Otherwise the graph
could result in a strongly connected, central cluster of nodes which does not

reach outer minutiael’.

The representation of a fingerprint, as output by the described process,
is composed of: the bounding box coordinates; the found minutiae list {m;},
including, for each minutia, its Cartesian coordinates (relative to the core),
direction and list of vector-distances to its neighbours.

171t should be noted that we do not guarantee to reach every minutia, but only that the
probability of a minutia to be excluded from the graph is sufficiently low.

98



Hybrid matching

Matching
Fingercode

Fingercode matching has been implemented as described in [39]: given the
two vectors, we compute the sum of absolute differences between corre-
sponding elements and store the result as the score of the process score.

Minutiae

The minutiae matching has been inspired by the point-pattern matching
algorithm described in [57], with the simplification obtained by computing a
common reference point: the core. In the following, we consider two vectors
(as defined in Section , step 7a) vi(disty, diry, i1) and w(disty, dir, ix) to
match given the rotation rot and the tolerance parameters thgist, thy, and
thangle When:

|dist; — disty| < thyis
|dir1—dir2-|—r0t|360 < thdir

|mi,.dir — mj,.dir + rot| gy < thange

where m;.dir denotes the direction of the /*" minutia. These three tol-
erances have been chosen by performing a statistical analysis of pairs of
corresponding fingerprints. This avoids the system to behave too strictly
(resulting in high FRR) or too permissively (resulting in high FAR).

The basic task of the algorithm is to find, given the template and the
minutiae graphs, a spanning ordered tree touching as many nodes as possi-
ble, starting from the two cores (which are assumed to be corresponding by
hypothesis) and visiting the graphs only via common arches, i. e. the ones
corresponding to vectors matching within accepted tolerance.

The algorithm proceeds as follows:

1. Let 7; and S; indicate respectively the /" minutia of the template and
of the proposed set;

99



On-board fingerprint verification

8.

. let m be the list of matches found, composed of couples of indexes,

where the presence into m of the couple (i1, i) means that a match
has been detected between T; and S;;

let p be a list, initially empty, of pending minutiae;

look for the rotation bestRot which gives the maximum number of
matches among the two cores’ neighbours under tolerances thgistcore,
thaircore and thangie (thdistcore and thgircore are less restrictive than their
general counterpart to take in account the possible imprecision in core
detection); the search has two limitations:

a) |bestRot| < max,: (we assume that the user puts his finger

approximately vertically);

b) given two rotations rot; and rot, which give the same number
of matches, the lower one (in absolute value) is preferred;

. for each minutia S; for which a corresponding T; was found during

previous step, insert (j, /) into m and S; into p;

extract next pending minutia S¢,, from p and find into m the corre-

sponding matching template minutia Tcop;

. for each vector vi(disty, diry, i) associated to S¢, look for a match-

ing vector v»(dist,, diry, i) associated to T, with rotation bestRot
and tolerances thgist, thgir and thange; for each match found for which
(I, I1) is not already into m, add (i, /1) to m and add m; to p;

if p is not empty, continue with step 5.

Defined numM in; as the number of minutiae of T lying inside the bound-

ing box of S, numMing as the number of minutiae of S lying inside the

bounding-box of T, and numMatches as the number of matches found by

the algorithm, the score is evaluated as:

100

numM atches?

scoremin = 100 _ -
i numMin, * numM ing




Results

Matchers’ fusion

Given the two scores scores. and scoremin, the overall score is calculated

as a linear combination of them:
score = ascoreg + Bscoreémin -

If score exceeds a given threshold ths.e the system considers the proposed
fingerprint to be sufficiently similar to the enrolled one and the match suc-
ceeds, otherwise the match fails. Coefficients a and B have been determined
with an a posteriori analysis as the ones which minimise the overall Equal
Error Rate (EER) of the system.

Results

Effectiveness of our verification algorithm has been tested by submitting to
it pairs of fingerprint images and by measuring its ability to discriminate
between corresponding and non-corresponding ones in terms of FAR/FRR
curves.

Tests have been conducted on a database of 55 live-scan fingerprints
taken on a group of volunteers, with each fingerprint scan repeated ten
times for a total of 550 images. The volunteers were completely unaware
of biometrics related technology and scanner use, so they have been subject
to a training phase of one minute with visual feedback, so to allow them
to understand what was the right position and pressure of the finger for a
good scan. Then, they have been asked to pose ten times the finger on the
scanner in a natural way.

The obtained images have been analysed and matched in pairs using our
algorithm, distinguishing matches between corresponding fingerprints (dif-
ferent images of the same finger) from matches between non-corresponding
fingerprints. Figures 27(a) and (b) show the obtained joint (based on minu-
tiae and on fingercode) scores’ distributions in the two cases. In the two
graphs, the X axis reports the score obtained with minutiae matching, which

101



On-board fingerprint verification

Genuine scores’ distribution Impostor scores’ distribution

Fingercode
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
T

Fingercode

8
8
8
g
3
8
3
8
2
8
8
8
8
&
3
8
8
8
3
8
3
8
g
E
8
8
3
°

T
o 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Minutiae Minutiae

(a) (b)

Scores’ densities ROC curves

01

Matcher fusion
Minutiae only --=-=---
Fingercode only. <~
EER

Not corresponding matches
Corresponding matches -

0.06

0.05

FRR

0.04

0.03
0.02

0.01

(©) (d)

Figure 27: (a)-(c) Joint score distributions for genuine and impostor
matches. (d) ROC curves

is higher when a higher number of matching minutiae is detected, while the
Y axis reports the fingercode score, which is lower when the live-scan fin-
gerprint is more similar to the on-card template. The same distributions are
reported in the 3D plot of Figure 27(c) for convenience.

