XPySom: High-Performance Self-Organizing Maps

Riccardo Mancini Antonio Ritacco
Scuola Superiore Sant’Anna

Pisa, Italy Pisa, Italy

Abstract—In this paper, we introduce XPySom, a new open-
source Python implementation of the well-known Self-Organizing
Maps (SOM) technique. It is designed to achieve high per-
formance on a single node, exploiting widely available Python
libraries for vector processing on multi-core CPUs and GP-GPUs.
We present results from an extensive experimental evaluation
of XPySom in comparison to widely used open-source SOM
implementations, showing that it outperforms the other available
alternatives. Indeed, our experimentation carried out using the
Extended MNIST open data set shows a speed-up of about 7x
and 100x when compared to the best open-source multi-core
implementations we could find with multi-core and GP-GPU
acceleration, respectively, achieving the same accuracy levels in
terms of quantization error.

Index Terms—self-organizing maps (SOMs), performance com-
parison, experimental evaluation, GP-GPU acceleration

I. INTRODUCTION

There is a growing interest in deploying data-driven tech-
niques in a number of decision-support systems. Indeed,
during recent years, we have been witnessing an exponen-
tial growth in the amount of data that is made available
for decision making, and a corresponding increase of the
complexity of the computations carried out on such data, in
order to squeeze the maximum “value” out of it. This required
the development of ad-hoc software tools realizing big-data
processing pipelines that make use of advanced techniques
going beyond traditional statistics, relying more and more on
complex computations employing Machine Learning (ML),
Artificial Neural Networks (ANNs), Deep Neural Networks
(DNNs), and others. Therefore, ML/ANN has become a fun-
damental component of the software development life-cycle,
allowing for building software that does not require to be
explicitly programmed in order to accomplish a task.

However, for these methods to be usable and effective
in practice, an efficient implementation of the algorithms is
needed, exhibiting good scalability when provided with mas-
sive real-world data sets. For instance, reducing the processing
time required to deliver results is not only highly desirable
to increase the efficiency of production workloads, but also
allows data scientists to be quicker at implementing and
evaluating new ideas. General-Purpose Graphics Processing
Units (GP-GPUs) have established themselves as the go-
to computing platform when it comes to accelerating ML

This work has received funding from the European Commission through
the EU H2020 research project AMPERE (A Model-driven development
framework for highly Parallel and EneRgy-Efficient computation supporting
multi-criteria optimization) under the grant agreement no. 871669.

Scuola Superiore Sant’Anna

Tommaso Cucinotta
Scuola Superiore Sant’Anna
Pisa, Italy

Giacomo Lanciano
Scuola Normale Superiore
Scuola Superiore Sant’Anna
Pisa, Italy

algorithms, due to their extremely parallel and high-precision
computing capabilities. It is well known that the advances
in the technology behind such hardware accelerators have
enabled researchers to show the disruptive effectiveness of
Deep Learning (DL) in fields like Computer Vision [1], [2].

In this work, we focus on a particular ANN technology:
Self-Organizing Maps (SOMs) [3]. SOMs are a kind of
unsupervised, shallow, artificial neural networks, built on top
of the competitive learning principle and typically employed
for clustering, dimensionality reduction and high-dimensional
data visualization. Indeed, they are designed for mapping high-
dimensional data into a lower-dimensional space (e.g., 2D) that
is better interpretable by human perception and easier to treat
computation-wise, while preserving the topology and distri-
bution of the original data at cluster-level. Given their ability
to yield a data distribution in the target domain that faithfully
reflects the observed relationships in the original space, SOMs
have achieved remarkable results in many application fields
like: image processing [4], [S]], industrial data processing [6],
[7]], data visualization [8|]-[[LO], pattern recognition [11]], [12],
anomaly detection in NFV infrastructures [[13], [[14].

Thanks to their simplicity, a wide variety of open-source
implementations of SOMs is available. In this work, we have
focused on those exposing an API to the Python programming
language, due to its raising popularity in the ML community.
Such implementations differ significantly in their performance
under various scenarios. The differences can be caused by
several factors like: their reliance on native vector processing
and linear algebra libraries, that carry out most of the compu-
tations in C/C++, e.g., through NumP their internal parallel
architecture and exploitation of the underlying multi-core
hardware; their capability to exploit GP-GPU acceleration,
e.g., through CUDAE]; or, the way several input samples are
batch-processed so to parallelize computations and minimize
the execution of slow Python for loops.

A. Contributions

In this paper, we focus on the parallelization and accel-
eration architecture of SOM implementations, performing an
extensive performance comparison of widely available open-
source libraries for SOM computations, namely MiniSom [|15]],
Somoclu [16] and TensorFlow SOM [17]], under various con-
figuration options, leveraging both multi-core and GP-GPU

"More information at: https://numpy.org,
2More information at: https://developer.nvidia.com/about-cuda.

https://numpy.org
https://developer.nvidia.com/about-cuda

acceleration. Also, we present for the first time XPySom, a
novel open-source SOM implementation designed to lever-
age existing and widely available frameworks for accelerated
processing like NumPy, particularly effective when coupled
with the Intel Math Kernel Library (MKL or other BLAS
librariesE] for parallel processing on multi-core CPUs, and
CuPyE] for GP-GPUs. We show that a proper design of the
data processing operations, arranged so to perform a relatively
small number of calls from Python to the natively accelerated
libraries just mentioned, may result in a high-performance
implementation that outperforms the others. Indeed, an ex-
perimental comparison carried out processing the Extended
MNIST [18]] data set, highlights that XPySom exhibits a
performance that is an order of magnitude better than the
other evaluated SOM implementations, both for multi-core and
GPU-accelerated platforms.

