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Abstract. Detecting anomalous behaviors in a network function virtu-
alization infrastructure is of the utmost importance for network oper-
ators. In this paper, we propose a technique, based on Self-Organizing
Maps, to address such problem by leveraging on the massive amount
of historical system data that is typically available in these infrastruc-
tures. Indeed, our method consists of a joint analysis of system-level
metrics, provided by the virtualized infrastructure monitoring system
and referring to resource consumption patterns of the physical hosts
and the virtual machines (or containers) that run on top of them, and
application-level metrics, provided by the individual virtualized network
functions monitoring subsystems and related to the performance lev-
els of the individual applications. The implementation of our approach
has been validated on real data coming from a subset of the Vodafone
infrastructure for network function virtualization, where it is currently
employed to support the decisions of data center operators. Experimental
results show that our technique is capable of identifying specific points
in space (i.e., components of the infrastructure) and time of the recent
evolution of the monitored infrastructure that are worth to be investi-
gated by human operators in order to keep the system running under
expected conditions.

Keywords: Self-Organizing Maps · Machine Learning · Network Func-
tion Virtualization

1 Introduction

The novel Network Function Virtualization (NFV) paradigm [25] has been nowa-
days adopted by all the major network service providers in response to the in-
creasingly demanding requirements they have to meet, in particular, in terms of
performance, flexibility and resiliency. Indeed, traditional approaches that rely
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on the deployment of network functions on top of proprietary specialized physi-
cal appliances – typically sized for the peak-hour and very costly to maintain –
are no more sustainable in the complex, fast-paced scenarios that can be found
in modern telecommunication systems. Thanks to the amazing advances in the
cloud computing space, having on-demand access to a diverse set of virtual-
ized resources (computing, storage, networking, etc.) – running on commodity
hardware – has never been so easy and convenient. In the context of NFV, this
kind of virtualization technologies is leveraged according to the private cloud
computing model, where general-purpose computing, networking and storage re-
sources owned by the operator can be dynamically and automatically managed
and orchestrated, to fit the needs of time-varying workloads. This allows for
cutting costs and energy consumption, as well as shortening development cycles
and time-to-market [16]. For example, a virtualized network infrastructure can
be easily adapted to adequately support new products of an organization or, if
customers request new network functions, all it takes to handle such requests
is to spin up new VMs that can be rapidly decommissioned when the functions
are no longer needed. In this way, network functions can be completely decou-
pled from the underlying physical appliances they are deployed onto and can be
effectively developed as distributed, elastic, resilient software applications. For
NFV data centers, the choice of private cloud infrastructures – as opposed to the
use of public cloud services – is also corroborated by latency-related concerns.
Indeed, since such service-chains are highly delay-sensitive (e.g., LTE, 4G), it
is unpractical to rely on public cloud infrastructures, that are usually shared
among multiple tenants and non-necessarily deployed according to the network
operator needs.

In order to guarantee scalability, robustness to failure, high availability, low
latency, virtualized network functions (VNFs) are typically designed as large-
scale distributed systems [27], often partitioned and replicated among many
geographically dislocated data centers. The larger the scale, the more operations
teams have to deal with complex interactions among the various components,
such that diagnosis and troubleshooting of possible issues become incredibly dif-
ficult tasks [12]. Also, the capacity of such systems is designed according to some
technical and economical considerations, in order to support the standard load
conditions under which the VNFs perform well, ensuring a number of diverse
kinds of Service Level Agreements (SLAs) between network operators and their
customers. However, when extraordinary events or cascade failures occur, the
network is typically overloaded and the allocated resources are not sufficient
anymore to process all the incoming flows. Monitoring the status of the data
center through an efficient distributed monitoring infrastructure that continu-
ously gathers system-level metrics from all the different levels of the architecture
(e.g., physical hosts metrics, virtual machines metrics, application-level key per-
formance indicators, event logs) is a necessary step in order to build a pro-active
system capable of detecting signals of system overload in advance. Such data
usually drives the decisions of human operators, for instance, in terms of which
actions must be taken to restore the expected conditions of the system after
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an outage has occurred, or how the available components should be reconfig-
ured to prevent possible SLA violations in case of an unexpected increase in the
workload.

One of the major problems of data center operators is anomaly detection,
i.e., pinpointing unexpected and/or suspect behaviors of the system whenever
it significantly deviates from the normal conditions. Indeed, recognizing charac-
teristic patterns of resource consumption in early stages can be crucial to avoid
resource exhaustion and to redirect critical traffic peaks so to minimize the risk
of SLA violations (i.e., such that human experts can focus their efforts on the
most critical activities), or at least to alert the staff to prepare the remedia-
tion/mitigation procedures in advance. Even though the amount of data usually
produced by NFV infrastructures is huge, most of it is not explicitly labeled by
specialized personnel, so that unsupervised machine learning (ML) algorithms
(i.e., clustering or vector quantization techniques) are the easiest ones to use,
especially for anomaly detection purposes. The objective of these algorithms is
to group data with a similar trend in macro-categories and allow operators to
keep tens or hundreds of virtual machines under control at the same time.

1.1 Contributions

In this paper, we propose to use Self-organizing Maps (SOMs) to perform a be-
havioral pattern analysis of VM metrics aiming at providing a comprehensive
overview of the major behavioral patterns and detecting possible anomalies in
a data center for NFV. The technique can be used to perform a joint analysis
of system-level metrics available from the infrastructure monitoring system and
application-level metrics available from the individual VNFs. It aims at support-
ing data center operations and specifically capacity and performance monitoring,
by providing insightful information on the behavioral patterns, in terms of re-
source consumption and exhibited performance, of the analyzed VNFs. In our
approach, the SOM-based behavioral analysis is leveraged to deliver a sophis-
ticated alerting subsystem, whose output can be directly consumed by human
operators or could be used as a trigger for automated remediation procedures.

This paper constitutes an extended version of our prior work [6], where we
added related background concepts and technical details on our technique, de-
scribing for the first time the non-Euclidean distance we adopted and the auto-
mated alerting system that we built downstream of the SOM-based analysis, and
discussing additional experimental results obtained with the proposed approach.

