
Fault Tolerance in Real-Time Cloud Computing
Luca Abeni∗, Remo Andreoli∗, Harald Gustafsson†, Raquel Mini†, Tommaso Cucinotta∗

∗Scuola Superiore Sant’Anna, Pisa, Italy
{first.last}@santannapisa.it
†Ericsson Research, Lund, Sweden
{first.last}@ericsson.com

Abstract—This paper presents the Fault-Tolerant Real-Time
Cloud (FTRTC) project that aims to design cloud computing
infrastructures capable of hosting highly reliable and real-time
applications. These applications are characterized by strict timing
and reliability constraints, as well as critical failure scenarios. For
instance, such requirements are commonly found in the context
of Industry 4.0. We present a formalization of the problem of
designing real-time cloud applications supporting an adjustable
level of fault tolerance throughout their distributed execution
in a cloud infrastructure. The contributions presented in this
paper indicate important research directions when building
cloud infrastructures able to supporting ultra-reliable real-time
applications.

Index Terms—Cloud Computing, Real-Time Computing, Fault
Tolerance

I. INTRODUCTION

Cloud computing has become an increasingly pervasive
technology, and it has transformed a large part of the IT
industry, as foreseen in the seminal paper by Armbrust and
others [5]. Today, cloud technologies are mature enough to
handle applications with precise performance requirements,
but the evolution of hardware, software, and networks is
making cloud computing appealing also for a new class of
real-time workloads [9], [15], [25]. Specifically, applications
characterized by strict timing and reliability constraints that
must be respected under a multitude of conditions and failure
scenarios cannot be deployed in contemporary cloud infras-
tructures [17]. These include a number of computing scenarios
that are becoming increasingly interesting, for example, in
the context of Industry 4.0, with cloud/edge-assisted operation
of robots in automated factories, or for deploying complex
AI-based features needed to augment the real-time control
capabilities of future autonomous vehicles.

Traditional time-critical applications generally run on bare
hardware and are designed as a set of periodic or sporadic
sequential real-time tasks [7], [12], [23]. It is relatively
simple to schedule such a straightforward task model and
provide appropriate guarantees in regard to task performance
requirements, even in the presence of interactions among tasks
due to locking [27]. More complex task models can also be
considered, like, for example, parallel tasks [10], [20], [26].

However, cloud-native applications [8] are characterized by
a quite more complex and often distributed architecture. Dif-
ferently from traditional monolithic applications, cloud-native
ones are often composed of a number of different services

or microservices [21] that may be deployed on the same or
different machines. Hence, the first step in designing an in-
frastructure providing performance guarantees to cloud-native
real-time applications is to build an accurate performance
model for distributed applications composed of a number of
components, which we refer to as microservices from here
onwards. Since microservices are generally distributed over
multiple machines, possibly spread over different availability
zones, the failure of a single machine does not completely
compromise the functionality of a microservice that remains
available with a degraded performance level until the fault
is fixed. In particular, the architecture is designed and provi-
sioned so that some failures can be tolerated without affecting
the application’s operation. For real-time applications, this
means that the system can be designed and dimensioned so
that a controlled number of failures do not result in missed
deadlines. Of course, this requires designing the microservice
architecture appropriately so that it is possible to both analyze
and control its temporal behavior.

This paper introduces the Fault-Tolerant Real-Time Cloud
(FTRTC) project, aiming at providing an adjustable level of
fault tolerance in a cloud environment designed to support real-
time applications. The main challenges in implementing fault
tolerance in cloud-native real-time applications are identified,
alongside the most important building blocks that can be
leveraged, to build a software solution suitable for FTRTC.

II. PROBLEM AND DEFINITIONS

To properly design solutions able to meet the need of
FTRTC, it is important to formally define the problem it
addresses, which is serving and scheduling multiple cloud-
native applications with a desired degree of fault tolerance.
This section provides some important definitions. From a
practical standpoint, the project will provide implementations
based on the popular Kubernetes framework.

