
Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 1/10

AHM 2010AHM 2010
Sept 15Sept 15thth, Cardiff (UK), Cardiff (UK)

Challenges in Operating System Design for Challenges in Operating System Design for 
Future Many-Core SystemsFuture Many-Core Systems

Tommaso CucinottaTommaso Cucinotta

Real-Time Systems LaboratoryReal-Time Systems Laboratory
Scuola Superiore Sant'AnnaScuola Superiore Sant'Anna

Pisa, ItalyPisa, Italy



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 2/10

SnapshotSnapshot

General-Purpose Computing (GPC)General-Purpose Computing (GPC)
 General-Purpose Hardware

 Limited parallelism degree (few cores era)
 OS provides useful services to applications, e.g.:

 Hardware abstraction
 (GP) Scheduling of resources (e.g., tasks on available CPUs)

– Automatic separation between interactive and batch applications
 (GP) Filesystem, I/O and networking
 …

 Applications mostly sequential (with a few exceptions)
 Application-level programmers
 OS-level (and kernel-level) programmers



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 3/10

SnapshotSnapshot

High-Performance Computing (HPC)High-Performance Computing (HPC)
 Specialized hardware

 Vector machines, …
 Massive parallelism degree

 OS constitutes a “noise” (or “jitter”) to get rid of
 Applications often optimized for underlying hardware

 Optimized distributed filesystems
 Application-specific distribution and scheduling logic

 Assumption of availability of entire system: no need for caring 
about multiple applications multiplexed on the same system

 HPC programmers are experts of
 parallel programming techniques
 …



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 4/10

What's new ?What's new ?

Future Many-Core SystemsFuture Many-Core Systems
 Potentially suitable for both (high-end) GPC, CC and HPC
 Increasing need for a good OS-level support

 data distribution and replication
 workload distribution, load balancing and scheduling
 management of complex memory hierarchies and

incoherent shared memory segments
 Nowadays OSes unable to efficiently manage many cores

 Monolithic kernels
 Global in-kernel data structures (e.g., processes, file-system)
 Global in-kernel synchronization spin-locks (e.g., Linux bkl)
 Even fine-grained locking (e.g., object-level lock) inefficient

– When thousands of cores may potentially compete



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 5/10

What has been proposed ?What has been proposed ?
(for scalability in # of cores)(for scalability in # of cores)

Multikernel (and Barrelfish prototype)Multikernel (and Barrelfish prototype)
 One OS instance per-core
 Any sharing implemented by message-passing between 

different kernel instances

Partitioning of cores (Corey OS, GenerOS, FOS)Partitioning of cores (Corey OS, GenerOS, FOS)
 Application cores
 Kernel/service cores
 For example, a system call becomes a RPC

Application-level control of sharing (Corey OS)Application-level control of sharing (Corey OS)
 Help the kernel understand what is likely to be accessed by 

multiple tasks and what cannot
 Non-sharing default policy, sharing needs explicit actions



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 6/10

Real-Time ApplicationsReal-Time Applications

Time-sensitive applicationsTime-sensitive applications
 Throughput and/or latency constraints
 Computation times vary depending on data locality
 We don't want to design everything off-line

 but we expect to have a proper run-time OS-level support
 Scheduler needs to be real-time aware
 Adaptivity plays a key role

Real-Time Scheduling on Multi-ProcessorsReal-Time Scheduling on Multi-Processors
 Many open problems
 No known algorithm for efficient use of many CPUs



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 7/10

Problem presentationProblem presentation

Optimum/reasonable deployment of VSNs on PNsOptimum/reasonable deployment of VSNs on PNs
 Given computing/network/memory requirements
 Respecting end-to-end timing constraints

Physical
Link

Physical Host

Physical Host

Physical Host
Virtual Service Network

Maximum response-time

Computing/Memory
Requirements

Networking
Requirements Physical

Subnet

Physical Host



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 8/10

Scheduling ChallengesScheduling Challenges

Distributed Scheduling InfrastructureDistributed Scheduling Infrastructure
 No centralized scheduling decisions
 Hierarchical management of resources (and scheduling)
 What properties can we guaranteed system-wide ?

Synchronization and IPC MechanismsSynchronization and IPC Mechanisms
 More integration with scheduling mechanisms

Application Programming InterfaceApplication Programming Interface
 What info do we need to expose to the scheduler ?

 Application-level DFG and dependencies ?
 (expected) Communication paradigms/patterns ?
 Timing constraints and (expected) latencies ?

 What info can be automatically inferred by the kernel ?
 e.g., by (kernel-level) monitoring



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 9/10

More Scheduling ChallengesMore Scheduling Challenges

Heterogeneous HardwareHeterogeneous Hardware
 Different CPUs have different performance
 How to properly take scheduling decisions ?
 What goals to target ?

 maximize system throughput ?
 minimize maximum latency ?
 minimize energy consumption while keeping timing constraints ?
 … ?

 Adaptiveness: when to migrate tasks and how ?
 How to deal with the NUMA effect ?



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 10/10

Thanks!Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

