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Abstract

The AMPERE project is developing the next genera-
tion of high-performance and energy efficient Cyber-
Physical Systems supporting multi-criteria optimization.
This paper provides the general overview of the AM-
PERE approach to analyse and optimise parallel real-
time applications in heterogeneous platforms. More
specifically, it details how parallel OpenMP programs
are generated from AMALTHEA models, and the multi-
criteria optimisation methodology, considering the fault-
tolerance, time and energy properties of the targeted
applications.

Keywords: Real-time Systems, Multi-criteria optimisa-
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1 Introduction

The growing computational demands of complex Cyber-
Physical Systems (CPS) is hastening the introduction of par-
allel and heterogeneous architectures in domains with tight
functional and non-functional requirements with respect to
resilience, time and energy budgets, among other aspects.
However, the parallel programming models, e.g. OpenMP,
used to exploit parallelism multi-cores and accelerator devices
are not compatible with the current Model-Driven Engineer-
ing (MDE) approaches used to develop CPS.

AMPERE strives to close the gap between the MDE tech-
niques used in safety-critical automotive and railway sys-
tems and the parallel programming models used in high-
performance systems by developing a complete software
stack and development environment to help system develop-
ers leverage low-energy, highly-parallel, and heterogeneous
systems in their development process, while fulfilling the
non-functional constraints inherited from the cyber-physical
interactions of safety-critical automotive and railway systems.

The paper is structured as follows. Section 2 presents a gen-
eral overview of the AMPERE ecosystem and the flow used

to analyse and optimise parallel applications considering the
fault-tolerance, time and energy properties. The two main
parts of the flow are provided next. Section 3 explains how
OpenMP programs are generated from models, whilst Sec-
tion 4 describes the multi-criteria optimisation approach.

2 The AMPERE project in a nutshell

AMPERE [1] is building a system design ecosystem and
computing software to help system developers to leverage low-
energy and highly-parallel and heterogeneous computation
while fulfilling non-functional constraints.

2.1 The AMPERE ecosystem

One of the main challenges of the AMPERE project is to
enable Model Driven Engineering (MDE) of CPS, account-
ing for parallelism and heterogeneity in high-performance
embedded systems. As such, MDE tools provide the front-
end to the entire AMPERE ecosystem (Figure 1). These
tools include Domain Specific Modelling languages (DSML),
e.g., AMALTHEA [2], which are used to describe the system
in a modular and composable manner. Models are further
annotated by system designers with the functional and non-
functional requirements that determine how the system shall
be generated. These annotations are key for the automatic
optimization of the system of systems with respect to energy,
timing guarantees, resilience, and heterogeneity [3].

Once the system has been modelled in AMALTHEA, a Syn-
thetic Load Generator (SLG) [4] generates the corresponding
source code, including OpenMP [5] annotations to exploit
parallelism and heterogeneity. The source code is passed to
an OpenMP compiler, for compilation. At this point, exten-
sions provided in the OpenMP compiler allow for producing
not only the binaries themselves, but also structured informa-
tion of the system that is later used during the optimisation
process [6] to ensure that the final system fulfils all require-
ments modelled in the DSML. The fundamental data structure
generated as part of the structured information is the Task
Dependency Graph (TDG) [7].
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Figure 1: AMPERE software ecosystem flow.

The TDG provides the parallel structure of the different com-
ponents of the system based on the dependencies described
between the runnables of the AMALTHEA tasks, as outlined
in the DSML. The TDG further contains meta-information
that is used for the optimization (non-functional properties)
annotated in the DSML towards which the system should be
optimized. As part of the compilation process, the generated
binary is profiled, and the information inserted in the TDG.
As such, the TDG provides the necessary abstraction for de-
termining the modelled requirements and dependencies of
every task in the system, as well as wide information about
the behaviour of each task as obtained through profiling.

2.2 The AMPERE analysis and optimisation flow
The analyses and optimization phases consist of multiple
components operating in parallel: timing analysis and opti-
mization, energy optimization, and scheduling. Heterogeneity
and resilience techniques are implemented at the model and
compiler levels, through the definition of function special-
izations (components which have multiple implementations,
potentially for accelerators) and replication, respectively. This
information is also included in the TDG and taken into con-
sideration by the analyses.

Once the optimization phase has completed, it is either fin-
ished, i.e., all functional and non-functional requirements are
guaranteed to be upheld, or another round of optimization is
required. To that end, the AMPERE optimization relies on an
optimization feedback loop that includes additional profiling
information (red arrows in the figure).