B. Paper Organization

This paper is organized as follows. In Section[[I] we provide
an overview of relevant approaches found in the research
literature aiming at increasing SOM performance, mostly by
parallelizing the training algorithm. In Section we present
our own implementation, called XPySom, discussing the most
important choices in its design regarding optimized execution
and parallelization. Section reports the results of the
benchmark we have run to compare our implementation to
other widely used open-source ones. Section [V] includes our
final remarks and possible ideas for further work on the topic.

II. RELATED WORK

Virtually all ML algorithms can benefit — at least partially —
from an implementation that exploits the parallelization capa-
bilities of modern hardware architectures, being them classical
statistical learning algorithms [19], visualization methods for
high-dimensional spaces [20] or clustering techniques [21]].
This work focuses on SOMs, an instance of the latter class of
ML-based approaches.

SOMs make extensive use of vector operations, which can
be accelerated at various levels, from leveraging the SIMD
vector instructions of high-end processors like the Streaming
SIMD Extensions (SSE) and Advanced Vector eXtensions
(AVX) [22]], to multi-core processing widely available on ba-
sically all computing platforms, to the use of general-purpose
graphics processing units (GP-GPUs) featuring thousands of
processing units able to compute in parallel the same kernel
at high speeds exploiting the fast local memory on the GPU.

Several works appeared in the research literature dealing
with SOM performance and optimizations. In [23]], a parallel
SOM implementation for interactive high-performance data
analysis is proposed. Indeed, the classical (serial) training
procedure for SOMs, that consists in determining the best-
matching unit (BMU) and then updating the units weights

3More information at: |https:/software.intel.com/content/www/us/en/
develop/tools/math-kernel-library.html

#More information at: jhttp://www.netlib.org/blas/,

SMore information at: https://cupy.chainer.org,

accordingly for each training sample, is not feasible in contexts
where massive datasets must be processed and results are
expected to be returned in near real-time (e.g., interactive
web searches). The approach is based on (i) partitioning
the map over multiple processors, each one responsible for
solving a local (minimization) problem of finding the BMU
in its partition, (ii) aggregating the partial results to compute
the global BMU and (iii) propagating the solution to allow
for weights updates. The authors show that the introduced
synchronization overhead is negligible with respect to the
floating-point operations involved in the training process, that
can be further optimized to leverage better L2 caches.

In [16], [24], attempts at distributing the SOM training algo-
rithm using the MapReduce framework are described. Whereas
[24] relies on a pure Spark implementation to effectively scale
on massive datasets, [16] also allows for accelerating map
and reduce jobs on GPUs, by leveraging on the MapReduce-
MPI [25] framework’|

In [26], a thorough scalability analysis of SOMs on a
GPU cluster is reported. In particular, OpenCL- and CUDA-
based single-GPU approaches, as well as a multi-GPU im-
plementation combining CUDA and MPI, are evaluated with
respect to an MPI-only baseline, considering also two different
types of graphic cards. Results show that the CUDA-based
implementation outperforms the OpenCL-based one, mainly
due to the fact that the latter framework is designed to be
compatible with a heterogeneous set of devices, and that the
multi-GPU approach allows for a relatively small speed-up,
because of the synchronization requirements of the training
procedure.

Xiao et al. [27]] highlight that the performance of pure
CUDA implementations of SOMs are poor when dealing with
large neighborhoods, since many weights update operations
end up being serialized. To address this limitation, the authors
propose an approach in which the computation of the distances
between training samples and map units is implemented as a
matrix multiplication with compute shader, and the weights
updates are treated as a vertex rendering problem.

In [28]], a heterogeneous parallel implementation based on
MPI and CUDA is proposed, which is highly scalable on
multiple GPUs and multiple hosts, thanks to the employed
process-level and thread-level (data) parallelism. In particular,
the approach leverages on the batch version of the SOM
training algorithm that performs a single weights update per
epoch (i.e., after all training samples are consumed by the
model), whereas the original one performs a weight update
after each step of an epoch (i.e., after a single training sample
is consumed). The former training strategy requires fewer
computations and results in faster convergence. In addition,
such version of the algorithm is a perfect candidate for highly
parallel implementations, because the most computationally-
intensive parts can be turned into matrix operations that can
be performed with cuBLAS, fully exploiting the computational
capacity of GPUs.

