
1. INTRODUCTION

Security of applications and services is becoming increasing-
ly important for today’s software applications. The design
and development of complex software systems is much bet-
ter off if security issues are addressed since the early stages
of the design and development, rather than applied as a late
patch to an existing application. In order to achieve an ade-
quate level of security while exchanging information or run-
ning transactions onto an open network, such as the Internet,
cryptographic mechanisms need to be used. The adoption of
such techniques can only guarantee protection of the applica-
tion data as long as the cryptographic keys are securely cre-
ated, stored and managed. Key bit strings are often the
weakest point of the overall security trust chain, where com-
promise of a single cryptographic key related to an applica-
tion may lead to the compromise of the entire set of data
managed by that application. Management of cryptographic
keys is thus a crucial point in the design and development of

secure systems.
Smart card (SC) technology is, among others, an enabler for
guaranteeing the secure management of cryptographic keys.
Card devices have a high degree of trustworthiness, for many
reasons:

• a card owner always has physical control of the card;
• on-card architecture is very simple, hence on-board code

and logic can easily be made functionally correct;
• SC hardware is designed to be tamper-proof, so that it is

very hard and expensive to recover the contained data by
means of physical inspection.1

Smart cards are sufficiently powerful to perform crypto-
graphic operations on-board, without the need to reveal cryp-

vol 20 no 6 november 2005 439

Comput Syst Sci & Eng (2005) 6: 439–450
© 2005 CRL Publishing Ltd

An open middleware for smart
cards

Tommaso Cucinotta*, Marco Di Natale* and David Corcoran†

*Scuola Superiore Sant'Anna, Pisa, Italy. Email: {cucinotta,marco}@sssup.it
†Identity Alliance, Austin, TX, USA. corcoran@identityalliance.com

International Journal of

Computer Systems
Science & Engineering

This paper presents an open and modular middleware for smart cards, providing a simple abstraction of the device to application developers. The soft-
ware is interoperable across multiple card devices, and portable across various open platforms. The architectural design is centred around the definition
of a new API that allows protected access to the storage and cryptographic facilities of a smart card. In the envisioned architecture, a smart card driver
architecture is partitioned into a lower card-dependent component, that formats and exchanges APDUs with the external device, and a higher card-
independent component, that implements more sophisticated services and interfaces, such as the well known PKCS-11 standard. Each layer can focus
on a smaller set of functionality, thus reducing the effort required for the development as well as the testing and maintenance of each component. The
proposed architecture, along with a set of pilot applications such as secure remote shell, secure web services, local login and digital signature, has been
developed and tested on various platforms, including Open BSD, Linux, Solaris and Mac OS X, proving effectiveness of the new approach.

Keywords: smart cards, middleware, architecture

1 Cheap timing and power analysis attacks have been shown to be effective against
some kind of devices, as shown in [20]. Security assurance for these devices is an
active research topic [21,22], but clearly beyond the scope of this paper.

tographic keys to the outside world. These operations are
only allowed after a proper user identity verification,
through the use of Personal Identification Numbers (PINs),
or even biometrics information. In conclusion, smart cards
possess a sufficiently simple architecture, and the right
amount of processing capability. They have been standard-
ized at the hardware level and are easily available at cheap
prices, therefore, they can be trusted in managing on-board
resources, more effectively than traditional computer sys-
tems.

1.1 Smart cards and open platforms

Despite the growing need for smart card integration inside
systems for protecting user data, such devices are struggling
in being supported by secure applications and software com-
ponents, especially on open systems. On these platforms,
open source libraries and applications allow the use of cryp-
tography for protecting data, but the security level that can
be possibly achieved is strongly limited because of the use of
software-only cryptography. This means that most computer
systems, today, store cryptographic keys onto hard-drives,
sometimes protected by weak passwords quickly chosen by
careless users, thus exposing crucial pieces of information to
the risk of being compromised due to the great number of
malicious software programs and other kind of menaces
overpopulating the Internet.

This situation is essentially due to the difficulty inherent
to the integration of smart card technology inside applica-
tions, beacuse of the high number of reader and card devices,
different in nature and capabilities, programmers have to
deal with.

Smart cards differ significantly with respect to other hard-
ware components, which are being supported not only on
proprietary platforms, but also on open ones (albeit with a
reduced set of functionality). Smart card manufacturers often
deliberatly deviate from standards in order to provide prod-
ucts that differentiate themselves from others, possibly
claiming enhanced security features. Standard APIs for inter-
operability do exist [1,2], but only a few vendors provide
their implementation on open platforms, and, even when
they do it, it is only for one or a limited set of devices. Fur-
thermore, due to the short life cycle of a smart card device
and to the low priority an open platform is usually assigned
with respect to commercial ones, a card driver for an open
system is likely to be released when manufacturing of the
device is about to cease.

On a related note, protocol specification for card devices
do not exist, apart from a few vendors who provide them for
a limited set of devices. This further reduces the chances of
having software components that support such devices on
open systems. This situation discourages smart card integra-
tion and has the consequence of an overall reduction in their
use, hindering the development of more secure computer
applications and services.

The MUSCLE2 Card middleware, which is being intro-
duced in this paper, constitutes a step toward openness
and simplification in smart card middleware design and

implementation. Architectural solutions like the one we are
proposing can ease adoption of these devices by speeding up
the development stage of middleware components.

The paper is structured as follows. In the next section, after
introducing common concepts about SC middleware, other
open architectures for smart cards are overviewed. Section 3
introduces the proposed architecture and features an overview
of the new API. Finally, we draw our conclusions in Section 4.

2. BACKGROUND ON SMART CARD
MIDDLEWARE

This section recalls the basic concepts of smart card architec-
tures and protocols, and introduces some terminology. These
concepts will be extensively used in Section 3 for describing
the proposed architecture.

2.1 The world of smart cards

The world of smart cards is characterised by various card-
reader and card device types. Card readers can be connected
through the serial, PS/2 or USB ports. Some of them have
multiple slots for the insertion of multiple cards at the same
time. Others have an on-board pin pad allowing the user to
enter the PIN code in a more secure way than the traditional
solution where the user is required to enter the PIN code
onto the PC keyboard. Some readers are also capable of
wireless communications with the card, that is without need
of physical card insertion.