1.2 Paper Organization

This paper is organized as follows. After discussing the related literature in
Section 2 and some fundamental background concepts in Section 3, we present
our approach in Section 4, along with the data processing workflow we designed
for the massive data set available in the Vodafone infrastructure. In Section 5,
we discuss some obtained experimental results that validate the approach and
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highlight its practical relevance. Section 6 concludes the paper with our final
remarks and ideas for future research in the area.

2 Related Work

In this section, we briefly review some of the most related works that are found
in the research literature on using ML, and SOMs in particular, for classification
and anomaly detection in cloud and NFV data centers.

Anomaly detection can be framed as the problem of pinpointing unexpected
and/or suspect behaviors of a system whenever it significantly deviates from the
normal conditions. Similar problems can be found in other fields and applications
such as, for instance: intrusion detection in cyber-security, machinery fault [30]
and product quality issues detection [1] in industrial contexts, or fraud detection
in finance [22]. It is important to stress that anomaly detection is, in general,
an inherently imbalanced problem due to the scarcity of anomalous observations
with respect to the ones related to the normal conditions of a system. In order
to tackle this kind of challenges, a huge amount of solutions has been proposed
that, depending on the scenario and the nature of the data to be processed, pose
their foundations on well-established techniques coming, for instance, from the
research fields of information theory and statistics.

In the recent years, ML techniques have been gaining more and more trac-
tion in the context of anomaly detection applications because of their proven
effectiveness in many of the aforementioned scenarios. This is mainly due to the
versatility of this kind of methods and the increasing availability of data from
which they can learn from, in a continuous manner [3]. Most of the approaches
to anomaly detection address the associated challenges by feeding ML models
with counters like CPU utilization, memory contention and network-related met-
rics [12,31,34]. Others include also system-level and/or application-level event
logs in the analysis to increase the amount of features and facilitate the ex-
traction of relevant patterns [8,35]. Embedding textual information has been in
fact made easier by the advancements in Natural Language Processing (NLP)
research [2]. Few existing works also consider the need of assisting human opera-
tors in conducting root-cause analysis to be a highly desirable feature of anomaly
detection systems [14,28].

One of the major roadblocks that can be encountered when applying ML for
solving a task is the scarcity, or the complete absence, of labelled data, a very
common scenario in many practical applications. Such issues can be overcome
by employing so-called unsupervised learning techniques that, as the definition
suggests, are designed to operate without a ground truth (i.e., annotated data).
It is worth noticing that this characteristic of such class of learning algorithms
has the side effect of increasing the amount of data that can be used for training
an ML model. The principal application of unsupervised techniques is clustering
that consists in the formation of groups (the clusters) of data samples that are
similar, where similarity is defined according to the employed distance function.
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A SOM is a particular kind of neural network that leverages on the compet-
itive learning approach for cluster formation [17]. In this context, when a new
sample is presented to the SOM during the training, the Best Matching Unit
(BMU) – the closest neuron to the data sample according to the employed dis-
tance function – is selected and BMU and its neighbors are rewarded by updating
their weights so to make them more similar to the selected sample. The iteration
of this process leads to the formation of the clusters that are represented by
the associate SOM neurons. SOMs are designed for mapping high-dimensional
data into a lower-dimensional (typically 2-dimensional) space. One of the main
characteristics of the obtained clustering is that it preserves the topology and
distribution of training data, at clusters-level. In practice, it means that more
clusters will be located in the more dense regions of the original domain (distri-
bution) and that similar data samples will be associated to the same cluster or
to neighbor clusters (topology).

In the context of anomaly detection, such approaches usually operate by
building, starting from training data, a set of clusters of samples that are repre-
sentative of the expected – normal – conditions of a system. After training, such
model can be exploited to compare new patterns to known behaviors accord-
ing to a predefined distance metric, in order to infer whether the observations
are anomalous or not. In these applications, the above mentioned properties
of retention of the original data topology and distribution give the SOM the
capability of creating a suitable number of clusters for the most representative
situations: this distribution of clusters allows for a more reliable characterization
of anomalous patterns due to the higher granularity reserved to more common
situations.

Since early 90s, SOMs – as a neural approach to clustering – have achieved
remarkable results at processing industrial data [15] in different fields. In [7],
a SOM–based system for the visualization of complex process dynamics is pro-
posed. In this application, topology conservation enables a smooth visualization
of non-linear process transitions in a 2–dimensional map and favors the under-
standing of the influence of process parameters on process behavior. Similar
approaches that exploit dimensional reduction and visualization on an easy–
to–interpret 2D map are used also in [10] for process monitoring purposes and
in [11] where the aspects of visualization of the evolution of process conditions
are handled. In [4], SOMs are used for the grouping of electrical components
based on a wide set of features that are efficiently mapped in a low dimensional
space. In [33], it is shown how a SOM–based system can be used for detecting
anomalies within a steel plant as far as the process faults and product defects
are concerned. In this case, SOM clusterization is used to group similar process
conditions or product features that are subsequently labelled according to ex-
perimental tests. The ability of SOMs to yield a distribution of the clusters in
the problem domain that faithfully reflects the observed phenomenon behavior
allows the generation of more specific clusters in the denser regions of the do-
main. The capability of SOMs of managing high–dimensional data and mapping
them into a lower dimensional one have been exploited in medicine as well. In
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[5], sonographic signals are processed and grouped in order to characterize those
ones associated to breast cancer diagnosis. Another SOM-based approach was
used in [32] to allow the analysis of complex cytometry data that is hard from a
point of view of human experts due to the huge amount of variables to be taken
simultaneously into consideration.

For what concerns NFV applications, the existing literature reports that ML
techniques have been effectively used to solve different problems. In particular,
in [13] a set of ML techniques are tested for an anomaly detection application.
In this case, though, only supervised methods are considered and their perfor-
mance is compared on data sets containing NFV features associated to different
types of faults. Similarly, in [24], a supervised SOM-based method is proposed
for fault detection. Here, a SOM is used to cluster labelled data, annotated by
human experts to state which clusters correspond to faulty conditions, related
to NFV performance indicators. In [26], SOM-based and other general clustering
techniques are used for the same purpose in a small test-bed in the context of
NFV. Likewise, in [20], the popular K–means algorithm is used to cluster cells
traffic data in order group cells with similar through–time behavior and enable
optimizations in the use of resources.