In Fig. 27(d) we compare the Receiver Operating Curves (ROCs) relative
to each matcher separately and to their combination. These curves represent
the FAR/FRR pairs that are obtained by continuously varying the score
threshold of the matching algorithms. As the picture highlights, the hybrid
technique results in a considerable increment of performance when compared

102



Implementation notes

to the results achieved singularly by the two matchers. In fact, in the hybrid
ROC curve, the FRR value, for each possible FAR, is consistently lower
than those obtained singularly by the two matchers. Furthermore, while
the minutiae based and fingercode matchers obtain, respectively, an EER of
about 2.3% and 4%, the combined matcher obtains an EER of about 0.8%.
The combined matching algorithm requires an on-board computation time
of about 11-12 seconds, 4 of which due to the upload of the biometric data
onto the card.

Implementation notes

The described biometric authentication system has been developed, on the
host side, as an extension to the MUSCLE Card [18] middleware, and on
the card side as an extension to the MUSCLE Card JavaCard Applet. This
framework defines a high level APl that smart card aware applications can
use to access smart card storage, cryptographic and PIN management ser-
vices in a unified, card independent way. The framework also includes a
JavaCard Applet allowing the middleware to use the on-card services by
means of the protocol described in [17]. Briefly, the framework allows appli-
cations to manage on-board data containers (objects), cryptographic keys,
and PIN codes. A security model allows to protect, on a per object and
a per operation basis, objects and keys, by means of Access Control Lists
(ACLs).

An extension mechanism has been embedded in the framework so to
allow applications to enhance the basic protocol and Applet in order to sup-
port application specific extensions. Biometrics based authentication has
been embedded in this context by allowing the access to on-card resources
(e.g. reading an object or using a cryptographic key) only after a success-
ful on-board fingerprint verification. Furthermore, the existing access con-
trol mechanism allows, by using ACLs, the possibility to combine the new
authentication mechanism with traditional PIN based or challenge-response
cryptographic based authentication. The used fingerprint scanner is FX2000

103



On-board fingerprint verification

USB, by Biometrika s.r.l. (http://www.biometrika.it), providing a portable
development kit and API for access to the acquired biometric data. The
development platform has been a RedHat 7.3 Linux system.

Conclusions and future work

In this chapter, a hybrid fingerprint matching mechanism has been intro-
duced, designed with the aim of running onto a programmable smart card.
Experimental results showed that, by taking advantage of the simplifications
inherent to the application context and using ad-hoc designed data repre-
sentations, it is possible to realise an on-board hybrid fingerprint matcher
with an acceptable performance, even into such scarce-resource devices as
programmable smart cards, maintaining reasonable execution times. In a
short future, it is scheduled to undertake investigations related to the feasi-
bility of on-board multi modal authentication based on alternative means of

biometrics.

104



A middleware for digital

signatures

Preface

This chapter presents an open approach to the design of a modular middle-
ware for digital signature (DS), aiming at easing integration of such tech-
nology within applications. Despite the simplicity behind the pure concept
of digital signature, namely the use of public key cryptography for verifying
authenticity of documents, implementation of that concept involves knowl-
edge and perfect adherence to various standards and technical regulations.
This is especially true for applications that need to integrate a DS scheme
in compliance to the legal framework of a country, where also national rules,
laws and directives need to be considered in the process of computing and
verifying signatures. Thus, adoption of one of the Software Development
Kits (SDK) for DS provided by specialised software houses is a perfectly
reasonable choice for the application developer. Unfortunately, the software
components provided by different vendors are not interchangeable, because
they are based on proprietary middleware architectures and Application Pro-
gramming Interfaces (API).

The approach that is being introduced in this chapter is based on the
design of an open middleware for DS services, which can be used by appli-
cation developers with the benefit of being leveraged from the burden of a

105



A middleware for digital signatures

detailed understanding of a DS policy, still being an interoperable solution
that will work with other DS providers. In our opinion, such an approach
has a potential in encouraging and speeding up integration of law compliant
DS services within document and work flow management systems, sustain-
ing DS technology to demonstrate its full potential in eliminating paperwork
from public and private agencies.

Introduction

Today various applications embed functionality for the use of digital signa-
tures in order to authenticate user data. For example, most e-mail clients, in
addition to the traditional MIME format, are able to manage the S/MIME
format for exchange of signed and/or encrypted messages. Though, the
support for such functionality is usually very limited, in that the process of
signature computation is just limited to the use of any PKCS#11 [45] or
Cryptographic Service Provider [37, Level 6] (CSP) module that is installed
onto the system, and the process of verification is limited to the crypto-
graphic verification of the message and public key certificate, plus a check
on its expiration period. A few applications perform a correct management
of the Certificate Revocation Lists (CRL) made available by Certification Au-
thorities (CA), use the On line Certificate Status Protocol (OCSP), check
the key usage or any other extensions that a CA has embedded within a
certificate.