1) Application Model: A FTRTC platform hosts a set of
cloud-native applications, built by users as composition of in-
dependent, loosely coupled tasks. Such distributed applications
can be represented in the form of Directed Acyclic Graph
(DAG) topologies. More formally, a FTRTC platform hosts a
set of A = {Ag}nA

g=1 cloud-native applications, where Ag is
a tuple (Γg, Eg, P g, Dg). The DAG topology is specified by
a subset of tasks Γg ⊆ Γ and by a set of directed edges
Eg ⊆ Γg × Γg . A task τgi ∈ Γg represents a sequential
activity that receives some data in input, processes it, and979-8-3503-3902-4/23/$31.00 ©2023 European Union

τ 0

τ 2

τ 4

τ 1 τ 3

=τ e

Application

Fig. 1. Parallel real-time application modeled as a DAG of multiple tasks
(the g have been removed to simplify the figure).

then generates some output. Each task τgi is characterized by
a Worst Case Execution Time (WCET), the maximum time
for which a task needs to execute to generate an output after
receiving a request.

Task-to-task communications in application Ag are repre-
sented by directed edges (τgi , τ

g
j) ∈ Eg , meaning that τgi

sends a message to τgj at the end of its computations. More
specifically, τgi is said to be a predecessor of task τgj , and τgj is
said to be a successor of τgi . Therefore, for each activation of
application Ag , τgj can be executed only after τgi is terminated.
Note that, since Ag is an acyclic graph, the transitive closure
of Eg must be a partial order relation. Each task can have any
number of predecessors and any number of successors (0, 1,
or more). According to these precedence constraints, multiple
tasks may be executed in parallel. For each application Ag ,
there is exactly one task τg0 with no predecessors, called
input task, and another task τge with no successors, called
exit task. Finally, we assume each DAG to be completely
connected, therefore for each node τgi ∈ Γg exists a directed
sequence of tasks (i.e. a path) from τg0 to τge which includes
τgi . Figure 1 shows an example of an application modeled
as a DAG. Each application is activated when some data is
available for processing at the input task τg0 . After the exit task
τge finishes processing its input data, the application activation
is concluded. Given a generic task τgi , it becomes ready
for execution after receiving data from all its predecessors
{τgh | (τgh , τ

g
i) ∈ Eg}. Task τgi then processes its input data

and generate some output to be sent to all its successor tasks
{τgj | (τgi , τ

g
j) ∈ Eg}. Similarly, each τgj becomes ready for

execution after receiving data from all its predecessors.
Real-time applications can be periodic or sporadic, depend-

ing on their activation patterns. An application is periodic if the
time interval between two consecutive activations is constant
and equal to the application period P g , and is sporadic if
the time interval between two consecutive activations is larger
or equal than a minimum inter-arrival time P g . Since the
input task τg0 is the first task of the DAG, when it receives
a request (and hence becomes ready for execution) the ap-
plication is activated. For example, in the case of a periodic
application, task τg0 receives its kth request for execution at
time tgk = tg0 +k ·P g , where tg0 corresponds to the time of the
first activation of the application. A real-time application Ag is
also characterized by an end-to-end deadline Dg , so that if the
application is activated (i.e., its input task τg0 receives a request
and becomes ready for execution) at time tgk = tg0+k∗P g , then

Task
τ

Task
τ

Load Balancer

C{

Container m

WCET c

Container 2

Container 1

WCET c

WCET c

Microservice S

2

1

i

j

Fig. 2. Structure of a microservice S composed of m containers serving tasks
τ1i and τ2j from two different applications, A1 and A2. Note that they are
application-specific instances of the same functionality.

the application must finish (i.e. its output task τge must generate
an output) before time dgk = tgk +Dg = tg0 + k ∗ P g +Dg .