3 Background Concepts

3.1 Self-Organizing Maps

A SOM is an unsupervised vector quantization technique, used to produce a
topology-preserving map using a competitive learning algorithm. The aim of the
SOM training algorithm is to encode a data manifold (e.g., a sub-manifold V ⊆
IRN ) into a finite set W = {w1, · · · , wM} of reference vectors where wi ∈ IRN is
called codebook. Formally, a SOM is defined by a pair of maps (w, b). w : L → IRN

is a discrete map from a two-dimensional lattice into a finite vector space, a.k.a.,
features space. Recall that a two-dimensional lattice of dimensions H ×K is a
discrete set

L = {hA+ kB |h < H, k < K, h, k ∈ IN} ⊆ IR2

where A,B ∈ IR2 determine its shape (e.g., A = (1, 0) and B = (0, 1) produce

a rectangular grid, whereas A = ( 1
2 ,
√
3
2 ) and B = (1, 0) produce an hexagonal

grid). For the sake of simplicity, L is indexed with a lexicographical order (from
1 to H × K), its elements ri ∈ IR2 are called units or also neurons and the
images wi = w(ri) of the neurons in the features space are called weights. Given
a sample vector x ∈ V , b : IRN → L returns the best-matching-unit (BMU)
i.e., the unit whose weight is closest to the input sample (or any such units, if
multiple ones exist) depending on a distance d in the feature space.

b(x) ∈ arg min
r∈L

d(x,w(r)) (1)

A common choice for the distance d is the Euclidean distance, albeit alternative
choices are possible (e.g., see the discussion later in section 4.3).
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For each training epoch t, an update to the SOM weights is performed, for
each input sample, as follows. At each iteration t′, an input data x is fetched (us-
ing either a random or a sequential scheduling) and its associated best matching
neuron b(x) is computed. Then, the weights of all neurons are updated according
to (2), where h is called neighborhood function and is defined as (3) (assumed to
be a Gaussian in what follows).

w
(t′+1)
k = w

(t′)
k + α(t)h(b(x), rk, t)(x− w(t′)

k ) ∀k (2)

h(r, s, t) = − exp

(
‖r − s‖2

δ(t)

)
∀r, s ∈ L (3)

Here, α(t′) and δ(t′) are respectively the learning rate and the radius of the
neighborhood function, which depend on the current epoch t (α, δ : IN → IR),
and decrease across epochs either linearly or exponentially, to make the algorithm
converge. It is important to notice that, for each training sample x, not only the
winning reference is modified, but the adaptation to x affects all the weights wj

depending on the proximity of rj to b(x) with a step size that decreases with
the distance between the units rj and b(x) in the lattice. This way neighboring
units respond to similar input patterns and each data point close in the input
space is mapped to same or nearby map neurons (inducing a topology-preserving
property on the codebook). The weights of the neurons wi are typically initialized
either by randomly sampling the V data set or using the well-known Principal
Components Analysis (PCA) technique.

A key difference between the SOM training algorithm and other vector quan-
tization or clustering techniques is that, in the neighborhood function definition
(3), the topological distance between a pair of units is declined as the Euclidean
distance on the map and not in the data space. The formulation in (2) is called
the online update rule, that is not suitable for a parallel implementation since
each iteration directly depends on the one immediately before and only processes
a single data sample at a time. Therefore, a batch parallel implementation has
been proposed: instead of updating the neuron weights for each data sample,
they are updated after a batch B ⊆ V of N ′ data samples (in the following we
will assume N ′ = N , for the sake of simplicity). Essentially, the term of (2) that
depends for each rk ∈ L on the input sample by h(b(x), rk, t)(x−wk) is replaced
by a weighted sum of the same terms computed in parallel for all samples in the
batch, using the formula:∑

x∈B h(b(x), rk, t) (x− wk)∑
x∈B h(b(x), rk, t)

∀k (4)

This way, one can compute in parallel all numerator and denominator parts
(i.e., h(b(x), rk, t)(x − wk) and h(b(x), rk, t), respectively) for each sample in
each batch and then sum up all numerator and denominator parts and finally
compute the weight update.

After the training is complete, the result is that the manifold data V is
divided into a finite number of subregions:

Vi =
{
x ∈ V | ‖x− wi‖2 ≤ ‖x− wj‖2 ∀j 6= i

}
(5)
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called Voronoi tessellation, in which each sample vector x is described by the
corresponding weight of the BMU w(b(x)). It is important to point out that
the update rule is fundamental to the formation of the topographically ordered
map. In fact, the weights are not modified independently of each other but as
topologically related subsets. For each step a subset of neurons is selected on
the basis of the neighborhood of the current winning unit. Hence, topological
information is supplied to the map because both the winning unit and its lattice
neighbors receive similar weights updates that allow them, after learning, to
respond to similar inputs. After the training phase, the map can be used to
visualize different features of the codebook and of the represented data, such as
(i) the density of the reference vectors (e.g., with a color scale proportional to
neuron hits); (ii) likewise, the distances among reference vectors, where a dark
color indicates a large distance between adjacent units, and a light color indicates
a small distance (i.e., the so-called U-matrix); (iii) a plot of the reference vectors
for each neuron, to see at a glance all the different behaviors detected in the
training dataset.

A careful choice of the SOM hyper-parameters should be made in order to
have a suitable trade-off in terms of quality of the clustering and computational
performance. Some details on how the right hyper-parameters have been chosen
for our analysis are given in Section 5. In order to mitigate the problem of
having different neurons specializing on almost the same data samples (e.g.,
when the number of SOM neurons is large with respect to the data sample
variability), we have applied an automated grouping technique over the SOM
reference codebook, detailed in Section 5.4.

3.2 VMware vRealize Operations Manager

The vRealize Operations Manager (vROps)5 – by VMware – is an enterprise-
grade software used at Vodafone to operate the NFV infrastructure. Such frame-
work can be deployed either on-premise or in the cloud and its main purpose
is to support operations teams in automating and continuously improving their
fundamental activities, also leveraging on data-driven methodologies. Indeed,
the core of vROps consists of a pervasive monitoring infrastructure that collects
system data at every level of the stack (e.g., physical hosts, virtual machines,
networking components, etc.) and feed them to a powerful analytical engine that
is able to provide useful insights and actionable feedback to the human opera-
tors, such that possible issues or anomalies can be early spotted and corrected.
More than 300 system metrics, being them classical raw counters (e.g., cpu uti-
lization, memory contention, network traffic, etc.) or more convoluted analytics
computed by the engine, can be exported from the system, allowing also for the
integration with third-party tools. Besides monitoring and alerting functional-
ities, vROps enables automated management of the VMs (or containers) that
compose the deployed applications such that, for instance, the corresponding

5 https://docs.vmware.com/en/vRealize-Operations/index.html

https://docs.vmware.com/en/vRealize-Operations/index.html
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workloads can be balanced according to the optimization of specified indicators
(e.g., application KPIs, licensing costs, etc.).