Different types of card devices exist as well. Storage-only
cards are traditionally used for storing, in a protected and
mobile way, some kind of information, and on-card logics is
used to perform basic operations such as data retrieval or
decrease of internal counters. A typical application for this
family of products is a pre-paid card, where the information
stored onto the card corresponds to the amount of money that
is available to the user for accessing some service, such as
telephone calls or Internet connectivity. The user is required
to insert the card into a terminal during service operations.
The terminal for retrieves the residual (pre-paid) service time
from the card and decreases the available credit. Usually,
such cards only require PIN code verification or possibly do
not authenticate users at all.

A cryptography-enabled smart card, instead, is able to
perform sophisticated cryptographic operations, usually for
the purpose of authenticating to a system on behalf of the
legitimate owner. In such cases, the card stores the user
authentication cryptographic key, and proves possession of it
during a challenge-response cryptographic protocol that is
run between the target system and the card device. The cryp-
tographic key is stored onto the tamperproof smart card
device and is used by the card itself without exposing it to
the outside world. A different kind of application is digital
signature, where a document is signed by using the on-card
user's signature private key. The signature is computed on
the card device, which . may be required to perform other
operations such as data digesting and padding, for the pur-
pose of increasing security. Sometimes smart cards may
authenticate the host system in a cryptographic way, to pre-
vent unauthorized use of the device. In these cases, the card

440 computer systems science & engineering

T CUCINOTTA ET AL

2 Movement for the Use of Smart Cards in a Linux Environment.

runs a cryptographic challenge-response protocol with the
host PC, where it is the host PC that must prove possession
of its own authentication cryptographic key.

GSM-enabled smart cards are a special kind of crypto-
graphic smart cards widely used in Global System Mobile
(GSM) telecommunication systems, as Subscriber Identity
Modules (SIMs). These cards authenticate users to the
mobile telephony provider for the purpose of accounting the
calls made by the phone, and possibly other services. Cryp-
tographic capabilities are made available by means of the
GSM standard protocol [4].

A programmable smart card is usually a cryptographic
smart card with a general-purpose CPU on-board, allowing
dynamic loading and execution of programs. These devices
allow implementation of custom applications and possibly
custom protocols for interaction with the host PC. These
devices are usually programmed by using a subset of a well-
known programming language, such as Java, Assembler or
Basic and offer the highest flexibility to applications, allow-
ing delegation of security-critical operations to the protected
on-card environment.

In spite of the effort made by standard organisations [5,6],
card devices have many restrictions and non standard
filesystem structures. Different cards have different ways to
accomplish the same function, such as, for example, file cre-
ation.

The simplest way of increasing an application or system
security through the use of smart card technology is by dele-
gating management and use of one or more cryptographic
keys to the card device. For PKI applications, one or more
public key certificates can be stored on the card for easing
mobility of the card among various physical locations. This
is usually achieved through common, high-level, application
programming interfaces that support on-card operations
independently of the card and reader devices. The two most
common interfaces at this level are briefly overviewed in the
following subsection.

2.2 Smart card middleware architecture

Two APIs that have been defined for this purpose are PKCS-
11 [1] by RSA Labs, and PCSC [2], Part 6, by the PCSC
Workgroup. While the former has been widely adopted on
various systems and platforms, most of them proprietary, the
latter is only used on Microsoft platforms. Such high level
APIs are made available to applications through a smart card
middleware that requires various drivers to be installed on
the system, depending on the actual reader and card devices
that are going to be used.

A generic smart card middleware architecture is depicted
in Figure 1. At the bottom layers, a resource manager com-
ponent is required for managing the SC readers that are
available on the system, and making their services available
to higher level components, in a way that is independent of
the hardware. This is done through the PCSC ICC Resource
Manager interface [2, Part 5], which provides function calls
for listing the available readers, querying a reader about the
inserted card(s), enabling or disabling the power to an insert-
ed card, and establishing an exclusive or shared communica-
tion channel for data exchange with a card. The reader driver
takes care of translating the requests into the low-level

Protocol Data Units (PDUs) to be transmitted to the reader
through the low level OS primitives for serial communica-
tion. Reader drivers implement the Card Terminal API [3] or
the PCSC IFD-Handler API [2, Part 3 Appendix A], and the
resource manager translates calls to the PCSC Part 5 inter-
face to the appropriate lower level API calls. The higher
software stack, once a communication channel with a card
device is established, performs data exchanges through com-
mand Application PDUs (APDUs) compliant to the ISO T =
0 or T = 1 protocols [6] (see later).

The top level component of the middleware is traditional-
ly a monolithic component, provided by card vendors, imple-
menting the PKCS-11 or PCSC Part 6 interfaces. These have
calls that allow the application to locate, manage and use
cryptographic keys and public key certificates that are avail-
able on the card. The card driver translates such requests into
the appropriate lower level ISO T = 0 or T = 1 command
APDUs to be exchanged with the card. Typically, it supports
a family of card devices provided by the vendor. Further-
more, it must comply with the higher level API, which
requires additional tasks to be performed in the component,
such as session management and transaction handling. These
tasks are quite similar in the driver implementations provid-
ed by different vendors, where the only changes relate to the
specific way information is exchanged with the card by
means of APDUs. This is why we investigated the possibility
of introducing a further abstraction layer, breaking the tradi-
tional driver architecture through the use of a middle-level
API.

In fact, in our architecture functions are grouped into two
separate components:

• a lower level (LL) driver, which formats and exchanges
command APDUs with the card device;

• a higher level (HL) one, which performs the additional
management tasks required for the compliance with the
higher level interface.

This is done through the introduction of a middle-level API,
clearly identifying the boundary and commitments of the two
sublayers around which the cited functionalities are split. As
it will be shown in Section 3.1, the main benefit of such an
approach is that it is possible to write the HL-API-specific

441

AN OPEN MIDDLEWARE FOR SMART CARDS

vol 20 no 6 november 2005

Figure 1 Architecture of a traditional smart card middleware

management code only once. Interoperability among card
devices is achieved by writing, for each card, a specific LL
driver implementing the common middle-level API.

