Page 23 of 35

oONOULLDh WN =

\e]

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Transactions on Computers

Timerlat: Real-time Linux Scheduling Latency
Measurements, Tracing, and Analysis

Daniel Bristot De Oliveira, Daniel Casini Member, IEEE, Juri Lelli, and Tommaso Cucinotta Member, IEEE

Abstract—A trend in many embedded devices is the move from hardware-based to software-defined, such as software-defined
networks and software-defined PLCs. This trend is motivated by multiple aspects, including the availability of complex software stacks
and the consolidation of multiple devices into a single larger system. Due to its real-time capabilities and flexibility, Linux is the
operating system of choice for many applications, including time-sensitive ones. However, assessing and debugging timing violations,
especially those caused by scheduling latency, is challenging with the current state-of-the-art tools. This paper presents timerlat, a
tool that integrates scheduling latency measurements, tracing, and analysis in an easy-to-use interface. lts output includes an
auto-analysis, providing insightful details on the composition of the scheduling latency. Experimental results are reported, evaluating
the effectiveness of timerlat in assessing the latencies, considering different setups and workloads.

Index Terms—Real-time Linux, Scheduling latency, Tracing.

1 INTRODUCTION

In embedded systems, a series of motivations is leading the
move from hardware-based to software-defined systems [1].
These support faster deployment and update, device consol-
idation, and easy access to modern software stacks, e.g., as
needed for artificial intelligence (AI) use cases.

A common requirement for these systems is a low-
latency and predictable response to external events [2]. Use
cases increasingly relying on software-defined systems of
this kind include industrial automation, automotive soft-
ware, and low latency communications, e.g., a 5G radio
access network (RAN) [3]. Therefore, the operating system
needs to provide low latency, in the order of tens of mi-
croseconds, as in the case of software-defined networking
for Virtualized Radio Access Network (VRAN) [4]-[6].

Linux is the preferred platform for many of these appli-
cations, because it supports a wide range of hardware, from
embedded to server-based devices. It also offers multiple
virtualization/containerization methods [7] and native ap-
plications/libraries for AI [8]. In particular, Linux’s ability
to provide low scheduling latency is essential for time-
sensitive applications. On a properly configured Linux sys-
tem, the highest priority task on a CPU can be activated with
a scheduling latency in the order of a few microseconds.
This is achievable with a PREEMPT_RT kernel® and a proper
set of real-time priorities.

However, as shown in the experimental evaluation in
Section 4, the scheduling latency also depends on the work-
load that runs on each CPU. For example, in a consolida-
tion case where multiple virtual Programmable Logic Con-
trollers (PLCs) with different real-time requirements share

Daniel Bristot De Oliveira and Juri Lelli are with the Real-time Scheduling
Team, Red Hat, Inc., Italy. Daniel Casini and Tommaso Cucinotta are with the
Scuola Superiore Sant’Anna, Pisa, Italy.
E-mail:{bristot, juri.lelli}@redhat.com,
{d.casini, t.cucinotta}@santannapisa.it
Manuscript received April 19, 2021; revised August 16, 2021.

1. https:/ /wiki.linuxfoundation.org/realtime/start

measuring thread

(O] ©

Latency

Fig. 1: Black-box latency measurement approach.

the same CPU [9], a lower-priority application can influence
the scheduling latency of the highest-priority one.

To date, the scheduling latency is measured using a
black-box approach, for example, using cyclictest. This tool
measures the scheduling latency as shown in Fig. 1: a
“sampling” thread, typically assigned to the highest priority,
sets a timer by leveraging an external clock reference and
suspends waiting for the timer. The thread is then awakened
when the timer expires, computing the scheduling latency
as the difference between the measured current time and the
expected timer wake-up time.

The black box approach is a simple and convenient
method to measure the scheduling latency. Nevertheless, it
has a principal limitation: it does not provide any insight
about the composition of the scheduling latency, which could
provide a notable help in understanding the causes of an
unexpectedly high value. Current tools stop the tracing
session when a value higher than a configurable threshold
is met. Then, a tracing expert needs to set up a tracing
session and discover its cause, which is time-consuming
and requires expert knowledge. This is a significant barrier
for many users since tracing is often inaccessible for non-
experts. Timerlat makes this process much easier by inte-
grating measurements and tracing.

Contributions. The contributions of this paper are threefold:

1) It presents timerlat, a new tool for measuring the Linux
scheduling latency. In particular, it integrates workload

0000-0000/00$00.00 © 2021 IEEE

oONOULLDh WN =

\e]

Transactions on Computers

execution, tracing, and automatic root cause analysis
into a single toolkit. The auto-analysis summarizes the
possible root causes for latency spikes without needing
the expert knowledge required to perform advanced
tracing activities on Linux. Notably, the tool has already
been integrated into mainline Linux (since kernel ver-
sion 5.17) and is hence available in every computing
platform with an updated Linux kernel;

2) It discusses the components of the latency as shown
by the auto-analysis, along with insights about how to
improve the system latency; and

3) It shows latency results on a system with different
levels of optimization and background workload.

