
A Latency Simulator for Many-core Systems

Sunil Kumar Tommaso Cucinotta and Giuseppe Lipari

The LNM Institute of Information Technology, Jaipur, India Scuola Superiore Sant’Anna, Pisa, Italy

sunil@lnmiit.ac.in {t.cucinotta,g.lipari}@sssup.it

Keywords: Simulation, Many-Core Architecture, Intercon-

nect, Network-on-a-Chip, Latency

Abstract
In this paper we present MCoreSim, an open-source simula-

tion framework for massively parallel and many-core com-

puting systems based on OMNeT++. The simulator supports

tile-based architectures with distributed memory and mesh-

based interconnects. Its primary purpose is to allow for in-

vestigations on the impact of the heterogeneous in-chip com-

munication latencies, as arising due to the network-on-a-chip

structure of future and emerging many-core processors, on

the performance of the hosted applications. We plan to use

MCoreSim to study the variety of possible choices in realiz-

ing a suitable software stack for these systems, especially in

terms of the choices at the kernel design level.

1. INTRODUCTION
The current era of processor manufacturing has reached

petascale computing, i.e., 1015 operations per second, and

the first approaches towards exascale (1018 operations per

second) are already planned. To make this happen, a new

paradigm of computing is emerging that pushes the pedal on

parallelism at the hardware infrastructure level. Indeed, per-

sonal computing has already moved towards having multi-

ple cores per chip. With peta/exa-scale computing architec-

tures, the parallelism in hardware is planned to be pushed to

the extreme, towards thousands of cores inside the same chip

with complex interconnection logic and distributed memory

elements. The design of this kind of chip architecture has to

address two main aspects: computation and communication.

As the core count increases, the interconnection of cores be-

comes a more critical and challenging task. Also, in this con-

text classical models of computing are at serious risk of being

disrupted. For example, the globally coherent cache mem-

ories that characterize nowadays multi-core systems might

not be feasible in a context with thousands of interconnected

cores, as it would lead to excessive and unneeded communi-

cation overheads.

These new trends in hardware designs calls for new

paradigms of software design and development as well, for

giving the highest consideration and attention to issues related

to the scalability of the mechanisms with respect to the num-

ber of cores, as well as to the latencies involved in the various

core-to-core and core-to-memory communications occurring

in the chip as a result of either explicit or implicit program-

mers instructions. In fact, classical software stacks which rely

on basic/simple services provided by a single centralized Op-

erating System (OS) instance, may need to be replaced by

distributed OS kernel designs (inside the chip) enriched with

properly designed inter-thread/process communication prim-

itives [31, 29]. However, worth to mention are also the valu-

able attempts of increasing scalability in traditional OSes like

Linux [12, 19].

In order to properly investigate on the research issues re-

lated to designing software stacks able to make an optimum or

sufficiently good usage of the computation capabilities avail-

able in the upcoming massively parallel machines, suitable

models and simulations need to be made available to the com-

munity. To this purpose, in this paper we present MCoreSim,

a new open-source simulation infrastructure for future many-

core systems based on the OMNeT++ framework which we

are building to investigate on these issues in the context of the

S(o)OS European Project1.

2. RELATEDWORK
Application mapping, multi-threading, memory hierarchy,

network communication are the main research issues in

many-core system design, covering a broad range of topics

from the Operating System down to the hardware. Due to

the unavailability of these future massively parallel comput-

ing machines, we need a suitable simulation environment for

the system.

Most of the existing works in many-core simulation are fo-

cused on either full system simulation or architectural simu-

lation. Full system simulation provides hardware simulation

as well as emulation of applications, like the HP Labs’ COT-

Son simulator [4], where functional emulation is based on

the AMD SimNow [13], or the M5 Simulator System [11].