4 Proposed Approach

In this paper, we propose the use of SOMs in order to perform a behavioral anal-
ysis of the VMs that implement VNFs within an NFV data center infrastructure.
Our approach consists of the joint analysis of two classes of metrics that are usu-
ally collected and analyzed independently of one another: system-level metrics,
reporting information related to the utilization of the underlying infrastructure,
hereafter also referred to as INFRA metrics, which are usually available through
the NFV infrastructure manager (e.g., the well-known VMware vRealize Oper-
ations Manager or others); and application-level metrics, i.e., KPIs of the indi-
vidual virtualized services, collected through their own monitoring subsystems,
which will be referred to as VNF metrics. Considering both types of metrics
allows for gathering a comprehensive overview of the major behavioral patterns
that characterize VMs and possibly identifying suspect (anomalous) behaviors.

The proposed technique relies on the capability of SOMs to preserve the
topology in the projection from the input space to the SOM reference vector
space. In other words, using SOMs similar input patterns are captured by same
or nearby neurons (see section 3.1 for details). A VM behavior can be monitored
by considering the shift of its BMU, during the time horizon under analysis, so
that any changes in a suspect BMU could be used to trigger an alarm.

4.1 Workflow

We realized a SOM-based clustering tool that is capable of detecting anoma-
lies by clustering using a number of input metrics. In our experimentation, we
have been applying this technique over individual monthly data available with
a 5-minutes granularity (288 samples per day, per metric, per monitored VM or

VM1

VMn

PREPROCESSING

filtering
normalization
missing values
imputation

SOM

training
inference

CLUSTER1

CLUSTERk

HIERARCHICAL
GROUPING

GROUP1

GROUPj

Fig. 1: Overview of the SOM-based clustering workflow.
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physical host), amounting to several GBs of data per month, for a specific region
of the Vodafone network operator. Figure 1 summarizes the overall workflow that
we applied to process the available input metrics. First, the raw data are pre-
processed to address possible data-quality issues (e.g., missing values imputation
and time-series detrendization) and to filter out the additional information that
is not relevant for the analysis. The input samples to the SOM are constructed,
for each VM, by dividing the time horizon under analysis according to a pre-
defined period (i.e., 24 hours) and merging the contributions of the individual
metrics into a single vector. Then, such data are fed to the SOM that, after a
training phase, infers for each VM the neuron capturing the most similar behav-
ior and, thus, clusters on the various behavioral patterns of all the various VMs
under analysis.

The input data are filtered – on the k specified metrics – and partitioned to
have a sample (i.e., a time-series) for each metric, VM and period (usually a day)
of the time horizon under analysis. Before being fed as input to the SOM training
phase, samples are subject to a preprocessing phase, addressing possible issues
such as (i) missing values and (ii) significant differences in the magnitude among
the different metrics. On the one hand, to address (i), a data imputation strategy
(i.e., a simple linear interpolation) is performed to mitigate the absence of data
points within a sample and to retain as much data as possible for the analysis.
However, in order to preserve the quality of the data set, the interpolation step
has been designed not to be aggressive, such that a time-series can be discarded
if it contains too much consecutive missing values. On the other hand, it is rec-
ommended to address (ii) when using SOM for multi-metric analysis since, due
to the Euclidean distance being used as samples distance evaluation mechanism,
metrics with significantly larger values (e.g., number of transmitted/received
packets or bytes) tend to hide the contribution of other metrics which take on
smaller values, for instance, being bounded by a predefined range that is much
smaller (e.g., CPU utilization percentage). We have designed two possible strate-
gies to tackle such problem. The first strategy, referred to as normalized, consists
of computing the so-called z-score, i.e., scaling each time-series by subtracting
its mean and dividing by its standard deviation. Using such a strategy hides
any information regarding the magnitude of the original values and emphasizes
differences in shapes. The second strategy, referred to as non-normalized, con-
sists of scaling each time-series to the [0, 1] range of values considering, for each
metric, the historically observed minima and maxima values. Such a strategy
retains information regarding the magnitude of the original values while keeping
the data bounded in the same interval. However, this technique causes different
metric patterns with very similar shape, but differing merely in their magnitude,
to be grouped into different SOM neurons at a certain distance from each other
(in the SOM grid topology). Depending on the chosen strategy, we obtain either
an analysis focused on the shapes of the behavioral patterns, or we can also
distinguish among the absolute values of the average levels of the metrics. In
general, in the latter case one should expect more clusters to be outputted with
respect to the former case, due to the possibility that the system could have
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experienced very diverse levels of load during its operation. Hence, one should
take this possibility into account and increase the size of the SOM grid when
performing a non-normalized analysis in order to avoid neurons over-population
(i.e., too many patterns crowding within the same BMU), despite them being
significantly distant from each other.

Each input sample to the SOM is constructed by concatenating k vectors (one
for each of the k metrics under analysis), for each VM and period. Notice that,
since INFRA metrics have been provided with a 5-minutes collection granularity,
if a period of a day is considered, we typically have for each day 288 data points
of each metric and for each VM. After the training phase, the SOM is used to
infer the BMU for each input sample, i.e., the neuron that exhibits the least
quantization error when compared with the considered input sample. Multiple
VMs are expected to be associated to the same BMU and, thus, a number of
different VM clusters can be derived from such process. Such an output can be
used by a data center operator to visually inspect the behaviors assumed by the
different VMs during the time horizon under analysis, in order to spot possible
suspect/anomalous ones. Furthermore, since the individual input samples are
related to the behavior of a specific VM at specific point in time, it is also
possible to visualize the evolution of the VMs throughout the time horizon, to
possibly detect interesting patterns in their behavioral changes.

