Demo: Emulating Distributed Workloads with DistWalk

Remo Andreoli, Tommaso Burlon, Antonio Napolitano, Tommaso Cucinotta
Scuola Superiore Sant’Anna, Pisa, Italy
name.surname@santannapisa.it

Abstract—This demo showcases DistWalk [2], an open-source
distributed workload emulator designed to study the end-to-end
latency implications of Linux-based systems. DistWalk is capable
of deploying sequences of compute, network, and storage oper-
ations arranged within graph-like topologies, to be carried out
across multiple servers. It supports a variety of communication
protocols and traffic patterns, and enables the customization of
several factors, such as the duration and parallelism of compute-
intensive operations, the network security and connection han-
dling strategy, and the I/O data access and synchronization mode,
among others. DistWalk can be used to experiment with a variety
of deployment models for distributed workloads, from bare-
metal to virtualized or containerized environments, e.g., using
Cloud/Edge infrastructures, OpenStack, Kubernetes, or other
orchestrators. This allows Cloud/Edge researchers and developers
to perform experimental comparisons of the latency achievable
by distributed workload patterns across a wide range of system-
level configurations.

Index Terms—Workload Emulation, Distributed Systems,
Cloud Computing, End-to-End Performance

I. INTRODUCTION AND MOTIVATIONS

When engineering distributed or Cloud-native services, it is
useful to assess the expected achievable performance early in
the software life-cycle, when the implementation may not be
(completely) available yet. This is particularly useful for time-
critical applications [1], where the experienced end-to-end
latency is heavily influenced by design choices such as the ap-
plication parallelism degree, the placement of its components
throughout a Cloud/Edge infrastructure, the workload load-
balancing strategy, the use of secure protocols and the con-
figuration of the available tunables for the machines, software
stack, in-kernel scheduler, or other system-level parameters.

In order to estimate the performance implications of the
available design choices and platform tuning options, it is com-
monplace to resort to experimental approaches. This may be
conveniently performed by using computational, networking
and disk I/O microbenchmarks.

For example, stress-ng is designed to stress various
components of a computing system: the capabilities of the
physical CPU, cache, and the whole memory hierarchy, the
I/O subsystem, various features of the OS kernel, from page
swapping to inter-process communications through pipes or
local networking, to high-frequency timers, and others.

Another example is fio, a tool dedicated to testing the
I/O subsystem of a platform, with the ability of emulating
a variety of I/O workloads, including parallel scenarios with
several threads requesting highly heterogeneous types of 1/O
operations (random vs sequential access patterns, direct vs
buffered operations, etc...).

For the network, a well-known micro-benchmark is iperf,
a tool designed to measure the maximum achievable end-to-
end bandwidth between a client and a server communicating
over IP networks (either with TCP or UDP).

However, these tools usually test a single component or
aspect of a distributed system (e.g., the computational, disk
I/0O, or networking performance of a single component, link,
or communication path). As a result, they provide limited
insight into how a distributed application with geo-dislocated
components might perform under certain conditions.

The DistWalk tool [2] that will be presented in this demo,
allows for: i) exploring several low-level optimization oppor-
tunities in the design space and deployment environment; and
ii) verifying experimentally the impact of these design choices,
and associated tunables, on the end-to-end performance that
might be expected by the final software.

II. DISTWALK ARCHITECTURE

DistWalk [2] is an open-source distributed workload emula-
tor, with the ability to measure the resulting end-to-end latency
for a variety of resource consumption patterns, providing a
wide range of low-level options to mimic common designs
and operating conditions exhibited by a distributed workload.
Its main features are: i) a highly scalable architecture featur-
ing asynchronous, socket-based communications; ii) low-level
tunables for fine-grained control over the workload behaviors
(i.e., data access pattern, compute processing duration, etc.)
and server configuration details (i.e., communication model,
data synchronization, etc); iii) ready-to-use executables that
can be integrated, in part or entirely, within or alongside other
third-party tools; and iv) a platform-agnostic tool that can
be deployed on-premise, on small-scale clusters, or on cloud
platforms, using orchestrators like OpenStack or Kubernetes.

DistWalk follows a client-server architecture. The simplest
scenario involves a client that defines a sequence of operations,
and a server (referred to as a node in DistWalk) that executes
them. The sequence is encapsulated in a network packet
and sent to the node multiple times, with inter-request times
distributed according to an initial request rate and a series
of rate ramp-ups. For each request, the server performs the
user-defined operations, then it sends a response to the client.
The client awaits for responses to all requests, optionally
up to a maximum timeout, before displaying the measured
round-trip latencies, a.k.a., response times, for each request.
More interesting scenarios involve multiple nodes and a client
submitting workload structured as a graph-alike topology
that spans across multiple nodes. The workload is specified



Socket
Multiplexing NODE Pending
(Poll Mode) | === worker Threads FORWARD Queue
@K Storage Thread fd n
. Volatile
. Memory
@k Pending
STORE Queue -

Persistent
Memory

Fig. 1: Architecture of a DistWalk node: each component
offers a high degree of configurability (from [2]).

i

Sockets

Operation Sequence

Timing Buffers
start
elapsed
CLIENT
Sender & Receiver Threads

[X

Fig. 2: Architecture of a DistWalk client (from [2]).