On the other hand, architectural simulation targets hardware

simulation (specially network-on-chip) for multi-core sys-

tems, like the PhoenixSim [14] based on OMNeT++, and the

noxim2 and NIRGAM [22] based on SystemC. Most simula-

tors are based on a shared memory paradigm but, as the core

count reaches to more than thousand cores, the message pass-

ing paradigm is more useful. On other hand, QEMU [8] is

1Service-oriented Operating System. More information is available at:

http://www.soos-project.eu/.
2More information is available at: http://noxim.sourceforge.

net/.



an open-source machine emulator working also as a Virtual

Machine Monitor (KVM). Now developers of QEMU seem

to be willing to extend the emulation to many-core systems

as well.

A completely different approach can be found in [5], where

a functional hardware description language (CλaSH) is de-

fined based on the Haskell language, which can be leveraged

both to synthesize the hardware in VHDL code and to simu-

late its behavior.

As compared to the above mentioned approaches to simu-

lating multi/many-core systems, we focus on a high-level ab-

straction level of the simulation that neglects (as of now) the

specific internals of how each core carries out computations.

Instead, we focus mainly on an accurate simulation of the de-

lays caused by the complex network-on-a-chip based commu-

nications occurring within the interconnects of the new chips

(see Section 3. later). This will allow us to investigate on

proper data and code distribution across different cores and

related synchronization paradigms to be used on these future

machines.

3. BACKGROUND

In this section, some background on many-core comput-

ing systems is summarised, focusing on three different lev-

els: computing and communication infrastructure; communi-

cation paradigm; software/OS level.

3.1. Computing Infrastructure: Processor Ar-
chitecture

Processor manufacturers have gone very far away from the

traditional architecture of the processor, in which the chip

used to contain a single Central Processing Unit (CPU). From

the time when they started to integrate the cache memory ele-

ments into the chip for boosting performance, nowadays pro-

cessors mimic more and more the System-on-a-Chip (SoC)

paradigm typical of the embedded domain, in which a mul-

titude of heterogeneous hardware components are all inte-

grated in the same chip, such as multiple cores, hierarchies

of cache memories, interrupt controllers, timers and other

peripherals. Also, the complexity of the new chips and the

growing requirements in terms of computational power led to

novel paradigms of interconnection among the various hard-

ware components within the chip (and within the system),

mainly driven by the need for increasing the level of par-

allelism in communications. This led to an increasing trend

in abandoning the traditional “interconnection bus” concept

in favour of Network-on-a-Chip (NoC) interconnection solu-

tions, in which hardware elements communicate with each

other by means of packets (similar to how networking among

systems used to do), whilst proper routing elements are re-

sponsible for delivering these packets to their destination.

Most modern general-purpose processors (GPP) are homoge-

neous, symmetric multi-core processors following the “multi-

core” paradigm, i.e., parallel “fat” cores. There are also archi-

tectures that follow the “many-core” paradigm (e.g., GPUs

and GP-GPUs), where there is a massively high number of

smaller processing units where a workload is typically dis-

tributed over many of them. Also, processors are switching

more and more to heterogeneous multi-core designs.

The ways the processing elements will be connected in fu-

ture tera/exa-scale chips is a critical factor for the expectable

performance. This is covered in the next section.

3.2. Communication Infrastructure: Intercon-
nect

A good interconnection mechanism determines the effi-

cient execution of an application or set of applications, based

on the required computation and communication needs. In

single core processors, most components are connected by

a hybrid bus topology. But, as the core count increases, the

traditional bus-based interconnection suffers of major bottle-

neck drawbacks when trying to scale to many cores. So, more

efficient physical topologies for multi-core architectures are

being explored, like the widely known two-dimensional (2D)

ones: mesh, ring and torus. These are suitable for small-scale

systems, but three-dimensional [6, 28] and n-dimensional

topologies have been proposed as well. Every mechanism

has its own advantages and disadvantages. The major per-

formance metrics are: topology regularity, network diameter,

bisection bandwidth, and power consumption [23].