On top of the clustering mechanism described above, we have devised an
approach capable of detecting possible suspect behaviors without the need for
a human operator to daily inspect the status of the SOM (these aspects are
described in details in Section 4.4). Such additional feature consists of an alerting
system that is triggered whenever an input sample is firstly associated to a group
of similar neurons but in the following days a sudden group change takes place.
Because of the considerable distance from the BMU (i.e., the closest neuron)
of the neurons in the two different groups, such samples are likely to depict
an uncommon behavior and, thus, an alert is raised to the operator. Besides
the aforementioned support that such a tool can give to data center operators
in their manual operations, this feature in particular enables the possibility to
deploy a fully automated anomaly detection system.

4.2 SOM Implementation

To implement our anomaly detection tool we leveraged on an efficient open-
source SOM implementation, namely Somoclu6, which has been designed around
the batch parallel SOM variant (see section 3.1) to employ multi-core acceler-
ation, as well as GPGPU hardware acceleration, to perform massively parallel
computations [36]. Such accelerations have been proved to be necessary in order
to reach a satisfactory performance when tackling the massive data set pro-
vided by Vodafone. In the future, we plan to switch to a new implementation
we recently realized performing even better [23].

6 https://github.com/peterwittek/somoclu

https://github.com/peterwittek/somoclu


12 G. Lanciano et al.

4.3 Hierarchical Grouping

An interesting aspect that came to our attention during the development of the
aforementioned SOM-based approach is that, whenever using relatively big SOM
networks, the training phase ends up with many close-by SOM neurons catching
behaviors that were very similar to each other. This is in line with the topology-
preservation property of the SOMs, i.e., close-by input vectors in the input space
are mapped to close-by neurons in the SOM grid. This phenomenon can be con-
trolled to some extent by acting on the neighborhood radius. However, from the
viewpoint of data center operators, a set of close-by neurons with relatively sim-
ilar weight vectors needs to be considered as a single behavioral cluster/group.
For this reason, after the SOM processing stage, we added a step consisting of
a top-down clustering strategy, based on recursively separating weight-vector’s
sets whose diameter is higher than a given threshold. The principal aim of this
technique is to offer the possibility of collapsing similar SOM neurons, accord-
ing to the distances among their representative vectors, in order to decrease the
possibility to raise an alarm when it is not needed (e.g., consider very frequent
movements of a VM between two similar neurons over time) and to facilitate the
human operators in interpreting the results and spotting anomalous behaviors.
Indeed, as shown in Section 5.4, this led to the overall technique outputting a
reduced and more comprehensible number of behavioral clusters.

Specifically, the aforementioned technique, known as hierarchical clustering,
can be described as follows. Let ε be a fixed threshold which provides a bound
for the maximum diameter of a group. The algorithm consists of the following
steps:

1. Initialization: The set of the groups to process is initialized with a single
group G0 containing all the neurons G0 = {n1, · · · , nH×K}, and the set of
the final groups is initialized to be an empty set.

2. Distance Measure: A group G is removed from the set of groups to process
and its diameter D is computed by finding the two farthest away neurons:

(nS , nN ) ∈ arg max
(n,m)∈G

d(w(n), w(m)), D = d(w(nS), w(nN ))

where w(n) is the weight of neuron n. In the case that G contains just one
neuron, its diameter D is defined as zero.

3. Splitting: If D ≤ ε (i.e., the diameter is within the specified threshold),
then G is moved to the set of final groups. Otherwise, the group is split into
two smaller (non-empty by construction) groups G1 and G2 defined as:

G1 := {n ∈ G : d(w(n), w(nS)) ≤ d(w(n), w(nN ))}
G2 := {n ∈ G : d(w(n), w(nS)) > d(w(n), w(nN ))}

that are added to the set of groups to process.
4. Loop: Steps 2,3 are repeatedly applied to all the elements in the set of groups

to process, until it becomes empty, and the set of final groups contains only
groups with a diameter lower than or equal to ε.
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Fig. 2: Example of grouping steps: (a) initialization; (b) first split; (c) second
split; (d) final split. Neurons with same border color belong to the same group.

Figure 2 reports a graphical representation of how the algorithm works on a
real example. From left to right, we can see all the four steps of the algorithm
that bring to the final result in which each group contains only neurons with a
pair-wise distance smaller than the provided threshold.

As explained above, the kernel of the hierarchical clustering technique is the
measure of the diameter of a set. This implies that the definition of the distance
impacts on the final result.

Definition 1. For each p ∈ IN, the function dp : IRn × IRn → IR+ defined as

dp(v, w) :=

(∑
i

|vi − wi|p
) 1

p

is the Minkowski distance of order p.

Note that, according to Definition 1, the Minkowski distance with p = 2 is
the Euclidean distance, and that d∞ degenerates into the Chebychev distance
(maximum among the coordinates). Figure 3 shows that using p = 4, or in
general a value higher than 2, allows for increasing the distance between neurons
exhibiting a spike (i.e., neurons that are almost flat, except for an isolated huge
value), so that we are able to isolate in a dedicated group such spiky neurons.

4.4 Alerting

A grouped SOM grid combined with a calendar representation of the VM be-
haviors can be used by an operator to spot possible anomalies. A calendar rep-
resentation is a table containing for each couple (VM, DAY) a reference to the
corresponding group. In addition, we designed a set of alerting systems based on
heuristic methods, that can be used to simplify the inspection of such behaviors.
We propose two main categories of alerting systems: the calendar-view alerting
system, consisting of techniques that give a global view of the alerts over the
entire period of interest, and the dashboard-like alerting system, consisting of
techniques that give a detailed view of the behaviors that raise the alerts. In
what follows, V = {v1, v2, . . . , vi, . . .} is the set of virtual machines under anal-
ysis, D = {d1, d2, . . . , di, . . .} is the set of days that compose the time period
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Fig. 3: Examples of grouping using different p values. Grouping with p = 2 (a)
makes no distinction between spiky and smooth neurons, whereas grouping with
p = 4 (b) clusters the spiky neuron on the top-left corner in a dedicated group.

under analysis and grp : V × D → G is the function that associates to each
couple (VM, DAY) the corresponding group.

Calendar-View Alerting System This category contains those alerts that
generate a calendar table in which each couple (VM, DAY) is associated with a
value between 0 and 1, providing a level of alerting. In what follows, we denote
with p the period and with m the memory, both expressed in days (i.e., p = 7
days, m = 2 weeks).