Even if such operations suffice for a general use of DS for the purpose
of authenticating the incoming and outgoing messages and documents, it
is far from a perfect adherence to the security policy that a CA may want
to enforce, whenever its certificates and keys are used. This is especially
true when DS technology needs to be used in conformance to what dictated
by national or international laws in order for the computed signatures to
possess a legal value. In fact, depending on the national law framework, ad-
ditional operations are needed by DS computation and verification software,
in order to be perfectly compliant to the legal system in force. For example,

106



Introduction

during signature computation, it is commonly required that the software
verifies the validity of the user certificate. Another requirement could be
the verification that the document complies to particular standards, e.g. it
is in one of the recommended formats, and does not contain dynamic con-
tents. Furthermore, verification of signatures may involve several complex
operations to be performed, such as: downloading of up to date CRLs, run-
ning OCSP protocols with CA servers, retrieving and verifying public key
certificates of other CAs, verifying specific extension fields, checking that
signatures have been computed using the recommended hash algorithms,
etc.... Furthermore, when verifying the digital signature of an electronic
document long after the signing operation, it is common to find out that
the subscriber’s certificate has expired. In such cases, whether a verify op-
eration should reject the signature or not, depends on the particular security
policy enforced by the CA and, if the CA is a national law compliant one,
by technical regulations issued by the government. In fact, in such a case,
correct verification of the digital signature onto a document constitutes a
proof of its authenticity and a pre-requisite for its legal validity. Sometimes
the verification software may need to verify additional time stamps that may
be present in the document, increasing its legal validity beyond the certifi-
cate expiration date, thus increasing the number of certificates, certificate
issuers, and digital signatures involved during the verification process.

In this chapter, we propose an open architecture for digital signatures,
aimed at providing an open API for the access to digital signature services
from applications. In our opinion, its adoption will ease the use of such
services from within applications, decoupling the functionality that is specif-
ically tied to the management of digital signatures from the one that is
application specific. An open source implementation of the middleware is
currently under way, along with a digital signature application, and a plugin
for integrating italian law compliant DS.

Conversely to existing open middleware for security services, such as
the Common Data Security Architecture [35] or the Open Card Framework
[36], the introduced approach focuses on issues introduced by the use of DS

107



A middleware for digital signatures

services, expecially in relation to PKIls for digital signatures supported by a
legal framework for the purpose of guaranteeing the long term conservation
of a signed electronic document.

From now on, the set of software requirements dictated by the technical
rules of a legal framework, PKI or CA security policy, on the signature
computation and verification processes, will be referred to as digital signature
policy.

The need for open architectures

From what stated so far, it is clear that even a simple document management
system, used inside a small PA office, needs complex functionality when
dealing with digitally signed documents. This is especially true when the
signature on the documents is not merely used as a means for authenticating
the sender in a communication, but it is used as a proof to a third party of the
will of the subscriber to sign the document contents. This usually requires
adherence of the signature computation and verification processes to specific
technical regulations enforced by legislative decrees, in order to recognise
to digitally signed documents the same legal strength as handwritten signed
ones.

Usually, delegating external software components developed by specialised
software houses is the optimal choice for application developers, who are
leveraged from the burden of dealing with detailed and specific operations
that may be needed by the DS policy the application needs to comply. The
current way of achieving this separation of functionality is, today, the adop-
tion of one of the existing Software Development Kits (SDK) for DS, made
available by the CAs themselves or other software houses. These solutions
are usually characterised by the provision of components which enable an
application to integrate use of DS services through the use of a simple API,
and hiding as much as possible the specifics of a DS services implementation
to the final developer. Also, such solutions are usually characterised by the
availability of the APIs in various programing languages, such as C/C++,

108



National background

Java and Visual Basic, through the use of Microsoft COM+/ActiveX tech-
nology, which usually also make it possible an easy integration of DS services
inside web based applications.

Despite the good principles of inspiration of such solutions, the major
drawback in their adoption is the fact that they are based on proprietary
architectures, and provide DS services through proprietary interfaces. This
ties the final application to the specific DS-SDK provider. Furthermore, a
recurrent issue is that the provided solution is usually dependent on a specific
CA, and does not inter operate with other authorities!®. This results in
tying the final application to a specific CA or SDK provider. This situation
discourages integration of DS services inside applications, what hinders the
real potential of such technology in achieving a real paperwork elimination,
when combined with appropriate legal laws and technical regulations.

The approach proposed in this chapter is centred around the definition
of an open and modular architecture for DS services. It mainly provides
two APls, one to be used by application developers, the other by DS policy
providers. The former APl may be used by application developers for inte-
grating DS services complying to a certain DS policy with no prior knowledge
of the specifics of that policy. The latter APl is reserved to policy providers,
who are supposed to develop pluggable components that fit into the archi-
tecture in a transparent way for applications.