3.3. Communication Paradigm
The communication paradigm specifies how cores commu-

nicate with each other. Here, major challenges are flow con-

trol and routing:

Flow-control There are two possible levels at which flow

control is realised: switch-to-switch and end-to-end. Flow-

control at the switch-to-switch level mainly depends on

switching and buffer management techniques. There are two

types of switching techniques: packet switching and circuit

switching. Circuit switching is suitable for communications

with QoS guarantees because the required link resources are

reserved for the entire lifetime of a particular communication

and no arbitration is needed [9]. However, it limits the possi-

bilities of time-sharing of the links across multiple communi-

cations.

Packet switching techniques fall into four main categories:

Store & Forward: incoming packets are stored first, then

they are forwarded to the next hop;

Wormhole switching: each packet is divided into flits (small

chunks), which are sent one by one to the intermedi-



ate router; the router stores and processes the header flit

first, then it forwards it to the next hop and the other flits

just follow the path taken by the header flit;

Virtual-Cut-Through: each packet is divided into flits and

sent one by one to the intermediate router; the router

stores all the flits in a buffer, then, after the routing deci-

sion, forwards them to the next hop.

Each one of the above schemes has advantages and disad-

vantages. Among all the packet switching techniques, Worm-

hole switching seems to be the most suitable for fast comput-

ing, because of its lower latency and limited buffer require-

ments.

The performance of a switching technique also depends

on the channel buffer management between routers to avoid

overflows. In the Go-and-Stop (or on/off) control, the sender

and receiver routers synchronise with each other by means of

explicit stop and go signals. In the Credit-based control, the

receiver router communicates the available receive buffer size

to the sender router.

Routing algorithm The routing problem becomes more

and more relevant as the number of cores increases. The goal

of a routing algorithm is to distribute traffic evenly among

the paths supplied by the network topology, so as to avoid

deadlock and minimise contention, thus improving network

latency and throughput. Based on the application require-

ment, routing paths may be adaptive or deterministic, and

multi-path or single-path. There are various algorithms which

have been proposed, but the most commonly used ones are

Dimension-Ordered-Routing (DOR) and Turn-Model rout-

ing. In DOR, by looking at the distance vector between the

sender and the destination, a message is forwarded first in the

lower dimension, then in the other one. DOR uniformly dis-

tributes minimal paths between all pair of nodes [2]. In Turn-

Model routing, the packet has two choices in each router: pro-

ceed on the same direction or turn in the other direction, based

on the availability of the path or link [16, 32].

3.4. Software/OS level
The OS and/or application has to deal with application

mapping, communication and task scheduling. The goal of

application mapping is to map a set of processor-cores to

a specified application in an optimised manner (software-

hardware mapping). In multi-core systems, the hardware

topology is pre-configured, so we will have to map and sched-

ule applications and their communications on the available

hardware resources. Given some knowledge on the applica-

tion components and their computing and communication re-

quirements, we end up with a graph mapping problem, where

the application-level graph needs to be properly mapped to

the available physical level topology. These approaches may

be based on an a-priori characterisation of the application

requirements and an off-line optimisation process [15, 27].

However, this is not appropriate for dynamic real-time ap-

plications with strongly varying workloads. For this class of

applications, online dynamic mapping is more appropriate,

where the cores to applications mapping may be dynami-

cally varied depending on the actually imposed workload on

the various subsystems [17, 18]. For communication and task

scheduling it is possible to use various scheduling schemes,

based on resources availability and requirements.

4. THE SIMULATION FRAMEWORK
4.1. Background on OMNeT++
MCoreSim is a many-core simulation framework devel-

oped by using OMNeT++3, a tool for simulation of com-

munication networks and freely available for academic use.

OMNeT++ is a component-based discrete-event simulation

library and framework for simulating networked systems.

It provides developers with the capability to define highly

reusable modules, which can be instantiated and intercon-

nected in different designs. Modules have gates for interac-

tion with other modules and can be combined with each other

at arbitrary nesting levels. Modules communicate through

message passing via defined gates and channels (connection

between modules). Modules, channels and gates can be pa-

rameterised by leveraging the Network Description (NED)

Language, and used for customising the behavior according

to specific application scenarios.