Definition 2 (Strong). Given p,m, the Alert takes one VM v and one day
d and returns a boolean value raising an alert if the VM v is classified into a
different group in at least one day among the ones at most m periods apart:

Alerts(v, d) : ”∃j ∈ {±1, · · · ,±m}, grp(v, d) 6= grp(v, d− jp)” (SAS)

This alerting system is the most peaky (i.e., often producing false-positives) and,
thus, performs the best when used in contexts where a few changes occur.

Definition 3 (Weak). Given p,m, the Alert takes one VM v and one day
d and returns a boolean value raising an alert if the VM v is classified into a
different neuron in all the days among the ones at most m periods apart:

Alertw(v, d) : “∀j ∈ {±1, · · · ,±m}, grp(v, d) 6= grp(v, d− jp)“ (WAS)

This alerting system is more loose than the previous – sometimes producing
false-negatives – and, thus, performs the best in chaotic contexts, where many
random changes occur.

Definition 4 (Fuzzy). Given p, the Alert takes one VM v and one day d and
returns a real number, between 0 and 1, defined as follows:

Alertz(v, d) := #{j ∈ ZZ : grp(v, d) 6= grp(v, d− jp)}/#D(v, d) (ZAS)
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where D(v, d) = {j ∈ ZZ : ∃grp(v, d− jp)} is the set of all the comparable days.

This alerting system, producing real values, can be used in a wide range of
situations and could be useful to understand if a change in the behavior of a VM
is common or infrequent.

Dashboard-Like Alerting System The aim of a dashboard-like alerting sys-
tem is to provide a detailed view of the behaviors which raise the alert, providing
also further information on the geometrical distance between the actual and the
expected behavior in terms of weight of the SOM or also a count of the frequency
of VM/Days which are clustered into rare groups.

Definition 5 (Expected Behavior). Let v be a VM for which an alert is
raised at day d, i.e., Alert(v, d) = 1. Let d̃ be the nearest day, corresponding to
the same weekday, for which the most common group is taken from v and for
which grp(v, d) 6= grp(d̃) holds. Then, we define

– GRP:= grp(v, d)
– NEU:= neu(v, d)
– E GRP:= grp(v, d̃)
– E NEU:= neu(v, d̃)
– DIST:= ‖w(E NEU)− w(NEU)‖2

where the function neu : V ×D → L returns the coordinates of the BMU asso-
ciated to the behavior of a VM v during a day d and the function w, defined in
section 3.1, returns the weight of a neuron.

Such alerting system depends on the output of the calendar-like alerting system.
Usually, we apply this method to the weak alerting system table (see Definition 3)
in order to avoid false-positives alerts.

Definition 6 (Suspicious-Day). Given a parameter K, let occd : G → IN be
the function that counts the occurrences of a group in the days.

occd(g) := #{d ∈ D : ∃v ∈ V, grp(v, d) = g}. (6)

If a group g is such that occd(g) ≤ K, then those VMs whose take the group g
are stored in a table whose columns are DAY, VM, NEU, GRP, OCC DAY, where
OCC DAY= occd(g)

Such alerting system helps in catching days in which an infrequent group appears.

Definition 7 (Suspicious-VM). Given a parameter K, let occv : G → IN be
the function that counts the occurrences of a group in the VMs.

occv(g) := #{v ∈ V : ∃d ∈ D, grp(v, d) = g}. (7)

If a group g is such that occv(g) ≤ K, then those VMs whose take the group
g are stored in a table whose columns are VM, DAY, NEU, GRP, OCC VM, where
OCC VM= occv(g)

Such alerting system helps to catch VMs that are clustered into an infrequent
group.
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Fig. 4: (a) INFRA resource consumption clusters identified with the multi-metric
analysis. The dark blue, green and light blue curves in each plot correspond to the
cpu|usage average, net|usage average and cpu|capacity contentionPct

vROps metrics, respectively. (b) SOM grid showing the percentage of training
samples captured by each neuron.

5 Experimental Results

In this section, we provide an overview of the results that can be obtained using
the approach proposed in Section 4, that partially extend what has been already
presented in our previous work [6]. For the analysis, we have relied on the expe-
rience of domain experts and focused our attention over a limited set of metrics
that are considered the most relevant in this context, i.e., the ones related to
the computational, networking and storage activity of VMs and VNFs of in-
terest. Specifically, in the following, we highlight results obtained analyzing the
following vROps metrics: cpu|capacity contentionPct, cpu|usage average,
net|usage average.

5.1 Multi-metric Analysis

The plots reported in Figure 4 are examples of the results that can be ob-
tained through the multi-metric SOM-based analysis presented in Section 4,
applied over a month worth of system-level (INFRA) metrics, using the nor-
malized strategy. The trained SOM network is visually represented in terms of
the weights of its neurons. Indeed, each subplot reports the VMs daily behavior
that the specific neuron specialized into. In order to simplify the representation,
the weight vectors – jointly computed over the three metrics cpu|usage average,
net|usage average and cpu|capacity contentionPct – are overlapped but in dif-
ferent colors. For instance, one of the most recurrent patterns, occurring in
17.46% of the observations and depicted in Figure 5a, is the one identified by
the top-right neuron. Because of the standard data normalization performed
during the preprocessing phase to discard the magnitude information in favor
of enhancing the behavioral information of the input samples, the values on the
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(a) (b)

Fig. 5: (a) The most recurrent VM cluster of Figure 4a and (b) a singular VM
pattern captured by the bottom-right neuron of Figure 4a (both appeared in [6]).

Y axis can be negative. This means that VMs have been clustered based on
the joint shape of their daily resource consumption patterns, not their absolute
values. Notice that in this example we can observe a quite suspect output, since
the cpu|capacity contentionPct figure follows closely the daily traffic pattern
on the involved VMs. In a normal condition of a healthy system, i.e., when VMs
are provided with appropriate computational resources, we would have expected
this metric to stay close to zero, or at least experience a slight increase only
during the peak hours. A significantly different pattern is the one reported in
Figure 5b, corresponding to the bottom-right neuron in Figure 4a. Such behav-
ior represents the 8.27% of the observed daily patterns in the time period under
analysis. As evident from the picture, there is a higher CPU contention during
night, when the VM has lower traffic, than during the day.