2 RELATED WORK

The latency of Linux has been studied for several decades.
For example, in 2002, Abeni et al. [10] studied the OS
latency components of a set of Linux kernels and defined a
latency metric similar to the one implemented by cyclictest.
Their work is, however, limited to the kernels available in
2002. Reghenzani et al. [11] presented an empirical measure-
ment study of the latencies of real-time Linux under stress
considering a mixed-criticality scenario. Herzog et al. [12]
presented a tool that measures the interrupt latency at run-
time, targeting the standard Linux kernel. The evaluation
of the empirical timing behavior of Linux has also been
addressed by Regnier et al. [13]. An extensive empirical
study using cyclictest has been presented by Cerqueira and
Brandenburg [14], who evaluated the scheduling latency
under three different Linux variants, i.e., vanilla Linux,
PREEMPT_RT Linux, and LITMUS"", a real-time extension
of the Linux kernel widely popular in the academia. The
study in [15] compares the performance of PREEMPT_RT
Linux with QNX and Windows Embedded Compact 7.

Most related to us is the work by De Oliveira et al. [16].
It provided a theoretically sound method to compute the
Linux scheduling latency, leveraging an automata formal-
ism. It easily integrates with perf to provide insights on the
causes of a high latency value. Still, the work in [16] has
different features with respect to Timerlat:

(i) It targets only the PREEMPT_RT kernel, while timerlat
is compatible with any preemption model.

(i) It focuses on the worst-case latency while this work
provides statistics on the latency distribution, which
allows reasoning on the jitter. This is particularly
important for several application scenarios, including
industrial automation.

(iii) It requires using several tracepoints that are typically
not enabled since they cause overhead. While this over-
head is negligible for the worst-case latency, it is not the
case when looking at the overall latency distribution
(in which a fine-grained accounting of small latency
samples is also important). Timerlat uses more efficient
tracepoints so that to enable an accurate accounting of
latency samples of all kinds.

Other works targeted the investigation, via tracing, of
unexpected performance metrics values.

The ftrace preemptirgsoff tracer [17] tries to estimate the
longest time window in which OS-related blocking occurs

by searching for the longest window with IRQs or pre-
emptions disabled. The tool cannot distinguish between
blocking arising from IRQs or preemptions and adds over-
head to the measurement since it adds tracing capabil-
ities to functions, potentially affecting the results. Other
tracing solutions are perf, kutrace [18], and the aforemen-
tioned cyclictest. However, they both significantly differ
from timerlat. Perf and kutrace are tracers used for general-
purpose performance profiling. None of them measures the
latency by means of the black-box approach discussed in
Section 1, which is the standard approach used by prac-
titioners. Furthermore, kutrace is not part of the mainline
Linux kernel. Differently, cyclictest, performs an analogous
latency measurement, but it does not include tracing fea-
tures to point to the root cause of a high latency sample.
Differently, timerlat allows for simultaneously measuring
the latency and performing tracing, as extensively discussed
in the following. This allows for avoiding setting up sep-
arate and complex tracing sessions, which can typically
need to combine standard and custom-tailored tracepoints.
Furthermore, timerlat provides three different latency mea-
surements from the interrupt handler, thread, and user per-
spective. Instead, cyclictest considers just the user latency.
As shown in the Section 7, the overhead introduced with
respect to cyclictest is negligible. Finally, the osnoise tool [19]
allows for an integrated solution like the one presented in
this paper, allowing both measure and trace simultaneously.
However, osnoise does not consider the scheduling latency
but a different metric, the operating system noise (i.e., OS-
level interference occurring during execution).

Overall, no other tool provides an integrated solution to
measure the scheduling latency in Linux while seamlessly
providing insights into the root cause of high latency val-
ues by leveraging integrated tracing facilities. Furthermore,
timerlat has been integrated into mainline Linux real-time
Linux analysis tool, called rtla, and is thus available for every
user running an updated version of Linux.

3 BACKGROUND

Linux has four main execution contexts that can contribute
to the scheduling latency: (I) NMIs (non-maskable inter-
rupts); (II) IRQs (maskable interrupts); (III) Softirgs, (de-
ferred IRQs); and (IV) regular threads. It is worth noting
that the softirqs run at thread context in the fully preemp-
tive mode (PREEMPT_RT). We refer to a generic execution
context as a task. Each execution context is characterized by
a different preemption behavior, described by the following
rules, classified for each task type.

