
Energy-E�cient Low-latency Audio on Android

Alessio Balsinia,b, Tommaso Cucinottaa, Luca Abenia, Joel Fernandesb, Phil
Burkb, Patrick Bellasic, Morten Rasmussenc

aScuola Superiore Sant'Anna, Via Moruzzi, 1, 56124 Pisa, Italy
bGoogle, Googleplex, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

cArm Limited, 110 Fulbourn Rd, Cambridge CB1 9NJ, UK

Abstract

Counting more than two billion devices, Android is nowadays one of the most

popular open-source general-purpose operating systems, based on Linux. Be-

cause of the diversity of applications that can be installed, it manages a number

of di�erent workloads, many of them requiring performance/QoS guarantees.

When running audio processing applications, the user would like an uninter-

rupted, glitch-free, output stream that reacts to the user input, typically with a

delay not bigger than 4− 10 ms, while keeping the energy consumption of the

mobile device as low as possible.

This work focuses on improvements to the real-time audio processing per-

formance on Android that preserves energy-e�ciency. Such improvements are

achieved by using a deadline based scheduler and an adaptive scheduling strat-

egy that dynamically and proactively modulates the allocated runtime. The

proposed strategy is evaluated through an extensive experimentation, showing

that 1) compared to the existing way to ensure low-latency audio processing,

the proposed mechanism provides an energy saving of almost 40%, and 2) com-

pared to the existing way to achieve a good balance between power consumption

and latency in a glitch-free audio processing experience, the proposed solution

reduces audio latency from 26.67 ms to 2.67 ms, at the expense of a limited

Email addresses: alessio.balsini@santannapisa.it (Alessio Balsini),
tommaso.cucinotta@santannapisa.it (Tommaso Cucinotta), luca.abeni@santannapisa.it (Luca
Abeni), joelaf@google.com (Joel Fernandes), philburk@google.com (Phil Burk),
patrick.bellasi@arm.com (Patrick Bellasi), morten.rasmussen@arm.com (Morten Rasmussen)

Preprint submitted to Journal of Systems and Software March 10, 2019



power consumption increase of 6.25%.

Keywords: android, Linux kernel, real-time scheduling, adaptive reservations,

energy e�ciency, low-latency audio

1. Introduction

A signi�cant limitation of the Android1 operating system (OS) has always

been the di�culty in providing low-latency audio features2, which are often re-

quired in a signi�cant number of interactive multimedia applications, like pro-

fessional grade multimedia. An audio processing delay in the range of 4−10 ms

is well-known among musicians and digital sound practitioners as the maxi-

mum acceptable one for professional audio. Indeed, the guidelines for Android

low-latency application developers3 suggest a period of 2 − 5 ms for the audio

processing pipeline, so as to keep the overall audio production latency su�-

ciently below the 30 ms threshold that is equally well-known to be perceivable

as echo by the human ear [1, 2].

One of the obstacles in achieving low-latency on Android platforms is the

heterogeneity of devices running Android, having di�erent hardware capabilities,

as well as the lack of proper interaction models between applications and kernel,

thus requiring several software abstraction layers and big audio bu�ers, both

resulting in the capability of generating a smooth audio output, at the price of

an audio latency increase.

Multimedia applications, as shown in Figure 1, can be realized on Android

with many di�erent APIs. From the Java language, a number of classes in the

android.media package can be conveniently used for playing or recording audio

1This work refers to the master branch of the Android Open Source Project (AOSP)

synchronized on the 21st of May 2018 at 4:36pm CET, an under-development version of

Android Q.
2Audio latency estimations can be measured with the Superpowered Mobile Audio La-

tency Test App, and the results are collected and shown at the following address: https:

//superpowered.com/latency.
3More information at: https://source.android.com/devices/audio/latency/design.

2



locally, managing audio �les, or streaming audio from a remote source. However,

this option forces the use of large bu�ers, causing non-negligible audio latency.

For interactive, low-latency scenarios, applications need to possess a C/C++

component that uses the available low-latency C/C++ APIs, e.g., OpenSL ES or

AAudio (more details will be provided later in Section 4).

Figure 1: Overview of the Android audio architecture.

When using the low-latency audio APIs, a real-time thread using the SCHED_FIFO

scheduling discipline is used, which, along with SCHED_RR, is part of the SCHED_RT

scheduling class of the Linux kernel. Because of the energy requirements of the

target mobile devices, SCHED_RT has been integrated with the schedutil policy

of the CPUFreq4 framework that, according to internal heuristics, estimates the

expected overall system workload and sets the CPU frequency.

Unfortunately, this approach slowly reacts to dynamic workload changes,

such as sudden spikes up of CPU demand due to, e.g., a sudden increase in

4More information at: https://www.kernel.org/doc/Documentation/cpu-freq/.

3



the number of voices being synthesized in software. Indeed, by the time the

schedutil heuristic realizes that the CPU workload increased, and a frequency

increase is needed, it might already be too late, and the audio pipeline exhibits

an audible glitch. This problem can be mitigated by increasing the audio bu�er

size, resulting in a larger latency of the audio processing pipeline, so that the

system has more time to adapt the CPU frequency before an audio glitch hap-

pens, which ultimately makes the current solution not suitable for professional

audio applications. Alternatively, low latency can be achieved by locking the

CPU to the maximum frequency when a SCHED_RT task is present, as done in the

mainline Linux kernel (more details in Section 4.3), leading to an unacceptable

increased power consumption for mobile devices.

This work proposes a novel, exploratory solution to tackle this problem,

based on: 1) adapting the AAudio framework so as to switch to a deadline-based

programming paradigm which uses the SCHED_DEADLINE scheduling class recently

added to the Linux kernel [3]; this, di�erently from SCHED_RT, allows schedutil

to adapt the frequency coherently with the real-time workload as known to

SCHED_DEADLINE, preserving the timing constraints of the application; and 2) by

extending the AAudio API by introducing a new mechanism to notify the system

about workload demand changes, which are used for a proactive update of the

computational bandwidth, thus of the CPU frequency. Experimental results

conducted over an Android board demonstrate the advantages of the proposed

approach in both application responsiveness and energy e�ciency.

1.1. Paper Structure

This paper is structured as follows. Section 2 overviews prior literature on

the topic, focusing on research works proposing adaptive reservation-based and

energy-e�cient schedulers for real-time workloads, and solutions speci�cally de-

signed for Android. Section 3 recalls a few important concepts about CPU

scheduling for soft real-time and multimedia workloads in General-Purpose Op-

erating System (GPOS) kernels. Section 4 summarizes common background

concepts on the Android audio architecture, power management features within

4



the Linux and Android kernels and the recently available deadline-based schedul-

ing in Linux. Section 5 describes our proposed technique for dealing with low-

latency audio applications in an energy-e�cient way, provides details about

the adopted feedback-based and proactive adaptation strategies, and presents

details of how the proposed method has been evaluated using the SynthMark

benchmarking framework. Section 6 describes the experimental results obtained

with our implementation of the proposed technique on a real platform running

Android. Finally, conclusions are drawn in Section 7 and some ideas for further

research and experimentation on the topic are proposed in Section 8.

2. Related Work

Several prior e�orts exist in the research literature addressing the problem

of ensuring predictable execution and performance stability of multimedia ap-

plications and soft real-time workloads on general-purpose operating systems,

investigating on possible trade-o�s among achieved performance and power con-

sumption on mobile devices.

In this paper we propose to adopt a proactive resource adaptation strategy,

combining it in a novel way with various techniques from literature: real-time

scheduling (and reservation-based scheduling [4] in particular, see Section 3.2 for

details); feedback-based adaptation of the scheduling parameters; and Dynamic

Voltage and Frequency Scaling (DVFS). In this section, we present an overview

of the major related research works, which will be compared in Section 2.4

according to a few criteria, including their suitability for hard real-time or soft

real-time and multimedia, their inclusion of adaptive strategies, their support

for multi-processor platforms and their attention to energy e�ciency.

2.1. Adaptive Resource Reservations

One of the most important problems encontered when trying to use real-

time scheduling (and reservation-based scheduling in particular) in a General-

Purpose Operating System (GPOS) is the di�culty in properly tuning the (real-

time) scheduling parameters. For example, it is not easy to estimate the needed

5



resource allocation, given the plethora of hardware platforms each application

can be deployed onto. This urges developers into enriching their applications

with the logic that is needed to pro�le the time-critical tasks over the speci�c

hardware they are deployed onto, so to be able to communicate the correct

computational requirements to the kernel.

As a consequence, some form of feedback mechanism can be added to a real-

time scheduler to properly adapt its behavior, as proposed by Stankovic et al. [5]

and Lu et al. [6]. Focusing on reservation-based scheduling, adaptive reserva-

tion techniques have been extensively studied, which are based on theoretical

arguments from control theory to analyze the closed-loop performance, as done

for example by Abeni et al. [7]. In particular, Stankovic et al. [5] and Lu et

al. [6] proposed to use the feedback loop to adjust the system load so that the

amount of missed deadlines is kept under control. On the other hand, Abeni

et al. [7] proposed an underlying reservation-based scheduling discipline, and

used a feedback loop to dynamically adapt the reserved runtime, so as to track

the dynamic workload of the real-time application, using a linearized controller

whose stability has been investigated recurring to control-theoretical arguments.

Adaptive reservations have been extended in a variety of ways: Cucinotta

et al. [8] and Abeni et al. [9] proposed to use non-linear controllers, as well as

to provide probabilistic real-time guarantees [10]; Palopoli and Cucinotta [11]

extended the approach further to support pipelines of tasks with end-to-end

deadline guarantees. Implementations based on Linux have also been released

as open-source [12]. Moreover, Cucinotta et al. [13] proposed also to integrate

adaptive reservations with application-level adaptation, and with CPU reclaim-

ing mechanisms [14].

Concerning the real-time performance of audio applications on Linux, exper-

imentation with deadline-based real-time scheduling has been previously con-

ducted by Cucinotta et al. [15] using the JACK5 low-latency audio infrastruc-

ture. JACK was modi�ed to use AQuoSA [12], an old single-processor im-

5More information at: http://jackaudio.org.

6



plementation on Linux of the Constant Bandwidth Server (CBS) by Abeni et

al. [16], an algorithm based on EDF scheduling; however, power management

and multi-core scheduling were not considered in that study, and only history-

based runtime adaptation was investigated.

2.2. Energy-Aware Real-Time Scheduling

There is a large amount of literature on energy-aware scheduling algorithms,

both for real-time and general purpose systems. Useful overviews on the topic

have been published for example by Stangaciu et al. [17] and Bambagini et

al. [18].