2) Cloud Model: The big difference between traditional
real-time applications and the cloud-native real-time applica-
tions is that while the former are composed of tasks (threads
or processes) that are statically deployed on physical machines
using a Real-Time Operating System (RTOS), a task τgi ∈ Γg

of a cloud-native application Ag is executed by a microservice
Sl. In a cloud scenario, the individual τgi may be shared among
multiple applications, therefore a set ϕ = {φg}nA

g=1 of DAG-to-
microservice mapping functions φg : {0, ..., e} → {1, ..., nS}
is required to distinguish between the {Γg} that may partially
overlap. For instance, a task τgi ∈ Γg is the ith activity of
application Ag , and it is implemented by microservice Sl,
where φg(i) = l. Every microservice Sl is formed by ml

containers and a load balancer distributing the input data to
one of them. For example, Figure 2 shows a microservice
S (the subscript l has been removed to simplify the figure)
serving two tasks τ1i and τ2j , where φ1(i) = φ2(j) = l. This
means that the two tasks perform the same activity, but are part
of two different applications, A1 and A2. When executing a
task τgi , a container of Sl takes at most a WCET cl. Notice
that the WCET characterizes a microservice Sl, therefore it is
not application-dependent and can be associated with all the
tasks executed by Sl. The various containers implementing a
microservice Sl generally run on different machines, so that
if one of them crashes or gets disconnected from the network,
the containers running on different machines are still active
and working. In this work, all the containers implementing
Sl are assumed to be identical, so that cl does not depend
on the specific container that has been selected by the load
balancer. Notice that this assumption applies to the amount of
execution time needed by a container to serve a request, not to
the real time after which the response is generated. Containers
can suffer from interferences due to the other load running
on the same machine, and can thus generate a response after
different amounts of time — cl only indicates the amount of
time for which the container executes on a CPU core, without
considering preemptions from the host OS or other containers
running on the same CPU core, if any.

Figure 3 shows a cloud-native application Ag modeled as
a DAG with its tasks served by microservices. A single Sl,
which is composed of a load balancer and ml containers

τ 0

τ 2

τ 4

τ 1 τ 3

=τ e

Container m

Container 2

Container 1

Load Balancer

Application

Fig. 3. Cloud-native real-time application composed of multiple parallel tasks
executing on microservices (the g have been removed to simplify the figure).

can execute tasks coming from different applications. In other
words, microservices can be shared among multiple DAGs.
Hence, they can simultaneously receive requests from different
applications; as a result, the service of some request τgi
of an application Ag can be delayed by a queuing delay
due to requests from other applications. Such delay can be
estimated based on the maximum number of tasks concurrently
submitting requests, the load balancing discipline and the
model-of-computation of the containerized software.

3) Fault Model: The containers implementing a microser-
vice can fail due to a number of reasons related to hardware
or software problems (for example, the machine on which a
container can crash or can be disconnected from the network,
or the application running inside the container can crash).
The goal of the fault-tolerance mechanism required in our
envisioned FTRTC design is to ensure that even if one of
the ml containers implementing microservice Sl is down, all
the applications using Sl get their requests serviced within
the desired end-to-end deadlines. An easy way to accomplish
this goal would be that when a task τgi needs to be executed,
two parallel instances of the task are actually started, on
containers on different servers. However, such an approach
would require to double the resource usage of all cloud-native
applications, which is considered an excessively high price to
pay, considering the negligible likelihood of the event that all
said containers can be down at the same time.

In FTRTC, we aim at tolerating transient faults: if a
container fails, at time t, it can be able to successfully serve
some tasks’ requests in the future (either immediately or after
a maximum recovery time δ). Hence, when a failed container
is detected, a new container is not immediately started to
preserve the capacity as long as the service has containers
to uphold the deadline guarantees. During such a period, the
robustness to further failures is limited.

III. FAULT DETECTION AND TOLERANCE

FTRTC needs to support the cloud-native parallel applica-
tion model described in Section II, providing fault tolerance
for real-time applications. In this system, the application’s
tasks are executed on microservices/functions composed of
a load balancer and multiple containers, as is common for
cloud deployments. The presence of multiple (appropriately
dimensioned) containers and the possibility to distribute task
executions to these containers is used to tolerate failures.