¢ R-NMI: The (per-CPU) NMI cannot be preempted. It
can preempt any other task.

¢ R-IRQs: IRQs can be preempted by the NMI. It can
preempt softirgs and threads but not other IRQs.

o R-Softirgs: Softirgs are preempted by IRQs and the
NML. It can preempt threads, but not other softirgs.

o R-Threads: Threads can be preempted by the NMI,
IRQs, softirgs, and by other threads, according to the
scheduling policy. It cannot preempt softirgs, IRQs,
and the NMI.

Page 24 of 35

Page 25 of 35

oONOULLDh WN =

\e]

This preemption behavior is well-known from prior
work (e.g., see [20]) and is of primary importance for under-
standing the tool’s behavior. For the sake of completeness,
we briefly summarize the Linux schedulers.

Linux schedulers. Linux has five schedulers, which are
queried in order to determine the thread to be exe-
cuted, thus forming a hierarchy of schedulers. At the
top of the hierarchy, there is the stop-machine pseudo-
scheduler, which runs kernel facilities. It is followed by the
SCHED_DEADLINE [21] scheduler, a real-time scheduler
implementing the Earliest Deadline First algorithm. After
that, Linux provides a POSIX fixed-priority real-time sched-
uler, that implements the SCHED_FIFO and SCHED_RR
scheduling classes. The last two schedulers are then, in
order, the completely fair scheduler (CFS) (or, EEVDEF, Earli-
est Eligible Virtual Deadline First, in Linux kernel versions
from 6.6), used for general-purpose activities (implemented
by the SCHED_OTHER scheduling class), and the IDLE
scheduler, which always returns the idle thread when there
is no other thread to execute.

Linux trace. Linux has an advanced set of tracing methods,
which are mainly applied in the runtime analysis of kernel
latencies and performance issues. The most popular tracing
methods are the function tracer that enables the trace of
kernel functions, and the tracepoint that enables the tracing
of hundreds of events in the system, like the wakeup of a
new thread or the occurrence of an interrupt. An essential
characteristic of the Linux tracing feature is its efficiency.
Nowadays, almost all Linux-based OSes have these trac-
ing methods enabled and ready to be used in production
kernels. Indeed, these methods have nearly zero overhead
when disabled, thanks to the extensive usage of runtime
code modification techniques that allow for a greater effi-
ciency than using conditional jumps when tracing is dis-
abled. The tracing interface is available via a pseudo-file
system that can be used via shell or via special libraries
used by programs like perf and trace-cmd.

4 LINUX SCHEDULING LATENCY ANALYSIS

This section introduces the timerlat tool. First, it focuses on
the tool components. Then, it discusses how to use timerlat
to measure the scheduling latency. Finally, it discusses the
timerlat tracing features. To ease understanding, we use the
rteval [22] tool, a tool used by Linux practitioners for per-
formance tuning, which starts and stops typical workload
for experimentation purposes. These workloads are a CPU-
bound scheduler benchmark called hackbench and a Linux
kernel compiling process, which is CPU, memory, and 10
bound.

4.1 Timerlat components

Timerlat consists of two components: the timerlat tracer and
the rtla interface, shown in Fig. 2.

The timerlat tracer is an in-kernel component. In-kernel
processing allows for reduced overhead in tracing, lever-
aging lockless synchronization (ftrace’s lockless ring buffer)
and reducing the amount of tracing data. The tracer man-
ages the timer handling and, optionally, configures the in-
kernel workload used to measure the latency. The timerlat

Transactions on Computers

kernel-space libtracefs

timerlat tracer

user-space

timerlat hist
interface

timerlat top

osnoise tracepoints .
interface

workloads

Auto-analysis

in-kernel [timerlat/CPU] user [timerlatu/CPU]

Fig. 2: Timerlat Architecture

tracer leverages the osnoise tracepoints [19] that reports the
relevant latency values, also decomposed in several sub-
components, as discussed in Section 5. For each task type
(see Section 3), timerlat leverages a corresponding trace-
point to obtain execution time values free from any nested
interference. For example, the osnoise:thread_noise tracepoint
is free from any NMI, IRQ, and softirq interference (recall
the R-Threads preemption rule from Section 3).

Therefore, the four tracepoints osnoise:nmi_noise, 0s-
noise:irq_noise, osnoise:softirg_noise, and osnoise:thread_noise
provides net values that are already discounted by any other
nested interference that a task could face according to rules
R-NMLI, R-IRQs, R-Softirgs, and R-Threads.