When real-time performance is not important, an estimation of the workload

based on a moving average can be used to drive the frequency scaling mechanism,

as shown by Hu et al. [19]. On the other hand, when respecting deadlines

is important, as in this paper, real-time schedulability analysis can be used

to reduce the energy consumption without breaking (hard or soft) real-time

guarantees. For example, Pillai and Shin [20] proposed to set the CPU frequency

based on the real-time tasks' utilization, and then dynamically exploit the slack

time to further decrease the CPU frequency. This technique only works for

periodic tasks. Similar algorithms, also based on the periodic task model, have

been used by Aydin et al. [21], who proposed more advanced algorithms for

exploiting the slack time, that result in improved power saving.

Zhu and Mueller [22] proposed a di�erent approach, that dynamically scales

the CPU frequency based on a feedback mechanism. In particular, this approach

is based on splitting each job of a task in two parts, optimistically executing

the �rst part at a low frequency and then increasing the CPU frequency when

the second part executes. The feedback mechanism, based on the well-known

proportional-integral-derivative (PID) controller, is used to adapt the size of the

�rst part of a job to match its execution time.

As an alternative, it is possible to characterize the CPU requirements of

a taskset through a demand bound function (representing the worst-case CPU

requirements of the taskset in a time interval), and to compute the frequency

7



requirements of the taskset by comparing the demand bound function with the

amount of execution time supplied by a CPU running at a given frequency,

as shown by Kim et al. [23]. This approach is based on using the so-called

compositional scheduling framework analysis introduced by Shin and Lee [24].

Some previous works also investigated implementation issues (instead of only

focusing on the theory behind the scheduling/DVFS policies) by considering, for

example, the impact of the used frequency scaling mechanism, as studied by Zhu

and Mueller [25].

Excluding some notable exceptions like the one by Almoosa et al. [26], most

of the previous work only considered single-core / single-CPU systems.

Several authors also have considered energy-aware adaptive scheduling of

soft real-time and multimedia applications, for example using frequency scaling

to deliver probabilistic real-time guarantees, as done by Zha et al. [27]: instead

of scaling the CPU frequency so that every task is guaranteed to respect all

of its deadlines (as, for example in the previously mentioned works [20, 21]),

the frequency is set so that the probability to respect a deadline is controlled.

Another approach for energy saving in soft real-time systems is presented by

Lorch and Smith [28], where it is shown how to set the CPU frequency after

a deadline has been missed (post-deadline speed schedule) so that some utility

functions are optimized. Pouwelse et al. [29, 30] presented some experiments

with dynamic frequency scaling (driven by a user-space program that scales the

CPU frequency so that the CPU load is about constant) applied to a video de-

coding application (an H.263 decoder). Kumar et al. [31] proposed a prediction

mechanism for �xed-priority scheduling of soft real-time periodic tasks. How-

ever, these techniques are based on heuristics and cannot provide guarantees

to hard real-time tasks. Qadi et al. [32] presented the DVSST algorithm that

reclaims the unused bandwidth of sporadic hard real-time tasks.

Yuan et al. proposed GraceOS [33], which uses a monitoring mechanism to

adapt the scheduling parameters of the applications and frequency switching of

the platform so that quality of service requirements and energy consumption

constraints are respected. Cucinotta et al. [13] used an adaptive multi-layer

8



control architecture to achieve similar objectives, where multiple levels of adap-

tation (application level, middleware level and scheduling level) were used to

switch the application mode of operation, the CPU frequency, and the schedul-

ing parameters in order to optimize quality of service and energy consumption.

An alternative approach still proposed by Cucinotta et al. [34] was using a

userpace daemon (a modi�ed powernowd daemon) to adapt the CPU frequency

while not switching to power modes that would break schedulability of a system

that has already accepted real-time applications.

A di�erent view on power management is o�ered by the Q-RAM frame-

work by Rajkumar et al. [35, 36], which allows one to model resource allocation

in real-time systems as an optimization problem, allocating various kinds of

resources (memory, CPU, network bandwidth) to tasks so that some cost func-

tions are minimized (or utility functions are maximized). Using Q-RAM, power

management can be modeled by considering the consumed power as a cost.

Some of the previously mentioned works rely on feedback-based adaptation,

where the resource allocation is changed based on observed past history of the

system. In this paper, we are proposing a new proactive approach instead (see

Section 5), where a novel API is introduced to notify the kernel about an up-

coming change in workload demand, and ask for the needed resource allocation

increases ahead of time. The resulting adaptive and proactive reservation-based

strategy is built on top of a DVFS algorithm inspired by GRUB-PA by Scordino

et al. [37]. GRUB-PA is a generic algorithm supporting periodic, sporadic and

aperiodic tasks, and allowing to provide both soft and hard real-time guaran-

tees. In more details, GRUB-PA works by scaling the CPU frequency based

on the active utilization or real-time tasks, as tracked by the GRUB scheduling

algorithm (informally speaking, the active utilization of real-time tasks can be

seen as the fraction of CPU time used by such tasks).

The original GRUB and GRUB-PA algorithms were uni-processor only, but

the reclaiming and bandwidth accounting mechanisms have been extended by

Abeni et al. to support multiple CPUs/cores [38].

Since it can be integrated in systems containing non real-time tasks too,

9



GRUB-PA has been the perfect candidate for supporting frequency scaling in

operating systems like Linux, and one of its variations has been implemented in

the schedutil frequency scaling governor, as described by Scordino et al. [39, 40].

In practice, the GRUB's active utilization is used by schedutil, along with the

load estimates available for the other scheduling classes, to scale the frequency

of each CPU core so that all of the hosted tasks can be accommodated as due

to their demand.

2.3. Android

Focusing on Android, prior research literature also exists, addressing real-

time issues, priority inversion and other performance-oriented aspects of the

OS. As highlighted by Levin [41], a form of priority inversion mitigation has

been integrated since a long time within the Binder IPC framework, extensively

used throughout Android applications and services. The modi�cations allow for

preserving, across synchronous remote procedure calls (RPCs), the nice level of

the calling thread. More recently, also the real-time priority of real-time tasks

is preserved, as shown by Kalkov et al. [42]6.

Further proposed modi�cations for enhanced real-time support in Android

include the works by Kalkov et al. [43] and Yan et al. [44, 45], adopting a

real-time Java Virtual Machine run-time platform to control interferences due

to the garbage collector, enhancing the memory allocator, and improving the

accessibility of scheduling services from unprivileged applications, without the

need for a Binder call to a privileged process. Besides these, an additional work

by Yan et al. [46] proposed to extend the Android interfaces for the development

of soft real-time applications, by introducing statically speci�ed memory bounds

and priority awareness.

6For details, refer to commit history of binder.c as available at: https://android.googlesource.

com/kernel/common/+/android-4.9/drivers/android/binder.c.

10



2.4. Discussion

The major existing prior literature on adaptive real-time, power-aware schedul-

ing for multimedia and soft real-time applications, which has been reviewed

above, can be categorized as in Table 1, where di�erent features are highlighted

for each of the work, including: support for soft or hard real-time deadlines;

support for feedback-based adaptation of the scheduling parameters or proac-

tive adaptation; whether some form of closed-loop analysis is provided (either

deterministic or probabilistic); whether the work is validated through a real im-

plementation of the technique, or its simulation, or by theoretical arguments;

whether the focus is on multimedia use-cases or others; whether the framework

supported only single- or also multi-processor scheduling; and �nally whether

energy-e�ciency has been addressed. The last line in the table refers to the

mechanism being proposed in this work. Moreover, the works emphasized in

italics are other works that have been combined with the feed-forward mecha-

nism in the approach proposed in this paper.

The present work is the �rst one focusing on the Android operating system,

combining the SCHED_DEADLINE real-time scheduling policy of the Linux kernel

with the CPUFreq power management subsystem and its schedutil governor, con-

sidering an underlying heterogeneous processing architecture with CPUs hav-

ing di�erent processing capacities (e.g., Arm big.LITTLE), and introducing a

proactive adaptation approach. This lets applications declare in advance their

expected workload changes, so that scheduling parameters adaptations can be

anticipated, resulting in an e�ective capability to keep a low-latency glitch-free

playback in the presence of heavy �uctuations of the processing demand, while

at the same time limiting power consumption to the minimum. E�ectiveness

of the presented technique will be quanti�ed through the experimental results

presented in Section 6, where the focus will be on comparing the proposed

approach with what is currently available on nowadays Android platforms. An

extensive experimental comparison with one or more of the approaches on adap-

tive reservation-based and energy-aware real-time scheduling strategies reviewed

above, is something we leave out of this paper, as possible additional future

11



Table 1: Comparative chart of prior literature. Deadlines support is one of Hard, Soft, None.

Validation is one of Linux, Android, Simulation, Theoretic. Use-case is one of Multimedia,

Of�ce, Synthetic, Avionics, Military, Medical.

Work D
e
a
d
li
n
e
s
S
u
p
p
o
rt

F
e
e
d
b
a
ck

S
ch
e
d
u
li
n
g

P
ro
a
c
ti
v
e
S
ch
e
d
u
li
n
g

C
lo
se
d
-L
o
o
p
A
n
a
ly
si
s

V
a
li
d
a
ti
o
n

U
se
-C
a
se
(s
)

M
u
lt
i-
P
ro
c
e
ss
o
r

E
n
e
rg
y
-E
�
c
ie
n
c
y

Hu et al. [19] N No No � L Mu No Yes

Rajkumar et al. [4] H/S No No � L Mu No No

Rajkumar et al. [35, 36] H/S No No � L Mu Yes Yes

Pillai et al. [20] H No No � S/L Sy No Yes

Aydin et al. [21] H No No � S Sy No Yes

Kim et al. [23] H No No � T Av No Yes

Lorch et al. [28] S No No � S Of, Mu No Yes

Pouwelse et al. [29, 30] S No No � L Sy, Mu No Yes

Kumar et al. [31] S No No � S Av, Sy No Yes

Zhu et al. [22] H Yes No Yes S/L Sy No Yes

Almoosa et al. [26] N Yes No Yes S Sy Yes Yes

Yuan et al. [33] S Yes No Yes L Mu No Yes

Kalkov et al. [42, 43] S No No � A Sy No Yes

Yan et al. [44, 45, 46] H/S No No � A Mi, Me Yes No

Cucinotta et al. [14, 12,

10, 13, 8, 34], Abeni et

al. [7]

S Yes No Yes L Mu No Yes in [13, 34]

Cucinotta et al. [15] S Yes No No L Mu No No

Scordino et al. [39, 40] S No No � L Sy Yes Yes

This work S Yes Yes No A Mu Yes Yes

12



work that would validate better our achieved results. A remarkable observa-

tion, though, is the one that, without the proactive noti�cation mechanism that

is introduced in this paper, any feedback-based methodology will not be able

to react to workload changes and anticipate power adjustments as quickly and

on-time, as in the mechanism proposed herein.