1
D

D
2

D
0

Fault Detected!
0

τ

2
τ

1
τ

Fig. 4. Low-latency fault detection employed by FTRTC: τ2 misses its partial
deadline D2, hence it is marked as faulty (the g have been removed to simplify
the figure).

1) Fault Detection: It is important to identify a tight upper
bound to the time between a fault happening and the cloud
platform detecting it (the so-called detection latency) in order
to provide fault tolerance for a real-time application char-
acterized by temporal constraints. Cloud instances are often
monitored for failures based on periodic health-checks (e.g.,
ping) to detect failures. This results in a minimum detection
latency when no traffic is exchanged, often in the range of
one or a few seconds [1], [2], before marking an instance
unhealthy. When a connection to a server suddenly drops while
serving traffic, load balancers can usually react by tolerating
a maximum number of these faults, then they can readily
mark the instance unhealthy. Additionally, a potentially lower
latency fault detection mechanism may use a request timeout
implemented by the requester application or using a service
mesh [28].

These mechanisms may be inadequate to support typical
FTRTC use-cases, where it is essential, for example, to con-
sider faulty also a container that is not managing to deliver
a response by the foreseen WCET cl, or a maximum partial
deadline elapsed. An offline analysis may be used to compute
partial deadlines within which all real-time tasks τgi should
finish. If a task does not complete within its partial deadline,
the cloud platform can assume that its underlying container
failed. Figure 4 (g has been removed to simplify the figure)
depicts an example of early fault detection applying this mech-
anism to the application of Figure 1. Each task τi is assigned
a partial deadline Di, and τ2 misses its deadline. After a
time D2 from the DAG activation, it is possible to detect a
failure of the container serving τ2. A second fault detection
mechanism considers that a container is supposed to serve a
task executing for at most a WCET cl. Therefore, the FTRTC
platform has a second chance of temporal fault detection, by
monitoring the container’s task execution and assuming that it
failed when no output is produced after executing for cl. Such
monitoring can be implemented by detecting overruns in the
container schedule, and is then local to a host. These two
fault detection mechanisms can be combined to improve the
system resilience: monitoring cl allows detecting applications’
misbehavior, whereas monitoring the tasks’ partial deadlines
allows detecting faults in the containers (or any issue due to
unexpected interference from other containers).

2) Reacting to Faults: The easiest way to tolerate task
execution failures consists of starting two copies of each task
(executing in parallel in two containers hosted by different

D
0 1

D

D
2

3
D

OK

0
τ

2
τ

1
τ

2’
τ

3
τ

Fig. 5. Example of task re-execution: τ2 re-executes after being marked as
faulty (the g have been removed to simplify the figure).

physical machines) so that when one copy fails, the other one
can still provide the correct result in time. This technique,
however, consumes CPU time even when there are no failures
(which is the most common situation). Therefore, replication
should be used only when strictly needed to avoid wasting
computational resources. As an alternative, it is possible to
start a second copy of a task only when the task is not
able to deliver its results in time, assuming the problem is
that the container executing the task has failed or that it is
delayed beyond what is accounted for. Of course, this is a
good idea only when re-executing the task would not anyway
lead to a deadline miss. That is, when there is enough time left
before the deadline and one of the non-failed microservice’s
containers has enough spare time to re-execute the task.

Hence, it is crucial to analyze the tasks’ schedulability and
to understand, for each task, if there is enough time to re-
execute a task when a failure is detected. Then, it is possible
to resort to starting two parallel copies of a task only when the
analysis shows that the two copies are really needed. When
possible, containers’ failures should be handled by retrying
the execution of the served task to a different container on a
different host1. As a simple example, Figure 5 shows that it
is possible to tolerate a fault of task τ2 (in Figure 4) without
missing the partial deadline of task τ3 by re-executing τ2 on a
different container (and hence respecting the DAG’s deadline).
If the makespan of the application’s DAG execution without
faults is smaller than the application’s deadline Dg , then the
containers have some spare time that can be used to avoid end-
to-end deadline misses when a container fails. When trying
to re-execute a failed task2 τgi on a different container, two
different situations are possible:

1) The microservice Sl has a dedicated backup container
which has enough spare time to re-execute τgi .