National background

In Italy, digital signatures (DS) became equivalent to handwritten ones since
year 1997, when the presidential decree n.513/97 [2] stated the fundamen-
tal equivalence of the two types of signature, provided that proper technical
rules be respected. The first formulation of the DS law, inspired by the
great optimism around this new technology that was promising to leverage

18This is due sometimes to the usual choice, for each provider, of a specific software
stack for connectivity with external smart card devices, which, despite their adherence to
the PKCS#11 [45] or PCSC Level 6 [37] standards, have little differences which make hard
for higher level software to support all of them

109



A middleware for digital signatures

the overall PA document production from the burden of the chapter phys-
icality, was very generic: it contained such simple definitions as certificate,
certification authority, digital signature, certificate revocation and suspen-
sion, without caring of any technicality involved in generation, storage and
management of keys. It also defined the authenticated digital signature,
when the operation of signing was supervised by a notary official. Imme-
diately, DS technology was embedded inside a technical regulations [3] for
archiving of PA documents on optical storage media. The first technical
rules for DS were issued by the Authority for Information technologies in
Public Administrations (AIPA) two years later, as the DPCM 8 Feb 1999 law
[5]. They introduced the concept of signing device, defined the algorithms
to be used for signing (RSA or DSA) and hash computations (RIPEMD-
160 or SHA-1 [56]), along with the minimum acceptable key length (1024
bits); they introduced three different key types (subscription, certification,
and temporal validation keys), and dictated constraints on the computer
systems dedicated to the generation of key pairs (compliance to ITSEC E3
security level); they dictated formats to be used for storage and exchange
of certificate and revocation list data; also, a maximum duration of three
years was defined for subscription certificates. Among others, they intro-
duced the possibility of substituting the full personal data of the owner with
a pseudonym, inside certificates.

Subsequently, in year 2000, the original equivalence was reviewed, in-
tegrated and corrected inside the presidential decree n.445/00 [7], known
also as Testo Unico, a first try in adjusting the national regulations to the
European Directive on Electronic Signatures [4]. Also, in year 2000 AIPA
issued guidelines for the interoperability of CAs [6], stating, for example,
rules to be followed in formatting distinguished names for citizens (Sur-
name/Name/Fiscal Code/ID) and relevant X.509 v3 [25] extensions to be
used (Key Usage, Extended Key Usage, Certificate Policies, ...), inside
X.509 subscription, certification and temporal validation certificates. The
EU directive on electronic signatures has been more consistently integrated
in the national legal framework with the actuation legislative decree n.10 23-

110



National background

January-02 [10], and the presidential decree n.137/03 [11], which highlight
a much higher level of complexity with respect to the previous law formu-
lations. Various types of signature are introduced: an electronic signature
(ES) is defined as any means of ICT based authentication of electronic data;
an advanced ES is one which “guarantees univocally the connection between
the generated signature and the subscriber”; a qualified ES is an advanced
ES based upon a qualified certificate and created by using a secure device
for signature creation; finally a digital signature is introduced as a “special
type of qualified electronic signature”. Furthermore, various CA types are
introduced: a certificator is a generic CA, a qualified certificator is one which
is compliant to the requirements dictated by national DS laws; an accredited
certificator is one which is compliant to the EU directive on electronic sig-
natures. Qualified certificates are defined as those issued by qualified CAs.
Signature computation devices are also subdivided into generic signature cre-
ation device and secure ones (those meeting requirements dictated by EU
directive on ES). Finally, latest upgrade is due to the new technical rules for
digital signatures [1], not yet approved, which introduce a few changes: they
eliminate the three years limit for the duration of a subscription certificate,
they explicitly address the problem of dynamic contents inside digital docu-
ments, nullifying the “automatic” legal validity of documents in such cases,
even in presence of an “advanced signature based on a qualified certificate,
computed using a secure creation device”, and others.

Long term validity of digitally signed documents

Another challenge in the use of digital signatures for legally valid documents
is the permanence of the legal validity beyond the expiration date of the sub-
scriber certificate, or even beyond the complete out date of the technology
used for signing, due to an improbable unpredicted increase in computation
power. Clearly, a much powerful attacker, in the future, would be able to
recover any private key that she wants, by using a trivial brute force attack,

thus being able to create as many false signatures as she wants.

111



A middleware for digital signatures

As long as such issues are concerned, laws in enforcement only stated
that, even if the user certificate is expired or has been revoked or compro-
mised, the signature is to be considered as valid if there exist a proof of
existence of the signed document before the date of expiry or revocation. A
directive from AIPA [8] in year 2001 suggested that this proof be obtained by
the addition of a time stamp to the signed document, before its expiration
date. The same document suggested to repeat the time stamp operation as
long as needed, at each expiry of the certificate relative to the previous time
stamp. This way, the chain of “updated” time stamps, along with a proper
process for verifying them, guarantees authenticity of the signed data. Even
in presence of a powerful attacker who manages to recover an “old” signing
key, falsification of a signature is impossible due to the impossibility for the
attacker to falsify the subsequent time stamps, supposed to be based on
much stronger schemes than the original one.

An alternative to such a complicated scheme is supposed to be introduced
by the new technical rules [1], if they will be approved. In fact, they state
that a single time stamp suffices for guaranteeing long term validity of the
signed document, and that the time stamping authority must keep into an
archive all computed time stamps for a minimum of five years, and also for
longer periods, on request of the citizen. This way, TSAs are delegated for
providing the proof of existence of a document cited above.

Project overview

As highlighted in previous section, the current scenario for legal validity of
digital signatures within ltaly is quite different with respect to the original
formulation in year 1997. More importantly, it is quite complex, in that,
among others, verification software is supposed to properly check possible
time stamps embedded into a signed document, and is supposed to behave
properly with respect to signatures created before expiration or revocation
of a non valid certificate.