4.2. MCoreSim Simulator Architecture
As discussed in Section 3., due to the difficulties in main-

taining a globally coherent cache/memory view in many-core

systems, the message passing paradigm is the most suitable

one to be used for communications. In many-core systems,

the network-on-a-chip paradigm requires message passing to

be implemented in hardware by the on-chip interconnection

logic. MCoreSim models a tile-based networked systems. In

this there are two major components: the tile and the con-

nection strategy (topology). The actual topology simulated in

MCoreSim may be customised via a set of configuration op-

tions. The most important of them are summarised in Table 1.

The parameters meaning will become clear in the following

description of the main simulator components.

4.2.1. Interconnection

Most of commercially available multi/many-core chips

are based on mesh or torus topologies [30, 7, 1]. In OM-

NeT++, interconnection of modules is modeled by using the

network keyword in the NED language. This construct is

exploited in MCoreSim, allowing for the specification of a

3More information is available at: http://www.omnetpp.org/.



Figure 1. Computing Unit

configurable 2D mesh and torus. MCoreSim defines a link

between each pair of tiles, modeled as a physical channel that

has configurable properties like delay, data-rate, etc., that are

defined by extending the ned.DatarateChannel chan-

nel model available in OMNeT++.

4.2.2. Tile

MCoreSim models a tile-based architecture. Each tile has

two major components: the computing unit, responsible for

computations and the communication unit, responsible for the

communication among tiles.

Computing Unit Architecture Each Computing unit (see

in Figure 1) has a Processing Element (PE), a local memory

element (Local Store and/or Cache) and a Network Interface

towards the local communication unit. A Memory Manage-

ment Unit (MMU) is also needed for routing memory oper-

ations towards the Local Store or remote memory elements

through the communication network. In MCoreSim, all these

units have been implemented as OMNeT++ modules. An ap-

plication is also modeled as a module that provides the set of

instructions to be executed on one or more computing unit.

Logically, a Processing Element (PE) can be represented as

general purpose or special purpose processing unit. Its main

function is to fetch the instructions from the application pro-

gram and simulate the time needed to carry out the involved

computations interacting with the necessary local or remote

memory elements and/or other cores.

The Network Interface (NI) enables the transfer of data (or

instructions) to/from other tiles and/or I/O peripherals. First,

it stores the packet to be transmitted in a local buffer then it

involves the communication unit for realizing the actual trans-

fer to the destination processing element or memory or I/O

controller.

Communication Unit Architecture Communication unit

or router provide the inter-connectivity of tiles. A typical

router architecture [26, 25] consists of a buffer for input

packet storage and a computing unit that performs buffer

management, routing, packet scheduling, port arbitration and

a switch to output port. In MCoreSim each of this function-

ality is defined as a module, such as the Route Computa-

tion (RC), Virtual channel Allocation (VA), Switch Arbitra-

tion (SA), and Switch (ST) modules. Based on the topology

details, the number of buffers can be parametrised (see Fig-

ure 2).

Figure 2. Router Architecture

Packet Format In OMNeT++ messages and packets pro-

vide interaction between modules. These are implemented as

the cMessage and cPacket classes respectively. Packets

are used for network level communication and Messages for

everything else.

In MCoreSim, an Application is specified as a sequence

of instructions, resulting in a sequence of Instruction packets

to be fetched from some memory element, and executed by

the Processing Element. Furthermore, Interrupt packets are

used for controlling the transfers needed during an instruc-

tion execution, and realizing the necessary flow control mech-

anisms at the network level. Furthermore, flit packets im-

plement router-to-router communications and Router Control

messages for interaction inside the router element. Instruction

and Flit packets are implemented sub-classing cPacket,

and Interrupt and Router Control messages by sub-classing

the cMessage class.

4.3. MCoreSim Protocol Library
The MCoreSim protocol library provides the protocols for

simulating communications and computations. Up to now the

library implements protocols related to a basic communica-

tion and computational model.