2) The microservice Sl is composed of multiple containers,
and at least one of them is not failed and has enough
spare time to re-execute τgi .

3) If none of the available containers of microservice Sl

has enough spare time to re-execute the failed task, a
new container has to be initialized.

Therefore, the cost of re-executing τgi depends on how the
failure is handled and on some additional assumptions; in

1Here, “when possible” means “when it is possible to re-execute the task
on a different container without missing the application’s deadline”.

2In this context, “failed task” means “tasks which was executed on a failed
container”.

general, the WCET for the re-execution of the task is con-
sidered to be longer than a first execution. In the first case
above, re-executing the task incurs a smaller overhead, which
can be almost negligible under the assumption of keeping a
dedicated backup container to be used for re-executions. In the
second case, one of the ml − 1 remaining containers is used
for the re-execution, so the number of requests which can be
found in the queue by the re-execution needs to be increased
accordingly. For the third case, instead, a new container is
needed, the additional time needed to boot and initialize a new
container instance (often known as start-up latency) must be
considered. Such start-up latency can be substantial compared
to application deadlines; in those cases, this alternative is not
usable.

Summing up, an offline analysis (performed when the
system is designed or when a new application is accepted)
is used to decide which tasks are statically replicated (tasks
for which two concurrent instances are started when the task
is activated). Then, when the failure of a container executing
a non-replicated task is detected at runtime, the system can
check if such tasks can be re-executed on a different container
without missing the application’s deadline. If such a re-
execution causes a deadline miss, the application’s activation
should be dropped (avoiding to waste computation time with
other tasks of the application if there is no possibility of
finishing in time). If an application is activated while some
containers are failed or are unavailable, and it is not possible to
guarantee the respect of its deadline, then the activation can be
immediately dropped without starting any of the tasks. So, it is
only when the number of containers has decreased sufficiently
below ml that not even a fault-free execution can be performed
that the task is dropped. During this time interval, the service
Sl is executed with higher risk.

3) Tasks Partial Deadlines and Critical Tasks: To avoid the
long fault-detection latencies introduced by “traditional” ping-
based mechanisms, failures can be detected by monitoring
the amount of execution time consumed by a container when
serving a task, or the container’s response time. In the second
case, a failing node can be detected in a much shorter
time by assigning partial deadlines to tasks and monitoring
communications. In practice, if a task τgi does not send data
to its successor tasks {τgj | (τgi , τ

g
j) ∈ Eg} before its partial

deadline, then the container executing τgi is considered to be
failed. If application Ag is activated at time tgk (and must finish
before time dgk = tgk+Dg), its end-to-end deadline Dg is split
into partial deadlines Dg

i associated to the various tasks τgi .
Note that the partial deadline Dg

e of the output task τge must be
equal to Dg . If task τgi is “activated in time” (i.e. τgi activation
time is smaller than tgk + max{Dg

h | h : (τgh , τ
g
i) ∈ Eg})

but does not finish within time dgk,i = tgk + Dg
i , then τgi

execution has failed. As previously mentioned, when analyzing
the behavior of an application Ag , it is necessary to check if
a failed task can be re-executed without causing a deadline
miss. This can be done both to provide a runtime check and
to provide design-time properties:

1) At runtime, when a container’s failure is detected, it is

necessary to check if there is time to re-execute the task
executed by the failed container without violating the
deadline. This check has to be performed considering
available containers.

2) To ensure the desired fault tolerance properties, at design
time, it is necessary to provide guarantees that the
system can correctly serve Ag within the deadline in
the presence of a given maximum number of failures
(for example, tolerating a failing task execution per
microservice). This must be checked through an offline
analysis.

The design problem in item 2 allows for identifying “critical”
tasks for which it is not guaranteed in advance that there will
be time for re-execution in case of failure. Critical tasks should
be statically replicated. Otherwise, a task failure could only be
handled by dropping the activation.