The exact behaviour of the software during computation and verification

112



Project overview

of signatures on documents and other types of files is highly dependent on
the security policy of the CA that issues the signature certificates. In this
chapter, we propose a modular approach in which each CA may provide its
own “plugin” that implements its own DS policy specific behaviours. Appli-
cation developers only need to use a simple APl to ask to the middleware if a
given signature onto a digitally signed document is valid or not, according to
a DS policy of its choice, among the ones available (installed) in the system
the application is running into. This approach is not necessarily restricted
to legally valid digital signatures: any PKI may provide its own plugin for
tuning the exact behaviour of the software providing DS services to applica-
tions (for example, in Italy, a user could have installed plugins for both law
compliant CAs, and EuroPKI, and OpenCA infrastructures).

This section makes an overview of the proposed architecture and APIs
for application and plugin developers.

System architecture

DS functionality that our middleware exposes to applications can be sum-
marised as (see Figure 28): signature computation, possibly through the use
of external cryptographic devices; enforcements of mechanisms that allow
the long term validity of a digital signature after expiration or revocation of
the signing certificate, if allowed by the DS policy; verification of signatures
on documents, possibly involving retrieval and verification of certificates,
CRLs and CSLs.

The envisioned architecture is composed of various components, as shown
in Figure 29:

Signer this component deals with the actual computation of digital sig-
natures, possibly through the interface with external devices such as
smart cards

Verifier this component is the one that verifies digital signatures, either on

public key certificates or on digital documents

113



A middleware for digital signatures

Sign Data

~, N
7 \

7
- - Verify Data
=~ —~
=~ —~
Application\ Renew Signature
N

N 7
7

Manage Documents

Figure 28: Use case diagram for application requirements

Long term signature validator this component may be used either explic-
itly by applications, or internally to the middleware, for the purpose of
undertaking necessary actions

CRL/CSL/OCSP Manager this component is responsible for retrieving up
to date certificate status information by periodic download of Certifi-
cate Revocation and Suspension Lists (CRL/CSL), and/or connection
to OCSP servers; status information is needed by the Verifier module
in order to check the validity of public key certificates, or by the Signer
module in order to check validity of the signing certificate

Certificate Manager this is needed by the Verifier component in order to
retrieve on the web public key certificates that may be needed for the
purpose of verifying a digital signature, and acts as a local cache for
such certificates; furthermore this component is required for the initial
installation of trusted certificates that are needed for a correct setup
of the verification process

Cryptographic Services this is the low level component embedding all cryp-
tographic operations needed by the middleware in order to work prop-
erly;

114



Project overview

i External Device Managerl

U
- I:;I Cryptographic Servicesl
1

Long term valid{norlz - ! :;ICertificate Managerl

=
| 1
1
1

e

I

1

L

: >{CRL/OCSP Manager |

-- —>|Documem Managerl

1
1
1
|
-
]
1
|

= = ->>|Time Stamp Managerl

Figure 29: Components of the proposed architecture.

External Device Manager this is the component that directly interfaces
with external devices, such as smart cards, through the use of a
PKCS#11 standard interface

Document Manager this component may be delegated from the applica-
tion for the long term storage of digital documents, for the purpose
of undertaking necessary actions for guaranteeing long term validity of
the attached signatures

Time Stamp Manager this component is responsible for managing time
stamps on digitally signed documents, including possible connections
to external TSAs for the purpose of getting a time stamp on request
by the Long Term Validator module

115



A middleware for digital signatures

116

DS Policy
— — — A Manager
- - — - -
_ - — - - P
-‘4 - — - -
Signature Verification Sign Renew
Service Service Service
a—
Certificate CRL/CSL Document TimeStamp
Store Store Store Manager
CsP Standard Formats
Module Module

PKCS#11
Module

#'—r___{____
OpenSSL |

| Cryptographic
Primitives

Standard Formats
Management

CRL Retrieval /
OCSP Protocols

Figure 30: Components of the proposed architecture.




Application of the proposed

architecture

This chapter overviews various software components which have been devel-
oped in the context of the smart card architecture proposed in the previous
chapters. Most of these components have been developed as thesis projects
for the Computer Engineering degree at the University of Pisal®, and they
are available as open-source components from the Smart Sign project web-
site (http://smartsign.sourceforge.net).

QSign

QSign is an end-user, stand-alone application for digital signatures which
has been developed at a high level with the aim of integrating as much as
possible the standards commonly used for this kind of application today. In
fact, the application is able to compute and verify a digital signature onto
a generic file, where the signature is managed according to the PKCS#7
standard. Access to the signature device has been performed by using the
most generic and portable API available today for this purpose, namely the
PKCS#11 API, which allows access to:

9More information at the URL: http://www.unipi.it

117



Application of the proposed architecture

QSign
Qt PKCS#11 OpenSSL
Library Module(s) Library

Figure 31: Architecture of QSign.

e smart-card devices supported in the introduced architecture, by use of
the existing open-source PKCS#11 module developed on the top of
the MUSCLECard API;

e other smart-card devices possibly supported onto an open system by
use of a vendor-supplied PKCS#11 module, which also allows integra-
tion with the vendor-supplied security services, when applicable (as an
example, Schlumberger provides a proprietary PKCS#11 module for

Linux);

e software-only cryptographic keys, by use of a software-only PKCS#11
library which computes cryptographic operations on the host PC, and
manages cryptographic material into some database or files (as an
example, the GPKCS#11 project includes a module of this kind).