An additional remark regarding the possible presence of anomalies can be
done considering the fact that the VMs included in the analysis are guaranteed
to have the same role in the corresponding VNFs, i.e., they manage traffic in
load sharing-mode. While it was expected to obtain an identical output for all
of them, the SOM-based analysis has pointed out that a subset of such VMs
exhibits daily patterns very different to the expected ones instead. This could be
interpreted by human operators as a warning, that requires further monitoring
and analysis of the involved components of the infrastructure. In addition, it is
worth noticing that asynchronous changes among the metrics included in such
analysis could be indications of anomalous behavior of the NFV environment,
and not necessarily of the VNF itself.

Table 1: The hyper-parameters values used for grid search (appeared in [6]).
Hyper-parameter Space

SOM dimensions 8× 8, 12× 12, 16× 16, 24× 24, 32× 32, 48× 48

learning rate 0.1, 0.2, . . . , 0.9, 1.0

neighborhood radius (σ) 0.1, 0.2, . . . , 0.9, 1.0

epochs 5, 10, 20
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(a) (b) (c) (d)

Fig. 6: SOMs with low σ values: (a) 8× 8, σ: 0.1, lr: 0.2; (b) 12× 12, σ: 0.1, lr:
0.2; (c) 16 × 16, σ: 0.1, lr: 0.9; (d) 32 × 32, σ: 0.1, lr: 0.8. For confidentiality
reasons, the scale has been omitted (appeared in [6]).

(a) (b) (c) (d)

Fig. 7: SOMs with high σ values: (a) 8 × 8, σ: 0.6, lr: 0.2; (b) 12 × 12, σ: 0.6,
lr: 0.2; (c) 8 × 8, σ: 0.6, lr: 0.9; (d) 12 × 12, σ: 0.6, lr: 0.9. For confidentiality
reasons, the scale has been omitted (appeared in [6]).

5.2 Hyper-parameters Grid Search

As mentioned in Section 4.1, different hyper-parameters lead to very different
clusters after training. An extensive grid search has been conducted over the
search space summarized in Table 1. A total of 1600 different configurations has
been tested monitoring quantization error and readability of results. Figure 6
shows the effect of using a low σ value (0.1) in different map sizes. Using a low σ
with a low learning rate gives the worst results with very few BMUs that capture
more than 95% of data, resulting in higher quantization errors.

SOM maps greater than 12 × 12 require very high σ (> 0.8) and very low
learning rate (< 0.3) in order to have low quantization errors, but in these cases
the results tend to become unreadable due to the fact that too many neurons
specialize on similar patterns. In Figure 7, the SOM maps reported in Figures 7a
and 7b are trained using high σ and low learning rate, while the ones reported
in Figures 7c and 7d are trained using high σ and high learning rate. Therefore,
for our analysis the best combination of hyper-parameters are high values of σ
(> 0.6) and low values of learning rate (< 0.6) with results that are better both
in terms of quantization error and readability.

5.3 Per-VNF Analysis

Another interesting characterization we could perform applying the SOM-based
analysis, is a study of how different VNFs behave in terms of their daily resource
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Fig. 8: SOM clusters and corresponding per-VNF hitmaps. For confidentiality
reasons, the total number of hits in the hitmap cells has been rescaled to 1
(appeared in [6]).

consumption patterns. In this case, we produced hitmaps highlighting how many
daily patterns of VMs of each given VNF map onto each SOM neuron. The result
can be visualized as in Figure 8. For example, by comparing such plots with the
corresponding map reporting the captured behaviors (like the one in Figure 4a,
even though, in this case, the two figures are derived from different subsets of
the available data), one can discover that both the SBC and the TAS VNFs have
mostly the usual “nightly/daily” pattern, characterized by a low workload over
nightly hours and a high workload over daily hours, with peaks around noon
and 6pm. On the other hand, the DRA VNF exhibits the classical nightly/daily
pattern for the cpu|capacity contentionPct metric, and periodic peaks every
30 minutes for the other two metrics. Moreover, a consistent number of VTAP
VMs are characterized by hourly periodic peaks.

5.4 Hierarchical Grouping

In this section, we report two examples of grouping/clustering technique de-
scribed in Section 4.3, starting from another month of data, with respect to the
experiments shown above. In the first example, we obtained the trained SOM
whose weights are presented in Figure 9a. By applying the distance-based group-
ing, with a group-distance threshold of 0.007, we obtained the clustering shown
in the same figure, where neurons belonging to the same group have the same
border color. Moreover, to facilitate a visual inspection of the behavior of each
VM during the month, we produced a calendar view of the VMs, as shown in
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Fig. 9: (a) Distance-based grouping applied to a square SOM grid, 4 neurons per
side. (b) VMs exhibiting common behaviors.
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Fig. 10: (a) Distance-based grouping applied to a square SOM grid, 3 neurons
per side. (b) VMs exhibiting anomalous behaviors.
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Figure 9b, by associating to each couple (VM, DAY) the group of the BMU in
the SOM grid. For instance, in this case we can notice a very common behav-
ior: the majority of group changes take place during the week-end. The second
example shows how the two outputs could be jointly used by a system operator
to visually detect anomalies in the behavior of VMs. The grouped SOM grid
in Figure 10a highlights three main (i.e, more frequent) groups. In particular,
the yellow group contains all the neurons within an almost flat VM metric. By
inspecting the calendar in Figure 10b, it is evident that these behaviors are as-
sociated to those VMs that have an anomalous constant course, without any
variations during the week-end.

5.5 Alerting

In this section, we provide some examples of output of the two main kind of
alerting systems. All the alerting systems are applied to the behaviors captured
by the SOM grid in Figure 11a. Notice the presence of two groups with a high
working-level (red, orange); two groups with a low working-level (brown, green);
one group with a unique almost flat neuron (gray). Figure 11b reports the be-
havioral evolution of the VMs whose data have been used to conduct this ex-
periment. The reference time period is April 2020 and, in particular, on April
13th (Easter Monday) many VMs change behavior, passing from their usual high
working-level group to a low working-level group.