SMore information at: https://mapreduce.sandia.gov/index.html,

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
http://www.netlib.org/blas/
https://cupy.chainer.org
https://mapreduce.sandia.gov/index.html

In [29], a SOM implementation that combines both data and
model parallelism is described. This implementation pushes
the parallelization capability of the batch training algorithm
to the extreme, as not only the training set is split in chunks
to be processed independently by copies of the map (data
parallelism) but each copy is also partitioned at unit weights-
level, so that a separated GPU thread handles the updates
of a single dimension of each neuron. According to the
experiments conducted by the authors, this method performs
best when dealing with large data sets but its effectiveness
starts decreasing when increasing the number of features per
data point. Also, by profiling the GPU usage, the authors
discovered that, even though the thread processor occupancy
was very close to the theoretical limit, their throughput was
relatively low. This was most likely due to the time spent
waiting for a CUDA core to be available, a problem that can
be certainly mitigated by using a more powerful graphics card.

In [30], an efficient parallel SOM library — called Somoclu
— is presented, which improves on [[16]]. Such implementation
offers high flexibility, as it can be effectively executed on a
single machine as well as on a cluster, both on CPUs and
GPUs, and exposes interfaces compatible with widely-used
data analysis ecosystems (e.g. Python, R and MATLAB). The
Somoclu core implementation is based on OpenMP to achieve
efficient single-node parallelism, and MPI, which replaces
the MapReduce framework employed in [16]], to distribute
the computation among multiple nodes. Furthermore, a GPU
kernel implemented with CUDA Thrus and cuBLAS is
available. Notably, due to its remarkable performance and
versatility, we decided to use Somoclu as a reference for the
evaluation of our approach.

Lachmair et al. [31] compared several different SOM im-
plementations, targeting many diverse computing platforms
ranging from general-purpose CPUs to FPGAs, both in terms
of performance and energy efficiency. With respect to a
baseline provided by the MATLAB SOM toolbox, a multi-
threaded CPU implementation is able to achieve a speed-up
of 200x with small networks. Although, when dealing with
large, high-dimensional data, GPU and FPGA implementations
performs best, with the latter being the most energy-efficient
while reaching a speed-up of 200 with respect to the multi-
threaded CPU implementation.

Among the approaches described above, only a few of
them have been made widely available as open-source projects
exhibiting a Python API, actively maintained and well doc-
umented with on-line examples. In the present paper, we
chose to compare our proposed XPySom with a few projects
we found with the mentioned characteristics, which include:
Somoclu [16], due to its versatility (besides multi-core par-
allelism, it can also exploit GP-GPUs as well as multiple
nodes in a cluster) and promising performance (at the core,
it is implemented in C/C++ and exposes bindings for higher-
level languages such as Python); MiniSom [15], due to the
fact that, thanks to its simplicity, our code base was realized

"More information at: https://docs.nvidia.com/cuda/thrust/index.html,

as a modification to it; and TensorFlow SOM [17], due to
its seemingly promising approach based on the well-known
TensorFlow framework. MiniSom implements the on-line algo-
rithm described in Section [[II-A] exploiting exclusively vector-
vector and vector-matrix operations (i.e., Euclidean distance,
vector additions and scalar multiplications) which, albeit im-
plemented efficiently in Numpy and — if possible — leveraging
on multiple cores, are invoked several times from the Python
language. Specifically, Python makes a number of calls to
Numpy vector operations for each input sample, updating the
neurons after each sample. Notice that such implementation
pattern — with everything explicitly coded in Python - is
among the easiest to implement and makes the code readable
and easily modifiable. Unfortunately, this also results in a
very poor implementation in terms of performance, as shown
in Section XPySom, on the other hand, implements the
batch algorithm described in Section [III-B| — the same used
in Somoclu and the compared TensorFlow implementation —
with the improvements described in Section heavily
exploiting higher-dimensional operations (e.g., matrix-matrix)
to work on batches of input samples for each native call,
resulting in a number of native calls proportional to the number
of batches. Furthermore, neurons are updated once per epoch,
with just the numerator/denominator accumulation required for
each batch, which results in a much lower number of overall
operations. Thanks to the additional implementation details
provided in Section XPySom is able to exploit either
Numpy or CuPy interchangeably, leveraging on either multiple
CPU cores or GPU.

III. PROPOSED APPROACH

This section introduces our new XPySom library for Python,
and it is further divided into four subsections: Section
introduces the classical SOM algorithm in the on-line for-
mulation, used by MiniSom [15]]; Section explains how
the embarrassingly parallelizable batch algorithm is usually
derived, with reference to the Somoclu [|16] implementationﬂ
Section [[II-C| shows the reformulated batch algorithm which
has been adopted in XPySom — presented in Section -
that makes use of matrix-based operations to take advantage of
existing BLAS libraries (both CuBLAS and Intel MKL BLAS).

A. On-line SOM

The SOM training algorithm aims at building a non-
linear topology-preserving mapping of an input data set of
N P—dimensional vectors X = {zg,z1,...,eN-1},2; €
RP Vi = 0.N — 1 onto a set of M neurons char-
acterized by their P—dimensional weight vectors W =
{wo, w1, .ywps—1 },wr, € RP Vk = 0..M — 1, where the
M = GwGpg neurons are usually arranged as a Gy X
Gpg grid (in the following, a rectangular grid is assumed).
Therefore each neuron w;, has also its associated coordinates
rr = (kdiv Gw, kmod Gw) in the 2D grid (where div and
mod represent the quotient and modulus integer operations,
respectively).

