
Weighted Feedback Reclaiming for Multimedia Applications ∗

Abstract
Resource reservations are a very popular choice to

schedule multimedia tasks. However, the high variability
of the resource requirements hinders a static choice of the
scheduling parameters. In this paper we address this prob-
lem by a combination of two strategies: adaptive reserva-
tions and resource reclaiming. The first one operates “lo-
cally” (using the information of a single task), the second
one operates “globally” distributing unused bandwidth be-
tween the tasks. In this paper, we show by analytical results
and by extensive simulations that the two techniques can be
safely and usefully combined.

1. Introduction

Applications processing multimedia content (such as
compressed audio or video) are characterised by implicit
temporal constraints [11, 21]. As an example, a video
player should decode and reproduce each video frame
within a specified deadline (given by the frame’s Presen-
tation TimeStamp - PTS). Occasional violations of these
deadlines cause a degradation in the perceived Quality of
Service (QoS), but do not invalidate the computation. More-
over, the time needed to process a single frame exhibits
large variations, and is highly dependent on the input (think
about the decoding times in an MPEG decoder) [11, 21].
Important examples of this behaviour can be found in such
multimedia applications as players or streaming programs,
Voice Over IP applications, Video on Demand clients, etc.
The high variability of the computation times makes the

application of classical real-time scheduling theory [15]
troublesome, because assuming worst case execution times
leads to a very conservative design. This problem can be ad-
dressed by implementing some form of QoS adaptation in
the applications, or by using more flexible and dynamic re-
source allocation policies. The first solution [25, 24, 11, 12]
can be based on scalable video or audio processing mecha-
∗This work has been partially supported by the European FRESCOR

FP6/2005/IST/5-034026 and IRMOS FP7/2008/ICT/214777 projects.

nisms [10], which allow one to reduce the execution times at
the cost of a reduced quality. A similar idea is quality adap-
tation [23, 18, 6]. In response to time-varying application
requirements and availability of shared resources, the be-
haviour of the applications is changed at run-time to make
their requirements fit in the instantaneous resource avail-
ability. Although a very effective technique, application
level adaptation relies on a particular structure for the ap-
plications (e.g., the presence of discrete quality options that
can be switched online). Therefore, in this paper we adopt
a complementary strategy that operates on resource alloca-
tion.

In the context of multimedia applications, Resource
Reservations [17, 19] are commonly regarded as an effec-
tive tool for resource allocations which allow to control
the QoS of a task independently from the others. These
scheduling mechanisms enable a fine-grained control, re-
serving a fraction of the resource to each application. A
point of crucial importance is an appropriate selection of the
fraction of the total resources that each application receives.
A static choice is only possible if the resource usage of the
application can be characterised before its execution [20].
A possible strategy to alleviate this problem is resource re-
claiming [9, 8, 14]. One can make a conservative allocation,
and by using a reclamation strategy the unused resources are
redistributed between the remaining applications. The pol-
icy used for the redistribution can be of different type (e.g.,
greedy [9] or weight based) but it does not take into account
the current situation of the tasks. Moreover, this approach
is not very useful when the system is heavily overloaded. A
second thread of papers advocates the use of resource level
adaptivity, i.e., by changing the scheduling parameters (ac-
tuators) based on the observation of the timing behaviour of
the applications (sensors), which is obviously related to the
QoS. The application is unaware of the adaptation mecha-
nisms and it can be implemented using standard algorithms.
A promising technique of this type is referred to as Adap-
tive Resource Reservations [2, 4, 3]. Contrary to other feed-
back schedulers [22, 16, 7], adaptive reservations allow one
to control the QoS experienced by each single task, and

Luigi Palopoli #1, Luca Abeni #2, Tommaso Cucinotta &3, Giuseppe Lipari &4, Sanjoy K. Baruah ^5

University of Trento, Italy
& Scuola Superiore Sant’Anna, Italy

^ University of North Carolina at Chapel Hill, USA
{ 1palopoli, 2 abeni}@disi.unitn.it, { 3 t.cucinotta, 4 g.lipari}@sssup.it, 5 baruah@cs.unc.edu