2.3 Standard protocols and APIs

2.3.1 The T = 0 and T = 1 protocols
In order to allow a better understanding of the proposed
architecture, we provide an overview of how the T = 0 proto-
col works, while the complete specifications can be found in
[7]). The T = 0 and T = 1 protocols define, respectively, an
asynchronous half duplex character oriented and a block ori-
ented transmission protocol for exchanging data between an
interface device (i.e. a card reader) and a smart card. These
protocols require that each action be started by the host by
sending a command APDU to the card, composed of a
mandatory header and an optional, variable length, data
field. After having performed some internal computations,
the card sends back a response APDU to the host, composed
of an optional, variable length, data field and a mandatory
status word (see Figure 2). The T = 0 header consists of five
bytes. The class byte CLA and the instruction byte INS iden-
tify the command to be performed, while the bytes P1 and
P2, along with the optional following data, are the input
parameters to the command. The fifth byte contains either
the length of the optional data sent by the host after the head-
er in the command APDU, or the expected length of the
optional data sent by the card before the status word in the
response APDU. The status word in the response APDU is a
two bytes sequence used to notify if the command completed
successfully (usually this corresponds to a value of 0 x
9000) or not.

For each command-response APDUs only one device is
allowed to send data, and it may be either the card or the
host, , but not both. Four modes of operation are allowed:

• the host sends no data, the card responds with no data, i.e.
only with a status word indicating whether the operation
was successful;

• the host sends some data, the card responds with no data;
• the host sends no data, the card responds with some data;
• both the host and the card send some data.

All but the last mode may happen within a single command-
response APDU transaction. However, whenever the card
device needs to provide some data as a response to a com-
mand APDU containing data, it responds with a special sta-
tus word (0 x 61XX) containing, in the second byte, the

length of the data to be transmitted to the host. The host is
supposed to retrieve such data by using a special command
APDU, namely the GetResponse APDU. Also, note that vari-
ous extensions are standardized that allow each command-
response APDU to be more flexible in the way data is
transmitted, especially when more than 256 bytes need to be
transmitted at each exchange. However, not all card devices
comply with such extensions.

2.3.2 The PKCS-11 Standard
The Cryptographic Token Interface Standard specifies an
application programming interface (API), called Cryptoki, to
mobile devices which hold cryptographic information and
perform cryptographic operations, such as smart cards, PCM-
CIA cards and smart diskettes. The main goals of the API
design are, among others, independence from the security
device and resource sharing, so to allow multiple applications
to share access to a single device, as well as allow access to
multiple devices, presenting applications with a common,
logical view of the device called a cryptographic token.

Cryptoki also provides an interface to cryptographic read-
er devices through the slot abstraction. Each slot, corre-
sponding to a physical reader or other interface device, may
contain a token. Typically, a token is ‘present in the slot’
when a cryptographic device is inserted into the reader or the
interface device.

The kinds of supported devices and capabilities depend on
the particular Cryptoki library and on the supported devices.
The standard only specifies the interface to the library, but
not all libraries support all the mechanisms (algorithms)
defined in the interface (since not all tokens are expected to
support all the mechanisms).

The logical view of a token is a device that stores typed
objects and performs cryptographic operations. Each object
type, or class in the Cryptoki terminology, is associated a set
of metadata information, available as a set of attributes, i.e.
name-value pairs. Some attributes are general, such as the
private or public nature of objects, some are specific to a par-
ticular type of object, such as the modulus of an RSA key.
Classes are arranged in a hierarchical fashion, where each
class inherits attributes of the parent class. Cryptoki defines
three main classes of objects: certificates, keys and data. A
certificate object stores a public-key certificate. A key object
stores a public key, a private key, or a symmetric key. Each
of these types of keys has subtypes for use in specific mecha-
nisms. A data object is a container whose contents is applica-
tion-dependent.

Objects are also classified according to their lifetime, visi-
bility, and access control. Token objects are persistently
stored onto the token, even after token extraction, and are
visible to all applications that connect to the token. Session
objects are temporary objects which are only visible to the
application which created them, and their lifetime is limited
to the session in which they were created.

Public objects may be accessed without any prior authen-
tication of the application. Private objects, on the other hand,
require the application or user to authenticate to the token
through the use of a PIN code or some other token-dependent
method (for example, a biometric device).

Cryptoki defines functions to create, destroy, manipulate
and search for objects. It also defines functions to perform
cryptographic functions with an object.

442 computer systems science & engineering

T CUCINOTTA ET AL

Figure 2 Generic invocation of a smart card command by exchanging ISO APDUs

Cryptoki recognizes two user types: the security officer
(SO) and the normal user. The SO is responsible for initializa-
tion of a token, for setting the normal user’s PIN and possibly
for manipulating (some) public objects. Only the normal user
is allowed to access private objects on the token, and the
access is granted only after the normal user has been authenti-
cated. Some tokens may also require that a user be authenti-
cated before any cryptographic function can be performed on
the token, whether or not it involves private objects.

The PKCS-11 standard also defines how the API behaves
with respect to concurrent accesses by multiple tasks and
threads to the same slot or token.

This interface is used both on proprietary platforms and
on open systems like Linux. Unfortunately, on latter plat-
forms, very few vendors provide PKCS-11 modules for at
least some of their smart-card devices.

2.3.3 The PCSC Standard, Part 5
The part 5 of the PC/SC Workgroup's architecture defines
the ICC Resource Manager component, which is responsible
for managing the ICC-relevant resources within the system
and for supporting controlled access to Interface Devices
(IFDs) and, through them, individual Integrated Circuit
Cards (ICCs). The ICC Resource Manager performs three
basic functions related to access to multiple IFDs and ICCs.
First, it is responsible for identification and tracking of
resources. Second, it is responsible for controlling the allo-
cation of FD resources across multiple applications. It does
this by providing mechanisms for attaching to specific IFDs
in shared or exclusive mode. Finally, it supports transaction-
al access to services available within a given ICC. This is
extremely important because current ICCs are single-thread-
ed devices that often require execution of multiple com-
mands to complete a single function. Transactions allow
multiple commands to be executed without interruption,
ensuring that intermediate state information is not corrupted.

The interface exposed by the ICC Resource Manager is
described in an object-oriented fashion, in terms of classes
and methods, along with required parameters and expected
return values. The interface definition is language and sys-
tem independent.

The class ResourceManager provides the methods neces-
sary to create and manage Contexts, which are needed for
communication with the ICC Resource Manager. The class
ScardTrack encapsulates functions that determine the pres-
ence or absence of specific card types within the available
readers. This information is made available based on selec-
tion criteria provided by the calling application. The class
ScardComm encapsulates a communication interface to a
specific card or reader and provides methods for managing
the connections, controlling transactions, sending and
receiving commands, and extracting information on the card
state. A fundamental method of this class is the ScardTrans-
mit function, which allows exchange of ISO/IEC T = 0 and T
= 1 APDUs with an ICC device.