using a rich set of command-line options, that can also be
arranged in a script-alike program [2]. For each request, the
server performs the enclosed operations, then forwards the
remaining payload to 1 or more servers, waiting for all or a
configurable number of replies, e.g., waiting for a majority of
them is useful to emulate quorum-based replication protocols.
Additionally, replies that are not received within an optional
configurable timeout are retried up to a configurable number
of times [3]. Once the payload is fully exhausted, a response
is routed back to the client, following the communication
path in reverse order. All per-request parameters, from request
inter-arrival times, to processing times on the nodes, to the
data size of request and response messages, and data to be
written to or loaded from disk, can be specified in terms
of fixed values, or values drawn from common probabilistic
distributions with specified parameters, or values read from
a CSV file column. Finally, multiple clients may be used to
submit various workloads concurrently onto the same nodes.

The client and node components are multi-threaded C
programs with no dependencies on external libraries, with
the exception of the OpenSSL crypto and SSL libraries, if
SSL is enabled. This design ensures that DistWalk is a high-
performance, highly scalable, plug-and-play toolkit. Both com-
ponents are controlled via the command line using a versatile
syntax. The DistWalk node is a networked server designed to
be reused across several client workload runs. Figure 1 depicts
the major features of the node architecture: i) the ability to
choose between different connection accept policies (called
“accept modes” in DistWalk) and multiplexing mechanisms

(called “poll modes”), and the optional use of TLS/SSL if
secure communications are needed; ii) a pool of threads to
handle the user-defined operations, both synchronously and
asynchronously; and iii) a dedicated thread for interacting with
persistent memory. Figure 2 illustrates the client architecture,
featuring pairs of sender and receiver threads to interact with
the nodes. This two-threads architecture has the advantage
of keeping the request submission period/rate as stable and
precise as possible.

DistWalk has been used for the experimental evaluation of
a number of prior research papers [4], [5], [7]-[9], [11], but
only recently a comprehensive overview of its design, features
and command-line options has been published in [2].

III. DEMO CONTENT

The presenter will walk through a subset of examples
adapted from [2], but reinterpreted from a single-system
perspective. Participants who wish to follow along must have
access to a Linux-based system, and Internet access to down-
load DistWalk!. The README included within the DistWalk
package contains the step-by-step instructions for setting up
and running an experiment.

This demo will focus on studying latency implications of
two essential aspects of cloud-based services: quorum-based
replication [10] and load balancing [6].

REFERENCES

[1] R. Andreoli, R. Mini, P. Skarin, H. Gustafsson, J. Harmatos, L. Abeni,
and T. Cucinotta. A multi-domain survey on time-criticality in cloud
computing. /EEE Transactions on Services Computing, page 1-19, 2025.

[2] Remo Andreoli and Tommaso Cucinotta. DistWalk: a Distributed
Workload Emulator. In 25th IEEE international Symposium on Cluster,
Cloud and Internet Computing, Tromsg, Norway, May 2025.

[3] Tommaso Burlon. Adding multiple features to the emulation tool of
distributed systems distwalk, Sant’Anna School of Advanced Studies.
https://dta.santannapisa.it/t/etd-10162023-221502/, December 2023.

[4] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini,
and Carlo Vitucci. Reducing temporal interference in private clouds
through real-time containers. In IEEE International Conference on Edge
Computing, pages 124-131, 2019.

[5] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Riccardo Mancini,
and Carlo Vitucci. Strong temporal isolation among containers in
OpenStack for NFV services. IEEE Trans. on Cloud Computing, 2021.

[6] Pawan Kumar and Rakesh Kumar. Issues and challenges of load
balancing techniques in cloud computing: A survey. ACM computing
surveys (CSUR), 51(6):1-35, 2019.

[7] Giacomo Lanciano, Remo Andreoli, Tommaso Cucinotta, Davide Bac-
ciu, and Andrea Passarella. A 2-phase strategy for intelligent cloud
operations. IEEE Access, pages 1-1, 2023.

[8] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide Bacciu,
and Andrea Passarella. Predictive auto-scaling with OpenStack Monasca.
In 14th IEEE/ACM Intl. Conf. on Utility and Cloud Comp., Dec. 2021.

[9] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide Bacciu,

and Andrea Passarella. Extending openstack monasca for predictive

elasticity control. Big Data Mining and Analytics, 7(2), June 2024.

Saif Ur Rehman Malik, Samee U Khan, Sam J Ewen, Nikos Tziritas,

Joanna Kolodziej, Albert Y Zomaya, Sajjad A Madani, Nasro Min-Allah,

Lizhe Wang, Cheng-Zhong Xu, et al. Performance analysis of data

intensive cloud systems based on data management and replication: a

survey. Distributed and Parallel Databases, 34:179-215, 2016.

Riccardo Mancini, Tommaso Cucinotta, and Luca Abeni. Performance

modeling in predictable cloud computing. In 10th International Con-

ference on Cloud Computing and Services Science - CLOSER, pages

69-78. INSTICC, SciTePress, 2020.

[10]

(1]

ISee: https://github.com/tomcucinotta/distwalk


https://dta.santannapisa.it/t/etd-10162023-221502/
https://github.com/tomcucinotta/distwalk

	Introduction and Motivations
	DistWalk Architecture
	Demo Content
	References