QSign is a GUl-oriented application (see Figure 31), where the Qt library
has been used for developing the graphical user interface, which gives to
the application a high degree of portability among open platforms, where
such library is available as an open-source project. Furthermore, files in the
PKCS#7 standard format have been managed with the help of the OpenSSL
library, which is one of the most widely available open-source libraries today

onto open platforms.

118



JMuscleCard

JMuscleCard

JMuscleCard is a software component allowing the use of the API intro-
duced in Section from the Java language. The smart card middleware
introduced so far has been developed entirely using the C language, what
gives it the advantage of being a light component of the system, with low
resource requirements, in terms of both memory and CPU. JMuscleCard
has been developed for the purpose of making the services available through
this middleware available to Java developers too, what gives the opportu-
nity to easily integrate such services into Java stand-alone and web-based
applications (Applets). An example of the use of such component would be
within a workflow web-based application developed through Java Applets,
where access to the smart-card device by use of JMuscleCard could enable
smart-card based digital signature services into the application.

As Figure 32 highlights, JMuscleCard is basically composed of two bridge
subcomponents, one written in the Java language and the other in the C
language. The Java Native Interface (JNI) has been used for intra-language
communications between the two subcomponents. On the top of JMuscle-
Card, a Java version of the API proposed in Section has been designed,
where as few changes as possible have been made to the basic use of the
APl in order to allow a correct use of it by a Java application. For this
purpose, two main Java classes and a few other auxiliary classed have been
defined:

e the JMuscleCard class encapsulates access to all of the services avail-
able through the use of the API; basic functionality of the class is allow
the listing of available smart cards accessible on the system

e the MSCTokenConnection class encapsulates a connection to a card
device, and allows the use of all the on-board available services, i.e.

management of PINs, objects and cryptographic keys

e the MSCTokenInfo, MSCStatusInfo, MSCObjectInfo, MSCKeyInfo

and MSCGetCapability provide information on available cards on the

119



Application of the proposed architecture

Java Applet(s)
or Application(s)

JMuscleCard API

JMuscleCard
Bridge (Java)

_ b — — _ JNISystem

JMuscleCard
API (C)

|- — — _ MuscleCard API

MuscleCard
Middleware

Figure 32: Position of the JMuscleCard component with respect to the
proposed smart-card architecture

system and on the available resources on a card; the MSCCryptInit,
MSCGenKeyParams, MSCKeyPolicy classes are needed for parameter
passing within the cryptography-related methods of the class MSCTokenConnection;
MSCObjectACL, MSCKeyACL and MSCPinMask classes are needed for
parameter passing within the access-control related methods of the

class MSCTokenConnection.

JC Emulator

JC Emulator is an emulator for a JavaCard enabled smart-card device that
allows to develop a smart-card application interacting with such kind of de-
vices without any need to actually interface with a physical device. With
respect to the standard emulator provided by SUN within the Java Card De-
velopment Kit, this emulator is designed in suc a way to integrate seamlessly
into the smart-card architecture proposed in this thesis, and adds crypto-
graphic functionality that is not available into the package provided by SUN.

JC Emulator is composed of two main components:

120



JC Emulator

e a fake serial smart-card reader, written in the C language, which plugs
into the PCSC-Lite projects as a normal reader, but is basically a

gateway forwarding all APDUs to and from the second component;

e the emulator server, which is written in Java, so to allow execution
of custom Java Card Applets within an emulated Java Card Virtual

Machine.

The emulator embeds an implementation of all the standard classes and
services available to on-card Java Card Applets through the use of the Java
Card API [50], comprising an implementation of the cryptographic classes
through the use of the Java Cryptography Extensions (JCE) available on
the host machine.

For the sake of simplicity, the Applet loading process has not been emu-
lated. Rather, compiled Java Card Applets must be placed into a particular
folder, so to be recognized by the emulator as loaded programs before in-
stantiating them the first time. One of the main advantage of using JC
Emulator in the smart-card software development cycle is that it is com-
pletely transparent to the smart-card solution writer. In fact, no changes
are required on the software in order to switch from the testing phase to
the production phase, as, from the host side, connecting to the emulator
is exactly the same as connecting to an external smart-card device, and,
from the card side, a pure Java Card Applet is perfectly suitable for being
tested through the emulator, even if its life is constrained within the emu-
lator. However, such constraint has been eliminated by providing a support
for serialization of the entire image of a smart-card status onto a file, if
wanted. The Applet writer is only required to declare its own classes as
implementing the Serializable Java interface, in order to take advantage
of the feature. Clealy, such declaration must disappear in the final on-card
version of the Applet.

Within the development cycle of a Java Card based solution, the use of
an emulator is of great benefit due to the fact that it is almost impossible
to make a complete and exhaustive test of all the functionality of the secure

121



Application of the proposed architecture

solution. In fact, most solutions of this kind require the device to block under
certain conditions, and, for the most secure applications, once the physical
device has blocked, it can only be thrown away. This makes somewhat
cumbersome the testing phase, which is usually conducted by relaxing some
blocking features of the solutions, which are again activated only in the
final production phase, thus actual testing of the final solution is not always
complete as it ought to be. The use of a card emulator greatly simplifies
the problem, allowing the virtual creation and destruction of as many card
devices as required for a complete test within all the stages of the software
development process.