This API is a standard component on Microsoft platforms,
and, thanks to the MUSCLE project3, it is available on many
open Unix-like platforms too, such as Linux, OpenBSD and
Mac OS-X.

2.3.4 The PCSC Standard, Part 6
Part 6 of the PC/SC Workgroup's architecture defines the
Service Provider (SP) component, consisting of two funda-
mental subcomponents: the ICC Service Provider (ICCSP)
and the Cryptographic Service Provider (CSP).

The ICCSP is responsible for exposing high-level inter-
faces to non-cryptographic services. This includes common
interfaces, defined in the specification, for managing con-
nections to a specific ICC, as well as access to file and
authentication services. The ICCSP interface provides mech-
anisms for connecting and disconnecting to an ICC and it
exposes file access and authentication services encapsulating
functionality defined by ISO 7816-4, along with natural
extensions for functionality such as file creation and dele-
tion. The file access interface defines mechanisms for locat-
ing files by name, creating or opening files, reading and
writing file contents, closing a file, deleting files, and man-
aging file attributes. The authentication interface defines
mechanisms for cardholder verification, ICC authentication,
and application authentication to the ICC. In addition, the
ICCSP may implement interfaces for features specific to the
application domain.

CSP (in contrast with ICCSP) isolates cryptographic ser-
vices in response to regulations issued by governments upon
import and export. CSP compartmentalizes the sensitive ele-
ments of cryptographic support into a well-defined and inde-
pendently installable software package and it encapsulates
access to cryptographic functionality provided by a specific
ICC through high level programming interfaces. Its purpose
is exposing general-purpose cryptographic services, like key
generation, key management, digital signatures, message
digesting, bulk encryption services, and key import and
export to applications.

Relevant classes defined in this part of the standard
include:

• the FileAccess class, which defines a high level interface
to a ISO 7816-4 on-card based file system;

• the CHVerification class, which provides an application
with the ability to force a Card Holder Verification
(CHV, i.e. a PIN code in the PCSC terminology) and
allows user modifications of the CHV;

• the CardAuth class, which exposes the interfaces to the
authentication services that may be supported by an ICC, i.e.
it allows to run cryptographic challenge-response protocols
for the authentication of the host PC application or the card;

• the CryptProv class, which exposes the primary methods
for accessing cryptographic services.

Unfortunately, this API is only available on Microsoft plat-
forms, and it constitutes the standard way a smart card ven-
dor integrates its own devices with widely known
applications such as Internet Explorer and Outlook. On open
platforms, the few vendors providing a high level API usual-
ly provide a PKCS-11 module.

2.4 Related projects

This subsection provides a quick overview of existing open
architectures for smart cards, highlighting how these projects
compare with respect to the proposed architecture.

The OpenSC [8] project provides a library and a set of

443

AN OPEN MIDDLEWARE FOR SMART CARDS

vol 20 no 6 november 2005

3 Movement for the Use of Smart Cards in a Linux Environment, more
information available at the URL: http://www.musclecard.com.

utilities for accessing ISO 7816 [5] and PKCS-15 [9] compli-
ant card devices. Specifically, the project features a program-
ming interface with functionality for: ISO 7816-4 [5, Part 4]
filesystem browsing and file reading/writing; ISO 7816-9 [5,
Part 9] filesystem management; ISO 7816-8 [5, Part 8] cryp-
togram computation for cards complying with the PKCS-15
standard for storing certificate and key information. It pro-
vides a good set of middleware components, as well as mod-
ules for their integration within widely used secure
applications, constituting an effective solution for integration
of ISO 7816-4 and PKCS-15 compliant, pre-formatted
devices. Though, various cards exist today with custom, pro-
prietary APDUs for filesystem management, which adhere to
ISO 7816-4 in a read-only fashion, and/or do not comply
with the PKCS-15 standard for managing information about
the on board cryptographic data. Such devices cannot be
directly supported within this architecture, especially on the
side of card-personalisation.

The SecTok [10] project provides a library for the man-
agement of files onto an ISO 7816-4 compliant device. The
library includes functions for initialisation, reading and writ-
ing of files. It does not support cryptographic functionality of
the devices, thus it cannot be used in the context of crypto-
graphic smart cards.

The Open Card Framework (OCF) [11] is a Java based
development platform for smart card development. It aims at
reducing dependence from card terminal vendors, card oper-
ating system providers and card issuers, by means of a con-
sistent and expandable framework. The core architecture of
OCF features two main parts: the CardTerminal layer, pro-
viding access to physical card terminals and inserted smart
cards, and the CardService layer, providing support for a
wide variety of card operating systems and the different
functions they offer. Examples of CardServices are the
FileAccessCardService, providing a fairly complete set of
interfaces and classes abstracting an ISO file system, and the
SignatureCardService, offering methods to create and verify
digital signatures. Further, the problem of card issuer inde-
pendence is addressed separately by the OCF’s Application-
Management component, supporting listing, selecting,
installing, uninstalling, blocking and unblocking of applica-
tions. OCF is a promising framework for smart card integra-
tion within Java applications. Despite the modular and
expandable design, its main limitations are due to the lack of
support of some readers because of the way I/O is managed
at the lowest levels of the architecture, and the inherent diffi-
culties and overheads to access functionality from programs
written in different programming languages than Java.

The GPKCS-11 project [12] aims at providing support for
the development of a PKCS-11 driver for cryptographic
tokens. It contains a complete software token library, based
on the OpenSSL project4, as well as an automated testing
environment for PKCS-11 modules. The framework provides
basic services for managing PKCS-11 session handles,
object handles, and object attributes through the use of inter-
nal lookup tables that map handles to C structures, and
vice-versa. A GPKCS-11 driver implements an internal
API which resembles the original PKCS-11 API, where all

handles have been substituted with the looked up C struc-
tures, and some mandatory parameters checking dictated by
the standard are embedded within the framework.

Furthermore, the framework aims at leaveraging the pro-
grammer from the support of concurrent applications, by
implementing the necessary locking mechanisms within the
framework5. Even if most of the concepts that inspired the
GPKCS-11 project are clearly valuable, documentation of its
features is currently insufficient, and it has not been main-
tained since 2000. This, in our opinion, hinders its adoption.