4.3.1. Protocols for Communications Plane

The protocols planned to be implemented in MCoreSim

Communication Plane are the network-on-chip protocols as

mentioned in Section 3.2.. These are related to buffer man-

agement, switching, arbitration, packet scheduling and rout-

ing. As of now, we implemented the elements detailed below.



Routing MCoreSim supports mesh and torus regular

topologies, and the popular deterministic routing Dimension-

Order Routing (DOR) [2]. In this routing, no storage element

like register file or routing table is required.

Switching As discussed in Section 3.3., there are various

switching protocols available but, as the number of cores

increases, the on-chip transmission bandwidth available to

each core decreases. Due to this constraint, we implemented

in MCoreSim wormhole switching [24]. In this approach, a

Network Interface splits a processor Instruction packet into

smaller size data units called Flit, then it transfers them to-

wards destination through the network. At the destination tile,

the Network Interface re-assembles the processor Instruction

packet and sends it to the PE for further execution.

Figure 3. Sequence Chart of Router

Between the source and destination NIs, routers handle

Flit packets in the following manner (see in Figure 3). The

Route Computation (RC) module computes route according

to the specified routing algorithm, the Virtual channel allo-

cation (VC) module allocates a virtual channel for the next

router input buffer, as specified by the RC module, and ac-

cording to the Virtual channel allocation algorithm. Then, the

Switch Arbitration (SA) module, based on packet scheduling

and port arbitration algorithms, sets the path up from the input

buffer to the output port in the Switch Traversal (ST) module.

Flow Control As discussed in Section 3.3., there are var-

ious flow control protocols available for switch-to-switch or

end-to-end transmissions. In MCoreSim, a credit-based Link-

level Flow Control protocol is implemented.

This credit flow control protocol [21, 10] is employed

in between network interface (NI) and router, and among

routers. The credit-based flow control mechanism indicates

to the output port the buffer space availability in the adjacent

input ports. Once an output port runs out of credits, it will

stop sending flits to the adjacent input port (see Figure 4 and

5).

Buffer Management The MCoreSim Router element has

a buffer for each input channel port. For buffer manage-

Figure 4. Flow Control- Between NI and Router

Figure 5. Flow Control- Between Routers

ment, the Router implements a virtual channel based proto-

col [20, 3]. In this each physical channel is divided into a

number of virtual channels and each virtual channel has its

own buffer space. After the route computation, a request is

made to the virtual channel allocator (VC) to allocate an un-

used virtual channel to the new route. After the allocation, the

switch arbiter (SA) schedules the packets that flow through

the output port of the Router.

Among the variety of arbitration algorithms available, in

MCoreSim only FIFO based port arbitration is implemented

as of now.

4.3.2. Protocols for Computation Plane

The Computation Plane has three major components: pro-

cessing plane, memory and I/O plane, application modelling.

Processing Plane In MCoreSim, the Processing Plane con-

sists of several Processing Elements that constitute an entire

chip. A Processing Element may be general-purpose, simu-

lating a typical “CPU” behaviour, or specialised, like GPUs.

Each general-purpose PE works by following the traditional

fetch-execute cycle. It processes mainly three types of opera-

tions: memory access operations, computing operations and

message-passing operations. In a computing operation, the

PE executes instructions by using its ALU/FPU unit, how-

ever only the delay needed for this execution is simulated in

MCoreSim. In a memory operation, the PE routes the mem-

ory access towards a local or remote memory element with

the help of the memory management unit (MMU). If the ac-

cess is local, then it is routed to the Local Store, otherwise

the PE generates a message-passing Instruction towards a re-

mote destination. Message-passing operations are routed to

their destination tile via the Communication Plane through

the local Network Interface.



Parameter Value Description

topology mesh Topology type (mesh or torus)

datarate 50Gbps datarate of a channel

delay 13ps delay in channel

flitSize 1500 B size of flit packet

numX 10 number of nodes in X direction

numY 8 number of nodes in Y direction

bufferSize 1024 B buffer space available in router

NIbufferSize 1024 B buffer space available in NI

router type DOR routing algorithm for topology

clockRate 5e9 clock rate of processing element

m clockRate 1e9 clock rate of memory element

numVC 1 number of virtual channels per

input port

Table 1. Configuration parameters for MCoreSim.