The rtla (real-time Linux analysis) suite provides a
benchmark-like interface for timerlat, accessing the tracing
interface using libtracefs library, like perf and trace-cmd. The
rtla timerlat tool sets up, collects, and parses trace data with
either a top-like or a histogram interface. The tool also offers
an interface to enable and collect advanced tracing features
of Linux, such as tracepoints and histograms. Furthermore, it
provides the auto-analysis functionality for debugging long
latency values. Finally, it allows running timerlat on top of
user-space workloads, which users often prefer.

4.2 Measuring the latency with timerlat

Fig. 3 shows the output of the top interface of timerlat
with user-space workload. It is immediately possible to
notice that three latencies are reported: the IRQ Timer (IRQ
for short), the Thread Timer (Thr), and the Ret user Timer
latency (Usr).

Similar to cyclictest, discussed in Section 1, timerlat
provides an interface accessible by a measurement thread.
It performs the following operations, which implement the
measurement:

1) First, it sets up a timer at a known time instant ¢,, and
suspends the thread.

2) Then, the kernel manages the timer and services its
expiry with an IRQ handler, which will run at a certain
time tirq, for which a timestamp value is obtained.

3) The IRQ handler awakens the measurement thread,
which then reads the current time 1, when it runs.

4) If a user-space workload is used, the tracer also reports
the “return from user-space” latency, which is obtained
by reading the timestamp at time ¢y, when such work-
load is put back in execution by the in-kernel timerlat
measurement thread.

oONOULLDh WN =

\e]

Transactions on Computers

$ sudo timerlat -u
Timer Latency

0 00:01:01 | IRQ Timer Latency (us) |

CPU COUNT | cur min avg max | cur
0 #60005 | 1 0 1 16 | 6
1 #60005 | 1 0 1 O 7
2 #60003 | 1 0 1 13 | 8
3 #60004 | 1 0 1 17 | 8
4 #60004 | 0 0 1 14 | 7
5 #59999 | 1 0 1 14 | 7
6 #60003 | 0 0 1 19 | 6
7 #60003 | 1 0 1 15 | 7

Thread Timer Latency (us)

Ret user Timer Latency (us)

min avg max cur min avg max

|

|
2 5 20 | 9 2 8 29
2 7 19 | 13 3 12 27
2 7 27 | 12 3 11 32
2 8 22 | 13 3 13 29
3 6 22 | 11 4 11 26
2 7 26 | 12 3 12 i
2 7 24 | 11 3 12 28
2 8 33 | 12 3 13 45

Fig. 3: The rtla timerlat top interface.

The previous operations define the three following la-
tency metrics:

o (IRQ) The first latency value Lirg = tirg — tw is
the difference between the known timer expiration
value and the timestamp of a special IRQ handling
function added by the tracer timer at the beginning
of the handler.

e (Thr) The second latency value Ltn, = trhe — o is
analogous, but measured concerning the thread and
using the corresponding timestamp.

e (Usr) Finally, the third latency value is measured
when execution comes back to the userspace com-
ponent, occurring at time ftys. The corresponding
latency is computed as Lyg = tusr — tuw.

The three latency values are graphically represented in
Fig. 4. As detailed in the following, one of the key differ-
ences between timerlat and cyclictest is that cyclictest just
measures the Usr latency, and it provides no insights on the
root cause of a latency value. Different, timerlat integrates
the latency measurements with lightweight tracing, offering
detailed traces that help practitioners understand the cause
behind a latency value. This is particularly useful when
the latency value is too high for the use case, and the
system needs to be tuned or modified to avoid it. Without
timerlat, practitioners would need to measure the Usr la-
tency separately with cyclictest and set up a separate tracing
session - typically combining standard and custom-tailored
tracepoints. This approach complicates the tracing process
and does not provide insights into IRQ and Thr latency.
In fact, the ability to easily distinguish between IRQ and
Thr latency is invaluable for root cause analysis of latency
violations. It allows practitioners to focus selectively on
events that occurred either before (or during) the servicing
of the IRQ or after the IRQ, which might have delayed the
selection and execution of the Thr component. Moreover,
not only timerlat provides integrated latency measurements
and superior tracing information, but it does that with
negligible overhead, as shown in Section 7.

The current, minimum, and maximum registered values
are shown by the tool for each type of latency.

Timerlat is compatible with all the schedulers avail-
able to the user, i.e., it can configure the measurement
thread with any of them. However, the default option
and standard practice is to run it as a SCHED_FIFO
thread at priority 95 (i.e., a “reasonably high” priority
typically used by Linux practitioners). This can be con-
figured with the -P option, which needs to be detailed

measuring thread

© 0 (O] ©
—

IRQ Latency

Thread Latency
I |

! Ret user Latency !