The encoded information in the TDG allows for later use
by the earlier components in the AMPERE pipeline, such

that information in the model could either be updated, or
warnings emitted to the MDE framework, and made available
to the end user. At the end of the optimization pipeline, the
TDG information can also be used to inject runtime hooks
and configuration headers based on the optimization outcome
into the generated source code. This enables actuation and
monitoring of the non-functional requirements at runtime.

3 Model-to-code transformations

AMPERE defines model-to-code transformations targeting
performance and fault tolerancein. These transformations
are performed in two steps. First, AMALTHEA models are
transformed into parallel code through the APP4AMC SLG.
Then, this code is analyzed and further transformed into a
TDG to efficiently exploit the parallelism of the underlying
processor architecture.

3.1 Performance

The synthesis tool included in the APPAMC framework pro-
cesses AMALTHEA models by transforming runnables and
tasks into C functions, and labels into global variables. In
the frame of the AMPERE project, the SLG has been ex-
tended [8] to exploit concurrency among tasks no only with
Pthreads for Linux systems, but also with ROS2 [9] primitives
for ROS2 middleware communication. Moreover, extensions
based on the OpenMP tasking model have been included to
exploit parallelism within runnables from the same task.

Figure 2 illustrates the model-to-code transformation imple-
mented in APPAMC in AMPERE, including a sample model
in Figure 2a, the corresponding OpenMP code generated by
the extended SLG in Figure 2b, and the TDG representing the
OpenMP code in Figure 2c.

Volume X, Number Y, June 2022

Ada User Journal



S. Royuela, A. Munera, E. Quinones, T. Carvalho, L. M. Pinho, T. Cucinotta, S. Mazzola, T. Ben3

v < AMALTHEA model (version 2.1.0)
~ B9 Software
~ [ Runnables (4)
~ @ read_and_convert

- [(ATasks (1)
~ & PeriodicTask

~ *i5 Activity Graph = *0 Activity Graph

#pragma omp parallel
#pragma omp single
#pragma omp taskgraph
{

#pragma omp task depend(out: Image)

read_and_convert ();

#pragma omp task depend(in: Image) \
depend(out: ResultsA)

analysisA ();
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Figure 2: Example of AMALTHEA to OpenMP transformation

A new custom property, named Parallel, triggers inter-
runnable parallelism within AMALTHEA tasks (see igure 2a).
For such tasks, the SLG wraps the associated code in a
parallel directive followed by a single (see Figure 2b),
to first spawn parallelism and second allow only one thread
executing the inner region. Next, a taskgraph directive allows
for optimizations towards predictability and performance [10].
Then, each runnable call is annotated with a tasking direc-
tive that depends on the processor defined for the runnable,
i.e., a task directive for host runnables (AMPERE considers
multi-core architectures) and a target directive for accel-
erator runnables (i.e., a GPU device). Finally, accesses to
labels are used to define dependency clauses, transforming
each read into an in dependency and each write into an out
dependency. In the case of accelerated tasks, label accesses
are also used to define the map clauses, which describe data
movements between the host and the accelerator.

The code generated by the SLG is later compiled using an
extended version of the LLVM compilation framework [11].
During this process, an extended version of the OpenMP task-
ing model [10] is used to replace the regions of OpenMP code
that exploit the tasking model with a TDG (see Figure 2c).
The TDG avoids the need for running the user code in order to
instantiate and execute tasks, reducing time spent in context
switching, and also enables optimizations at the runtime level
that reduce contention due to accesses to shared resources
(e.g., task queues) and overhead due to unnecessary computa-
tions (e.g., dependency ressolution). Besides enhancing the
performance of the parallel orchestration, the TDG enables
timing analysis techniques (see Section 4.1) for predictable
execution. The TDG is described in a JSON format that is
used as the interface between the different tools included in
the multi-criteria optimization phase. Figure 3 illustrates a
portion of the JSON corresponding to the example in Figure 2.

@

{ {

1 1: 1

2 "ins": [ ], 2 "ins": [1] ,

3 "outs": [2,3] 3 "outs": [4] 1: read_and_convert
4}, 4} 2: analysisA

5 2: 5 4 | 3: analysisB

6 "ins": [1], 6 "ins": [2,3], 4: merge_results

7 "outs": [4] 7 "outs": [ ]

8} 8}

Figure 3: JSON format for describing TDG in Figure 2c.