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

not only some global QoS metric (such as the total num-
ber of missed deadlines in the system). To attain this goal,
an adaptive reservation considers the evolution of a single
task in isolation and produces a resource request to accom-
modate its execution requirements. Using the mathematical
model developed in [4], convergence and stability of the re-
sulting feedback schemes are relatively easy to show for a
single application [3], neglecting the interference generated
by the bandwidth requests of the other tasks.
In this paper we make the point that there is a natu-

ral complementarity between adaptive reservations and re-
source reclaiming techniques. Indeed, the former can be
used to identify online the resource needed by the tasks and
to manage overload conditions, the latter can be used to cor-
rect possible over-allocations of bandwidth. As shown in
the experimental section, there is an evident performance
improvement in using the combination of the two tech-
niques with respect to either of them taken in isolation.
From the theoretical point of view, we show that an ap-
propriate design can lead us to prove system-wide stability
properties, combining the guarantees that can be offered to
each single task.

2 Basic Definitions and System Model

A multimedia system is modelled as a set of real-time
tasks. A real-time task τi is a stream of jobs Ji,j . Each job
Ji,j arrives (becomes executable) at time ri,j , and finishes
at time fi,j after executing for a time ci,j . Moreover, Ji,j is
characterised by a deadline di,j , that is respected if fi,j ≤
di,j , and is missed if fi,j > di,j . A task is said periodic if
ri,j+1 = ri,j + Ti, where Ti is the task period, and di,j =
ri,j + Ti = ri,j+1

In this paper, multimedia tasks are modelled as soft real-
time tasks, for which a few deadline violations are deemed
acceptable provided that the anomaly is kept in check. Rea-
sonable performance metrics can be related to the frequency
(or the probability) of a deadline miss or to the maximum
deviation from the deadline (note that for a video player a
deadline miss corresponds to a skipped frame).
Each task τi is scheduled through a CPU reservation

RSVi = (Qi, Pi). Informally speaking, the task is al-
lowed to execute for Qi time units every reservation pe-
riod Pi. The fraction of CPU time (sometimes mentioned
as “bandwidth”) reserved to the task is Bi = Qi/Pi. It is
important not to confuse the reservation period Pi with the
task period Ti. A task can be associated to a CPU reserva-
tion even if it is not periodic at all. Many algorithms have
been proposed in the literature that provide the abstraction
of resource reservations, both for fixed and dynamic prior-
ity schedulers. This paper focuses on algorithms based on
dynamic priorities, such as CBS [1] and GRUB [9].
It can be shown that if

∑
i Bi ≤ U lub where U lub =

1 for the considered class of algorithms, then the CBS or
GRUB algorithm reserve a fraction Bi of the CPU time to
each task τi regardless of the behaviour of the other tasks.
In this paper we will consider an adaptive reservation

scheme, whereby the bandwidth Bi can be regarded as a
controllable variable and changed for each job (hence the
notation Bi, j . The execution time ci,j can be considered
as an external (uncontrollable) input, although we record its
value a posteriori (i.e., after the execution of the jobs) to
the purpose of predicting its evolution. Feedback based ad-
justments are made based on the observations of a quantity
εi,j (called scheduling error). This quantity has been intro-
duced in our previous work (see [4]) and, roughly speaking,
quantifies the adherence of the reserved bandwidth to the
task needs. A positive value for εi,j means that job Ji, j re-
ceived too little and suffered a delayed termination while a
negative value means that it received too much.
As shown in the cited paper, the evolution of the model

can be approximated by a fluid model, plus a quantisation
error. Namely, the fluid model is described by:

εi,j+1 = Si(εi,j)+
ci,j+1

Bi,j+1
−Ti, withSi(x) =

{
x if x ≥ Pi

0 otherwise .

(1)
Based on our definition, the scheduling error is lower
bounded by −T and the deadline is respected if εi, j ≤ 0.