The Common Data Security Architecture (CDSA) [13] is
an open standard introducing an interoperable, multi-plat-
form, extensible software infrastructure for providing high
level security services to C and C++ applications. It features
a common API for authentication, encryption, and security
policy management. As far as smart card technology is con-
cerned, the CDSA standard supports external cryptographic
devices through the use of PKCS-11 modules, while the
overall architecture is designed and focused around higher
level security services, such as certificate and CRL manage-
ment, verification of signatures, authentication, and others.
Initiated by Intel in 1995, CDSA v2.0 was adopted by The
Open Group at the beginning of 1998. Intel also initiated a
reference implementation, later moved to open-source6 [14],
targeting both Microsoft and various Unix-like platforms.

With respect to our, and to the other cited architectures,
CDSA is essentially at a higher software level, aiming at pro-
viding complex security services, rather than low-level cryp-
tographic services interoperable among different security
devices.

Table 1 provides a brief summary of the cited open archi-
tectures, along with their limitations or relationship with
respect to our new approach.The architecture framework
introduced in this paper, (at least by the authors' knowledge),
is the only open architecture completely modular that allows
support for multiple heterogeneous devices through the
implementation of a common lower level API. The API
exposes sufficient functionality as needed by most PKI
applications from the issuing of the card by a CA, up to the
use of the device by applications, such as management of on-
card memory, cryptographic keys and PIN codes. Adoption
of the middleware limits the effort needed for the implemen-
tation of drivers, at least with respect to full implementation
of well known standards, such as PKCS-11 or PCSC level 6.

444 computer systems science & engineering

T CUCINOTTA ET AL

Project name Language Limitation

OpenSC C Only ISO 7816-4 and PKCS-15
compliant devices

SecTok C Only ISO 7816-4 storage functionality
OCF Java High overhead for non Java

application
GPKCS-11 C Lack of documentation and maintenance
CDSA C Higher level of abstaction

4 More information at the URL: http://www.openssl.org.

5 The implementation is available at the URL: http://sourceforge.net/pro-
jects/cdsa
6 It is available at the URL: http://sourceforge.net/projects/cdsa.

Table 1 Summary of open architectures for smart cards

Connectivity with existing standards is still possible through
implementation of the higher level API exploiting the MUS-
CLE Card API. Mapping MUSCLE services to higher level
APIs can be confined in a separate module, to be implement-
ed only once and for all. As an example, our architecture
provides a PKCS-11 module that suffices for all card devices
for which a lower level plugin has been implemented. The
module, for example, can be plugged at the lowest levels of
the CDSA architecture.

3. PROPOSED ARCHITECTURE

The MUSCLE Card project proposes an open SC middle-
ware that is both interoperable across multi-vendor card
devices, and portable across a multitude of open platforms.
The middleware architecture of the MUSCLE Card project is
shown in Figure 3. At the bottom layers, the PCSC-Lite pro-
ject provides an open and stable daemon for managing the
SC-related hardware resources of the PC (e.g. serial/USB
ports, connected readers). Various readers are supported
through reader drivers, most of which are open source,
implementing either the CT-API or the IFD-Handler inter-
face. Devices connected to serial and PS2 ports need to be
already connected when the daemon starts, while USB
devices can be plugged in at run-time, provided that the
drivers are installed onto the system.

At the above layer, independence from the card is
achieved by using a common API. Specifically, the Card
Driver Loader, at the time the card is inserted, identifies the
inserted device through the Answer To Reset (ATR) bytes,
then loads dynamically the driver that manages the card.
Differently from traditional approaches, in which higher lev-
el APIs such as PKCS-11 or PCSC Level 6 are implemented
by card drivers, in the proposed architecture a card driver
implements a simpler API (see Section 3.1). This exposes
basic storage, cryptographic and access control functionality
to the host machine, independently of the kind of card device

the host is using. This interface is inspired by the protocol
introduced in [15], in that most function calls are directly
mapped into the APDUs of the protocol. The layer has been
implemented in various card drivers for devices that are dif-
ferent in architecture and nature. Examples are Schlumberg-
er Cyberflex Access 32K and Gemplus 211/PK cards, two
programmable cards based on the JavaCard platform, which
are supported once an appropriate JavaCard Applet (MUS-
CLE Card Applet) has been loaded on-board; the Schlum-
berger Cryptoflex 16K card, which exposes a set of ISO
7816-4 APDUs for filesystem management, and custom
commands for cryptographic operations; and the US Depart-
ment of Defence (DoD) card, which exposes a custom data
model. Details on the proposed API follow in the next sub-
sections. On top of our API, an open source PKCS-11 mod-
ule has been developed, mapping the PKCS-11 API calls
into the appropriate sequences of MUSCLE Card API func-
tion calls. This allows PKCS-11 compliant applications to
use our architecture for communicating with the supported
devices, for accessing the on-card services as exposed
through the PKCS-11 model.

As an alternative, applications can directly use the pro-
posed API in order to communicate with smart cards at a
lower level, and to take advantage of the exposed functional-
ity, like access control mechanisms based on multiple PINs
or other authentication means.

The API has been directly used for embedding smartcard
technology into a set of target applications, within the Smart
Sign7 and MUSCLE projects:

• a command line digital signature application (sign-
mcard);

• a variant of the OpenSSH software (openssh-mcard);
• a Pluggable Authentication Module (PAM) [16] , directly

developed using this API, allowing smartcard based user
authentication for applications using PAM on Unix like
systems, like the Unix login;

• a CSP module for Windows platforms has also been
developed, integrating functionality of the exposed archi-
tecture into applications like MS Outlook, Internet
Explorer and Windows login.

3.1 The new smart card API

This section, after explaning main design choices behind the
development of the new middle-level smart card API, intro-
duces main features of the new interface, showing how these
have been provided through the various functions available
in the API.For a complete interface specification, the reader
is referred to [17].

3.1.1 Objectives and design choices
The new API has been designed with the aim of providing
higher layer software components with an open, simple, and
card independent framework which exhibits sufficient gener-
ality to meet the requirements of a multitude of target appli-
cations, including digital signature, secure e-mail, secure
login, secure remote terminal and secure on-line web ser-

445

AN OPEN MIDDLEWARE FOR SMART CARDS

vol 20 no 6 november 2005

Figure 3 Architecture of the proposed smart card middleware 7 More information available at the URL:http://smartsign.sourceforge.net.

vices, both PKI based and not. These requirements have been
identified in having a means for generating, importing,
exporting, and using cryptographic keys on the card. Another
requirement has been identified in having a means for creat-
ing, reading, and writing generic data on the card in generic
“containers”. This is useful, for example, to store a public key
certificate associated with a private key on the card. Access to
the on-card resources needs to be granted only after host appli-
cation and user authentication. The API design allows future
extensions, like the use of alternative key types or authentica-
tion mechanisms, as proved by the biometrics extensions that
have recently been added [18]. The resulting interface has
been proved to be enough simple and light, so to allow an
easy integration of the new architecture into secure applica-
tions, as shown by our sample application cases.