Albeit the approach we are presenting in this paper builds upon the use

of a number of mechanisms (mostly ours) which have already been presented

in the past, their combination with a proactive feedback approach on Android

heterogeneous platforms described in Section 5, the implementation and the

experimental evaluation carried out in Section 6, are all novel elements presented

here for the �rst time. These mark one undoubtedly useful step towards the

design and engineering of novel mechanisms in the context of soft real-time

multimedia for Android, where the use of even widely studied techniques from

the theory of real-time systems is all but straightforward.

3. Background on Scheduling for Soft Real-Time Applications

To support low-latency audio applications in Android, this work combines

proactive adaptation with some well-known real-time scheduling techniques that

are already implemented in some OS kernels (and in the Linux kernel in par-

ticular). In this section, we brie�y recall the theory and practice on which this

work relies, starting from CPU scheduling and real-time scheduling.

3.1. GPOS Process Schedulers

GPOSes have been incorporating for decades scheduling mechanisms based

on priorities, and APIs allowing for raising or lowering a process priority, us-

ing for example a real-time scheduling discipline or the nice-ness of processes

on OSes conforming to the POSIX [47] standard. However, GPOSes have also

traditionally been including a variety of heuristics for handling multimedia ap-

plications in the context of desktop systems, speci�cally for letting multimedia

applications coexist with CPU-intensive processing workloads while keeping a

13



smooth and glitch-free playback. These heuristics have been based on the con-

cept of automatically distinguishing interactive workloads, which are usually

characterized by alternating sequences of short-lived processing and sleeping

time frames, from batch workloads, typically having a much longer duration of

CPU-intensive activities. Then, the detected interactive processes are trans-

parently boosted in their priorities with respect to batch ones, without requir-

ing the developers of multimedia applications to make any speci�c adjustment.

For example, the Linux SCHED_OTHER policy has been using a heuristic of this

kind [48], tracking per-task sleep vs. ready-to-run time windows, and boost-

ing the dynamic priority of a task after wake-up, while de-boosting it while

running continuously. This allows us to run long-running, CPU-intensive ap-

plications such as compilation of complex software suites, number-crunching or

CAD (computer-aided design) computations, while using interactive desktop

applications, such as audio/video players, web browsers, e-mail clients, with a

very good responsiveness.

Nevertheless, these heuristics are known to result in quite an unstable alloca-

tion of the CPU to multimedia applications. So, these have been traditionally

designed with large pre-computed bu�ers, or with the ability of application-

level adaptation to the available resources, as typically done in video appli-

cations that skip frames when needed. However, in the case of low-latency

requirements, it is common to resort to APIs for either increasing the nice level

into a general-purpose scheduler or switching to a predictable and determinis-

tic real-time scheduling policy, typically available as the POSIX SCHED_FIFO or

SCHED_RR disciplines [47]. By using these mechanisms, developers of multimedia

applications may explicitly raise the priorities of the time-critical tasks in their

applications, so that whenever they are ready to run they will preempt other

lower-priority tasks, keeping the desired interactivity level.

Unfortunately, these techniques are known to work well only in typical set-

ups where users run just one main application. Whenever we start dealing

with a multitude of (soft) real-time tasks, it becomes cumbersome to tune their

priorities properly, and more sophisticated techniques are needed, for ensuring

14



a smooth component-based approach to the design and deployment of complex

software.

3.2. Reservation-Based Scheduling

The research literature on real-time systems includes many approaches fo-

cusing on CPU scheduling and the application of reservation-based scheduling

techniques [4]. These let the OS kernel guarantee a timely allocation of the

CPU to competing applications according to their individual requirements, in-

cluding their speci�c time granularity. The traditional priority-based method

of dealing with multiple heterogeneous real-time activities requires knowledge

of the whole set of activities in the system, in order to sort priorities properly,

e.g., using the well-known rate-monotonic assignment [49]. Furthermore, there

is the additional drawback of lack of temporal isolation among the activities,

because a higher-priority task may inde�nitely delay a lower-priority one. With

reservation-based scheduling, each real-time activity needs to provide its own

computational and timing requirements to the kernel, independently of what

else is being run on the system. With hard reservations, whenever an activity

tries to exceed its declared computational requirements, the OS/kernel stops

it (throttling) till its next activation, even resulting in a non work-conserving

scheduler (CPU can be left idle with real-time tasks under throttling). With soft

reservations, the scheduler is work-conserving instead, and reservations can op-

portunistically gain extra allocation, either as left unused by others, or because

the reservations do not saturate the system. In both cases, reservation-based

scheduling ensures that the capability of each real-time task to meet its tim-

ing requirements depends only on the fact that the declared computational and

timing requirements match with the actual ones at run-time, thus real-time ap-

plications are isolated. This constitutes a basis for stable task execution on top

of which sound mathematical models can be built.

3.3. Deadline-Based Scheduling in Linux

Since version 3.14, the Linux kernel supports reservation-based scheduling

through the SCHED_DEADLINE scheduling policy. SCHED_DEADLINE implements CPU

15



reservations using the Constant Bandwidth Server (CBS) algorithm [16], which

is based on Earliest Deadline First (EDF) [49].

More precisely, SCHED_DEADLINE allows one to associate a task τi with three

scheduling parameters: a runtime Qi, a deadline Di and a period Pi. This results

in the Linux kernel granting the task Qi time units on the processor every time

window of duration Pi, where in each period the Qi time units of execution are

granted within the relative deadline Di.

Focusing on the standard case of relative deadline equal to the period, the

typical use of SCHED_DEADLINE is the one of a task with known minimum inter-

arrival period Ti and worst-case per-activation execution time Ci, where one

would set its CBS scheduling runtime as Qi = Ci and the scheduling period and

deadline as Pi = Di = Ti.

On multiprocessor systems, SCHED_DEADLINE implements a global EDF-based

scheduling policy, but it can also be con�gured as a partitioned scheduler by

proper use of the cpuset7 CGroup controller. On SMP systems with CPU fre-

quency locked, the global con�guration of SCHED_DEADLINE guarantees each task

in a task set Γ = {τ1, . . . , τn} to complete with a well-known worst-case tardi-

ness beyond its relative deadline [50, 51], as long as the system capacity is not

violated: ∑
i∈Γ

Qi

Pi
≡
∑
i∈Γ

Ci

Ti
≤ m, (1)

with m being the number of CPUs. Note that, in the equation, Ci

Ti
represents

the worst-case utilization of task τi, which, as due to the common setting for the

reservation parameters described in the previous few paragraphs, is also equal

to the reserved CPU bandwidth Qi

Pi
.

On the other hand, with the partitioned con�guration, SCHED_DEADLINE guar-

antees each task to respect its relative deadline, as long as the capacity of each

7More information at: https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt.

16



Table 2: Parameters characterizing real-time periodic tasks and SCHED_DEADLINE reservations.

Symbol Description

m Number of CPUs in the system

n Number of real-time tasks in the system

Γ = {τ1, . . . , τn} Set of considered real-time tasks

Γj Set of real-time tasks on CPU j

Qi SCHED_DEADLINE runtime for task τi

Di SCHED_DEADLINE relative deadline for task τi

Pi SCHED_DEADLINE period for task τi
Qi

Pi
Reserved CPU utilization for task τi

Ci Worst-case per-activation execution-time of task τi

Ti Minimum inter-arrival period of task τi
Ci

Ti
Worst-case CPU utilization of task τi

CPU j ∈ {1, . . . ,m} is not violated:

∀j ∈ {1, . . . ,m} ,
∑
i∈Γj

Qi

Pi
≡
∑
i∈Γj

Ci

Ti
≤ 1, (2)

with Γj ⊆ Γ denoting the tasks on CPU j.

The just introduced notation, summarized in Table 2, will be extensively

used throughout the paper.

Furthermore, since version 4.16, SCHED_DEADLINE has been integrated with

schedutil [39, 40] by using a variant of the GRUB-PA algorithm [37]. As a result,

the scheduler is now able to scale the CPU frequency according to the bandwidth

requirements of the SCHED_DEADLINE tasks, as well as the estimated utilization of

tasks from the other scheduling classes, limiting the power consumption while

preserving their timing constraints.

17



4. Background on Android

This section provides background information on: the Android audio pipeline

architecture used to enable low-latency features for audio applications; how An-

droid tries to achieve energy e�ciency while scheduling latency-sensitive tasks;

and deadline-based scheduling features in the Linux kernel. These concepts are

at the foundation of our proposed solution.

4.1. Android Audio Architecture

Audio applications can be developed in Android by using, as shown in Fig-

ure 1, the high-level Java APIs available through the set of android.media.*

classes, such as: media.MediaPlayer, to control playback of audio/video �les and

streams towards the local devices; media.MediaRecorder, to record audio/video

from the local devices; media.AudioManager, to control volume and other play-

back tunables; media.AudioTrack to handle bu�ering of audio samples for play-

back; MediaCodec, to handle a plethora of available codecs for media playback

and streaming. These Java classes interact via the Java Native Interface (JNI)

with their C/C++ counterparts, which access the available audio services by

interacting with the AudioFlinger server through Binder. Within AudioFlinger,

up to 32 di�erent audio streams coming from di�erent applications are mixed

by the Mixer thread, normally activating at a period greater than 20 ms, and

having the ability to perform complex adaptations such as sample rate conver-

sions. To avoid possible audio glitches, this thread runs with a boosted priority

(using a negative nice value) within the SCHED_OTHER scheduling class. The Mixer

thread hands over the audio samples to the underlying user-space Android au-

dio Hardware Abstraction Layer (HAL), which ultimately sends the data to the

device drivers through the ALSA sub-system within the Linux kernel.

Developers willing to realize low-latency, interactive audio applications, typ-

ically have to make the extra step of implementing a JNI component in their

application, and use directly the available low-latency C/C++ audio APIs, ei-

ther the traditional OpenSL ES (available since Android 4.1), or the recently added

18



AAudio (available since Android 8.1), or the further Oboe over-arching API that

is capable of using either the former or the latter API. These APIs interact with

a particular component of the AudioFlinger server, called FastMixer, that has

a much shorter activation period, normally 2�5 ms, which in turn hands over

audio data to the audio HAL and ultimately to the kernel. In order to ensure

a glitch-free playback under such conditions, FastMixer keeps its functionality

at the bare minimum (i.e., up to only 8 tracks can be mixed, one of which is

the audio coming from the regular non-low latency path, and no resampling is

supported), and it has a real-time thread scheduled using the SCHED_FIFO policy.

In particularly demanding cases, it is possible to bypass the FastMixer entirely,

so to avoid its overheads, by requesting exclusive access to the audio device,

when initializing AAudio.

In what follows, the focus of this paper is on building low-latency audio

applications making use of the AAudio framework, particularly for the speci�c

case of exclusive access to the audio device8.

4.2. Low-latency Audio Pipeline in Android

Figure 2: Logical blocks involved in a low-latency Android AAudio playback.