3. Control architecture

The solution proposed in this paper is comprised of two
basic elements: 1) a set of local controllers associated
to each task (controllers), and 2) a compression function
which is embedded into the scheduling mechanism. The
purpose of the local controller is to formulate a minimum
bandwidth request that allows the task to respect its tim-
ing constraints. Because the controllers have only a local
visibility, they could formulate bandwidth requests exceed-
ing U lub. The compression function is then used to reduce
the bandwidth requests. Additionally, if the requests of the
tasks do not saturate the constraint, the compression func-
tion can also be used to redistribute the bandwidth in excess
(reclaiming). The conceptual link between the two compo-
nents is a minimum guaranteed bandwidth Bmin

i that has to
be granted to job Ji, j , whenever the task controller formu-
lates a request Breq

i, j ≥ Bmin
i . In the rest of this section, we

will describe the task controllers and show the closed loop
stability properties that can be guaranteed with an appropri-
ate minimum bandwidthBmin

i . From now on, whenever the
discussion refers to a single task, we will drop the subscript
i for notational simplicity.
The scheduling error εj can be used to quantify an upper

bound of the deviation of the finishing time of job Jj from
its deadline. Therefore, an ideal goal is to have ∀j, εj ≤
0. However, we can allow for a small deviation from the

2

deadline, thus the ideal control law can be one that restrains
εj inside the region RT � [−T, δ] ⊂ R, with δ < 0 if we
want to add robustness, or δ ≥ 0 if the application tolerates
small deadline violations. To allow for an effective sharing
of a single system between a multitude of applications, this
goal should be achieved by using the minimum resource
allocation that is sufficient for the purpose.
For the system described by Equation (1), such an

“ideal” control law would simply be one that assigns
Bj+1 =

cj+1

T−S(εj)
. Unfortunately, this ideal controller is

not implementable for two reasons: first, this controller can
easily lead to overload conditions (

∑
i Bi > U lub). Sec-

ond, we lack an a-priori knowledge of the computation time
cj+1. The first problem is solved by the compression mech-
anism described in the next section.
As far as the second problem is concerned, we adopt a

stochastic approach in which the evolution of the compu-
tation time cj and of the scheduling error εj , are regarded
as stochastic processed and denoted as Cj and Ej . A spe-
cialised predictor component in our architecture is used to
estimate stochastic parameters on the evolution of the com-
putation time. Such estimation may be done, for example,
by appropriate filtering of the past computation times ob-
served within a moving window [13] or by application spe-
cific predictors [21]. For our purposes, the predictor pro-
duces an upper bound H̃j+1 for the computation time of the
next job cj+1. The predictor can fail. Therefore, we can
characterise its performance in terms of two parameters, p
and ρ, defined as follows:

∀j, Pr
{
Cj+1 ≤ H̃j+1

}
≥ p, ρ = sup

j

cj

Hj

. (2)

The parameter p quantifies the probability of an exact pre-
diction, whereas ρ quantifies the maximum error that the
predictor can make.
The design of our controller can be specified in terms of

the following goals:
1) If the scheduling error is in a region R = [−T, R] en-
closing the target region RT = [−T, δ] (R ≥ δ), then it is
steered toRT with at least the probability p:

Pr {Ej+1 ∈ RT | Ej ∈ R} ≥ p. (3)

In simpler terms, if we are sufficiently close to the target set,
we will reduce the scheduling error into the target set with
at least the same probability of making an exact prediction.
We will refer toR as attractivity region.
2) If the scheduling error is initially inside RT , then it can-
not go beyond a certain limit and it will return into the at-
tractivity region R within a maximum number of steps. In
other words, the scheduling error is allowed to occasionally
leave the target set RT but the anomaly is bounded both in
space and in time.

A control law that achieves the first goal can be con-
structed as shown in the following result:

Proposition 1 Consider the system (1) and assume that
it is controlled by a feedback controller using a predictor
that generates an upper bound H̃j+1 with a probability p
as specified in Equation (2). Moreover, assume that the task
is guaranteed at least a minimum bandwidth of Bmin ≥
sup H̃j

T+δ−R
, then the control law: Breq(εj) =

H̃j+1

T+δ−S(εj)
, ful-

fills the requirement in (3).

Proof. In the proposed control architecture, at the time of
computation of the control lawBreq(εj), the value εj of the
stochastic variable Ej is known to the controller. Therefore,
it is easy to verify that:

Pr

{
Ej+1 ≤ δ | Ej ≤ T + δ −

H̃j+1

Bmin

}
≥ Pr

{
Cj+1 ≤ H̃j+1

}

if Bj+1(T + δ − S(εj)) ≥ H̃j+1, where Bj+1 is the band-
width used for the next job. Such condition is verified un-
der the assumption that the controller requests a bandwidth
Breq(εj) as detailed in the theorem statement and that the
minimum reserved bandwidth Bmin

i is not below any such
value, for εj ≤ R.