Fig. 4: IRQ, Thread (Thr) and Ret user (Usr) latency measured
by timerlat.

RTLA timerlat histogram
Time unit is microseconds (us)
Duration: 0 00:01:01

Index IRQ-000 Thr-000 Usr-000 IRQ-001 Thr-001 Usr-001
0 56523 0 0 35696 0 0
1 3476 53462 0 24302 1607 0
2 1 6507 57606 2 57868 51600
3 0 30 2297 0 485 7414
4 0 1 87 0 22 888
3 0 0 9 0 9 64
6 0 0 1 0 9 15
7 0 0 0 0 0 3
8 0 0 0 0 0 6
9 0 0 0 0 0 9
10 0 0 0 0 0 1
over: 0 0 0 0 0 0
count: 60000 60000 60000 60000 60000 60000
min: 0 1 2 0 1 2
avg: 0 1 2 0 1 2
max: 2 4 6 2 6 10

Fig. 5: The rtla timerlat hist interface.

with the parameter, for example, r:prio, f:prio to
priority prio with the SCHED_OTHER, SCHED_RR, or
SCHED_FIFO schedulers, respectively, and with the param-
eter d:runtime[us|ms]:period[us|ms] when using
SCHED_DEADLINE. Timerlat is also compatible with all
the preemption models of Linux, including PREEMPT_RT.

In addition to the top interface, timerlat provides the hist
interface that reports, for each interfering task, the number of
occurrences of each latency value, with some statistics such
as minimum, average, and maximum. An example is shown
in Fig. 5, which reports the latencies of the first two CPUs
(option —c 0-1) for 60 seconds (-d 60).

4.3 Timerlat tracing

The tracepoints are one of the basic bricks of the Linux kernel
tracing. The tracepoints are points in the kernel code where
a probe can be attached to run a function. They are most
commonly used to collect trace information. For example,

Page 26 of 35

Page 27 of 35

oONOULLDh WN =

\e]

ftrace registers a callback function to the tracepoints. These
callback functions collect the data, saving it to a trace buffer.
The data in the trace buffer can then be accessed by a tracing
interface.

The tracepoints have been leveraged for many other
use cases. For instance, to do runtime verification of the
kernel [23].

The timerlat tracer leverages the current tracing infra-
structure by re-using osnoise [19] tracepoints to collect
information within kernel pre-processed information.

Linux already has tracepoints that intercept
the entry and exit of IRQs, softirgs, and threads
(i.e., irg _handler_entry, irqg _handler_exit,
softirg _entry, softirqg_exit, sched_switch),
and the osnoise tracepoint attaches a probe to all entry
and exit events and uses it to:

1) account for the number of times each class of tasks
added blocking or interference for the workload;

2) to compute the execution time of the current interfering
task;

3) to subtract the noise occurrence duration of a pre-
empted noise occurrence by leveraging the rules dis-
cussed in Section 3.

timerlat uses those tracerpoints, with some additional
changes to optimize the output for its use-case.
To this end, timerlat performs the following operations:

1) print thread blocking and interference and softirq inter-
ference only when the thread is already awakened;

2) compute the execution time of the blocking task from
the activation time of the workload (during the timerlat
IRQ);

3) capture a stracktrace at the timerlat IRQ time, to print
information about the state of the blocking thread when
the interruption was served.

Fig. 6 shows a code snippet related to 2) and 3). First,
it shows how the IRQ latency is obtained and stored in
the diff variable by subtracting the expected timer wake-
up time from the current timestamp, as discussed in Sec-
tion 4.2. Second, it illustrates how the stacktrace is stored
at IRQ_CONTEXT level, so that it is available for printing in
case of a latency violation later on.

Fig. 7 shows an example of the timerlat tracer output.

In the first line, it is possible to see the timerlat tracer
output with information about the IRQ latency. The second
line shows the osnoise:irq_noise reporting the execution time
of the IRQ handler. The third line shows the blocking thread
noise execution time from the IRQ occurrence, providing an
output that can be leveraged directly by the user (in kernel
computation). Then the timerlat thread latency is printed,
followed by a stack trace of the blocking thread at the
moment of the timerlat IRQ: this includes the data that was
collected in Fig. 6.

4.4 RTLA Timerlat tracing

rtla timerlat is a front end for general tracing. The -t option
enables a tracing session, including timerlat and osnoise
events enabled. When the -t option is set, if a threshold
on the IRQ or thread latency is also set using the -1 or
-T options (by specifying the threshold in microseconds),

Transactions on Computers

/*
* timerlat_irqg - hrtimer handler for timerlat.
*/
static enum hrtimer_restart timerlat_irg(struct hrtimer *timer)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
struct timerlat_variables =xtlat;
struct timerlat_sample s;
u64 now;
u64 diff;

osn_var—->thread.arrival_time = time_get ();
/*
* Compute the current time with the expected time.