122



Acknowledgments

This work has partially been the result of a cooperation between the MUS-
CLE project by David Corcoran and my Ph.D. research project at “Scuola
Superiore Sant’Anna” (Pisa, Italy)?°. It has been sponsored on behalf of
Schlumberger Infosec®' and great contributions were given by Schlumberg-
erSema. | would like to thank all people who allowed this cooperation,
including David Corcoran, William Macgregor and Prof. Paolo Ancilotti. |
would like to thank all those people who helped with design and implementa-
tion issues, such as Krishna Ksheerabdhi, Jean-Luc Giraud, and many other
industry professionals from varying smart card and technical companies.

20The PhD has been sponsored by ICube s.r.l. (http://www.icube.it)
2Further information at the URL: http://www.slb.com

123






Table of acronyms

Acronym  Meaning

ICC Integrated Circuit Card i.e. a smart card

ISO International Standard Organization

PKCS Public Key Cryptography Standard by RSA Labs

PCSC Interoperability Specifications for ICCs and Personal Computer Sys-
tems by the PC/SC Workgroup

PC Personal Computer

MUSCLE Movement for the Use of Smart Card in the Linux Environment

oS Open Source

ACL Access Control List

ACW Access Control Word

API Application Programming Interface

PDU Protocol Data Unit

APDU Application Protocol Data Unit

PKI Public Key Infrastructure

DS Digital Signature

CA Certification Authority

CRL Certificate Revocation List

OCSP Online Certificate Status verification Protocol

125






[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

DPCM proposal: Technical rules for generation, computation and ver-

ification of digital signatures.

Presidential Decree n.513 10-Nov-97: Rules stating criterion for cre-
ating, archiving and transmission of documents by using telematic and
computer systems, ..., November 1997.

Deliberazione AIPA n.24/98: Technical rules for the use of optical
storage media, July 1998.

Directive 1999/93/CE: European directive on electronic signatures,
December 1999.

DPCM 8-Feb-99: Technical rules for creation, transmission, ..., of
digital documents ..., February 1999.

Circolare AIPA/CR/24: Guidelines for interoperability of certification
authorities . . ., June 2000.

Presidential decree n.445/00: Unified set of legislative regulations
about document management within administrations, December 2000.

Circolare AIPA/CR/27: Use of digital signatures within Public Admin-
istrations, February 2001.

Intel common data security architecture reference implementation.
http://developer.intel.com/ial/security/, 2001.

127



Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

128

Legislative decree 23-Jan-2002: Enforcing the 1999/93/CE directive
on electronic signature, February 2002.

Presidential Decree n.137 7-Apr-2003: Rules for the coordination of
electronic signatures, in compliance with art. 13 of legislative decree
n.10 23-Jan-2002, April 2003.

D. Atkins, W. Stallings, and P. Zimmermann. Request For Comments
1991 — PGP Message Exchange Formats, August 1996.

Riccardo Brigo. Protecting smart card access by on-board biometrics
verification. Computer Engineering Thesis. University of Pisa, 2002.

Center for Information Technology Integration (CITI), University of
Michigan. Sectok library and applications, 2001.

David Corcoran and Tommaso Cucinotta. MUSCLE Card API, version
1.3.0, 2001.

David Corcoran and Tommaso Cucinotta. MUSCLE cryptographic card
definition for java enabled smartcards. http://www.musclecard.com,
August 2001.

Tommaso Cucinotta, Marco Di Natale, and David Corcoran. A proto-
col for programmable smart cards. In Proceedings of the 14" Interna-
tional Workshop on Database and Expert Systems Application (DEXA
2003) — Trust and Privacy for Digital Business ({ TRUSTBUS 2003} ),
Prague, Czech Republic, September 2003.

Tommaso Cucinotta, Marco Di Natale, and David Corcoran. Breaking
down architectural gaps in smart-card middleware design. In Proceed-
ings of the 1°¢ International Conference on Trust and Privacy for Digital
Business (TRUSTBUS 2004), Zaragoza, Spain, September 2004. IEEE
Computer Society.

EMVCo. EMV 2000 Integrated cicuit card specification for payment
systems, December 2000.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

ETSI. Global System for Mobile Communications (GSM 11.11) — Dig-
ital cellular telecommunications systems — Specification of the Sub-
scriber lentity Module, December 1995.

European Telecommunications Standards Institute. ETS! TS 102 221
V4.3.0: Smart cards; UICC-Terminal interface; Physical and logical
characteristics (Release 4), July 2001.

GSA. Government Smart Card Interoperability Specification: Contract
Modlification, August 2000.

Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater. Bio-
metrics, access control, smart cards: A not so simple combination. In
Proc. of CARDIS 2000, |FIP, 2000.

L. Hong, A. Jain, S. Pankanti, and R. Bolle. Fingerprint enhancement.
In FL Sarasota, editor, Proc. 1st IEEE WACYV, pages 202-207, 1996.

R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459 X.509 Public
key infrastructure certificate and CRL profile. |IETF Network Working
Group, January 1999.