8Code available at: https:/github.com/peterwittek/somoclu

https://docs.nvidia.com/cuda/thrust/index.html
https://github.com/peterwittek/somoclu

The W neurons are first initialized in some way, usually
randomly sampling the X data set or using the well-known
Principal Components Analysis (PCA) technique. Then, for
each training epoch ¢, an update to the SOM weights is
performed for each input sample as follows. At each iteration
t', an input data x; is fetched (using either a random or a
sequential scheduling), its associated best matching neuron b;
(usually referred to as BMU, Best Matching Unit) is found
(Equation), i.e. the neuron which is closer to the data
point (in the following we will assume L2 distance is used).
Then, the weights of all neurons are updated with Equation (2)),
where h (Equation (3)) is called neighborhood function and is
assumed to be a Gaussian in the following.

b; = argming|z; — wg2 (1)
VEk, wi(t' + 1) = wi(t') + a(t)h(b;, k, t)(x; — wi(t') (2)
_ [l75 —]|

Here, «(t’) and §(t') are respectively the learning rate and
the radius of the neighborhood function, which depend on
the current epoch ¢ (a,0 : N — R), and decrease across
epochs either linearly or exponentially, to make the algorithm
converge.

B. Batch SOM

It is clear that the formulation in Section[[II-Alis not suitable
for a parallel implementation since each iteration directly
depends on the one immediately before and only processes
a single data sample at a time. Therefore, an embarrassingly
parallel implementation has been proposed: instead of updat-
ing the neuron weights for each data sample, they are updated
after a batch of N’ data samples (in the following we will
assume N’ = N for simplicity). Essentially, the term of Eq. ()
that depends on the input sample h(b;, k, t)z; is replaced by a
weighted sum of the same terms computed in parallel for all
samples in the batch, using the formula:

Zi h(bi,]{)7 t)xi

> h(bi, k,t)
This way, one can compute in parallel all numerator and de-
nominator parts (i.e. h(b;, j,t)x; and h(b;, j,t), respectively)
for each sample in each batch and then sum up all numerator
and denominator parts and finally compute the weight update.

“4)

C. Matrix-based batch SOM

In order to take advantage of BLAS libraries which are
highly optimized for execution in both GPU and CPU (in
the latter making use of vector instructions), the formulas in
sections Section and Section can be rewritten to
operate on a batch of B data samples at a time arranged in
a B x P matrix, X € RB*P 1In the following the weights
are assumed as arranged in a M x P matrix W € RM*P
We will now go through each algorithm step providing the
corresponding matrix implementation: first (Section [[II-CT)
the distance matrix D € RB*M is computed, consisting of all
pair-wise distances between X and W; second (Section[[II-C2)

the BMUs are found for each sample, i.e. the index of the
smallest value in each row of D as a vector BMU € N7,
then (Section the neighborhood function is computed
for each element of BMU, yielding a matrix H € RE*M;
successively (Section numerator and denominator up-
dates are computed yielding matrix NUM € RM™*¥ and vector
DEN € RM: finally (Section , after all batches of the
epochs are processed, the weights of the neurons are updated.

1) Distance matrix: There is en efficient formula for com-
puting pair-wise distances between two matrices:

D?=X%—2XWT + W? (5)

A2y = "al = 2wk i+ > wi (6)
J J J

First, we note that since we are interested only in finding the
minimum over a row (i.e. for each sample in the batch) we do
not need to compute the square root of D?. Furthermore, if we
express Equation (§) in terms of element-wise operations, as
in Equation @, we can note that: (1) X2 is constant on a row
(i.e. for same values of 7), hence we can skip its computation
since we are only interested in finding the BMU; (2) W? is
constant over an epoch and therefore it may be computed only
once and the same value reused.

2) BMU: BMUs are trivially computed element-wise:
BMU; = argmingD; i

3) Neighborhood function: By unraveling the BMU; in-
dices we can obtain directly the coordinates of the BMU in the
rectangular grid (Equation (7)). Calling U € NB*2 the matrix
with the unraveled indices of the BMUs and P € NMx2
the matrix with the positions 7, of the M neurons, we can
compute the H matrix as follows:

Ui,1 = BMUZ' mOde, Ui,g = BMUZ' div Gy (7)
L _ P 2 R o 2
hig = —exp ((Ul’l k1) 5—(‘;)([]1’2 t.2)) (8)

4) Numerator and denominator update: The updates N’
and D’ can now be computed as:

o = D higtigs di = D hik 9)

The corresponding matrix operation for the numerator in Equa-
tion (9) is: N’ = HT X where N’ and D’ are accumulated in
N and D.

5) Weights update: The new weights W (¢t + 1) are calcu-
lated as: wy ;(t 4 1) = ny j/dy.