The low-latency audio pipeline in Android has the structure exempli�ed in

Figure 2. A typical Java application that wants to use the low-latency audio

8A design suitable for the general case that includes an arbitrary processing graph of

computations producing the audio stream is deferred to future work.

19



pipeline must use JNI to de�ne the callback which generates the audio stream,

and must export the callback to the audio stream framework through the pro-

vided API. When the audio stream starts, AAudio generates a new thread and

sets its scheduling class to SCHED_FIFO through a Binder call. This thread loops

forever executing an application-supplied callback, which produces the audio

frames for playback through the ALSA subsystem. An audio frame contains a

sample for each available channel (e.g., for stereo playback, a frame has two

samples, for the left and right channels). Instead of using a blocking opera-

tion on the device (i.e., select, poll or epoll), the looping thread sleeps for an

amount of time determined by a timing model that wakes up the process when

there is su�cient room in the audio bu�er to be re�lled.

Figure 3: Exempli�cation of audio processing pipeline, showing the schedule of the real-time

application thread processing each burst (on bottom), the �ll level of the audio ring-bu�er

within the kernel (central) and the audio burst under playback at each time instant (on top).

Time on the x axis is expressed as multiples of b/S.

The application callback writes audio frames in chunks called bursts of size

b, that are queued into the playback ring-bu�er of the audio device, which has

a bigger size B set as a multiple of the burst size: B = k · b, k ∈ N+.

To ensure a smooth and glitch-free playback, the playback ring-bu�er is kept

20



Table 3: Typical audio parameters.

Symbol Value Value Description

(default) (low-latency)

S 48 48 Sampling rate (kHz)

b 480 64 Audio burst size (samples)9

B 7680 128�192 Audio bu�er size (samples)9

rt 160 2.67�4 Audio latency (ms)

as full as possible, as exempli�ed in the sample scenario depicted in Figure 3.

The application has typically a ramp-up phase at the beginning of the playback

(the �rst 4 bursts in the �gure), during which the full B-sized bu�er is �lled up,

followed by a nearly periodic activation, with additional b audio frames provided

by the callback at each activation (as visible for bursts 4, 7, 8, 9 in the �gure).

With a con�gured sampling rate of S frames per second for the audio device, this

results in one activation of the application callback every period of length b/S.

However, B is the parameter which directly a�ects the audio latency, because

the residency rt of an audio sample in the device ring-bu�er is: rt = B/S (as

visually highlighted in the �gure for burst 4).

When the real-time audio thread wakes-up, it may be scheduled immediately

(i.e., at time 6b/S in the �gure), or its execution may be postponed by the

scheduler due to other activities on the system (i.e., at time 4b/S in the �gure),

like non-preemptible kernel sections, serving interrupts or scheduling higher

priority tasks. As a consequence, the real-time thread may fail to compute

its next burst within its next activation time. In this case, the in-kernel bu�er

�ll-level goes lower than usual; however, this does not immediately result in an

audio glitch thanks to the bu�ered additional bursts (highlighted in the �gure

for burst number 5). An audio glitch only occurs if the audio processing is

delayed further, up to the hard deadline of B/b periods.

21



Typical values of these parameters are reported in Table 3 for non-interactive

playback scenarios, as well as low-latency audio applications.

4.3. Power Management on Linux/Android

Since Android 8, the default CPUFreq frequency-scaling governor is schedutil,

which adjusts the CPU frequency according to the utilization statistics com-

puted by the Window-Assisted Load Tracking [52] (WALT) or, in some experi-

mentations, the Per-Entity Load Tracking (PELT) algorithm [53]. This is done

by tracking the utilization of active and sleep times of individual tasks (per-

entity tracking), then using this information to estimate the active utilization,

on each CPU, by summing up the utilization of tasks belonging to each schedul-

ing class (SCHED_NORMAL, SCHED_RT, SCHED_DEADLINE). This way, schedutil is able to

choose the minimum frequency for each CPU that seems su�cient to handle the

overall load on the CPU, considering all of the tasks that are active within the

various scheduling classes. WALT has been introduced as an alternative to PELT

that showed a better behavior on asymmetric Android devices, as explained

in [52], where the two heuristics are compared in detail.

Di�erently from the Android fork, in the mainline Linux schedutil governor,

these utilization metrics are either not present (WALT) or not used (PELT) instead,

when it comes to choose the frequency to run a SCHED_RT or SCHED_DEADLINE task.

For these tasks, schedutil always sets the maximum available frequency. The

mainline behavior is particularly ine�cient for system-on-a-chip (SoC) architec-

tures that organize processors in clusters, where cores of the same cluster share

the same frequency: even a single SCHED_RT or SCHED_DEADLINE task on a single

core forces the whole cluster at the maximum frequency.

As di�erent devices have di�erent capabilities in CPU frequency scaling

and power management (e.g., big.LITTLE10, DynamIQ11), the Energy Aware

Scheduling (EAS) [54] framework has been recently added to the Linux kernel to

9Device-speci�c values.
10More information at: https://developer.arm.com/technologies/big-little.
11More information at: https://developer.arm.com/technologies/dynamiq.

22



provide a uni�ed view of these capabilities12. EAS manages metadata about the

frequency clusters topology, along with information about power consumption

and processing performance (called capacity) for each Operating Performance

Point (OPP) of each CPU. EAS also includes mechanisms for exploiting this

information at its best regarding task placement and OPP selection, based on

the current workload.

Since the CPU frequency can only be chosen among a set of prede�ned

OPPs imposed by the hardware and, sometimes, further reduced by software

constraints13, the process of translating the utilization to the CPU frequency is

performed by selecting the smallest OPP capable of satisfying the computational

demand.

5. Proactive Adaptation of Reservations on Android

In this section we detail our proposal for engineering low-latency audio ap-

plications on the Android platform. We advocate the use of the SCHED_DEADLINE

real-time scheduler, with GRUB-PA extensions, along with the schedutil governor.

Second, we deal with dynamic audio workloads by proposing an extension to

the AAudio API with a method that allows applications to declare their time-

varying workload demand. The approach is implemented and validated with

the use of SynthMark14, a recently available open-source audio pipeline emulator

for Android.

5.1. Deadline-Based Scheduling for Low-Latency Audio

This work focuses on low-latency audio applications making use of a single,

sequential, non-suspending callback, and the real-time thread spawned by AAudio

that executes the callback, then blocks until there is room in the audio bu�er.

The application may have other non real-time threads for its user interface

12More information at: https://developer.arm.com/open-source/energy-aware-scheduling.
13The vendors often provide access to a subset of the hardware OPPs depending, for exam-

ple, on thermal dissipation capabilities, or energy availability of the �nal product.
14https://github.com/google/synthmark/.

23



(UI), but since they are not part of the playback latency sensitive path, they

are ignored in this work. Interactions among the real-time and non-real time

threads, if any (e.g., for passing con�guration parameters from a UI), are usually

carried out through lock-free protocols. This application structure represents

a typical model for the majority of low-latency, interactive audio applications

that are nowadays developed.

As explained in Section 4, the callback is activated every time the audio

bu�er has enough space to allocate at least a burst. This, coupled with the

attempt to keep the bu�er as full as possible, results in the activation of the real-

time audio thread at every period of duration T = b/S. Each such activation

needs to complete ideally before the next activation period: when a burst is

put in playback onto the device, another burst is requested to be produced.

Therefore, each activation of the real-time thread has a relative soft deadline of

D = b/S, where the hard deadline is B/S instead.

We can thus apply the implicit deadline task model, as extensively stud-

ied in the real-time literature, and speci�cally, the CBS algorithm setting the

scheduling period and deadline equal to P = D = b/S, and setting the schedul-

ing runtime equal to the task worst-case execution time Q = C. The execution

time C, needed for the processing of each callback activation, is a value much

harder to characterize. It depends on: 1) the computational capabilities of the

hardware architecture where the application is running; 2) the maximum ca-

pacity of the CPU the real-time thread is scheduled on, whenever CPUs can

have asymmetric performance like in the case of Arm big.LITTLE architectures

widely used in mobile Android devices; and 3) the CPU frequency on architec-

tures supporting DVFS, as dynamically adapted by the scheduler and CPUFreq

subsystem.

The intrinsic dynamics of the application workload has also to be considered.

Even on a CPU running at a constant frequency, an application can have very

di�erent computational demands. This may depend, for instance, on the number

of musical notes played by the user for a virtual instrument, or the number and

complexity of active audio �lters/e�ects for an audio processing application.

24



Taking as a reference a virtual instrument synthesizer, such as a virtual piano,

because of the use of a sustain pedal or because of the notes decay, the number

of notes that are simultaneously played can dynamically vary in a typical range

between 0 to a few hundreds, resulting in a callback workload that undergoes

quick variations spanning across multiple orders of magnitude.

The computational requirement C is a fundamental parameter, that can be

used to: 1) analyze in advance and guarantee the schedulability of the tasks set

according to the real-time theory, 2) allocate the proper amount of resources

to the process, and 3) determine the most e�cient CPU frequency and, for

heterogeneous architectures, the most e�cient processor the task shall run on.

The next section outlines how we tackled all these challenges.

5.2. Adaptive Scheduling

To schedule the audio callback, Android currently uses SCHED_FIFO along with

either PELT or WALT as signals to drive the OPP selection via schedutil.

One of the main limitations to using this approach for low-latency audio

applications, is related to the reactive OPP selection policy these signals enforce.

Indeed, when either PELT or WALT are in use, when the audio workload suddenly

increases, it takes some time for the signal to detect the new CPU bandwidth

requirement correctly and trigger a frequency change. In the worst case, it could

take between 50 ms and 100 ms for PELT (depending on its con�guration) to

detect a 90% increase of the CPU bandwidth demand. For a low-latency audio

scenario where B = 256 and b = 64 at S = 48 kHz, the PELT detection latency

is too high when compared to the bu�ered audio of only 5.33 ms. Even when

WALT is in use, a 90% CPU utilization demand increase cannot be detected in less

than 10 or 20 ms, depending on its con�guration. Thus, independently from

the use of PELT or WALT, with just kernel space driven OPP selection, it is hard to

grant a glitch-free playback meeting the requirements of a dynamic-workload,

low-latency audio application.

The reactive nature of CPU frequency driving from kernel space cannot be

easily �xed without explicit hints from user-space. This is why a possible so-

25



lution has been so far to control the frequencies from user-space by explicitly

setting constraints on the minimum frequency the kernel can choose. Such ap-

proaches unfortunately manage to meet the tight requirements of low-latency

applications, sacri�cing the capability of the system to keep a low power con-

sumption pro�le. Also, they lack a speci�c API to de�ne bandwidth require-

ments in a platform-independent way. Platform independence is of paramount

importance when it comes down to building portable applications which can

still satisfy tight temporal constraints independently from the speci�c platform

on which they will be executed.