3.2 Fault-tolerance

Fault-tolerance is addressed in AMPERE through software
replication. The requirements for fault-tolerance are defined
at the model level according to the Automotive Safety In-
tegrity Level (ASIL), in the automotive use case, or the Safety
Integrity Level (SIL), in the railway use case, of each compo-
nent. Hence, runnables with an ASIL B or SIL 4 are defined
with triple replication, while runnables with QM or SIL O are
not replicated.

To express replication, the OpenMP t ask directive has been
extended with the replicated clause [12]. This extension
allows defining the number of replicas, the function used
to check the results and the type of replication, with three
different options: (a) spatial, which forces each replica and
the original task to be executed in a different processor, al-
lowing them to run in parallel, (b) temporal, which forces
each replica and the original task to be executed in mutual
exclusion among them, so they have to be sequentialized, and
(c) spatial_temporal, which includes both cases.

The SLG has been extended to annotate tasks with a
replicated clause when the ASIL B and SIL 4 levels
are assigned to a runnable. The LLVM compiler has also
been extended so it generates n + 1 tasks (where n is the
replication level, i.e., 3 in AMPERE) when an annotated task
is found. One of the tasks consumes the original data, while
the rest consume copies of the data modified within the task
to avoid race conditions. A synchronization task is inserted
after the creation of the tasks, including as input dependencies
all the tasks in the replication set, and inheriting as output
dependencies those of the original task. Afterwards, a task
performing the consolidation function is generated. This be-
havior is shown in Figure 4, where the application presented
in Figure 2 defines analysisB with ASIL B.

The replication mechanism has been optimized to support
MooN optimizations, where M is the number of replicas
that need to finish successfully out of a total of IV replicas. A
compilation flag is added to LLVM to enable this optimization
and reduce the overhead of the replication.

4 Multi-criteria optimization
AMPERE defines a multi-criteria optimization phase, in
which all components are co-operating to ensure that the
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Figure 4: TDG when replicating analysisB.

system fulfils all requirements modelled in the DSML. Dur-
ing the analysis stage, two concurrent analysis are performed:
a timing analysis (section 4.1) and a energy consumption anal-
ysis (section 4.2). During this stage, the analysis is performed
for each TDG in the configuration file. The main purpose of
the analysis stage is to annotate the TDGs with metrics that
will be used in each target optimization phase. This stage does
not change the configuration file, but it annotates the TDG
files with new metrics. After the analysis, an optimization
algorithm (section 4.3), is responsible to perform the multi-
criteria optimization while each target optimization cannot
find the most suitable configuration.

4.1 Timing analysis

The timing analysis phase of the optimization flow focuses
on determining execution time metrics and the association of
performance counters information, using measurement-based
approaches, across all potential configurations and variants.
The analysis is both for tasks as well as for the TDG as a
whole.

For the tasks’ execution time, the phase calculates the worst-
case (WCET) and average execution times, which are then
used in the optimization phase. It also determines fine grain
information from performance counters (e.g. cache accesses,
misses, etc.), which can be used for more detailed profiling
of the applications.

Metrics related to a TDG use both existing information on the
TDG and the new metrics calculated per task (the WCET of
each task). The set of metrics outputted for the multi-criteria
optimization flow includes volume, critical path length, po-
tential maximum parallelism and average and worst-case
makespan.

The volume corresponds to the aggregated WCET of all tasks
within the TDG, whereas the critical path length signifies the
overall cost of the path in the TDG that includes the longest
route from the source task to the sink task.

The potential maximum parallelism serves as a metric that de-
notes the theoretical maximum parallelism achievable within
a TDG, without considering any costs. It determines the high-
est number of tasks that could theoretically operate in parallel
from all potential non-dependent siblings, even if they may
not be executed simultaneously in practice.

The makespan represents the actual execution time of a TDG,
spanning from the initiation of execution to its completion.
This metric is pertinent when considering a specific task-to-
thread mapping, as it provides the execution time of the TDG
by taking into account the WCET of all tasks, given a certain
number of available threads. The critical path length of a
TDG can be regarded as the minimum duration the makespan
of the TDG can take.

The timing analysis can be done also to reevaluate the TDGs,
taking into account the additional information the optimiza-
tion phase adds to the graph. It is also possible to use the
analysis phase to optimize only for the time dimension, ex-
ploring different mapping algorithms, with an heuristic-based
mapping approach [13].