Memory and I/O Plane There are various memory hierar-

chy types available for many-core systems. MCoreSim imple-

ments the Memory Plane as a globally shared memory. In this

global memory every PE has its own private memory space

called Local Store. Each PE can directly access the Local

store but for remote access uses the Communication Plane.

The MMU provides the mapping between the addresses gen-

erated by the PEs and the either local or remote memory ele-

ments.

Application Modelling As of now, an MCoreSim applica-

tion supports three types of instruction: memory access, com-

puting and message-passing instructions. Furthermore, the

applications are statically configured to run on specific cores,

for now. In the future, the Application Plane will support a

richer set of instructions (but the focus of our simulation will

anyway keep the number of supported instructions at the bare

minimum), and it will provide dynamic application mapping

and scheduling across the available computing infrastructure,

so as to better emulate the software stack and OS services as

described in Section 3.4.

4.4. Performance Analysis

In OMNeT++ there is a concept of signal. This is used for

collecting statistical information out of a simulation run. With

the help of signals, MCoreSim can seamlessly collect statis-

tics for various events that occur during the simulation.

In the Communication Plane, useful performance metrics

are the average and/or maximum packet latency, the network

bandwidth and the network throughput. For the Processing

Plane, useful performance metrics are the average/maximum

execution time for a given Application, which may be varying

depending on the latencies experienced due to the underlying

topology.

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

X
 0

 1

 2

 3

 4

 5

 6

 7

Y

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

X
 0

 1

 2

 3

 4

 5

 6

 7

Y

 5

 10

 15

 20

 25

 30

 35

 40

Figure 6. Round-trip times for communications among the

tile [0,0] (top) or [4, 5] (bottom) and each other tile.

5. SIMULATION EXAMPLES

In this section, we show the results obtained by running

the simulator in a sample scenario. These are useful to let the

reader understand what kind of result is achievable with the

simulator.

The scenario we run is very simple: each core, in turn,

pings each other core, and measures what is the round-trip

time. This is useful for understanding how the latency for

communicating with cores inside other tiles (and accessing

the memory elements within) change with the coordinates of

the destination tile.

In the example, we have the system completely idle, run-

ning solely the ping application. The round-trip latencies are

shown in the 3D plots of Figure 6, where on the X and Y axes

we report the coordinates of the destination tile, and on the

Z axis the latency time (in nanoseconds) as measured during

the simulation. Under a completely unloaded network, the la-

tency is perfectly linear in the number of hops necessary to

reach the destination, except for the local communications,

which complete in much lower time as they do not need to

involve the router at all. This is highlighted in the plots by the

downwards peaks in correspondence of the source tile coor-

dinates.



6. FUTUREWORK AND CONCLUSIONS
In this paper we presented MCoreSim, an OMNeT++

based framework for simulating in-chip communication la-

tencies in many-core architectures. We described the motiva-

tions at the basis of our simulation design choices, and pro-

vided an overview of the simulation model. In the future, we

plan to exploit MCoreSim so as to investigate on the effec-

tiveness of particularly designed data structures and synchro-

nisation protocols among kernel components running within

an OS for many-core systems. In fact, certain choices at the

kernel level in terms of what data is shared and/or replicated

across multiple cores, and how access to that is synchronised,

turn out to be critical for the performance of the user-space

applications. The proposed simulation framework will help

in investigating into these and other related tough research is-

sues, in the context of future and emerging massively parallel

many-core machines which are not available yet today, play-

ing with the possible topologies and in-chip protocol options

and measuring the corresponding achievable (simulated) per-

formance.

7. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme FP7 under grant agreement n. 248465 “S(o)OS –

Service-oriented Operating Systems.”

REFERENCES
[1] An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm

CMOS, 2007.