�

As a corollary of the theorem above, for a given Bmin,
the controller fulfils the requirement if εj ≤ Rj � T + δ −

H̃j

Bmin and the maximum value of R for which the require-
ment can always be guaranteed is: Rmax = supj Rj =

T +δ−supj
H̃j

Bmin . We can extend the control law proposed
above by saturating it to Bmin for values of the scheduling
error greater than Rj :

Breq(εj) =

{
H̃j+1

T+δ−S(εj)
, for εj ≤ Rj

Bmin otherwise.
(4)

With this extension, we can address the second design
goal as shown in the following:

Proposition 2 Consider the system (1) and assume that it
is controlled by the control law (4), using a predictor char-
acterised by p and ρ. Let M be an integer number and P
the server period. Assume that Rmax ≥ P and that

Bmin > max{sup
j0

1

MT

M∑
i=1

cj0+i, sup
j

H̃j

T + δ
}. (5)

Define φ � 1 −
supj0

1
MT

P
M
i=1

cj0+i

Bmin > 0 and L � 1 +⌈
ρ(T+δ)−T−Rmax

MTφ

⌉
M . For any j0, for any εj0 ≤ Rj0 , the

two following statements hold true:
I) ∃j̃ ∈ {1, . . . , L} such that εj0+j̃ ≤ Rj0+j̃

II) ∀i ≥ 1we have εj0+i ≤ ρ(T+δ)−T+(M−1)T−MTφ

3

Proof. We start by proving the first claim. First, assum-
ing that −1 ≤ εj0 ≤ Rj0 , it is very easy to show that
εj0+1 ≤ ρ(T + δ) − T . Now, focus on the path followed
by the system in the subsequent M samples. If for any i ∈
{1, . . . , M} we have that εj0+1+i ≤ Rj0+1+i the claim is
proved. In the opposite case, the control law is always satu-
rated to Bmin. Because Rmax ≥ P , S(εj0+1+i) = εj0+1+i

∀i ∈ {1, . . . , M}. Therefore, we can write:

εj0+1+M = εj0+1 +
PM

i=1

cj0+1+i

Bmin −MT ≤

≤ εj0+1 + MTBmin 1−φ

Bmin −MT = εj0+1 −MTφ

where the last step is an application of the assumption on
Bmin. In other words, in a horizon ofM steps the schedul-
ing error is reduced byMTφ. We can iterate the reasoning
until we are able to cover the distance between ρ(T +δ)−T
andRj0+j̃ which is upper-bounded by the distance between
ρ(1 + δ)− 1 and Rmax and this proves the first claim.
To prove the second claim, consider that the maximum

possible scheduling error is upper-bounded by εj0+1 +

maxh∈1,...M{
∑h

i=1
cj0+1+i

Bmin −hT}. An upper bound to this
value can be found considering the computation times as
free decision variables of an optimisation problem con-
strained by MTBmin(1 − φ) ≥

∑M
i=1 cj0+1+i. It can be

easily seen that this maximum is attained for cj0+1+i =
MTBmin(1 − φ) and cj0+1+i = 0 for i > 1, which leads
to the claim. �

The result stated above corresponds to our second design
goal. Indeed, the first claim tells us that if the scheduling
error goes outside of the attractivity region, it returns in-
side it in at most L steps, while the second claim provides a
maximum bound for the possible deviation of the schedul-
ing error from the attractivity region. Because the proposed
controller bounds the probability of not violating the dead-
line it will be denoted as PDNV.

4. Reclaiming Mechanism

This section describes a possible implementation of the
compression function based on the requirements described
in Section 3. In particular, the following function will be
implemented:

Bi = B′i +
wi∑
j wj

(
1−

∑
k

B′k

)
(6)

B′i = min{Breq
i , Bmin

i }, Breq
i is the bandwidth requested

by the controller, andBi is the resulting bandwidth after the
compression.
Although the compression function has been generally

implemented in a dedicated software component (called su-
pervisor), it can also be directly embedded in the scheduling
algorithm, by using a proper reclaiming strategy, based on

GRUB. In particular, the SHRUB algorithm is used in this pa-
per. SHRUB is a variant of the GRUB [9] algorithm, which
in turn is based on the CBS [1]. In SHRUB each reserva-
tion is also assigned a positive weight wi, and execution
time is reclaimed based on wi (the reclaimed time is dis-
tributed among active tasks proportionally to the reservation
weights).
The main idea behind GRUB and SHRUB is that if