4.2 Energy analysis

The aim of the energy analysis phase in the AMPERE multi-
criteria optimization flow is to annotate the TDG with energy
consumption information for each given task. Such energy
consumption information relies on measurements from the
profiling step embedded in the flow, as in figure 1. The
energy annotations are then employed in the optimization
step (section 4.3) to find the desired trade-off between energy
consumption and execution time at the TDG level.

The AMPERE framework targets modern, heterogeneous,
highly parallel systems. Measuring the energy consumption
of a given workload running on these platforms is usually
challenging for several reasons. Energy measurements require
expensive external equipment, which impacts the scalability
and flexibility of the system. Some platforms come equipped
with built-in current sensors which can be used to estimate
power consumption. However, analog sensors are slow with
respect to the GHz regime of the digital hardware, and they
can only provide coarse-grained measurements of the device
sub-systems (e.g., entire CPU or GPU).

AMPERE’s energy analysis is based on an approach to power
modelling driven by the hardware performance monitoring
counters (PMCs) of the target platform [14]. PMCs allow us
to independently model the platform’s power consumption
at an arbitrary degree of granularity. Deriving directly from
the digital domain, PMC-based power models expose high re-
sponsiveness, and match the workload execution in a reliable
way, nevertheless impacting the optimization flow runtime
with an extremely low overhead.

Thanks to a platform profile obtained in a one-time charac-
terization step preceding the multi-criteria optimization, we
calibrate our PMC-based power models to the desired target
platform. Subsequently, we model each individual sub-system
of the platform, at each one of its possible operating DVFS
frequencies, with a set of representative PMCs coming from
the platform characterization. The required PMCs are then
sampled, in a low-overhead and non-invasive way, during the
profiling in figure 1. Such measurements are employed in
the energy analysis phase to estimate the average power and
energy consumption of each task in the TDG.

Reliably supporting different devices and frequencies, the en-
ergy analysis step annotates each task’s energy consumption
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for each one of the task’s functional specializations, and for
each operating frequency of the platform.

AMPERE’s energy analysis is fully automatized and flexible.
Its data-driven nature requires minimal manual intervention:
the best PMCs to model each sub-system of the target plat-
form, at each frequency, are selected based on their correla-
tion to their sub-system’s power consumption. Additionally,
requiring minimal architectural knowledge of the underly-
ing hardware, the approach is easily extensible to additional
devices.

4.3 Optimization approach

Starting from the annotated TDGs produced by the timing/en-
ergy analysis phases, the AMPERE workflow optimizer com-
ponent [15] finds the system’s optimal configuration. Con-
sidering the multi-criteria requirements of AMPERE, the
developed tool supports two main optimization objectives.

The first objective is to find the system configuration that
minimizes the target application’s average energy consump-
tion while preserving the system designer’s timing constraints
and, alternatively, maximizing the timing robustness of the
application without exceeding its energy consumption budget.

The optimizer relies on a precise structural mathematical
model of the target application, automatically derived from
the TDG, that takes into account the resiliency requirements
and the effects of selecting one or multiple heterogeneous
hardware components of the target platform to perform (part
of) the computations to find the optimal system configuration.
The optimization is performed by applying mixed-integer
quadratic constraint programming (MIQCP) and selecting
one (or both) of the above objectives.

While the MIQCP formulation provides the requested op-
timality guarantees to generate the “optimal” configuration
(final TDG, in fig. 1), it is also very complex, which may
hinder its applicability to large-scale problems comprising
more complex applications. For this reason, the optimizer
also implements some simpler heuristic solvers that can be
used to find sub-optimal configurations that may be fed back
into the AMPERE loop or used as a starting point by the
optimal MIQCP-based solver.

The final output of the optimization loop is the configura-
tion of the target system in its entirety, including its multi-
ple heterogeneous components (e.g., FPGA/GPU accelera-
tors), and the placement of the individual runnables of each
AMALTHEA task comprising the target application, includ-
ing the choice between software and hardware implemen-
tation for tasks that can be hardware-accelerated, either for
reaching the optimum (e.g., lowest average energy consump-
tion) or because it is necessary to satisfy the application re-
siliency requirements.

S Conclusions

This paper presented the approach used in the AMPERE
project, to analyse and optimize the configuration of parallel
real-time applications, in heterogeneous platforms, consider-
ing non-functional properties such as fault-tolerance, energy-
efficiency and response time. The paper provides the project’s

multi-criteria optimization flow, which targets OpenMP par-
allel applications, presenting how each of the properties is
considered in AMPERE ecosystem, and how the different
dimensions are integrated in a single ecosystem.
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