To tackle all these problems, we propose in this paper to extend the AAudio

API to allow the application to notify the underlying OS about imminent work-

load changes. This is done by dynamically supplying a workUnits parameter,

whose variations correlate with the expected workload changes of the real-time

thread callback. The schedutil governor can then immediately trigger an up-

frequency switch, even before starting the heavier computations, resulting in

the needed CPU frequency increase being anticipated, so to e�ciently and ad-

equately support the increase in processing power demand. This mechanism

allows audio applications to inform the OS about expected workload changes

so that the system can adjust the OPP to a value that satis�es the QoS re-

quirements of the application, preserving the critical objective of minimizing

the energy consumption. Note that this mechanism works in conjunction with

the existing OPP selection policy for the other scheduling classes, as schedutil

sums up the active utilization of SCHED_DEADLINE tasks, that is in�uenced by the

described workUnits noti�cation mechanism, with the estimates made indepen-

dently for tasks belonging to the other scheduling classes, and then picks the

minimum OPP able to satisfy the overall demand.

A simpli�ed representation of this architecture is presented in Figure 4,

showing a soft-synthesizer audio application that receives as an input (e.g.,

from the touchscreen or via a MIDI peripheral) a new number of requested

notes to play or a di�erent �lter con�guration for audio processing. This input

information is used to update the internal application con�guration and to notify

26



the system of the future workload as workUnits, a number that for example can

represent the number of played notes if playing samples or an estimation of the

computational e�ort introduced by each active �lter in an audio synthesizer. In

order to ease development of an audio application across a multitude of di�erent

devices, as commonly needed for Android applications, the workUnits hint is

provided in a platform-independent way, and the framework maps its values to

resource demands as monitored on-line during the application execution.

Figure 4: Example block diagram of an audio application using the dynamic bandwidth

allocation API.

The translation from workUnits to the actual OPP can be designed by pre-

serving the SCHED_FIFO scheduling policy, but forcing the CPUFreq governor to use

a user-space de�ned utilization for the given task, that would directly be trans-

lated to a minimum CPU frequency value. The Linux kernel does not support

this schedutil extension yet, but it is currently under discussion on LKML15.

In this paper, we undertake an alternative approach, based on the use of the

SCHED_DEADLINE scheduling class, as shown in Figure 5. The AudioTask noti�es the

currently requested workUnits to the HostCPUManager which, extending concepts

from [9, 34], internally uses a Predictor16 to estimate the upcoming computing

15https://lwn.net/Articles/751361/.
16In [9, 34], we experimented with feedback-based control strategies with a split of function-

ality between a predictor component, responsible for estimating the upcoming task instance

execution time requirements, and a controller component, that uses the latter information to

27



time of the callback according to statistics of the past observed processing times,

and by modulating the obtained value through the supplied workUnits values.

To produce valid heuristics, the Predictor requires reliable and precise mea-

surements on the callback runtime. Measuring this time by executing the

clock_gettime() syscall before and after running the callback, and �nally sub-

tracting the two results is not a reliable approach. In fact, the �nal value can be

a�ected by both the CPU frequency changes happened during the callback exe-

cution, and the capacity of the CPUs where the task executing the callback has

been executed, e.g., a big or LITTLE CPU. Both these problems have been solved

by extending the sched_getattr() syscall to return the next absolute deadline

d and the remaining CBS server runtime q, where the scheduler already scales

this last value according to the CPU frequency and capacity. These values can

be sampled before and after the callback execution, thus, by also knowing the

actual CBS computing time Q that the task can use every period T , we can

compute the normalized execution time Cm of the callback as:

Cm = qstart − qend +Q

⌊
dend − dstart

T

⌋
. (3)

Here, the rightmost term is almost always zero: whenever the callback completes

within its relative deadline D = b/S, according to the CBS rules the absolute

deadline is not updated, so dend = dstart. For those rare cases in which the

callback completes beyond its (soft) deadline (e.g., burst 5 in Figure 3), at the

end of the callback, the CBS algorithm will have recharged the budget of a

quantity equal to Q for each deadline postponement of the scheduling period

P = T .

After each task activation callback completes, its normalized runtime Cm

is measured, and the Predictor updates its stored runtime statistics. The esti-

mated runtime for the next activation k + 1, Ce [k + 1], is computed based on

compute the reservation runtime needed to meet various desirable control goals. This prior

experience in control strategies and software architectures for adaptive scheduling of multi-

media applications, constitutes useful background that helped us shaping our proposed new

proactive adaptation strategy for this paper.

28



the past observed samples. This can be done in a variety of ways. For exam-

ple, in our prior works [12, 11, 9], we have been using and comparing various

techniques for workload estimation in multimedia use-cases, including moving

averages, percentile estimators and others, possessing di�erent computational

and memory demands, and resulting in di�erent properties and behaviors for

the closed-loop system. In this work, we chose to use a particularly simple yet

e�ective predictor, implementing an exponentially weighted moving average

Ce [k + 1] = αCm + (1− α)Ce [k] , (4)

with asymmetric smoothing constants α: if the Cm value is bigger than Ce [k],

then α = 0.95 is used, otherwise α = 0.1 is used. This allows for a fast re-

action on sudden workload growth (OPP increase), and a slower reaction in

response to workload decreases (OPP decrease). The predictor stores an inde-

pendent moving average for every observed workUnits value within a hashmap,

where at each callback completion the stored runtime value associated to the

current workUnits is updated according to Equation (4). The advantages of us-

ing a hashmap are that it does not require prior knowledge of the minimum or

maximum value of workUnits (as an array would need), and guarantees e�cient

access and modify operations. When the Predictor is asked to estimate the next

activation computing time, the following cases may happen:

� the hashmap is empty: the maximum computing time, corresponding to a

con�gurable constant bandwidth, is returned. For example, 0.94 has been

used in our experiments.

� workUnits found in the hashmap: the value stored in the hashmap is re-

turned.

� workUnits smaller than any other value in the hashmap: to be conservative,

the duration for the smallest workUnits value in the hashmap is used.

� workUnits bigger than any other value in the hashmap: the returned com-

puting time is computed by intersecting the linear regression among the

29



available elements in the hashmap. In absence of any other information

on the processing workload, we make the assumption that the callback

computing time is likely a linear function in the number of workUnits, for

simplicity.

The pessimism of this algorithm prevents audio glitches, as higher OPP than

strictly needed are used at application start-time, when the workload statis-

tics are not available to the Predictor yet, and tasks are assigned to CPUs

respecting Eq. (2). Note that alternatives are possible for the just presented

heuristic. Indeed, in our prior investigations [13], we proposed a �FQDB Li-

brary�, that used to have a SQLite-based persistent storage of the resource

requirements for various applications, that could either be populated on-line

during normal operation, or � more interestingly � during a separate pro�ling

phase. This would consist in running real-time code excerpts of the application

right after installation on a device. In the same works, both linear and custom,

application-supplied, non-linear interpolation was proposed, in order to support

the framework in �guring out the right resource allocation for those points in the

con�guration space that occur anyway for the �rst time, and for which we would

not have information in the persistent storage. However, further discussion of

these details are left out of the present work, due to space reasons.

The BandwidthAllocator receives the latest estimated Ce value, which is used

to update the SCHED_DEADLINE runtime Q. Since the predicted Ce derives from a

slightly modi�ed average value of the previously measured runtimes, the noise

in the measurements may still cause underestimations in the bandwidth com-

putation, so some margins are added to the value that is �nally used to update

the parameters of the scheduler:

Q = mmCe +mo, (5)

where mm ≥ 1 is a con�gurable proportional margin and mo ≥ 0 is an o�set.

This operation is performed every time the application updates the workUnits

number, and after a given number of written bursts, e.g., 30 in our experiments.

Thanks to the use of the GRUB-PA policy, the new SCHED_DEADLINE workload is

30



immediately communicated by the scheduler to schedutil, which takes care of

updating the CPU frequency accordingly.

Figure 5: Dynamic bandwidth allocation: logical blocks.

Summarizing, our proposed framework enables Android low-latency audio

applications relying on the AAudio API to automatically leverage predictable

execution and temporal isolation provided by the SCHED_DEADLINE scheduler in

the Linux kernel. With no code changes, the application is attached a CPU

reservation with parameters that are automatically set by the framework. Ad-

ditionally, for applications with workload expected to undergo signi�cant and

abrupt changes (e.g., a synthesizer with a variable number of voices), developers

can leverage a new API notifying workload changes as a workUnits signal, which

has been designed to be a platform-independent means for notifying the ker-

nel of the expected relative variability of the workload in upcoming processing

cycles.

5.3. SynthMark

SynthMark is a benchmarking tool that implements a real audio synthesizer

generating an audio stream that, instead of being sent to the real Android

audio pipeline, is sent to a virtual audio pipeline and consumed by a virtual

audio sink, both embedded in the tool. The internals of SynthMark have been

designed for realistic emulation of the behavior of an Android audio application

using the real low-latency audio pipeline features. SynthMark has been designed

and developed to provide more �exibility for Android OS developers when cus-

tomizing the audio subsystem concerning con�gurations, programming models,

31



and scheduling algorithms, and allows for obtaining detailed and comprehensive

performance statistics so that it becomes easier to identify in advance strengths

and weaknesses of the approaches under development. Being SynthMark platform

independent, it also allows for measuring the e�ects of the underlying kernel on

latency, independently of the Android audio framework.

As shown in Figure 6, what in Android would be the audio application, in

SynthMark is implemented by the Synth module that is, in fact, a real polyphonic

audio synthesizer that produces audio samples generated with a chain of oscil-

lators, �lters and ADSR (Attack, Decay, Sustain, Release) modules, and whose

computational e�ort depends on the number of requested notes. The Synthmod-

ule exports a callback that is quasi-periodically executed by the VirtualAudioSink

module, which implements a thread whose scheduling parameters can be mod-

i�ed and, by default, on Linux kernel based systems, uses SCHED_FIFO. After the

application callback is executed, VirtualAudioSink performs a write operation on

the (virtual) audio sink to notify the availability of new audio samples, resulting

in a blocking operation that waits until the bu�er has enough space to contain

the newly produced data. VirtualAudioSink also counts under-runs occurring

whenever the audio bu�er gets empty.

After every callback execution, the VirtualAudioSink measures its duration

and forwards this value, together with the current number of notes played, to the

underlying HostTools component, to keep track of workload changes. HostTools

takes care of storing callback statistics and adjusting the bandwidth through

internal heuristics. It will be described and evaluated in the next section.

Figure 6: SynthMark logical blocks in relationship with the Android low-latency audio pipeline.