Our interface does not target sophisticated card services
that might be needed by specific applications. Multi-key dig-
ital signatures and authentication schemes may need specific
functionalities to be provided through the use of multiple
cards. These applications can still benefit from the exposed
middleware by extending it with the required functionality,
given the open nature of the project.

3.1.2 API function set
The set of functions available in the proposed API is sum-
marised in Table 2. API functionality has been divided into 6
general function sets, giving access to one or more of our
middleware class of services, namely: session management,
data storage, cryptographic key management, PIN manage-
ment, access control, and a set of miscellaneous functions. In

the following, we provide detailed information on the intend-
ed use of the various API calls. For the complete API speci-
fication, the reader should refer to [17].

3.1.3 Session management
The session management functions allow an application to
enumerate connected readers and inserted card devices, as
well as to manage connections with a smart card. Establish-
ment of a connection to a smart card is a prerequisite for the
use of any of the other functions of the API. Specifically, the
ListTokens function enumerates the readers connected to the
system, the readers which have a card inserted, along with
the type of inserted device, and the list of all supported card
devices in the system. Furthermore, applications can block
and wait until card insertion or removal by using the Wait-
ForTokenEvent function. Once a card is inserted into the
reader, the EstablishConnection and ReleaseConnection
functions allow to reset the device and prepare it for subse-
quent commands. When connecting to a card, it is possible to
select either exclusive or shared access to the card. In the lat-
ter case, it is possible to acquire an exclusive lock on the
device with a call to the BeginTransaction function, and
release it with the EndTransaction function.

An example sequence of calls needed for the establish-
ment of a session with a smart card device is shown in Fig-
ure 4, in the case when the device is not connected, and the
application waits for its insertion.

3.1.4 Data storage services
The API specification encapsulates application data into sim-
ple containers called objects, identified by means of a string
identifier (OID). Access control is enforced on a per-object
and per-operation basis, distinguishing among create, read,
write and delete operations (more details follow). The pro-
posed minimum set of data storage services (operations and
access constraints) suffice for the target applications cited at
the beginning of Section 3.1, by allowing them to store,
retrieve and manage data onto a card in a secure and con-
trolled way. This does not preclude hierarchical organization
of application data into a filesystem-like structure, which
could be implemented on the client side on a per-application
basis, or in an inter-application fashion if further documents
came up standardizing classes of objects to be used for
filesystem information. This approach would suffer of the
limitation that the host-side applications be responsible for
maintaining the consistency of the hierarchy without any
mechanisms enforced by the card. Though, such an approach
would be perfectly suitable in those cases in which the hier-
archy is static, i.e. it is never modified after creation.

The CreateObject function allows creation of an empty
object on the card, providing the object name, size and
access control list (see forward for details). The same infor-
mation may be visioned by applications for all the existing
on-card objects through subsequent calls to the ListObject-
function.8

Reading and writing of data to and from objects is per-
formed, respectively, through the ReadObject and
WriteObject functions. Execution of these functions may be

446 computer systems science & engineering

T CUCINOTTA ET AL

8 Order in which objects are listed is not specified, and may vary depend-
ing on the type of device, specifics of the driver, and order of creation

Category Function name(s)

Session management ListTokens,
EstablishConnection,
ReleaseConnection
WaitForTokenEvent,
CancelEventWait
BeginTransaction,
EndTransaction

Data storage CreateObject,
DeleteObject,
ListObjects
WriteObject,
ReadObject

Cryptography GenerateKeyPair,
ComputeCrypt
ImportKey,
ExportKey,
ListKeys

PIN management CreatePIN,
ChangePIN,
UnblockPIN,
ListPINs

Access control VerifyPIN
GetChallenge,
ExtAuthenticate
GetStatus,
LogOutAll

Miscellaneous WriteFramework,
GetCapabilities
ExtendedFeature

Table 2 MUSCLE Card API function set

restricted on a per-object and per-operation basis. The API
specification does not define specific object contents, leav-
ing the applications total freedom on what to store onto a
card, like user private information, application specific data
or public key certificates. The nature of the stored data is
highly dependent on the application itself, and out of the
scope of our interface specification, which leaves space for
other documents to come up standardising OIDs to be used
to store special information with an inter-application rele-
vance. As an example, the PKCS-11 module defines and
manages two objects for each private cryptographic key on
the card: one for storing the public key certificate associated
to the key, the other for storing the PKCS-11 attributes asso-
ciated with the key.

As far as the card storage capacity is concerned, the inter-
face specification only gives a view of the total available
memory on the device, through the GetStatus function. It
does not deal with various aspects of on-card memory man-
agement, which depend on the allocation strategy performed
by the device, such as whether an object with a given size
can be created or not, how many objects are allowed to exist
due to constraints (i.e. allocation tables), how object memory
is freed on the device (i.e. by use of compaction or full
defragmentation of free blocks).

Some smart card devices tend to separate among a public
and a private memory space. The first one typically contains
public information that can be read or possibly changed at
any time (like user preferences). The latter is reserved for
personal data to be handled by an application and its use is
allowed only after PIN verification. Our approach is different
in that we have a unique memory space, where individual
objects are associated with access control rules specifically
customized for each object and operation. Hence, it allows
reconfiguration of the memory space as public or private
according to application requirements. Section 3.1.6 explores
in more detail the adopted security model.