Bact(t) is the sum of the bandwidths of the reservations
active at time t, a fraction (1 − Bact(t)) of the CPU time
is not used and can be re-distributed among needing reser-
vations. The re-distribution is performed by acting on the
accounting rule used to keep track of the time consumed by
each task. In GRUB all the reclaimed bandwidth is greed-
ily assigned to the current executing reservation, and time
is accounted to each reservation at a rate that is propor-
tional to the current reserved bandwidth in the system. If
Bact < 1, this is equivalent to temporarily increasing the
maximum budget of the currently executing reservation for
the current period. In the limit case of a fully utilised sys-
tem, Bact = 1 and the execution time is accounted as in the
CBS algorithm. In the opposite limit case of only one active
reservation, time is accounted at a rate Bi (so, a time Qi is
accounted in a period Pi). SHRUB, instead, fairly distributes
the unused bandwidth among all active reservations, by us-
ing the weights. In the two limit cases (fully utilised system
and only one reservation), the accounting mechanism for
GRUB and SHRUB work in the same way. However, when
there are many reservations in the system and there is some
spare bandwidth, SHRUB effectively distributes the spare
bandwidth to all needing reservations in proportion to their
weights. Unlike GRUB, SHRUB uses the weights to assign
more spare bandwidth to reservations with higher weights,
implementing Equation 6. Due to space constraints, the
details of the scheduling algorithms are omitted, and inter-
ested readers can refer to [1, 9, 5].

5. Simulation Results

To show the effectiveness of the proposed solution, some
simulations have been performed using an Adaptive Reser-
vation simulation framework (ARSim), which simulates
a set of reservations described by Equation 1 controlled
through the algorithm described in Section 1, and scheduled
through SHRUB.
In particular this section reports the results obtained by

simulating two MPEG decoders. As far as the execution
times are concerned, we used the traces measured on a real
application 1 and scaled the computation times in order to
produce a significant workload on the system. For task τ1,
we computed a mean computation time μc1, j

= 0.42T1,
a standard deviation δc1, j

= 0.059T1, a maximum and a

1The decoding times are courtesy of Philips Research.

4

minimum computation time equal in their turn to 0.65T1

and 0.25T1. For task τ2 we found μc2, j
q = 0.433T2,

δc1, j
= 0.061T2 while the maximum and the minimum

computation time were 1.11T2 and 0.165T2. An interest-
ing parameter are also the maximum values for the moving
averages, which were 0.708T1 for τ1 and 0.688T2 for tau2

The following scenarios have been considered: 1) use
of the Shrub algorithm along with the PDNV control algo-
rithm (Shrub-PDNV); 2) use of the Shrub algorithm with
a static configuration (Shrub-only); 3) use of a hard reser-
vation scheduler (without any reclaiming), with a PDNV
bandwidth controller for each task: in this case, we included
a bandwidth compression strategy in case of requests violat-
ing capacity (PDNV-only).
For each one of the above scenarios, we ran a set of sim-

ulations varying Bmin
1 and Bmin

2 , which correspond to the
minimum guaranteed bandwidth for the Shrub-PDNV and
PDNV configurations and to the assigned bandwidth for the
Shrub-only configuration. We ranged Bmin

1 between 30%
and 70%, increasing it by 5%, and the bandwidthBmin

1 was
chosen equal to 1 − Bmin

2 . Among the considered con-
figurations, the first and last ones respect Condition (5) in
Proposition 2 with N = 3, within a good approximation,
for the second task and for the first one respectively.
The PDNV controller introduced in Section 3 was used

to guarantee a conditional probability of p for the schedul-
ing error to respect the deadline. We used a very simple
predictor consisting of a cascade of 12 interleaved moving
averages to de-correlate the sequence and a block that esti-
mates the 83rd percentile of the error computed over a mov-
ing average of 12 samples.
Figure 1 displays the average εav

j (top) and the maxi-
mum εmax

j (bottom) scheduling errors (each point in the
figure is for a different choice of Bmin

1 and Bmin
2). The

points closest to the left-upper corner are those associated
to bigger values forBmin