International Standard Organization. ISO/IEC 7816-3: Information
technology - Identification cards - Integrated circuit(s) cards with con-
tacts - Part 3, 1989.

International Standard Organization. ISO/IEC 7816-4: Information
technology - Identification cards - Integrated circuit(s) cards with con-
tacts - Part 4: Interindustry commands for interchange. Part 8: Secu-
rity related interindustry commands, 1995.

International Standard Organization. ISO/IEC 7816-4/7/8/9: Infor-
mation technology - Identification cards - Integrated circuit(s) cards
with contacts - Parts 4, 7, 8, 9, 1995.

129



Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

130

International Standard Organization. ISO/IEC 7816-7: Information
technology - Identification cards - Integrated circuit(s) cards with con-
tacts - Part 7: Interindustry commands for Structured Card Query
Language (SCQL), 1999.

International Standard Organization. ISO/IEC 7816-8: Information
technology - Identification cards - Integrated circuit(s) cards with con-
tacts - Part 8: Security related interindustry commands, 1999.

International Standard Organization. ISO/IEC 7816-9: Information
technology - Identification cards - Integrated circuit(s) cards with con-

tacts - Part 9: Additional interindustry commands and security at-
tributes, 2000.

Anil K. Jain and Sharath Pankanti. Automated fingerprint identifica-
tion and imaging systems. In Advances in Fingerprint Technology, 2"
Edition. Elsevier Science, h. c. lee and r. e. gaensslen edition, 2001.

Olaf Kirch. OpenSC - smart cards on linux. In Proc. of the 10t" Interna-
tional Linux System Technology Conference, Saarbruecken, Germany,
October 2003.

G.L. Marcialis, F. Roli, and P. Loddo. Fusion of multiple match-
ers for fingerprint verification. In Proc. of Workshop su Percezione
e Visione delle macchine, 8'° Convegno dell’Associazione Italiana per
I'Intelligenza Artificiale AI*IA02, Siena, Italy, September 2002.

The Open Group. Common Security: CDSA and CSSM, Version 2.3,
May 2000.

OpenCard Consortium. OpenCard Framework General Information
Web Document, second edition, October 1998.

PCSC Workgroup. Interoperability Specification for ICCs and Personal
Computer Systems, December 1997.



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. Pettersson and M. Harris. Whitepaper: Match-on-card for java
cards. Precise Biometrics, November 2002.

S. Prabhakar. Fingerprint classification and matching using a filterbank.
PhD thesis, Michigan State University, 2001.

N.K. Ratha, J.H. Connell, and R.M. Bolle. Enhancing security and pri-
vacy in biometrics-based authentication systems. IBM Systems Journal,
40(3), 2001.

J.B. Robshaw and Y.L. Yin. Elliptic Curve Cryptosystems. RSA Lab-

oratories, December 1997.

Arun Ross, Anil K. Jain, and Jian-Zhong Qian. Information fusion in
biometrics. Lecture Notes in Computer Science, 2091:354-359, 2001.

Arun Ross, Salil Prabhakar, and Anil Jain. Fingerprint matching us-
ing minutiae and texture features. In Proceeding of the International
Conference on Image Processing (ICIP), pages 282—-285, 10 2001.

RSA Laboratories. PKCS-15: A Cryptographic Token Information For-
mat Standard, April 1999.

RSA Laboratories. PKCS-11 version 2.1.1 Final Draft: Cryptographic
Token Interface Standard, June 2001.

RSA Laboratories. PK(CS-1 version 2.1: RSA Cryptography Standard,
June 2002.

V. Samar and R. Schemers. Request for comments 86.0: Unified login
with pluggable authentication modules (PAM), October 1995.

Dirk Scheuermann, Scarlet Schwiderski-Grosche, and Bruno Struif. Us-
ability of biometrics in relation to electronic signatures. Technical Re-
port GMD-Report-118, GMD - Forschungszentrum Informationstech-
nik GmbH, 11 2000.

131



Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

132

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C, 2nd Edition. John Wiley & Sons, October 1995.

Sun Microsystems, Inc. Java Card™ 2.1.1 Application Programming
Interface, May 2000.

Sun Microsystems, Inc. Java Card™ 2.1.1 Runtime Environment
(JCRE) Specification, May 2000.

Sun Microsystems, Inc. Java Card™ 2.1.1 Virtual Machine Specifica-
tion, May 2000.

TrustCenter. gpkcsll - GNU PKCS#11 implementation, October
2000.

U.S. Department of commerce/National Institute of Standards and
Technology. FIPS PUB 46-3 — Data Encryption Standard (DES),
federal information processing standards publication edition, October
1999.

U.S. Department of commerce/National Institute of Standards and
Technology. FIPS PUB 186-2 — Digital Signature Standard (DSS),
federal information processing standards publication edition, January
2000.

U.S. Department of commerce/National Institute of Standards and
Technology. FIPS PUB 180-2 — Secure Hash Standard, federal infor-
mation processing standards publication edition, August 2002.

P.B. Van Wamelen, Z. Li, and S.S. lyengar. A fast algorithm for the
point pattern matching problem. Technical Report 1999-28, Louisiana
State University, Dept. of Mathematics, 1999.

T. Ylonen, T. Kivinen, M. Saarinen, and S. Lehtinen. [nternet-Draft:
SSH Protocol Architecture. Network Working Group, January 2002.