D. XPySom

XPySom is our implementation of Self Organizing Maps in
Python that uses the matrix-oriented formulation of the algo-
rithm of Section XPySom has been obtained as a (quite
disruptive) modification to MiniSom, which has been chosen
as a starting point due to its simplicity of implementation and
richness of features. In XPySom, the sequential sample-by-
sample operations originally in MiniSom have been replaced
with matrix operations as detailed above. These are executed
using the APIs provided by either NumPy or CuPy, which

<—CupA
NVIDIA

= «<—INTEL MKL (or any BLAS)

Numpy data
Reading,

Squared Distance
Neuron weights (W term in eq.6)

Initialization

Input
Data Batching

For each epoch

i
Compute Squared
Distance between

Neurons and Input data (eq. 6)

—

i
BMU calculation (eq.7) Neuron Weights

update (eq. 14)

Numerator and
denominator
update (eq. 11-12)

Fig. 1: Visualization of the data flow for SOM training in XPySom.

are able to exploit CPU and GPU processing, respectively.
We exploit the interchangeability among NumPy and CuPy,
as CuPy implements the same APIs as NumPy but it executes
its operations on GPUs through cuBLAS calls or raw kernels.
The obtained data flow is exemplified in Figure [I] where
the various steps XPySom goes through in order to perform a
SOM training operation are visualized, in connection with the
corresponding equations defined in the previous subsections.
Core features of the XPySom architecture are its capability
to perform SOM training operations in batches of input
samples, arranged as matrix/vector operations that are executed
very efficiently through relatively few calls to the underlying
NumPy or CuPy libraries. XPySom is able to use either of
them interchangeably, thanks to their compatible APIs.
XPySom is an open-source project and the code is available
under a Creative Commons licenseﬂ For the moment, XPySom
does not support execution on multiple nodes nor multiple
GPUs. Moreover, when in GPU mode, XPySom cannot make
use of CPUs to accelerate further the processing. However, the
implementation of these features is planned in a short future.

IV. EXPERIMENTAL RESULTS

In this section we present the results we obtained, both in
terms of quantization error (QEE and training time, from
an extensive experimental comparison among our proposed
XPySom and a few other commonly available SOM imple-
mentations: MiniSom, SomoClu and TensorFlow SOM. For
the experiments, we have relied on a workstation equipped
with 16GB of DDR4 memory, an Intel(R) Core(TM) 17-4790K
quad-core CPU (8 hyper-threads) with base frequency 4.00
GHz (turbo-boosting to 4.40 GHz) and an Nvidia GeForce(R)
GTX 1080 Ti with 11 GB of on-board memory and 3584

9Code available at: https:/github.com/Manciukic/xpysom
10The quantization error is defined as the average distance between each
input vector and the weight vector of its associated BMU neuron.

CUDA cores, running Ubuntu 18.04 LTS. The installed li-
braries and packages were Python 3.6.5, NumPy 1.18.1, So-
moclu 1.7.5 (built from source at commit cOf£40ed), CuPy-
cuda92 7.4.0, CUDA 10.2, TFSo and TensorFlow 2.1.0.

We have performed five different tests each comparing
different training environments. To have a fair quantization
error evaluation, we have chosen to run each experiment
five times with a 30 minutes timeout and to use the mean
quantization error as the error metric and mean training time as
the performance metric. The input data used in the following
experiments is the Extended MNIST (EMNIST) dataset [18§]]
that contains 240000 data samples, each composed of 784
features. In all the experiments the input data values are
divided by 255 so that all the features are scaled in the [0, 1]
range. In the TFSom implementation the batch size is set to
128, which shows a nice compromise in terms of memory
usage and computation time. The learning rate starts every
time with a value of 0.5 and decays exponentially over epochs
in all the tested implementations.

Note that we have also run XPySom on an industrial dataset
— provided by Vodafone — regarding data-center metrics for
network function virtualization, that has been mentioned in
our previous works [13]], [14]]. From a preliminary experi-
mentation, the conclusions in terms of performance gain of
XPySom compared to SomoClu are fundamentally the same
as shown in this paper. Although, due to space constraints
and unavailability of the aforementioned dataset to the public,
we preferred not to include such results in this work.

A. Quantization error vs execution time

The first test aimed to exclude from further performance
experiments all the SOM implementations that did not reach an
acceptable quantization error after a fixed amount of training
time or to exclude SOM initialization techniques that did not

11 Code available at: |https://github.com/cgorman/tensorflow-som

https://github.com/Manciukic/xpysom
https://github.com/cgorman/tensorflow-som

6.4 1

6.2 7 —4— XPySom CPU

XPySom GPU
—4— Somoclu
—- SomocluGPU
—¥— MiniSom
—4- TFSom

6.0 1

Average Quantization Error

5.81

5.6

2‘0 4‘0 6‘0 8‘0 160
#epochs

Fig. 2: Evolution of the quantization error for a 10x10 SOM

throughout training epochs (EMNIST, 240000 samples, 784

features).

bring performance improvements. The quantization error is
averaged over 5 training sessions and measured after each
epoch for a total of 100 epochs. The number of neurons is
fixed to 100 and arranged in a 10 x 10 rectangular grid. Since
MiniSom offers the possibility to initialize the weights using
the PCA or the random initialization, we have chosen to run
the experiment with both initialization techniques while in the
Somoclu implementation the initialization is the random one.
The training update rule is the one described in Equation (@)
used in both XPySom and Somoclu implementations, while in
the MiniSom implementation the training update rule is the
online update rule described in Equation (2).