Calendar-like Alerting Systems Figure 12a shows the Strong Alerting Sys-
tem defined in Equation (SAS), with m = 3 and p = 7, where dark green cells
stand for a raised alert. Since the method compares the groups in same week-
days and raises an alert if at least one change occurs, we can see that many
alerts have been raised (some of them are obviously false positives). In contrast,
Figure 12b shows the alerts that have been raised with the Weak Alert System
defined in Equation (WAS), with p = 7 and m = 3. Since the method raises an
alert if a group appears only once in same week-days, we can see that only a
few behaviors raise an alert. The output from the Fuzzy Alerting System defined
in Equation (ZAS), with p = 7, is shown in Figure 12c. The higher the value (i.e.,
the darker the color), the higher the probability of an alert being significant. As
expected, many of the false-positives reported by the Strong Alerting System,
and not by the Weak one, are associated to a low value.

6 Conclusions

In this work, we focused on the problem of analysis and classification of the
behavioral patterns of VM metrics in a NFV data center. We described the
technique we realized, based on self-organizing maps, that is being used across
the data centers of the Vodafone network operator. We described some results
we obtained from its application, highlighting the capability of our technique
to identify interesting points in space and time (i.e., precise VMs and hosts
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Fig. 11: (a) A SOM grid with neurons grouped in 5 behaviors. (b) Calendar view
of the set of VMs involved in the analysis.
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Fig. 12: (a) Strong Alerting System. (b) Weak Alerting System. (c) Fuzzy Alert
System.
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within the infrastructure, and precise days within the analyzed time range) with
potentially anomalous behaviors, thus deserving further attention and investiga-
tions by data center operators. Also, we detailed a clustering technique applied
over a trained SOM codebook in order to mitigate the problem of neuron over-
representation, and an alerting system built atop the SOM-based clustering,
improving the anomaly detection pipeline effectively reducing the number of
false positives.

In our experimentation, we identified a variety of open questions that still
need additional investigations. First, the proposed technique has a number of
hyper-parameters (SOM grid size and parameters, and various thresholds as de-
scribed in Section 4) that have to be decided. A grid search can be used for such
purpose, but it requires a non-negligible processing time as possible configura-
tions can easily grow in the range of tens or hundreds. In order to select the best
SOM hyper-parameters, the various analysis runs should be compared with one
another using an automated and quantitative assessment method. This cannot be
simply done based on the SOM quantization error, as it would decrease increasing
the SOM size, driving the choice towards excessively large networks. For exam-
ple, we plan to use the average silhouette width to such purpose [29]. Finally,
another promising path we plan to explore is the one to combine our approach
with the use of Deep Learning (DL) for time-series classification [18,19,21]. An
interesting approach could be using the SOM to produce a more compact and
discrete representation of a time-series autoencoder, as explained in [9].
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13. Gulenko, A., Wallschläger, M., Schmidt, F., Kao, O., Liu, F.: A system architecture
for real-time anomaly detection in large-scale nfv systems. Procedia Computer
Science 94, 491–496 (2016), the 11th International Conference on Future Networks
and Communications (FNC 2016) / The 13th International Conference on Mobile
Systems and Pervasive Computing (MobiSPC 2016) / Affiliated Workshops

14. Gupta, L., Samaka, M., Jain, R., Erbad, A., Bhamare, D., Chan, H.A.: Fault
and performance management in multi-cloud based NFV using shallow and deep
predictive structures. Journal of Reliable Intelligent Environments 3(4) (jul 2017)

15. Harris, T.: A kohonen som based, machine health monitoring system which enables
diagnosis of faults not seen in the training set. In: Proceedings of 1993 International
Conference on Neural Networks. vol. 1, pp. 947–950. IEEE, Nagoya, Japan (1993)

16. Hawilo, H., Shami, A., Mirahmadi, M., Asal, R.: NFV: state of the art, challenges,
and implementation in next generation mobile networks (vEPC). IEEE Network
28(6), 18–26 (nov 2014)

17. Haykin, S.: Neural Networks: A Comprehensive Foundation (3rd Edition).
Prentice-Hall, Inc., USA (2007)

18. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learn-
ing for time series classification: a review. Data Mining and Knowledge Discovery
33(4), 917–963 (jul 2019)

19. Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., Shroff, G.: Convtimenet:
A pre-trained deep convolutional neural network for time series classification. In:
International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hun-
gary, July 14-19, 2019. pp. 1–8. IEEE (2019)

20. Le, L., Sinh, D., Lin, B.P., Tung, L.: Applying Big Data, Machine Learning, and
SDN/NFV to 5G Traffic Clustering, Forecasting, and Management. In: 4th IEEE
Conference on Network Softwarization and Workshops. pp. 168–176 (June 2018)

21. Malhotra, P., TV, V., Vig, L., Agarwal, P., Shroff, G.: TimeNet: Pre-trained deep
recurrent neural network for time series classification. In: 25th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2017, Bruges, Belgium (2017)



Using SOMs for the Behavioral Analysis of VNFs 25

22. Malini, N., Pushpa, M.: Analysis on credit card fraud identification techniques
based on knn and outlier detection. In: 2017 Third International Conference on Ad-
vances in Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB). pp. 255–258 (Feb 2017)

23. Mancini, R., Ritacco, A., Lanciano, G., Cucinotta, T.: XPySom: High-Performance
Self-Organizing Maps. In: IEEE 32nd International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD). Porto, Portugal (2020)

24. Miyazawa, M., Hayashi, M., Stadler, R.: vnmf: Distributed fault detection using
clustering approach for network function virtualization. In: IFIP/IEEE Interna-
tional Symposium on Integrated Network Management. pp. 640–645 (May 2015)

25. NFV Industry Specif. Group: Network Functions Virtualisation. Introductory
White Paper (2012)

26. Niwa, T., Miyazawa, M., Hayashi, M., Stadler, R.: Universal fault detection for
nfv using som-based clustering. In: 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS). pp. 315–320 (Aug 2015)

27. Ostberg, P.O., Byrne, J., Casari, P., Eardley, P., Anta, A.F., Forsman, J., Kennedy,
J., Le Duc, T., Marino, M.N., Loomba, R., Pena, M.A.L., Veiga, J.L., Lynn, T.,
Mancuso, V., Svorobej, S., Torneus, A., Wesner, S., Willis, P., Domaschka, J.:
Reliable capacity provisioning for distributed cloud/edge/fog computing applica-
tions. In: EuCNC 2017 - European Conference on Networks and Communications.
pp. 1–6. IEEE (jun 2017)
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