IV. ALLOCATING RESOURCES TO CONTAINERS

The analysis described at the end of Section III is similar
to the schedulability analysis typically performed to analyze
and design real-time systems. However, traditional real-time
analysis must be modified to account for microservices and
containers execution/scheduling. Given an application Ag ,
there are two schedulability questions:

• For which tasks a re-execution on a different container
would result in a missed deadline, if their serving con-
tainer fails?

• In which conditions a task can be re-executed without
missing a deadline, if its serving container fails?

While the answer to the first question does not depend on how
the containers are scheduled, to answer the second question
it is necessary to know how resources are allocated to the
various containers. In particular, the containers composing a
microservice can execute on dedicated CPU cores (so that a
container does not suffer preemptions by other containers) or
can share the CPU with other containers (in this case, a CPU
scheduler decides which containers are executed at a given
time, and should use an appropriate scheduling algorithm
to limit the interferences between containers). In any case,
microservices are shared by multiple applications; hence, the
temporal behavior of an application Ag also depends on the
other applications using the same microservices. This fact can
be accounted for in the analysis without having to consider all
the details of every application running in the cloud, but only
Ag . It can be done by inflating the execution time cl of each
task τgi to take into account the queue delay, defined as Cl,
and the corresponding re-execution time C ′

l .
Based on this, it is possible to check when there surely

is no time to re-execute a task, independently on how the
containers are scheduled or how resources are allocated to
them. In particular, the function critical(τ, t) returns
true if task τ cannot be re-executed in case of failure at
time t, and returns false otherwise. By considering the latest
possible time when a failure of task τgi can be detected, it is
possible to identify critical tasks, which are tasks for which

it is not guaranteed that there is time for re-execution in case
of failure. For example, assume that container is considered
to have failed if it tries to execute for longer than its WCET.
In this case, critical(τgi , t) is true if Cl +C ′

l > Dg
i . If

all containers are statically assigned their CPU cores (and are
hence not scheduled), then a non-critical task is guaranteed to
always have time for being re-executed as soon as there is at
most one failed container per microservice.

If, instead, containers are not assigned whole CPU cores
but are scheduled, then to guarantee that the re-execution of
a task does not result in a missed deadline, it is necessary
to use an appropriate container scheduling algorithm. FTRTC
considers two possible scheduling strategies: one based on the
Hierarchical Constant Bandwidth Server (HCBS) [3], [11] and
one based on fixed priorities. The HCBS is a reservation-based
scheduling algorithm that has the advantage of supporting
the Compositional Scheduling Framework [13], [29]. Hence,
it allows re-using a lot of results from real-time literature
(which investigated at length hierarchical scheduling based
on resource reservations). An implementation in the Linux
kernel (based on a modification of the SCHED_DEADLINE
policy [22]) is already available, and some prototype patches
are available to support it in Kubernetes [16]. For applications
needing very low latencies, such as a cloud Radio Access
Network (cRAN) [4], it might make sense to schedule the
containers according to fixed priorities and not use CPU
reservations. In this case, the schedulability of an application
can be checked without assigning partial deadlines to tasks
but by using a different analysis based on self-suspending
tasks [6]. Such analysis can be extended to account for failing
containers, replicated tasks, and tasks’ re-execution (when
needed).

V. RELATED WORK

Fault tolerance in real-time systems has been studied for a
long time [18] and has been generally implemented through
specialized CPU scheduling algorithms. Later works consid-
ered fault tolerance in real-time clouds [24], but did not con-
sider cloud-native applications and the microservices model,
which is supported by FTRTC.