Figure 2] shows how both Somoclu and all XPySom imple-
mentations reach similar mean QE through all the 100 epochs.
MiniSom reaches a lower QE in fewer epochs just because
of the online update rule that updates all the SOM weights
for each sample, resulting in more updates within the same
number of epochs. After 20 epochs the MiniSom experiment
is quitted since it reaches the time limit of 30 minutes.
The TensorFlow SOM implementation (7FSom) seems to be
unable to lower the QE even after 100 epochs as it remains
with a QE between the 15% and 20% higher than the other
SOM implementations. PCA initialization of both MiniSom
and XPySom seems to not help to lower the QE with respect
to the random initialization, and the only difference seems
to be in the slightly higher initialization time due to the
initial PCA decomposition. For this reason, since the following
experiments will focus only on the time performance, the faster
random initialization will be used in all SOM implementations.

B. Execution time with different SOM grid sizes

The results obtained in Section suggest that the batch
update rule used in all SOM implementations tested except the
original MiniSom implementation does not worsen the quan-
tization error compared to the online one. In this section, we

focus on how the execution time is affected when increasing
the number of SOM neurons instead. Figure [3| shows that,
increasing the number of SOM neurons (on the X axis), the
training time increases (in seconds on the Y axis, averaged on
5 different training sessions, in linear and logarithmic scale in
Figure [3a] and Figure 3b] respectively). The number of epochs
is fixed to 10, the number of training samples is fixed to
240000 and the number of features is fixed to 784.

The XPySom implementation presented in this paper outper-
forms the Somoclu implementation in both OpenMP (CPU,
just labelled as Somoclu in the figure) and CUDA (Somo-
cluGPU label in the figure) compiled versions by two and
three orders of magnitude. It is worth noticing how XPySom
effectively leverages the GPU parallelization while Somoclu
seems to perform worse when using the GPU. A quick
investigation revealed that in this case Somoclu makes a non-
intensive use of the GPU, while still keeping a significant
amount of computations on the CPU (on a related note, the
GPU and CPU kernels are kept in different files, in the source
code). The MiniSom original implementation is not using any
sort of explicit parallelization and the training time grows
uncontrolled when increasing the number of neurons. The
Somoclu GPU compiled version starts to become unusable
when the number of neurons approaches the size of 500,
while the TensorFlow based implementation TFSom starts to
be faster than the Somoclu one when the number of neurons
approaches the size of 500, but if remains two orders of
magnitude slower than the XPySom GPU implementation.

C. Execution time with increasing number of training epochs

Figure [2| shows how increasing the number of training
epochs leads to a decrease in the quantization error. Figure [
shows how the training time increases linearly with the number
of epochs. It is worth to notice that even after 100 epochs the
XPySom GPU implementation ends the training session in less
than 10 seconds, more than two orders of magnitude faster
than the second faster GPU SOM implementation (TFSom).

D. Execution time with increasing number of training samples

The training time increases linearly with the data set size
and the log-plot in Figure [5] follows the expected behavior in
all the six tested SOM implementations. Again, the XPySom
implementation shows the best performance with both the
NumPy (CPU) and CuPy (GPU) backends.

E. Execution time with increasing number of input features

To check how the execution time is impacted when using
more input features, we have scaled the original input samples
to the following sizes using a bilinear interpolation over the
pixel neighborhood:

e 7 X 7, resulting in a input dataset of size 240000 x 49

e 14 x 14, resulting in a input dataset of size 240000 x 196

e 28 x 28, resulting in a input dataset of size 240000 x 784

e 56 x 56, resulting in a input dataset of size 240000 x 3136
The log-plot in Figure [6] shows that the XPySom implemen-
tation outperforms the other SOM implementations by two or

—— XPySom CPU
— - XPySom GPU
—4— Somoclu

— - SomocluGPU
—¥- TFSom

—4— MiniSom

1200

1000 1

800 1

G
g

E 6004

400 1

2001

0

0 500 1000 1500 2000 2500
#neurons
(a)

103 -

107 4 —$— XPySom CPU
~ —#- XPySom GPU
o —4— Somoclu
€ —F - SomocluGPU
=

—¥- TFSom
—4— MiniSom

10! 4

100 4

1000 1500
#neurons

(b)

Fig. 3: Training time as a function of the number of neurons
(EMNIST, 240000 samples, 784 features).

0 500

103 4

102 4

Time (s)

—$— XPySom CPU
~#i- XPySom GPU

101 4

—4— Somoclu
——— — == —f = SomocluGPU
S
e —¥- TFSom
e —#— MiniSom
20 40 60 80 100
#epochs

Fig. 4: Training time as a function of the number of training
epochs (EMNIST, 240000 samples, 784 features)

103

—— XPySom CPU
~#i- XPySom GPU
—4— Somoclu

—- SomocluGPU

—¥- TFSom

102 —4— MiniSom

Time (s)

10' 4

100 4

150000 200000

#samples

100000 250000

Fig. 5: Training time as a function of the number of training
samples (EMNIST, 240000 samples, 784 features)

103 4

102 4

Time (s)

10! 4

—— XPySom CPU
—#- XPySom GPU

—&— Somoclu INNESES
m-— " —f=- SomocluGPU

—_ —¥- TFSom

| g —4$— MiniSom

100 4

T T y T
1500 2000 2500 3000

#features

6 560 10‘00
Fig. 6: Execution time vs Increasing number of training
features (EMNIST, 240000 samples, 784 features)

three orders of magnitude. The number of epochs is fixed to 10
while the number of training samples is fixed to 240000. The
TensorFlow implementation 7FSom cannot start the training
session with 3136 features due to a memory error (exceeded
available 11Gbyte GPU memory) using a batch size of 128. On
the other hand, the MiniSom implementation cannot reach the
training session ends since it exceeded the maximum conceded
training time (30 minutes) for our experiments.