32



6. Experimental Results

To validate the proposed solution and evaluate its performance compared

with the current Android approach on both energy e�ciency and audio la-

tency, we performed a set of experiments using an extension of the SynthMark

tool, which is the de-facto standard used by Android developers to bench-

mark the audio subsystem. The extended SynthMark tool is available at https:

//github.com/balsini/synthmark/tree/JSS-2018. The experiments are run on a

HiKey 960 board17, which embeds a big.LITTLE SoC with DVFS features.

This board, along with others from HiKey, constitute ideal development and

prototyping boards for Android-based development, because they possess the

typical hardware set-ups that can be found in nowadays and future upcoming

mobile Android-based platforms, with advanced power management features as

coming from the adoption of big.LITTLE architectures. Also, they come with

a complete set of drivers for the Android branch of the Linux kernel. The ref-

erence board was set up with our extended Android Linux kernels18. While the

audio latency performance was internally measured by SynthMark, the energy

consumption was physically measured with an ACME CAPE19 energy meter

connected to the HiKey 960 board. This device allows for a programmatic ac-

cess to power consumption measurements throughout an experiment, so that the

needed readings can be automatically gathered from the software tools driving

the experimentation. On the software side, the SynthMark tool has been used by

pinning it to a big CPU. This was done to ensure fair comparisons by ruling

out possible side-e�ects due to tasks migrations and CPU capacities variations

among di�erent cores. However, this set-up closely mimics the single-threaded

nature of several low-latency audio processing applications, which normally have

a single real-time thread taking care of audio processing, and other threads inter-

17More information at: https://www.96boards.org/product/hikey960/.
18https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9, and

https://github.com/balsini/linux/tree/JSS-2018-android-hikey-linaro-4.9-dl-integration.
19More information at: https://baylibre.com/acme/.

33



acting with the user for monitoring, control and con�guration purposes, which

are not time critical and can be run at non real-time priority.

In the following, we report experimental results carried out over the above

mentioned set-ups, describing �rst a few calibration and tuning experiments

that were needed as preliminary operations, then highlighting the advantages of

the proactive adaptation mechanism in terms of OPP adaptation latency, in the

particularly challenging scenario of a step in the expected workload, and �nally

in a generic scenario involving the execution of SynthMark with a randomly

varying CPU workload.

6.1. Calibration and Tuning

In a preliminary calibration phase, the VoiceMark benchmark of SynthMark

has been used to evaluate the total CPU utilization for a given number of active

audio voices. We found out that 210 voices were able to saturate our big CPU

when running at the maximum frequency.

The following experiments used the LatencyMark benchmark of SynthMark,

with a burst size of b = 64 and a number of workUnits that dynamically varied

every 3 seconds.

An initial tuning phase was aimed at evaluating the total audio latency re-

quired when using the current Android low-latency approach based on SCHED_FIFO

and WALT, with its default window size of 20 ms. Note that this experiment is

used only for tuning the real-time performance of SynthMark, so no power con-

sumption has been measured throughout its execution. This evaluation con-

sisted of alternating the number of voices from 5 to 185, corresponding to uti-

lization of the big CPU ranging from 2.38% to 88%, representing the most

challenging workload pattern for the heuristics used by the kernel scheduler. As

shown in Figure 7a, the WALT utilization followed the real demand as due to the

increase in the number of voices, reaching the �nal steady state with a delay

of approximately 80 ms because of the WALT window size, which also postponed

the frequency update. In this example, the system was able to reach the proper

OPP after about 60 ms after the workload increase, about 20 ms before the

34



steady state condition, since the CPU utilization sampled at that time already

corresponded to the �nal OPP. Because of this frequency adaptation delay, when

the application load increases, the system is not capable of instantly satisfying

its computational requirements, thus generates audio glitches with relatively

small bu�er sizes.

With the previously described con�guration, a bu�er size of 20 bursts was

necessary to achieve smooth audio playback, that on the other hand introduced

an audio latency of approximately 26.67 ms. When the workload decreases

instead, the system kept an OPP higher than required for a small amount of

time, resulting in a modest waste of energy.

6.2. OPP Adaptation Latency

The next experiment was run with WALT disabled and shows how, by dynami-

cally adapting the task bandwidth according to the number of workUnits and the

callback duration, SCHED_DEADLINE can automatically adjust the OPP. This ex-

periment has the same con�guration previously shown, with a periodic workUnits

variation between 5 and 185. The safe margins of the BandwidthAllocator are

used to avoid underestimations of the required bandwidth to compensate the

measurement noise and the uncertainty of the upcoming execution times, and

have been empirically tuned after preliminary testing as mm = 1.005 and

mo = 0.041. Figure 7b presents the experimental results for this scenario.

In this case, since WALT was not active, schedutil evaluated the required CPU

bandwidth as a sum of the PELT utilization reported by the SCHED_NORMAL (CFS),

SCHED_FIFO and SCHED_RR (RT), and SCHED_DEADLINE (DL) scheduling classes. In

our experiments, SynthMark was the only application running on the system;

thus, the sampled PELT utilization had almost no interference from other tasks,

except interrupt handlers or background activities. This plot shows that the

new deadline-based approach with dynamic bandwidth reservation was able to

raise the system utilization in less than 0.01 ms and the frequency adjustment

is requested in approximately 0.054 ms after the workload change. By adding

the additional time required by the CPU to switch the OPP on our HiKey

35



960 platform, this approach required about 0.45 ms to complete the frequency

adaptation after the workload increased.

0

100

200

W
or

kU
ni

ts

0

25

50

75

100

Ut
iliz

at
io

n
(%

)

WALT

0.00 15.72 31.43 47.15 62.86 78.58 94.29 110.01
Time (ms)

1000

1500

2000

Fr
eq

ue
nc

y
(M

Hz
)

(a)

0

100

200

W
or

kU
ni

ts

0

25

50

75

100

Ut
iliz

at
io

n
(%

)

DL + RT + CFS

0.0000 0.0149 0.0297 0.0446 0.0594 0.0743 0.0891
Time (ms)

1000

1500

2000

Fr
eq

ue
nc

y
(M

Hz
)

(b)

Figure 7: SynthMark utilization perceived by schedutil using SCHED_FIFO with WALT (7a) and by

the Predictor (7b), and frequency adjustment at varying workUnits values.

Since the OPP update is almost immediately performed before the workload

change, the callback runs at a CPU frequency that satis�es its timing require-

ments. The pro�tability of this behavior for the reactiveness of the audio task

was demonstrated by LatencyMark, which returned that the system is stable with

a bu�er size of 2 bursts, corresponding to 2.67 ms.

6.3. Randomly Varying Workload

In order to evaluate the quality of this approach in more generic and realistic

workload scenarios, the following experiments were run to evaluate SCHED_FIFO

with WALT and the adaptive bandwidth allocation with SCHED_DEADLINE approaches

by running LatencyMark with a random number of workUnits at every step, still

in the range between 5 and 185, for a total duration of 60 seconds. The seed

of the random number generator has been �xed to allow the reproducibility

of the experiment and to provide the same workUnits random sequence when

comparing the two approaches.

36



Figures 8a and 8b show the tight relationship between the CPU frequency

and the number of workUnits in both the SCHED_FIFO with WALT and the adaptive

bandwidth allocation with SCHED_DEADLINE. If the adaptive bandwidth alloca-

tion approach can keep the audio latency at 2.67 ms, on the other hand, the

estimation of the utilization is more pessimistic than the one performed by WALT.

(a) (b)

Figure 8: SynthMark behavior using SCHED_FIFO with WALT (8a) and with adaptive bandwidth

allocation (8b), with randomly varying workUnits values.

For the sake of completeness, we also tested the current solution implemented

by many low-latency audio application developers, that force the CPU frequency

to stay �xed at the maximum allowed value, and using SCHED_FIFO, similarly to

what happens in a mainline Linux kernel when any SCHED_RT or SCHED_DEADLINE

task is active. Concerning the audio latency, this solution achieved the same

results of the adaptive bandwidth allocation approach, reducing the delay to

2.67 ms, but forced the CPU to run at its maximum OPP, also when not

required.

Our proposed proactive adaptation of the computational bandwidth with

SCHED_DEADLINE re�ects on the CPU frequency selection that, as shown in Fig-

ure 9, tends to prefer higher CPU frequencies compared to SCHED_FIFO using

WALT with dynamic workUnits, while the �xed workload approach always uses

the maximum OPP. Being the single core power line not accessible, a direct

measurement of how this behavior a�ects the energy consumption of a single

core cannot be performed on the device. Instead, it is possible to derive a rough

37



estimation by using the o�cial, normalized power consumption metrics included

in the Device Tree of the kernel20, that are used by the energy model imple-

mented in the Linux kernel to �nd the most e�cient task placement among the

available CPUs of the device. For each analyzed frequency governor approach

W , given the normalized power consumption in the Device Tree as Pf and the

measured residency time of the task when using the governor W within the fre-

quency f as tWf , the normalized energy consumption EN (W ) has been estimated

as:

EN (W ) =
∑
f

tWf Pf .

As summarized in Table 4 and visually depicted in Figure 9, it turned out

that, when using SCHED_FIFO with the standard WALT based frequency adaptation,

the energy consumption of the CPU was approximately 96.16, but under these

conditions the achieved audio latency is poor (26.67ms). Low-latency audio at

2.67ms can be recovered in standard Android by keeping the frequency �xed

at its maximum, realizing a much greater energy consumption of the CPU of

nearly 172.71. Using the adaptive bandwidth approach with SCHED_DEADLINE as

proposed in this paper, instead, we can achieve both a glitch-free low-latency

playback at 2.67ms, and realize a signi�cant energy saving, with a CPU energy

consumption of 102.17.

6.4. Measured Energy Consumption

Finally, we provide a real measurement of the total energy consumption of

the HiKey 960 board, obtained with the ACME CAPE energy meter directly

connected to the board power supply, to compare the e�ciency of the di�erent

approaches. Clearly, we expected the meter to report higher energy consump-

tions for the overall platform, in corrispondence of higher energy consumption

20The energy consumption metrics for HiHey boards can be found at the follow-

ing link: https://android.googlesource.com/kernel/hikey-linaro/+/android-hikey-linaro-4.9/arch/

arm64/boot/dts/hisilicon/hi3660-sched-energy.dtsi. Please, refer to CPU_COST_A72 �eld for the en-

ergy consumption of an HiKey 960 active big CPU.

38



90
3.

0

14
21

.0

18
05

.0

21
12

.0

23
62

.0

Frequency (MHz)

0

10

20

30

40

50

60

Re
sid

en
cy

 (s
)

WALT
DL
WALT (static workload)

Figure 9: Frequency residency comparison between the WALT and the adaptive bandwidth

allocation approaches. The detailed data is shown in Table 4.

for the CPU only, estimated as described just above. Indeed, it turned out

that when using SCHED_FIFO with WALT, the total board energy consumption was

206.35 Ws (Watt · second) while, when forcing the CPU frequency to stay �xed

at the maximum OPP, the total energy consumption reached about 256.93 Ws.