Some works support fault tolerance in cloud environments
by scheduling backup copies of failed tasks. For example,
QAFT [32] schedules primary and backup copies of tasks on
different cloud nodes, considering different QoS levels for the
tasks and different speeds for the cloud nodes. However, it
only considers independent aperiodic real-time tasks (and not
parallel applications), and it does not consider a microservice
model as FTRTC does. FESTAL [31] also considers sets of
independent real-time tasks and implements fault tolerance
by scheduling backup copies of failed tasks. Migratable Vir-
tual Machines are used to move primary and backup copies
between physical hosts so that faults are tolerated without
overallocating resources. EFTR [19] is a similar algorithm that
takes energy consumption into account. FTRTC does not use
VMs or migrations of tasks between physical hosts because

they introduce overheads and delays that are not compatible
with the deadlines to be respected.

Other, more recent, works [14], [30] base the fault tolerance
mechanisms on containers, using Kubernetes to manage them
and improve the Kubernetes scheduler and fault-detection
mechanism to react to failures in a shorter time. However, they
do not explicitly consider real-time applications and deadline
constraints.

VI. CONCLUSIONS AND FUTURE WORK

This paper described the design of a fault-tolerant real-
time cloud computing platform, starting by identifying the
challenges that need to be addressed and the fundamental core
requirements to be satisfied by possible mechanisms to be used
in said context. The paper introduced formally the problem
of fault-tolerant execution of real-time cloud applications, and
discussed the difficulties in ensuring predictability in execution
of distributed cloud-based applications modeled as DAGs.
It also discussed the need for providing low-latency fault
detection, e.g., by monitoring the respect of the tasks’ partial
deadlines, as well as the need for tolerating a controlled
number of faults by using microservices composed of mul-
tiple containers and by re-executing failed tasks on different
containers. As a future work, the presented architecture will
be implemented based on Kubernetes, and its properties will
be tested through an extensive set of experiments.

REFERENCES

[1] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and
Ferhat Khendek. Deploying microservice based applications with kuber-
netes: Experiments and lessons learned. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 970–973, 2018.

[2] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and
Ferhat Khendek. Microservice based architecture: Towards high-
availability for stateful applications with kubernetes. In 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security
(QRS), pages 176–185, 2019.

[3] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based
real-time scheduling in the linux kernel. SIGBED Review, 16(3):33–38,
November 2019.

[4] Luca Abeni, Tommaso Cucinotta, Balázs Pinczel, Péter Mátray, Mu-
rali Krishna Srinivasan, and Tobias Lindquist. On the use of linux
real-time features for ran packet processing in cloud environments. In
Hartwig Anzt, Amanda Bienz, Piotr Luszczek, and Marc Baboulin,
editors, High Performance Computing. ISC High Performance 2022
International Workshops, pages 371–382, Cham, 2022. Springer Inter-
national Publishing.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A View of Cloud Computing. Communications
of the ACM, 53(4):50–58, 2010.

[6] Federico Aromolo, Alessandro Biondi, Geoffrey Nelissen, and Giorgio
Buttazzo. Event-driven delay-induced tasks: Model, analysis, and
applications. In 2021 IEEE 27th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 53–65, 2021.

[7] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
IEEE Real-Time Systems Symposium, pages 182–190, December 1990.

[8] Sandro Brunner, Martin Blöchlinger, Giovanni Toffetti, Josef Spillner,
and Thomas Michael Bohnert. Experimental evaluation of the cloud-
native application design. In 2015 IEEE/ACM 8th International Confer-
ence on Utility and Cloud Computing, pages 488–493, Dec 2015.

[9] Kun Cao, Shiyan Hu, Yang Shi, Armando Walter Colombo, Stamatis
Karnouskos, and Xin Li. A survey on edge and edge-cloud computing
assisted cyber-physical systems. IEEE Transactions on Industrial
Informatics, 17(11):7806–7819, Nov 2021.

[10] Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic schedul-
ing of real-time tasks under precedence constraints. Real-Time Systems,
2(3):181–194, 1990.

[11] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Riccardo Mancini,
and Carlo Vitucci. Strong temporal isolation among containers in
OpenStack for NFV services. IEEE Transactions on Cloud Computing,
pages 1–1, 2021.