V. CONCLUSIONS AND FUTURE WORK

We presented XPySom, a variant of the popular MiniSom
package for Python that effectively leverages the paralleliza-
tion of the batch update rule for training SOMs, recurring to
a massive use of matrix/vector operations optimized through
the use of the well-known NumPy and CuPy libraries. We
have tested our implementation on a single GP-GPU, multi-
core CPU machine using different training settings. Extensive
experimental results demonstrate that, even when increasing

the number of neurons, the number of training samples or
the number of training features, our implementation outper-
forms other popular open-source implementations for Python
(including Somoclu that has a native C/C++ implementation),
with a training time two or three orders of magnitude lower
and a practically identical accuracy (quantization error).

Our proposed XPySom implementation is certainly an in-
teresting choice when the SOM training can be run on a
single machine, being probably among the fastest SOM im-
plementations available for Python. However, a more extended
evaluation of other existing open-source SOM implemen-
tations for Python is planned in the future, including for
example susi [32[], SOMvec [33] or others, also including in
the comparison the richness of features made available by the
various software packages.

Moreover, the algorithm is extremely easy to be adapted
to custom implementations since most of the functions are
inherited from the MiniSom minimalistic package.

REFERENCES

[1] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, High Performance Convolutional Neural Networks for
Image Classification,” in Proc. 22nd International Joint Conference on
Artificial Intelligence (IJCAI), Barcelona, Catalonia, Spain, July 16-22,
2011, T. Walsh, Ed. 1JCAI/AAAL 2011, pp. 1237-1242.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural In-
formation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097—
1105.

[3] T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464-1480, 1990.

[4] Y. Jiang and Z.-H. Zhou, “SOM Ensemble-Based Image Segmentation,”
Neural Processing Letters, vol. 20, no. 3, pp. 171-178, nov 2004.

[5] A.De, Y. Zhang, and C. Guo, “A parallel adaptive segmentation method
based on SOM and GPU with application to MRI image processing,”
Neurocomputing, vol. 198, pp. 180-189, jul 2016.

[6] 1. Diaz, M. Dominguez, A. A. Cuadrado, and J. J. Fuertes, “A new
approach to exploratory analysis of system dynamics using som. ap-
plications to industrial processes,” Expert Systems with Applications,
vol. 34, no. 4, pp. 2953 — 2965, 2008.

[71 L. Canetta, N. Cheikhrouhou, and R. Glardon, “Applying two-stage
SOM-based clustering approaches to industrial data analysis,” Produc-
tion Planning & Control, vol. 16, no. 8, pp. 774-784, 2005.

[8] L. Xu, Y. Xu, and T. W. Chow, “PolSOM: A new method for multidi-
mensional data visualization,” Pattern Recognition, vol. 43, no. 4, pp.
1668-1675, apr 2010.

[9] E. Corchado and B. Baruque, “WeVoS-ViSOM: An ensemble summa-

rization algorithm for enhanced data visualization,” Neurocomputing,

vol. 75, no. 1, pp. 171-184, jan 2012.

E. Palomo, J. North, D. Elizondo, R. Luque, and T. Watson, “Application

of growing hierarchical SOM for visualisation of network forensics

traffic data,” Neural Networks, vol. 32, pp. 275-284, aug 2012.

T. Yamagutchi, K. Nagata, and P. Q. Truong, “Pattern Recognition

of EEG Signal during Motor Imagery by Using SOM,” in Second

International Conference on Innovative Computing, Informatio and

Control (ICICIC 2007). IEEE, sep 2007, pp. 121-121.

T.-S. Li and C.-L. Huang, “Defect spatial pattern recognition using a

hybrid SOM-SVM approach in semiconductor manufacturing,” Expert

Systems with Applications, vol. 36, no. 1, pp. 374-385, jan 2009.

G. Lanciano, A. Ritacco, T. Cucinotta, M. Vannucci, A. Artale, L. Basili,

E. Sposato, and J. Barata, “SOM-based behavioral analysis for virtu-

alized network functions,” in Proceedings of the 35th Annual ACM

Symposium on Applied Computing, ser. SAC *20. New York, NY,

USA: ACM, mar 2020, pp. 1204-1206.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

T. Cucinotta, G. Lanciano, A. Ritacco, M. Vannucci, A. Artale, J. Barata,
E. Sposato, and L. Basili, “Behavioral Analysis for Virtualized Net-
work Functions: A SOM-based Approach,” in Proceedings of the 10th
International Conference on Cloud Computing and Services Science.
SCITEPRESS - Science and Technology Publications, 2020, pp. 150-
160.