3.1.5 Cryptographic services
The API allows up to 16 keys to be managed on the card,

identified by means of a numeric key identifier ranging from
0 to 15. A full key pair can be stored by using two key iden-
tifiers. All key types defined in the Java Card 2.1.1 standard
are allowed: RSA, DSA, DES, Triple DES, and Triple DES
with 3 keys. The interface is designed to allow addition of
further key types in the future. Operations related to crypto-
graphic keys are: import of a key from the host, export of a
key to the host, encryption and decryption of cryptograms,
signing, and listing of keys, which provides size and type
information. All key operations except key listing are pro-
tected by an access control mechanism, as described in the
next paragraph, in order to forbid unauthorized use of a key.
Key pairs may be directly generated on the card device,
through the GenerateKeyPair function, or imported from
the outside world, through the ImportKey function. These
calls allow to set up the access control information related to
each new key, specifying under what conditions subsequent
reading, overwriting and use operations are allowed for each
of the generated or imported keys. For example, it is possi-
ble to generate a key pair guaranteeing that the private key
can never be exposed outside the card. After a key pair gen-
eration, the public key can be obtained with a call to
ExportKey, as highlighted in Figure 5.

3.1.6 Security model and access control enforcement
On-card resources are protected by a simple Access Control
List (ACL) based model, so that operations are allowed only
after appropriate host application and user authentication.
This may be performed by means of a PIN code verification,
a challenge-response cryptographic authentication protocol,
or a combination of both methods. Furthermore, the API has
been designed to allow future support for other identification
schemes, like fingerprint verification.

Access rules for on-card resources are specified by using
the concept of identity. This term refers to one of the 16
authentication mechanisms that host applications and users
can use to be authenticated by the cryptographic device.
Identities, PINs, and cryptographic keys are referred to by
means of numeric identifiers. Different types of identity are
defined (see also Table 3): identities n.0-7 are labelled as
PIN-based and are associated, respectively, with PIN codes
n.0-7; identities n.8-13 are strong identities associated,
respectively, with cryptographic keys n.0-5 for the purpose
of running challenge-response cryptographic authentication

447

AN OPEN MIDDLEWARE FOR SMART CARDS

vol 20 no 6 november 2005

Figure 5 Typical sequence of commands for an on-board key pair generation

9 The fingerprint verification mechanism recently developed uses identity
n. 14.

Figure 4 Sequence of calls needed for establishing a connection with a
card device

protocols; identities n.14-15 are reserved for future use9.
At each moment, a session with a smart card is associated

to a set of logged in identities, representing the set of authen-
tication mechanisms which have successfully run since the
start of the session. A successful run of any of the authentica-
tion mechanisms causes the log in of the corresponding iden-
tity, in addition to the identities already logged in. The use of
multiple identities allows a host application to switch to a
higher security level that grants access to more capabilities
by running additional authentication mechanisms. The
LogOutAll command allows a host application to return back
to the unauthenticated security status. A subset of the possi-
ble security states and transitions due to successful authenti-
cation commands is shown in Figure 6.

An ACL specifies which identities are required to grant
access to operations of each object and key. Object opera-
tions are read, write and delete. Key operations are overwrite
(either by means of regeneration or by means of import),
export, and use. An ACL associated with an object or key is
specified by means of three Access Control Words (ACW),
each one related to an operation (see Figure 7).
An ACW consists of 16 bits. Each bit corresponds to one of

the 16 identities. An all-zero ACW means that the operation
is publicly available, that is, host applications can execute it
without prior authentication. An ACW with one or more bits
set means that all of the corresponding identities must be
logged in at the time the operation is performed. An all-one
ACW has the special meaning of completely disabling the
operation, meaning that the operation can never be per-
formed, independently of the connection security status. This

ACW code comes into use for disabling reading of private
keys. The security model has enough freedom to allow at
least four levels of protection for card services. An operation
can be always allowed if the ACW requires no authentica-
tion, PIN protected if the ACW requires a PIN verification,
strongly protected if the ACW requires a strong authentica-
tion, and disabled if the ACW is all-ones, forbidding its exe-
cution. As an example, use of a private key onto a smart card
is usually PIN protected, but some applications could require
a strong protection. Reading of a private key is normally dis-
abled. Public objects may always be readable, but their modi-
fication could be PIN protected. Private objects could require
PIN protection for reading and possibly strong protection for
writing.

3.1.7 PIN and security status management
Functions have been defined for PIN management, allowing
to create, verify, change and unblock PINs. Specifically, the
CreatePIN function allows to create a new PIN on the card,
provided that the transport PIN has already been verified, and
the ListPIN function allows listing of the existing PIN
codes. In principle, up to eight PIN codes can be created onto
a single card, though the actual maximum number depends
on the underlying device, and may be queried by using the
GetCapabilities function. The VerifyPIN function allows
verification of a PIN code, and, if successful, logs in the cor-
responding identity. The identities logged in at a time may be
queried by using the GetStatus function. The API defines a
unique way of logging out of the device, through the use of
the LogOutAll function, which logs out all identities at once,
returning the session to the unauthenticated state. Finally, the
ChangePINfunction may be used to change the current PIN
value, and the UnblockPIN function to unblock it after it
blocked due to several verification tries with the wrong code.

3.2 Multiple applications, one single card

The API has been designed to allow multiple applications to
use the same card without interfering with each other. In fact,
each application can create its own PINs and/or cryptograph-
ic keys, and require their verification for accessing its own
data and keys through the use of appropriate settings for the
ACLs of such objects. As an example, on JavaCard devices
this can be easily supported through the interaction with the
MUSCLE Card Applet, or with different resident Applets.
On ISO 7816 compliant devices, each application could
define its own Directory File (DF) in which to keep certifi-
cates, keys and PINs relative to that application. Each appli-
cation must be able to manage its own PINs, data objects and
keys.

This has been accomplished in two ways: requiring verifi-

T CUCINOTTA ET AL

448 computer systems science & engineering

Identity number Identity type Linked to

0 PIN-based PIN n.0
1 PIN-based PIN n.1
...
7 PIN-based PIN n.7
8 Strong Key n.0
9 Strong Key n.1
...
13 Strong Key n.5
14 Reserved Undefined
15 Reserved Undefined

Table 3 Association between identity, PIN and cryptographic key numbers

Figure 6 Subset of possible security state transitions allowed by the API
specification

Figure 7 Composition of the Access Control List for objects and keys

cation of a special (transport) identity to allow creation of
new PINs, objects and cryptographic keys, and allowing
applications to create additional identities by means of creat-
ing further PIN(s) or cryptographic key(s). These identities
can be required in ACLs of application specific objects and
for keys that are “sensitive” for the application. For example,
when formatting the card, an application should create a new
PIN and require all of its data and keys to be protected by
that PIN. This way every time the user interacts with that
application, she is required to enter the new PIN value,
resulting in the guarantee that the application cannot manipu-
late other application's resources or create further resources
on the card. This is also useful for protecting to some extent
the on-card resources from possible attacks made by an
untrusted terminal. In fact, after the user has entered a PIN
code, the only allowed operations are exactly those specified
at the format time (typically use of a key or reading of an
object), with no possibility for the terminal to interfere with
other applications.