[12] M. L. Dertouzos. Control robotics: The procedural control of physical
processes. Information Processing, 74:807–813, 1974.

[13] Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-
based multiprocessor scheduling. Real-Time Systems, 43(1):25–59,
September 2009.

[14] Raphael Eidenbenz, Yvonne-Anne Pignolet, and Alain Ryser. Latency-
aware industrial fog application orchestration with kubernetes. In 2020
Fifth International Conference on Fog and Mobile Edge Computing
(FMEC), pages 164–171, 2020.

[15] Erik Ekudden. Five network trends: Towards the 6g era. Ericsson
Technology Review, 2021(9):2–10, Sep. 2021.

[16] Stefano Fiori, Luca Abeni, and Tommaso Cucinotta. Rt-kubernetes:
Containerized real-time cloud computing. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, SAC ’22, page 36–39,
New York, NY, USA, 2022. Association for Computing Machinery.

[17] Marisol Garcı́a-Valls, Tommaso Cucinotta, and Chenyang Lu. Chal-
lenges in real-time virtualization and predictable cloud computing.
Journal of Systems Architecture, 60(9):726–740, 2014.

[18] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerance through scheduling
of aperiodic tasks in hard real-time multiprocessor systems. IEEE Trans.
on Parallel and Distributed Systems, 8(3):272–284, 1997.

[19] Pengze Guo, Ming Liu, Jun Wu, Zhi Xue, and Xiangjian He. Energy-
efficient fault-tolerant scheduling algorithm for real-time tasks in cloud-
based 5g networks. IEEE Access, 6:53671–53683, 2018.

[20] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar.
Scheduling parallel real-time tasks on multi-core processors. In 2010
31st IEEE Real-Time Systems Symposium, pages 259–268, 2010.

[21] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and
Christof Ebert. Microservices. IEEE Software, 35(3):96–100, 2018.

[22] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline
scheduling in the linux kernel. Software: Practice and Experience,
46(6):821–839, 2016.

[23] Chung Laung Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, January 1973.

[24] Sheheryar Malik and Fabrice Huet. Adaptive fault tolerance in real time
cloud computing. In 2011 IEEE World Congress on Services, pages
280–287, 2011.

[25] Peter O’Donovan, Colm Gallagher, Kevin Leahy, and Dominic T.J.
O’Sullivan. A comparison of fog and cloud computing cyber-physical
interfaces for industry 4.0 real-time embedded machine learning engi-
neering applications. Computers in Industry, 110:12–35, 2019.

[26] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang
Lu, and Christopher D Gill. Parallel real-time scheduling of dags. IEEE
Trans. on Parallel and Distributed Systems, 25(12):3242–3252, 2014.

[27] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, 1990.

[28] Rahul Sharma and Avinash Singh. Getting Started with Istio Service
Mesh: Manage Microservices in Kubernetes. Apress, 2019.

[29] Insik Shin and Insup Lee. Compositional real-time scheduling frame-
work. In 25th IEEE International Real-Time Systems Symposium, pages
57–67, 2004.

[30] László Toka. Ultra-reliable and low-latency computing in the edge with
kubernetes. Journal of Grid Computing, 19(3):1–23, 2021.

[31] Ji Wang, Weidong Bao, Xiaomin Zhu, Laurence T. Yang, and Yang
Xiang. Festal: Fault-tolerant elastic scheduling algorithm for real-
time tasks in virtualized clouds. IEEE Transactions on Computers,
64(9):2545–2558, 2015.

[32] Xiaomin Zhu, Xiao Qin, and Meikang Qiu. Qos-aware fault-tolerant
scheduling for real-time tasks on heterogeneous clusters. IEEE Trans-
actions on Computers, 60(6):800–812, 2011.

	Introduction
	Problem and Definitions
	Application Model
	Cloud Model
	Fault Model

	Fault Detection and Tolerance
	Fault Detection
	Reacting to Faults
	Tasks Partial Deadlines and Critical Tasks

	Allocating Resources to Containers
	Related Work
	Conclusions and Future Work
	References