1 , resulting in a worse performance
for τ2. Moving toward the right lower corner, the perfor-
mance of τ1 decreases, and the performance of τ2 improve
(in the points associated to lower values for Bmin

1). In the
PDNV-only configuration the system achieves a value for
εav
j very close to zero for all choices of the minimum guar-
anteed bandwidths, proving that the feedback mechanism
provides an average allocation perfectly matching the task
requirements. The price to be paid is that the probability
of respecting the deadline is not very high (as shown be-
low), but the maximum value of the scheduling error εmax

j

is moderate proving that the system is under control (see
Figure 1 (bottom)). The Shrub-only and Shrub-PDNV con-
figurations clearly achieved a lower value for ε(av)

j because
they reclaim the available bandwidth. Notably, the differ-
ence is not very evident on ε

(av)
j because when the task

is delayed, the feedback mechanism tends to use all the
available bandwidth reducing the impact of the reclaiming

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.5 -0.4 -0.3 -0.2 -0.1 0

S
ec

on
d

ta
sk

First task

Shrub-PDNV
PDNV-only
Shrub-only
se2 = se1

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2 2.5 3

S
ec

on
d

ta
sk

First task

Shrub-PDNV
PDNV-only
Shrub-only
se2 = se1

Figure 1. Average (top) and maximum (bot-
tom) scheduling error for the two tasks.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
r{

e2
 <

=
0}

Pr{e1 <= 0}

Shrub-PDNV
PDNV-only
Shrub-only

Figure 2. Probability of respecting the dead-
line for the two tasks.

mechanism. Note that if Bmin is chosen according to Con-
dition (5), then the maximum deviation of the scheduling
error is below the upper bound provided by the theoretical
result. Indeed, it is relatively easy to get the upper bound
as in the condition, which is 4T1 for the first task and 8T2.
for the second one. If the left extreme point of the curve is
the one in which τ1 receives the minimum bandwidth dic-
tated by the theorem (Bmin

1 = 0.7)), we get εmax
1 ≈ 0 ≤ 4;

conversely, in the right extreme the correct minimum band-
width is assigned to τ2, for which εmax

2 ≈ 2 ≤ 8.
Figure 2 reports the performance achieved by the three

different configurations in terms of probability of respect-
ing the deadline. Specifically, the x and y coordinates of
each point in Figure 2 represent the experimental probabil-
ity for, respectively, the first and the second task to respect
the deadline. In this case, the tasks have the same weights.
Therefore, the best performance is associated to points close
to the upper-right corner (meaning that the two probabilities
are close to 1 and equal).
The PDNV-only approach achieves an experimental

probability of respecting the deadline close to the proba-
bility for the predictor to produce a correct guess. Indeed,
Pr
{

Cj ≤ H̃j

}
is 81.3% for the first task predictor, and

81.7% for the second, while the experimental probability
of respecting the deadline ranges from 74% up to 81.3% for
the first task, and from 81.7% down to 73.9% for the second
one. This fact shows that the results found in Section 3 on
conditional probabilities (Proposition 1) are representative
of the average system behavior.

5

Some additional experiments have been ran assigning
different weights to the various multimedia tasks, but can-
not be reported here due to space limits. Anyway, such ex-
periments showed that the weights wi can be effective in
assigning different importance to the various applications
during transient overloads.

6. Conclusions

This paper presents a novel approach for allocating re-
sources to multimedia tasks, based on a combination of
adaptive reservations and a reclaiming policy. Simulation
and theoretical results have been proposed that show the ad-
vantages of cobining the two approaches.
In a near future, we plan to repeat some of the ex-

periments on a real implementation the SHRUB algorithm
(based on the AQuoSA framework for Linux).

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, December
1998.

[2] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation
for multimedia computing. In Proceedings of the IEEE Real
Time Computing Systems and Applications, Hong Kong, De-
cember 1999.

[3] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and
L. Palopoli. Adaptive reservations in a linux based environ-
ment. In Proceeding of the Real-Time Application Sympo-
sium (RTAS 04), Toronto (Canada), May 2004. IEEE.

[4] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of
a reservation-based feedback scheduler. In Proc. of the Real-
Time Systems Symposium, Austin, Texas, November 2002.