With our proactive adaptation approach using SCHED_DEADLINE, the board had a

total energy consumption of 210.22 Ws instead.

As summarized in Table 5, by using SCHED_FIFO with WALT it is possible to

either reduce the energy consumption increasing the latency (WALT with dynamic

workUnits) or reduce the latency increasing the energy consumption (forcing the

CPU at the maximum OPP). It is not possible to achieve low latency with low

energy consumption. On the other hand, using our proposed adaptive band-

width allocation with SCHED_DEADLINE, it is possible to achieve a low latency

(2.67ms, the same latency obtained with CPU blocked at its maximum OPP)

while consuming a small amount of energy (210.22 Ws, only slightly larger than

the energy consumed by WALT with dynamic workUnits). In other words, our pro-

posed approach outperformed what was achieved under SCHED_FIFO using WALT,

with a 40% reduction in the CPU energy consumption for the same latency.

39



Table 4: Frequency residency comparison and estimation of normalized CPU energy con-

sumption based on the kernel energy model data, for the WALT and the adaptive bandwidth

allocation approaches.

Frequency residency (s)

Frequency Normalized power SCHED_FIFO SCHED_FIFO Adaptive

consumption from with WALT with CPU at bandwidth

Device Tree (dynamic) max frequency

903 404 20.976 0 17.845

1421 861 7.133 0 7.608

1805 1398 3.240 0 5.568

2112 2200 9.903 0 6.452

2362 2848 19.391 60.644 23.325

Normalized energy consumption 96.158 172.713 102.168

Table 5: Summary of the audio latency and energy consumption obtained under the SCHED_FIFO

with WALT (unmodi�ed Android), with the CPU statically blocked at its maximum frequency,

and the adaptive bandwidth allocation approaches.

SCHED_FIFO SCHED_FIFO Adaptive Improv. wrt Improv. wrt

with WALT with CPU at bandw. WALT (dyn.) max freq.

(dynamic) max freq. (%) (%)

Audio La-

tency (ms)

26.67 2.67 2.67 90% 0%

CPU energy

Cons.

96.16 172.71 102.17 −6.25% 40%

Total energy

Cons. (Ws)

206.35 256.93 210.22 −1.88% 18.18%

40



7. Conclusions

This paper presents an approach to reduce the audio latency for professional

grade multimedia applications in the speci�c context of the Android OS and

its support for the execution of this type of applications. This is achieved by

extending the Android API with 1) a mechanism to provide proactively hints

(workUnit) on the expected workload change of the audio application, 2) a sub-

system that forecasts the application computing requirements through heuristics

combining prior observations with the supplied workUnit hint, and 3) an exten-

sion to SCHED_DEADLINE to return execution time measurements for the latency

sensitive task, scaled according to both the frequency and capacity of the CPU

on which the task was executed.

In the performed experimentation, carried out with an audio latency bench-

mark running on a single CPU, the presented solution outperforms the tradi-

tional energy e�cient approach by reducing the audio latency by ten times,

at the cost of a limited energy consumption increase of approximately 6.25%.

Moreover, it provides a considerable energy consumption reduction of almost

40%, achieving the same audio latency with respect to the traditional low-

latency approach.

8. Future Work

As regards possible future work, a more extended evaluation is planned, with

more use cases and concurrent multi-threaded workloads, as well as tweaking

further the internal parameters that are available in our proposed framework and

the proposed runtime adaptation logic. For example, there might be construc-

tive and e�ective means for mixing the proactive adaptation approach proposed

herein, with other feedback-based mechanisms for the estimation and predic-

tion of the runtime needed under various workload conditions [8, 9, 12]. This

way, we plan to gain a more comprehensive assessment of the advantages of the

proposed technique with a wider set of workloads, and possibly further enhance

its e�ectiveness. Another possibility is the design of more e�ective means for

41



providing a starting reservation runtime to the scheduler, for example merging

with what we proposed in some of our prior investigations [13].

We also plan to extend the approach to other Android sub-systems, for ex-

ample addressing use-cases including a multitude of real-time tasks, related to,

e.g., the audio processing pipeline, the video processing pipeline, along with

other communication-related real-time tasks. This is expected to be manage-

able, as the envisioned approach leverages SCHED_DEADLINE that already supports

scheduling and isolation of multiple tasks over multi-processors. We expect for

example to gain an advantage from the application of the hierarchical extension

to SCHED_DEADLINE we recently posted on LKML21. Additional issues that would

arise in this context are related to designing Android-speci�c meaningful ways to

deal with possible temporary overload situations. For example, we might need

to integrate, adapt and expand the supervisor approach as envisioned in [12].

Additional directions of future research regard also extending the proposed

technique so as to e�ectively deal with additional hardware platforms with novel

power management features that signi�cantly deviate from the model of the

HiKey 960 device used in this paper. For example, the recently announced

Arm DynamIQ architecture11 promises to bring signi�cant power-saving ad-

vantages over the already established and widely deployed big.LITTLE CPUs,

but the proper consideration of such platforms is expected to need extensions

to our proposed scheme. Moreover, other recently available platforms exist that

manage to achieve excellent energy savings when idling the CPU, so letting

tasks complete as fast as possible at the maximum frequency and maximizing

CPU idle time slices is claimed to realize competitive energy consumption, as

compared to DVFS-based approaches. An important comparison that has to be

considered is then between our frequency scaling solution and such a race-to-idle

scheduling policy.

Another critical aspect that will be considered is that, when in Android there

are multiple coexisting low-latency audio applications, their samples are sent to

21More information at: https://lkml.org/lkml/2017/3/31/658.

42



the FastMixer, which performs the mixing and outputs the obtained signal to

the audio device. Multiple interdependent tasks that need to complete within a

precise deadline are also present in audio applications that exploit the available

multi-processor features, using a parallel programming paradigm for audio pro-

cessing. These scenarios may be e�ectively tackled through further extensions

of SCHED_DEADLINE, as well as more complex techniques for computing the needed

scheduling parameters for not having deadline misses, based on more complex

analyses of concurrent real-time direct-acyclic graphs (DAGs) of computations.

These are planned to be investigated in future works.

Finally, a further extension idea might be the one to consider, as done in our

recent preliminary investigation [55], that the power consumption of a modern

complex CPU while processing depends in a non-negligible way on the workload

type that is being run. So, this may add one further dimension and further com-

plexity to the already challenging problem of scheduling real-time tasks (along

with non-real time ones) on multi-core, DVFS-capable heterogeneous mobile

platforms, in an energy-e�cient way. Whether or not an e�cient mechanism

dealing with this additional detail level is worth to pursue, would need further

investigation.

Acknowledgements

We would like to thank the anonymous reviewers for having provided detailed

and precise comments, allowing us to improve the clarity and readability of this

paper.

References

[1] G. Sigismondi, Chapter 37 - personal monitor systems, in: G. M.

Ballou (Ed.), Handbook for Sound Engineers (Fourth Edition),

fourth edition Edition, Focal Press, Oxford, 2008, pp. 1413 � 1435.

doi:https://doi.org/10.1016/B978-0-240-80969-4.50041-9.

43



URL http://www.sciencedirect.com/science/article/pii/

B9780240809694500419

[2] D. M. Howard, J. Angus, Acoustics and Psychoacoustics, 2nd Edition,

Butterworth-Heinemann, Newton, MA, USA, 2000.

[3] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the

Linux kernel, Software: Practice and Experience 46 (6) (2016) 821�839,

spe.2335. doi:10.1002/spe.2335.

[4] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, Resource kernels: a

resource-centric approach to real-time and multimedia systems, Vol. 3310,

1997, pp. 3310 � 3310 � 15. doi:10.1117/12.298417.

URL https://doi.org/10.1117/12.298417

[5] J. A. Stankovic, C. Lu, S. H. Son, G. Tao, The case for feedback control real-

time scheduling, in: Real-Time Systems, 1999. Proceedings of the 11th Eu-

romicro Conference on, 1999, pp. 11�20. doi:10.1109/EMRTS.1999.777445.

[6] C. Lu, J. A. Stankovic, S. H. Son, G. Tao, Feedback control real-time

scheduling: Framework, modeling, and algorithms*, Real-Time Systems

23 (1) (2002) 85�126. doi:10.1023/A:1015398403337.

URL https://doi.org/10.1023/A:1015398403337

[7] L. Abeni, L. Palopoli, G. Lipari, J. Walpole, Analysis of a reservation-based

feedback scheduler, in: 23rd IEEE Real-Time Systems Symposium, 2002.

RTSS 2002., 2002, pp. 71�80. doi:10.1109/REAL.2002.1181563.

[8] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, L. Abeni, Adaptive reser-

vations in a linux environment, in: Proceedings. RTAS 2004. 10th IEEE

Real-Time and Embedded Technology and Applications Symposium, 2004.,

2004, pp. 238�245. doi:10.1109/RTTAS.2004.1317269.

[9] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, L. Palopoli, Qos man-

agement through adaptive reservations, Real-Time Systems 29 (2) (2005)

44



131�155. doi:10.1007/s11241-005-6882-0.

URL https://doi.org/10.1007/s11241-005-6882-0

[10] T. Cucinotta, L. Palopoli, L. Marzario, Stochastic feedback-based control

of qos in soft real-time systems, in: 2004 43rd IEEE Conference on Decision

and Control (CDC) (IEEE Cat. No.04CH37601), Vol. 4, 2004, pp. 3533�

3538 Vol.4. doi:10.1109/CDC.2004.1429260.

[11] L. Palopoli, T. Cucinotta, Qos control for pipelines of tasks using mul-

tiple resources, IEEE Transactions on Computers 59 (2009) 416�430.

doi:10.1109/TC.2009.116.

URL doi.ieeecomputersociety.org/10.1109/TC.2009.116

[12] L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari, AQuoSA � adaptive

quality of service architecture, Software � Practice and Experience 39 (1)

(2009) 1�31. doi:http://dx.doi.org/10.1002/spe.v39:1.

[13] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, G. Lipari, On the in-

tegration of application level and resource level qos control for real-time

applications, IEEE Transactions on Industrial Informatics 6 (4).

[14] T. Cucinotta, L. Abeni, L. Palopoli, G. Lipari, A robust mechanism for

adaptive scheduling of multimedia applications, ACM Trans. Embed. Com-

put. Syst. 10 (4) (2011) 46:1�46:24. doi:10.1145/2043662.2043670.

URL http://doi.acm.org/10.1145/2043662.2043670

[15] T. Cucinotta, D. Faggioli, G. Bagnoli, Low-latency audio on linux by means

of real-time scheduling, in: Proceedings of the Linux Audio Conference

(LAC 2011), Maynooth, Ireland, 2011, pp. 135�142.