*/
diff = now - tlat->abs_period;

tlat->count++;

s.seqnum = tlat->count;
s.timer_latency = diff;
s.context = IRQ_CONTEXT;

trace_timerlat_sample (&s);

if (osnoise_data.print_stack)
timerlat_save_stack (0);

Fig. 6: A code snippet of the timerlat IRQ.

timerlat copies the content of the trace buffer to the timer-
lat_trace.txt file when either the IRQ or thread latency
thresholds are surpassed, respectively. timerlat can enable
any Linux trace events by enabling the —e (event). Events
can also be filtered and triggered using the —~filter (filter)
and -trigger (trigger) options. The —~trigger option can
be particularly useful to enable the collection and saving
of files of histograms, e.g., to understand the contribution
of each type of task to the latency, being a step towards
discovering the hypothetical worst-case latency.

The timerlat tracer and rtla timerlat are integral parts of
the Linux kernel, and a complete list of options is provided
with Linux kernel documentation.

5 TIMERLAT AUTO-ANALYSIS

A key feature of timerlat is the auto-analysis. This feature
is enabled by specifying the —a threshold, which stops the
tracing if the latency crosses the threshold value through
the tracing backend. When a latency sample crosses the
threshold, the rtla timerlat parses the trace, seeking the root
cause.

The auto-analysis splits the thread latency into several
variables. Before proceeding to discuss them, we briefly
recall some definitions we borrow from real-time scheduling
theory [24]: interference, blocking, release jitter, and execution
time:

o The interference is the delay caused by a higher-
priority task delaying a lower-priority one.

« Conversely, the blocking time is the delay caused by
a lower-priority task delaying a higher-priority one,
which can exist, for example, due to synchronization
delays or non-preemptive execution.

o The release jitter is a delay in the release of a task due
to an external event, e.g., due to the hardware.

o Finally, the execution time is the time required to
accomplish the goal.

Timerlat maps these well-known concepts to the sets
of variables, as mentioned earlier. Four of them are

oONOULLDh WN =

\e]

Transactions on Computers

sh-18550 [] d.h.. 20700.546662: #112225 context
sh-18550 [] dNh1l. 20700.546667:
sh-18550 [010] d..3. 20700.546670: thread_noise:
timerlat/10-5409 [] ...1 20700.546671:
timerlat/10-5409 [] ...11 20700.546671:
timerlat_irqg
__hrtimer_run_gqueues
hrtimer_interrupt
__sysvec_apic_timer_interrupt
sysvec_apic_timer_interrupt
asm_sysvec_apic_timer_interrupt
__memcg_slab_free_hook
kmem_cache_free
exit_mmap
__mmput
begin_new_exec
load_elf_binary
bprm_execve
do_execveat_common.isra.0
__x64_sys_execve
do_syscall_64
entry_SYSCALL_64_after_hwframe

<stack trace>

VVVVVVVVYVY

VVVVVYV

L | | | 1
v

v

irqg timer_latency
irg noise: local_timer:236 start 20700.546661734 duration 5400 ns

sh:18550 start 20700.546662104 duration 2595 ns
#112225 context thread timer_latency

852 ns

9268 ns

Fig. 7: The timerlat tracer and osnoise tracepoints.

$ sudo timerlat -a 30
Timer Latency

0 00:00:01 | IRQ Timer Latency (us) |

CPU COUNT | cur min avg max | cur
0 #763 | 1 0 1 9 | 8
1 #763 | 1 0 1 8 | 12
2 #763 | 1 0 1 5 | 13
3 #763 | 1 0 1 8 | 16
4 #763 | 12 0 1 16 | 28
5 #763 | 1 0 1 8 | 12
6 #763 | 32 0 1 32 | 52
7 #763 | 0 0 1 11 | 7

rtla timerlat hit stop tracing

CPU 6 hit stop tracing, analyzing it
IRQ handler delay:

IRQ latency:

Timerlat IRQ duration:

Blocking thread:

objtool:1164402

Blocking thread stack trace

-> timerlat_irqg

-> __hrtimer_run_queues

—> hrtimer_interrupt

-> _ sysvec_apic_timer_interrupt
-> sysvec_apic_timer_interrupt

-> asm_sysvec_apic_timer_interrupt
—> _raw_spin_unlock_irgrestore

—-> cgroup_rstat_flush locked

—> cgroup_rstat_flush_irgsafe

-> mem_cgroup_flush_stats

-> mem_cgroup_wb_stats

-> balance_dirty_pages

—> balance_dirty_pages_ratelimited_flags
—-> btrfs_buffered_write

—-> btrfs_do_write_iter

—> vfs_write

-> __x64_sys_pwrite64

-> do_syscall_64

—> entry_ SYSCALL_64_after_hwframe

32.17 us
9.57 us (18.38 %)
8.77 us (16.84 %)
8.77 us

31.00 us (59.56 %)

