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V. FORMALIZATION OF THE PROBLEM

B. Probabilistic Formalisation

1) Probabilistic response-time guarantees: The response-time constraints may be relaxed in a probabilistic sense,

if, instead of relying on worst-case estimates for the computation requirements
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}
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m
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, they are (more effectively, for multimedia) considered as non-completely known values, and modeled as

stochastic variables. For the sake of simplicity, it is assumed that they are independent and identically distributed

(i.i.d.), and that the provider has an estimate of a certain quantile of their distributions: Pr
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i, sLs, then the probability that the response-time is ≤ R(a) may be

written as:

(*) The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7 under

grant agreement n.214777 IRMOS – Interactive Realtime Multimedia Applications on Service Oriented Infrastructures.
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And the expression inside the paper is obtained.

2) Probabilistic availability guarantee: The probability for an application workflow to find enough available

resources when actually activated, to be constrained to be higher than ξ(a), may be formalized as follows.

Let E(a)
j denote the event that services of application a deployed on host j be active. Let U (a)

R, j denote the

overall CPU share requirements on host j due to A(a), and U
(a)
A, j denote the stochastic variable representing the

available computation power on j when A(a) is activated. Similarly, let B(a)
R, s denote the overall network bandwidth

requirements on subnet s due to A(a), and B(a)
A, s denote the stochastic variable representing the available network

bandwidth when A(a) is activated. Also, let π(a)
i , r(a)
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i if i is allocated on j and 1

otherwise, and π(a)
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i )y(a)
i, s denote a variable with a value of π(a)

i if i is allocated within subnet s

and 1 otherwise. Finally, let u(a)
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be denote a variable with the computing requirements of τ (a)
i .

Then, assuming that all the E(a)
j events are independent among each other, the probability for an application

pipeline A(a) to find enough available resources, if activated at any time tk ∈ I(a), may be formalized as:
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The first inequality is due to the non-complete expansion of the conditioned probability rule (Pr [A] = Pr [A ∧ (B ∨ ¬B)] =

Pr [A | B] Pr [B] + Pr [A | ¬B] Pr [¬B] ≥ Pr [A | B] Pr [B]).

The quantities inside the Pr [·] operators in the expression above are not stochastic anymore, but they are a

function of the problem variables. Therefore, depending on the values of the problem variables, the corresponding

probabilities in the above formulas have a value of 1 if the condition is satisfied and 0 otherwise. Therefore, it is

possible to introduce additional boolean problem variables vi
B and ws

B for the purpose of encoding whether or not

such conditions are met or not, on the available CPU and network bandwidths, respectively.

In order for a boolean variable v to encode whether or not an inequality e ≥ 0 is satisfied by the other problem

variables, we use the following template:

e ≥ K(v − 1)

e ≤ Kv − ε

with a sufficiently large constant K and a sufficiently small constant ε. In fact, if v = 1, then the first constraint

mandates e ≥ 0, while if v = 0, then it says e ≥ −K which, for a sufficiently large K does not limit at all the

possible values of e. For the same reason, if v = 1, then the second constraint is ineffective, while if v = 0, then

the second constraint mandates that e ≤ −ε, which for a sufficiently small constant ε amounts to requiring e < 0.

From a dual perspective, if e ≥ 0, then the second constraint mandates v = 1 and the first one is ineffective, while

if e < 0, then the first constraint mandates v = 0 and the second one is ineffective.

Therefore, in the long probability expression computed above, substituting the vi
B∪{a} variables in place of the

first probability and the ws
B∪{a} in place of the second one, an expression P (A(tk)) is obtained which is function

of the considered time-instant tk, actually of the applications with advance reservations in place at that time A(tk).

Now, the unconditioned probability of finding all needed resources available (event E(a)), considering all of the

time-instants tk ∈ I(a), reasoning with the grouped time-slices Ih ∈ G(a), is easily formalized as follows:
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which corresponds to the formalization explicited in the paper.
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