[2] Jose Miguel Montañana Aliaga, Michihiro Koibuchi,

Hiroki Matsutani, and Hideharu Amano. Balanced

dimension-order routing for k-ary n-cubes. In Leonard

Barolli and Wu chun Feng, editors, ICPP Workshops,

pages 499–506. IEEE Computer Society, 2009.

[3] N. Alzeidi, A. Khonsari, M. Ould-Khaoua, and

L. Mackenzie. A new approach to model virtual chan-

nels in interconnection networks. J. Comput. Syst. Sci.,

73:1121–1130, December 2007.

[4] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Mat-

teo Monchiero, and Daniel Ortega. Cotson: infrastruc-

ture for full system simulation. SIGOPS Oper. Syst.

Rev., 43(1):52–61, 2009.

[5] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Ar-

jan Boeijink, and Marco Gerards. Cλash: Structural

descriptions of synchronous hardware using haskell.

In Proceedings of the 13th EUROMICRO Conference

on Digital System Design: Architectures, Methods and

Tools, pages 714–721, USA, September 2010. IEEE

Computer Society.

[6] Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, and

Krishna C. Saraswat. 3-d ics: A novel chip design

for improving deep-submicrometer interconnect perfor-

mance and systems-on-chip integration. In Proceedings

of the IEEE, pages 602–633, 2001.

[7] Max Baron. The single-chip cloud computer: Intel net-

works 48 pentiums on a chip. The Insider Guide to Mi-

croprocessor Hardware, April 2010.

[8] Daniel Bartholomew. Qemu: a multihost, multitarget

emulator. Linux J., 2006:3–, May 2006.

[9] Marcelo Daniel Berejuck and Cesar Albenes Zeferino.

Adding mechanisms for qos to a network-on-chip. In

Proceedings of the 22nd Annual Symposium on Inte-

grated Circuits and System Design: Chip on the Dunes,

SBCCI ’09, pages 25:1–25:6, New York, NY, USA,

2009. ACM.

[10] Jonathan Billington and Smit Saboo. An investigation

of credit-based flow control protocols. In Proceedings of

the 1st international conference on Simulation tools and

techniques for communications, networks and systems

& workshops, Simutools ’08, pages 34:1–34:10, ICST,

Brussels, Belgium, Belgium, 2008. ICST (Institute for

Computer Sciences, Social-Informatics and Telecom-

munications Engineering).

[11] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu,

Kevin T. Lim, Ali G. Saidi, and Steven K. Reinhardt.

The m5 simulator: Modeling networked systems. IEEE

Micro, 26:52–60, July 2006.

[12] Silas Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert

Morris, and Nickolai Zeldovich. An Analysis of Linux

Scalability to Many Cores. In OSDI 2010: Proceed-

ings of the 9th USENIX conference on Operating Sys-

tems Design and Implementation, 2010.

[13] AMD Developer Central. AMD SimNow(TM)

Simulator. http://developer.amd.com/cpu/

simnow/Pages/default.aspx.

[14] Johnnie Chan, Gilbert Hendry, Aleksandr Biberman,

Keren Bergman, and Luca P. Carloni. Phoenixsim: a

simulator for physical-layer analysis of chip-scale pho-

tonic interconnection networks. In Proceedings of the

Conference on Design, Automation and Test in Europe,

DATE ’10, pages 691–696, 2010.

[15] W-K. Chen and E. F. Gehringer. A graph-oriented map-

ping strategy for a hypercube. In Proceedings of the

third conference on Hypercube concurrent computers



and applications: Architecture, software, computer sys-

tems, and general issues - Volume 1, C3P, pages 200–

209, New York, NY, USA, 1988. ACM.

[16] Ge-Ming Chiu. The odd-even turn model for adaptive

routing. IEEE Trans. Parallel Distrib. Syst., 11:729–

738, July 2000.