Thread Timer Latency (us)

min avg max
4 8 18
4 12 21
4 15 23
4 14 21
3 12 28
4 11 22
5 13 52
E] 12 20

Thread latency: 52.05 us (100%)

Saving trace to timerlat_trace.txt

Fig. 8: The timerlat auto analysis.

related to the interference: NMI interference, IRQ
interference, Softirg interference, and Thread
interference. Interference occurs according to the pre-
emption rules reported in Section 3.

Another variable is instead related to the blocking time:
Thread blocking. For example, a thread can suffer block-
ing from another (lower-priority) thread because it disabled
preemption. All these variables measure interference and
blocking suffered by the measuring thread and are relative
to the completion time of the timer IRQ handler.

The time difference elapsed between the expected abso-
lute time in which the timer should fire and the actual start
of the timer IRQ is captured by the IRQ handler delay

variable, reported by timerlat (see Fig. 8).

The IRQ handler delay variable can include inter-
ference and blocking time experienced by the timer IRQ
handler (e.g., due to another higher-priority IRQ or a
lower-priority IRQ that already started executing non-
preemptively) and release jitter (e.g., an IRQ handle can be
delayed if it begins in an idle CPU that needs to leave a deep
idle state).

The IRQ latency, which is instead based on the times-
tamp taken by the the IRQ and hence also includes the time
spent inside the IRQ, is used by timerlat to obtain the IRQ
handler delay.

The execution time of the timer IRQ handler only par-

Page 28 of 35

Page 29 of 35

oONOULLDh WN =

uuuuuuuuuubdb DD DDIDIEDREDWWWWWWWWWWNRNNDNNNNNNN= =2 23 2320200239
COwVwoOoONOULdMNWIN—_,ODVONOOULLDMMNWN -, OVONOOCTUDNWN—_,OVUONOOULLMMNWIN—_,ODOVUONOOULID,WN=O

1 31us
|

objtool:1164402

!
© ® O

IRQ Handler delay | e
1 32.17 us 1
IRQ Latency| |
52.05 us 1

Thread Latency | |

Fig. 9: Latency timeline for the example of Fig. 8

tially influences the IRQ latency. This is because the
latency is measured and printed right at the beginning of the
handler. It has, however, a more substantial impact on the
Thread latency variable reported by the auto analysis.
The execution time of the handler is also reported by the
auto analysis in the Timerlat IRQ duration variable.
More formally, the IRQ latency can be expressed with the
following summation:

__ rHP-IRQ LP-IRQ NMI THR /
Lirg = I[tw,trRQ) + B[twwthQ) + I[tw,thQ) + [tw tirQ) +J+ €IRQ-
in which:
HP-IRQ

[tu.tig) TEPTESENES the interference due to high-
priority IRQs to the timerlat IRQ, in the time interval
[tw, tirg), defined in Section 4.2;

[tw.tiq) TEPTESENtS the blocking due to low-priority
IRQs (e.g., disabling interrupts) to the timerlat IRQ;

i) Tepresents the interference due to the NMI
in [t,,tirg), which always has higher priority than
IRQs (see Section 3);

[Ttilim) is the blocking time due to threads, which
always have lower priority than IRQs;
¢ J is the release jitter;
o efrq is the partial execution time of the timerlat IRQ

handler, as already discussed.

SoftIRQs are executed either in interrupt or thread con-
text depending on the preemption model.

Fig. 10 shows an example in which the analysis of a
high IRQ latency spike using the timerlat stacktrace reveals
that its root cause is the release jitter. Indeed, it is possible
to notice that the blocking thread, i.e., the one that caused
the over-threshold latency sample, is the CPU 9 idle thread
swapper/9: 0. Therefore, it is possible to assume that the
causes of the delays are external factors (e.g., exiting a CPU
idle state) when the IRQ is delayed and the CPU is idle.
This integrated root cause analysis would not have been
possible with previous tools such as cyclictest, and it would
have required complicated tracing sessions based on both

Transactions on Computers

CPU 9 hit stop tracing, analyzing it

IRQ handler delay: (exit from idle) 39.01 us (76.59 %)

IRQ latency: 40.49 us

Timerlat IRQ duration: 5.85 us (11.49 %)