[16] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-

time systems, in: Proceedings of the IEEE Real-Time Systems Symposium,

Madrid, Spain, 1998, pp. 4�13. doi:10.1109/REAL.1998.739726.

[17] C. S. Stangaciu, M. V. Micea, V. I. Cretu, Energy e�ciency in real-time

systems: A brief overview, in: 2013 IEEE 8th International Symposium

45



on Applied Computational Intelligence and Informatics (SACI), 2013, pp.

275�280. doi:10.1109/SACI.2013.6608981.

[18] M. Bambagini, M. Marinoni, H. Aydin, G. Buttazzo, Energy-aware schedul-

ing for real-time systems: A survey, ACM Transactions on Embededded

Compututing Systems 15 (1) (2016) 7:1�7:34. doi:10.1145/2808231.

URL http://doi.acm.org/10.1145/2808231

[19] L. Hu, W. Hu, R. Li, C. Li, Z. Zhang, A time slices based novel dvs algo-

rithm for embedded systems, in: 2015 IEEE 17th International Conference

on High Performance Computing and Communications, 2015 IEEE 7th In-

ternational Symposium on Cyberspace Safety and Security, and 2015 IEEE

12th International Conference on Embedded Software and Systems, 2015,

pp. 1500�1505. doi:10.1109/HPCC-CSS-ICESS.2015.163.

[20] P. Pillai, K. G. Shin, Real-time dynamic voltage scaling for low-power

embedded operating systems, in: Proceeding of the 18th ACM Symposium

on Operating Systems Principles, 2001.

[21] H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez, Power-aware scheduling

for periodic real-time tasks, IEEE Transactions on Computers 53 (5) (2004)

584�600.

[22] Y. Zhu, F. Mueller, Feedback edf scheduling exploiting dynamic voltage

scaling, in: Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded

Technology and Applications Symposium, 2004., Toronto, Canada, 2004,

pp. 84�93. doi:10.1109/RTTAS.2004.1317252.

[23] J. H. Kim, D. Gangadharan, O. Sokolosky, A. Legay, I. Lee, Extensible

energy planning framework for preemptive tasks, in: 2017 IEEE 20th In-

ternational Symposium on Real-Time Distributed Computing (ISORC),

2017, pp. 32�41. doi:10.1109/ISORC.2017.14.

[24] I. Shin, I. Lee, Compositional real-time scheduling framework, in: 25th

46



IEEE International Real-Time Systems Symposium, 2004, pp. 57�67.

doi:10.1109/REAL.2004.15.

[25] Y. Zhu, F. Mueller, Exploiting synchronous and asynchronous dvs for feed-

back edf scheduling on an embedded platform, ACM Trans. Embed. Com-

put. Syst. 7 (1) (2007) 3:1�3:26. doi:10.1145/1324969.1324972.

URL http://doi.acm.org/10.1145/1324969.1324972

[26] N. Almoosa, W. Song, Y. Wardi, S. Yalamanchili, A power capping con-

troller for multicore processors, in: 2012 American Control Conference

(ACC), 2012, pp. 4709�4714. doi:10.1109/ACC.2012.6314995.

[27] Z. Zhang, X. Chen, D.-j. Qian, C. Hu, Dynamic voltage scaling for real-time

systems with system workload analysis, IEICE transactions on electronics

93 (3) (2010) 399�406.

[28] J. R. Lorch, A. J. Smith, Improving dynamic voltage scaling algorithms

with pace, in: In Proceedings of the ACM SIGMETRICS 2001 Conference,

Cambridge, MA, 2001, pp. 50�61.

[29] J. Pouwelse, K. Langendoen, H. Sips, Energy priority scheduling for vari-

able voltage processors, in: Int. Symposium on Low Power Electronics and

Design (ISLPED), 2001, pp. 28�33.

[30] J. Pouwelse, K. Langendoen, H. Sips, Dynamic voltage scaling on a low-

power microprocessor, in: 7th ACM Int. Conf. on Mobile Computing and

Networking (Mobicom), 2001, pp. 251�259.

[31] P. Kumar, M. Srivastava, Predictive strategies for low-power rtos schedul-

ing, in: Proceedings of the IEEE International Conference On Computer

Design: VLSI In Computers & Processors (ICCD '00), Austin, Texas, USA,

2000, pp. 343�348.

[32] A. Qadi, S. Goddard, S. Farritor, A dynamic voltage scaling algorithm for

sporadic tasks, in: Proceedings of the 24th Real-Time Systems Symposium,

Cancun, Mexico, 2003, pp. 52 � 62.

47



[33] W. Yuan, K. Nahrstedt, Energy-e�cient soft real-time cpu scheduling for

mobile multimedia systems, in: Proceedings of the Nineteenth ACM Sym-

posium on Operating Systems Principles, SOSP '03, ACM, New York, NY,

USA, 2003, pp. 149�163. doi:10.1145/945445.945460.

URL http://doi.acm.org/10.1145/945445.945460

[34] T. Cucinotta, F. Checconi, L. Abeni, L. Palopoli, Adaptive real-time

scheduling for legacy multimedia applications, ACM Trans. Embed. Com-

put. Syst. � Special Section on Embedded Systems for Real-Time Multi-

media 11 (4) (2013) 86:1�86:23. doi:10.1145/2362336.2362353.

URL http://doi.acm.org/10.1145/2362336.2362353

[35] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, A resource allocation

model for qos management, in: Proceedings Real-Time Systems Sympo-

sium, 1997, pp. 298�307. doi:10.1109/REAL.1997.641291.

[36] S. Ghosh, R. Raj Rajkumar, J. Hansen, J. Lehoczky, Integrated qos-aware

resource management and scheduling with multi-resource constraints, Real-

Time Systems 33 (1) (2006) 7�46. doi:10.1007/s11241-006-6881-0.

URL https://doi.org/10.1007/s11241-006-6881-0

[37] C. Scordino, G. Lipari, A resource reservation algorithm for power-aware

scheduling of periodic and aperiodic real-time tasks, IEEE Transactions on

Computers 55 (12) (2006) 1509�1522. doi:10.1109/TC.2006.190.

[38] L. Abeni, G. Lipari, A. Parri, Y. Sun, Multicore cpu reclaiming: Parallel

or sequential?, in: Proceedings of the 31st Annual ACM Symposium on

Applied Computing, SAC '16, ACM, New York, NY, USA, 2016, pp. 1877�

1884. doi:10.1145/2851613.2851743.

URL http://doi.acm.org/10.1145/2851613.2851743

[39] C. Scordino, L. Abeni, J. Lelli, Energy-aware real-time scheduling in the

linux kernel, in: Proceedings of the ACM Symposium on Applied Comput-

ing (SAC), ACM, Pau, France, 2018.

48



[40] C. Scordino, L. Abeni, J. Lelli, Real-time and energy e�ciency in linux:

Theory and practice, ACM SIGAPP Applied Computing Review 18 (4)

(2018) 18�30.

[41] J. Levin, Android Internals - Volume I: A Confectioner's Cookbook,

Jonathan Levin, 2014.

URL https://books.google.it/books?id=onhDnwEACAAJ

[42] I. Kalkov, A. Gurghian, S. Kowalewski, Priority inheritance during remote

procedure calls in real-time android using extended binder framework, in:

Proceedings of the 13th International Workshop on Java Technologies for

Real-time and Embedded Systems, JTRES '15, ACM, New York, NY, USA,

2015, pp. 5:1�5:10. doi:10.1145/2822304.2822311.

URL http://doi.acm.org/10.1145/2822304.2822311

[43] I. Kalkov, D. Franke, J. F. Schommer, S. Kowalewski, A real-time ex-

tension to the android platform, in: Proceedings of the 10th Inter-

national Workshop on Java Technologies for Real-time and Embedded

Systems, JTRES '12, ACM, New York, NY, USA, 2012, pp. 105�114.

doi:10.1145/2388936.2388955.

URL http://doi.acm.org/10.1145/2388936.2388955

[44] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri, S. Y. Ko,

L. Ziarek, Real-time android with rtdroid, in: Proceedings of the 12th

Annual International Conference on Mobile Systems, Applications, and

Services, MobiSys '14, ACM, New York, NY, USA, 2014, pp. 273�286.

doi:10.1145/2594368.2594381.

URL http://doi.acm.org/10.1145/2594368.2594381

[45] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri,

S. Y. Ko, L. Ziarek, Rtdroid: A design for real-time android,

IEEE Transactions on Mobile Computing 15 (10) (2016) 2564�2584.

doi:10.1109/TMC.2015.2499187.

49



[46] Y. Yan, K. Dantu, S. Y. Ko, J. Vitek, L. Ziarek, Making android run on

time, in: 2017 IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), 2017, pp. 25�36. doi:10.1109/RTAS.2017.38.

[47] Standard for Information Technology � Portable Operating System Inter-

face (POSIX) � System Interfaces. IEEE 1003.1, 2004 Edition, The Open

Group, 2004.

[48] L. A. Torrey, J. Coleman, B. P. Miller, A comparison of interactivity in

the linux 2.6 scheduler and an mlfq scheduler, Softw. Pract. Exper. 37 (4)

(2007) 347�364. doi:10.1002/spe.v37:4.

URL http://dx.doi.org/10.1002/spe.v37:4

[49] C. L. Liu, J. Layland, Scheduling alghorithms for multiprogramming in a

hard real-time environment, Journal of the ACM 20 (1).

[50] P. Valente, G. Lipari, An upper bound to the lateness of soft real-time tasks

scheduled by edf on multiprocessors, in: Real-Time Systems Symposium,

2005. RTSS 2005. 26th IEEE International, IEEE, 2005, pp. 10�pp.

[51] U. M. C. Devi, J. H. Anderson, Tardiness bounds under global edf schedul-

ing on a multiprocessor, in: 26th IEEE International Real-Time Systems

Symposium (RTSS'05), 2005.

[52] V. Mulukutla, sched: Introduce Window Assisted Load Tracking (Oct

2016).

URL https://lwn.net/Articles/704903/

[53] J. Corbet, Per-entity load tracking (Jan 2013).

URL https://lwn.net/Articles/531853/

[54] I. Lin, B. Je�, I. Rickard, Arm platform for performance and power e�-

ciency � hardware and software perspectives, in: 2016 International Sym-

posium on VLSI Design, Automation and Test (VLSI-DAT), 2016, pp. 1�5.

doi:10.1109/VLSI-DAT.2016.7482541.

50



[55] A. Balsini, L. Pannocchi, T. Cucinotta, Modeling and simulation of power

consumption and execution times for real-time tasks on embedded hetero-

geneous architectures, in: Proceedings of the International Workshop on

Embedded Operating Systems (EWILI 2018), Torino, Italy, 2018, pp. �.

51