3.3 Extensibility

Our middleware allows connectivity to smart card devices at
a lower level than the one that is usually required for the
implementation of standard PKCS-11 or PCSC interfaces.
The set of functionality that is exposed to applications has
been voluntarily kept small, in order to achieve a simple API.
Particular attention has been paid to extensions that could be
needed in the future. In order to allow such extensions to be
performed without compromising previously developed soft-
ware, the middleware has versioning built into it. The version
information is available through the GetStatus command,
by means of minor and major version numbers. An increment
in the minor version number should retain compatibility with
already written software. This could occur, for example, if
commands needed to be added to the protocol itself, without
changing behavior of already existing ones. An increment in
the major version number, instead, would not retain such a
compatibility, and would mean a change in some of the pro-
tocol core features.

Simple extensions of the first type could be necessary to
embed into the protocol alternative user/application authenti-
cation schemes, different from the classic PIN verification
and cryptographic challenge/response verification. Two iden-
tity numbers were reserved in the protocol for this purpose
and could serve, for example, as a means for adding on-card
biometric pattern matching without affecting the original
protocol.

3.4 Card specific behaviour

The API which has just been introduced provides a unified
means for higher level middleware components, as well as
applications, to access the smart card services in a unified,
card-independent way. However, it must be noted that only a
JavaCard device with the MUSCLE Card Applet on-board
can support the full set of available functionality. Each spe-
cific card generally supports only a subset of the prescribed
functionality. For example, each card has its own constraints
such as: the allowed key types and, for each type, the allowed

key length and supported modes of operation. The API pro-
vides, through the GetCapabilities function, a means for
querying what features are supported by the particular device
that is connected to the system. This way it is possible to
choose the right set of parameters for the specific card that is
being used.

4. CONCLUSIONS

In this paper we described an open middleware for smart
cards, which is highly modular due to the adoption of a new
interface layer that abstracts from the specifics of a card.
Such interface has been designed to support minimal func-
tionality needed by applications that use smart card devices
to manage cryptographic keys and other kind of data, e.g.
public key certificates. With respect to a traditional smart
card architecture, in the proposed middleware architecture a
driver is split into two sublayers: the lower level one focuses
on abstracting the specifics of each single device; the higher
level one implements a standard interface, such as PKCS-11,
still leaving the applications freedom to use the lower level
interface, if needed. For example, a smart card aware, bio-
metrics enhanced, application can directly use the middle
level interface for using added functionality.

Target applications, comprising digital signature, secure
(local) log-in and secure (remote) shell, have been integrated
with smart card technology by using the new middle-level
API, proving effectiveness of the new approach.

REFERENCES

1 PKCS-11 version 2.1.1 Final Draft: Cryptographic Token Inter-
face Standard, RSA Laboratories, June 2001.

2 Interoperability Specification for ICCs and Personal Computer
Systems, PCSC Workgroup, December 1997.

3 Application Indipendent Card Terminal Application Program-
ming Interface for ICC Applications (CT-API 1.1), TeleTrustT
Deutschland e.V., Juergen Atrott, TUEV Informationstechnik
GmbH, October 1998.

4 Global System for Mobile Communications (GSM 11.11) –
Digital cellular telecommunications systems – Specification of
the Subscriber Ientity Module, ETSI, December 1995.

5 ISO/IEC 7816-4/7/8/9: Information technology – Identification
cards – Integrated circuit(s) cards with contacts, – Parts 4, 7, 8,
9, International Standard Organization, 1995.

6 Government Smart Card Interoperability Specification: Con-
tract Modification, GSA, August 2000.

7 ISO/IEC 7816-3: Information technology – Identification cards
– Integrated circuit(s) cards with contacts – Part 3, Internation-
al Standard Organization, 1989.

8 Olaf Kirch, OpenSC – Smart Cards on Linux, Proc. of the 10th
International Linux System Technology Conference, October
2003.

9 PKCS-15: A Cryptographic Token Information Format Stan-
dard, RSA Laboratories, April 1999.

10 Sectok library and applications, Center for Information Tech-
nology Integration (CITI), University of Michigan, 2001.

11 OpenCard Framework General Information Web Document,
OpenCard Consortium, October 1998.

12 GPKCS11 – GNU PKCS-11 implementation, TrustCenter, Octo-
ber 2000.

13 Common Security: CDSA and CSSM, Version 2.3, The Open
Group, May 2000.

449vol 20 no 6 november 2005

AN OPEN MIDDLEWARE FOR SMART CARDS

14 Intel Common Data Security Architecture Reference Implemen-
tation, 2001.

15 Tommaso Cucinotta, Marco Di Natale and David Corcoran,
A protocol for programmable smart cards, Trust and Privacy for
Digital Business (TRUSTBUS) Workshop, Proc. of DEXA
2003, Prague, Czech Republic, September 2003, IEEE Comput-
er Society.

16 V. Samar and R. Schemers, Request For Comments 86.0: Uni-
fied login with pluggable authentication modules (PAM), Open
Software Foundation, October 1995.

17 David Corcoran and Tommaso Cucinotta, MUSCLE Card
API, version 1.3.0, August 2001.

18 Tommaso Cucinotta, Marco Di Natale and Riccardo Brigo,
Hybrid fingerprint matching on programmable smart cards,

Proc. of the 1st International Conference on Trust and Privacy
for Digital Business (TRUSTBUS 2004), Zaragoza, Spain,
September 2004, Springer LNCS 3184.

19 Java Card™ 2.1.1 Runtime Environment (JCRE) Specification,
Sun Microsystems, Inc., May 2000.

20 Ross Anderson and Markus Kuhn, Low Cost Attacks on
Tamper Resistant Devices, Security Protocols, 5th International
Workshop, pages 125–136, Sprinter, April 1997.

21 Pieter H. Hartel, Formalising Java safety – An overview, Proc.
of the Fourth Smart Card Research and Advanced Application
Conference (CARDIS 2000), pages 115—134, 2000.

22 Audun Josang, The difficulty of standardising Smart Card
Security Evaluation, September 1994.

T CUCINOTTA ET AL

450 computer systems science & engineering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