G. Vettigli, “MiniSom,” 2019. [Online]. Available: https://github.com/
JustGlowing/minisom

P. Wittek and S. Daranyi, “A GPU-Accelerated Algorithm for Self-
Organizing Maps in a Distributed Environment,” in Proceedings of
ESANN-12, 20th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2012.

C. Gorman, “TensorFlow Self-Organizing Map,” 2019.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: an
extension of MNIST to handwritten letters,” CoRR, vol. abs/1702.05373,
2017. [Online]. Available: http://arxiv.org/abs/1702.05373

T. V. Sang, R. Kobayashi, R. S. Yamaguchi, and T. Nakata, “Accelerating
Solution of Generalized Linear Models by Solving Normal Equation
Using GPGPU on a Large Real-World Tall-Skinny Data Set,” in 20719
31st International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), vol. 2019-Octob. IEEE, oct
2019, pp. 112-119.

D. M. Chan, R. Rao, F. Huang, and J. F. Canny, “T-SNE-CUDA:
GPU-Accelerated T-SNE and its Applications to Modern Data,” in
2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). 1EEE, sep 2018, pp. 330-338.
M. A. Souza, L. A. Maciel, P. H. Penna, and H. C. Freitas, “Energy
Efficient Parallel K-Means Clustering for an Intel® Hybrid Multi-
Chip Package,” in 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). IEEE,
sep 2018, pp. 372-379.

“Intel Whitepaper: Optimizing Performance with Intel Advanced
Vector Extensions,” 2014. [Online]. Available: https://www.
intel.com/content/dam/www/public/us/en/documents/white- papers/
performance-xeon-e5-v3-advanced- vector-extensions- paper.pdf

A. Rauber, P. Tomsich, and D. Merkl, “parSOM: a parallel imple-
mentation of the self-organizing map exploiting cache effects: making
the SOM fit for interactive high-performance data analysis,” in Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol. 6. 1EEE, 2000, pp. 177-182
vol.6.

T. Sarazin, H. Azzag, and M. Lebbah, “SOM Clustering Using Spark-
MapReduce,” in 2014 IEEE International Parallel & Distributed Pro-
cessing Symposium Workshops. 1EEE, may 2014, pp. 1727-1734.

S. J. Plimpton and K. D. Devine, “Mapreduce in mpi for large-scale
graph algorithms,” Parallel Comput., vol. 37, no. 9, p. 610-632, Sep.
2011.

S. McConnell, R. Sturgeon, G. Henry, A. Mayne, and R. Hurley,
“Scalability of Self-organizing Maps on a GPU cluster using OpenCL
and CUDA,” Journal of Physics: Conference Series, vol. 341, p. 012018,
feb 2012.

Y. Xiao, R.-B. Feng, Z.-F. Han, and C.-S. Leung, “GPU Accelerated
Self-Organizing Map for High Dimensional Data,” Neural Processing
Letters, vol. 41, no. 3, pp. 341-355, jun 2015.

Y. Liu, J. Sun, Q. Yao, S. Wang, K. Zheng, and Y. Liu, “A Scalable
Heterogeneous Parallel SOM Based on MPI/CUDA,” in Proceedings
of The 10th Asian Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Zhu and I. Takeuchi, Eds., vol. 95.
PMLR, may 2018, pp. 264-279.

T. Richardson and E. Winer, “Extending parallelization of the self-
organizing map by combining data and network partitioned methods,”
Advances in Engineering Software, vol. 88, pp. 1-7, oct 2015.

P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao, “somoclu : An Efficient
Parallel Library for Self-Organizing Maps,” Journal of Statistical Soft-
ware, vol. 78, no. 9, jun 2017.

J. Lachmair, T. Mieth, R. Griessl, J. Hagemeyer, and M. Porrmann,
“From CPU to FPGA — Acceleration of self-organizing maps for data
mining,” in 2017 International Joint Conference on Neural Networks
(IJCNN), vol. 2017-May. IEEE, may 2017, pp. 4299—4308.

F. M. Riese, “SuSi: SUpervised Self-organlzing maps in Python,” 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.2609130

G. Clark, “SOMvec,” 2020. [Online]. Available: https://bitbucket.org/
GeoftreyClark/somvec/src/master/

https://github.com/JustGlowing/minisom
https://github.com/JustGlowing/minisom
http://arxiv.org/abs/1702.05373
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://doi.org/10.5281/zenodo.2609130
https://bitbucket.org/GeoffreyClark/somvec/src/master/
https://bitbucket.org/GeoffreyClark/somvec/src/master/

	Introduction
	Contributions
	Paper Organization

	Related Work
	Proposed Approach
	On-line SOM
	Batch SOM
	Matrix-based batch SOM
	Distance matrix
	BMU
	Neighborhood function
	Numerator and denominator update
	Weights update

	XPySom

	Experimental Results
	Quantization error vs execution time
	Execution time with different SOM grid sizes
	Execution time with increasing number of training epochs
	Execution time with increasing number of training samples
	Execution time with increasing number of input features

	Conclusions and Future Work
	References