[17] Chen-Ling Chou and Radu Marculescu. Incremen-

tal run-time application mapping for homogeneous

nocs with multiple voltage levels. In Proceed-

ings of the 5th IEEE/ACM international conference

on Hardware/software codesign and system synthesis,

CODES+ISSS ’07, pages 161–166, New York, NY,

USA, 2007. ACM.

[18] Chen-Ling Chou, Uemit Y. Ogras, and Radu Mar-

culescu. Energy- and performance-aware incremental

mapping for networks on chip with multiple voltage lev-

els. IEEE Trans. on CAD of Integrated Circuits and Sys-

tems, 27(10):1866–1879, 2008.

[19] Jonathan Corbet. Vfs scalability patches in 2.6.36.

http://lwn.net/Articles/401738/, August

2010. Article.

[20] W. J. Dally. Virtual-channel flow control. IEEE Trans.

Parallel Distrib. Syst., 3:194–205, March 1992.

[21] M. El-Taha and J. R. Heath. Queueing network mod-

els of credit-based flow control. Comput. Math. Appl.,

50:393–398, August 2005.

[22] Lavina Jain et al. Nirgam: a simulator for noc intercon-

nect routing and application modeling. In Workshop on

Diagnostic Services in Network-on-Chips, Design, Au-

tomation and Test, in DATE ’07, 2007.

[23] D. N. Jayasimha, Bilal Zafar, and Yatin Hoskote. On-

chip interconnection networks: Why they are different

and how to compare them. Technical Report, Intel

Corp., 2006.

[24] Zhonghai Lu, Ming Liu, and Axel Jantsch. Layered

switching for networks on chip. In Proceedings of the

44th annual Design Automation Conference, DAC ’07,

pages 122–127, New York, NY, USA, 2007. ACM.

[25] Robert Mullins, AndrewWest, and Simon Moore. Low-

latency virtual-channel routers for on-chip networks.

SIGARCHComput. Archit. News, 32:188–, March 2004.

[26] Li-Shiuan Peh and William J. Dally. A delay model

for router microarchitectures. IEEE Micro, 21:26–34,

January 2001.

[27] Gaurav Kumar Singh, Mythri Alle, Keshavan Vardara-

jan, S K Nandy, and Ranjani Narayan. A generic graph-

oriented mapping strategy for a honeycomb topol-

ogy. International Journal of Computer Applications,

1(21):91–98, February 2010. Published By Foundation

of Computer Science.

[28] Awet Yemane Weldezion, Matt Grange, Dinesh

Pamunuwa, Zhonghai Lu, Axel Jantsch, Roshan

Weerasekera, and Hannu Tenhunen. Scalability of

network-on-chip communication architecture for 3-d

meshes. In Proceedings of the 2009 3rd ACM/IEEE

International Symposium on Networks-on-Chip, NOCS

’09, pages 114–123, Washington, DC, USA, 2009.

IEEE Computer Society.

[29] David Wentzlaff and Anant Agarwal. Factored operat-

ing systems (fos): the case for a scalable operating sys-

tem for multicores. SIGOPS Oper. Syst. Rev., 43:76–85,

April 2009.

[30] David Wentzlaff, Patrick Griffin, Henry Hoffmann,

Liewei Bao, Bruce Edwards, Carl Ramey, Matthew

Mattina, Chyi-Chang Miao, John F. Brown III, and

Anant Agarwal. On-chip interconnection architecture

of the tile processor. IEEE Micro, 27:15–31, September

2007.

[31] Silas B. Wickizer, Haibo Chen, Rong Chen, Yandong

Mao, Frans Kaashoek, Robert Morris, Aleksey Pesterev,

Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and

Zheng Zhang. Corey: An operating system for many

cores. In Proceedings of the 8th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’08), San Diego, California, December 2008.

[32] Lingfu Xie and Du Xu. The two-level-turn-model fault-

tolerant routing scheme in tori with convex and con-

cave faults. In Proceedings of the 2009 Sixth Inter-

national Conference on Information Technology: New

Generations, pages 107–113, Washington, DC, USA,

2009. IEEE Computer Society.