[5] S. Baruah, G. Lipari, and L. Abeni. Shrub:
Shared reclamation of unused bandwidth. Techni-
cal report, Scuola Superiore Sant’Anna, July 2008.
http://retis.sssup.it/˜lipari/papers/shrub tech report jul 08.pdf.

[6] S. Brandt and G. Nutt. Flexible soft real-time processing
in middleware. Real-time systems journal, Special issue
on Flexible scheduling in real-time systems, 22(1-2):77–118,
January-March 2002.

[7] G. T. C. Lu, J. Stankovic and S. Son. Feedback control real-
time scheduling: Framework, modeling and algorithms. Spe-
cial issue of RT Systems Journal on Control-Theoretic Ap-
proaches to Real-Time Computing, 23(1/2), September 2002.

[8] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient
reclaiming in reservation-based real-time systems with vari-
able execution times. IEEE Transactions on Computers,
54(2):198–213, Feb. 2005.

[9] G.Lipari and S. Baruah. Greedy reclaimation of unused
bandwidth in constant bandwidth servers. In IEEE Proceed-
ings of the 12th Euromicro Conference on Real-Time Sys-
tems, Stokholm, Sweden, June 2000.

[10] C. Hentschel, R. Bril, M. Gabrani, L. Steffens, K. van Zon,
and S. van Loo. Scalable video algorithms and dynamic re-
source management for consumer terminals. In Proceedings

of the International Conference on Media Futures (ICMF),
May 2001.

[11] D. Isovic and G. Fohler. Quality aware mpeg-2 stream adap-
tation in resource constrained systems. In Proceedings of the
Euromicro Conference on Real-Time Systems, Catania, Italy,
2004.

[12] T. Lan, Y. Chen, and Z. Zhong. Mpeg2 decoding complexity
regulation for a media processor. In Fourth IEEE Workshop
on Multimedia Signal Processing, Cannes, France, 2001.

[13] J. Liang, K. Nahrstedt, and Y. Zhou. Adaptive multi-resource
prediction in distributed resource sharing environment. In
CCGRID ’04: Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid, pages 293–
300, Washington, DC, USA, 2004. IEEE Computer Society.

[14] C. Lin and S. Brandt. Improving soft real-time performance
through better slack reclaiming. In Proceedings of the Real-
Time Systems Symposium, December 2005.

[15] C. L. Liu and J. Layland. Scheduling alghorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM, 20(1), 1973.

[16] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H.
Son, and M. Marley. Performance specifications and met-
rics for adaptive real-time systems. In Proceedings of the
21th IEEE Real-Time Systems Symposium, Orlando, FL, De-
cember 2000.

[17] C. W. Mercer, S. Savage, and H. Tokuda. Processor ca-
pacity reserves for multimedia operating systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, Pitts-
burg, May 1993.

[18] T. Nakajima. Resource reservation for adaptive qos mapping
in real-time mach. In Sixth International Workshop on Par-
allel and Distributed Real-Time Systems (WPDRTS), April
1998.

[19] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
kernels: A resource-centric approach to real-time and multi-
media systems. In Proceedings of the SPIE/ACMConference
on Multimedia Computing and Networking, January 1998.

[20] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for qos management. In Proceedings
of the IEEE Real Time Systems Symposium, 1997.

[21] M. Roitzsch and M. Pohlack. Principles for the prediction of
video decoding times applied to mpeg-1/2 and mpeg-4 part 2
video. In Proceedings of the IEEE Real-Time Systems Sym-
posium, 2006.

[22] J. A. Stankovic, C. Lu, and S. H. Son. The case for feedback
control in real-time scheduling. In Proceedings of the IEEE
Euromicro Conference on Real-Time, York, England, June
1998.

[23] H. Tokuda and T. Kitayama. Dynamic QoS control based on
real-time threads. In NOSSDAV’93: Proceedings of the 4th
International Workshop on Network and Operating System
Support for Digital Audio and Video, pages 114–123, Lon-
don, UK, 1993. Springer-Verlag.

[24] C. C. Wüst, L. Steffens, W. F. J. Verhaegh, R. J. Bril, and
C. Hentschel. Qos control strategies for high-quality video
processing. Real-Time Systems, 30(1-2):7–29, 2005.

[25] C. C. Wüst and W. F. J. Verhaegh. Quality control for scal-
able media processing applications. J. Scheduling, 7(2):105–
117, 2004.

6

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