Blocking thread: 3.99 us (7.83 %)
swapper/9:0 3.99 us

Blocking thread stack trace

-> timerlat_irqg

-> __hrtimer_run_gueues
-> hrtimer_interrupt
-> __sysvec_apic_timer_interrupt

—> sysvec_apic_timer_interrupt

—> asm_sysvec_apic_timer_interrupt
-> pv_native_safe_ halt

—> default_idle

—=> default_idle_call

-> do_idle

—-> cpu_startup_entry

-> start_secondary

-> _ pfx verify_cpu

Thread latency: 50.93 us (100%)

Max timerlat IRQ latency from idle: 40.49 us in cpu 9

Fig. 10: Auto analysis pointing to hardware-related jitter.

standard and custom tracepoints. Similar to the previous
case, the Thr latency can be formalized as:

IRQ

NMI HP-THR LP-THR
LThr = LIRQ+I[tIRQ7tThr) + 1) + I + B

[tRQstThr [tirQ,tThr) [tirQ,tThr) te.

Terms I[IFQ oo I and THPTHR refers to the inter-
1RQ,tThr)” ~ [tIRQ,EThr) [tRQtThr)
ference due to all IRQs, NMI, and higher-priority threads
on the timerlat measurement thread; B[Ltf;'g?;) refers to the
low-priority blocking; finally, e = ez + ery, refers to the
remaining execution time of the timerlat IRQ handler not
accounted in Lirq (eﬁ{Q) and to the partial execution time
of the timerlat measurement thread before taking the ¢ty
timestamp (term ef;.). The Usr latency can be written as
Luss = Lthe + €]y, with €7, denoting the remaining part
of execution time of the timerlat thread.
Similar performance optimization activities as those
shown in Fig. 10 can also be performed by considering the

Thr and Usr latency.

5.1 Understanding the causes of the IRQ latency

In the example of Fig. 8, the trace stopped because a Thread
latency of 52.05 us was registered, surpassing the thresh-
old of 30 us. The corresponding timeline representation of
such a latency sample is shown in Fig. 9. Timerlat eases the
root cause investigation by separating Thread latency
and IRQ latency. From the stack trace, it can be noticed
that the objtoo1:1164402 thread called a cgroup oper-
ation (a feature of the Linux kernel that allows to control
the amount of resources assigned to a group of tasks),
that disabled IRQs on a raw_spinlock_operation (from
line _raw_spin_unlock_irgrestore), causing the IRQ
handler delay. One may further investigate the cause
of such IRQ disabling operation, finding out that it is just
a normal use case for the raw spinlock (e.g., by looking
at the corresponding patch?). The same operation is also
used to disable preemption: indeed, objtool:1164402
also caused a thread blocking time of 8.77 us, reported
by timerlat. Note that, in general, it is hard to distinguish

2. Linux kernel commit b1e2c8df0f00 cgroup: use irgsave
in cgroup_rstat_flush_locked()

oONOULLDh WN =

\e]

Transactions on Computers

CPU 18 hit stop tracing, analyzing it

IRQ handler delay: 0.00 us (0.00 %)

IRQ latency: 1.64 us

Timerlat IRQ duration: 9.52 us (1.80 %)

Blocking thread: 501.68 us (94.96 %)
kworker/u40:0:306130 501.68 us

Blocking thread stack trace

-> timerlat_irqg

-> __hrtimer_run_gueues

-> hrtimer_interrupt

-> __sysvec_apic_timer_interrupt

—> sysvec_apic_timer_interrupt

—> asm_sysvec_apic_timer_interrupt

—> ZSTD_compressBlock_fast

—> ZSTD_buildSeqgStore

—> ZSTD_compressBlock_internal

—> ZSTD_compressContinue_internal

—> ZSTD_compressEnd

—> ZSTD_compressStream2

—> ZSTD_endStream

—> zstd_compress_pages

-> btrfs_compress_pages

-> compress_file_range

—> async_cow_start

—> btrfs_work_helper

-> process_one_work

—-> worker_thread

—> kthread

-> ret_from_fork

IRQ interference 3.68 us (0.70 %)
local_timer:236 3.68 us

Softirqg interference 4.21 us (0.80 %)
TIMER:1 3.71 us
RCU: 9 0.49 us

Thread interference 6.21 us (1.17 %)
migration/18:125 6.21 us

Thread latency: 528.31 us (100%)

Max timerlat IRQ latency from idle: 10.34 us in cpu 12
Saving trace to timerlat_trace.txt

Fig. 11: A case in which the kernel causes a large latency.

between the interference from high-priority IRQs and block-
ing from other IRQs or threads disabling IRQs (as in this
case). This is because the interrupt scheduling policy in the
interrupt controller may be unknown in general. For this
reason, timerlat does not provide a decomposition of the
IRQ latency, which can be, however, investigated case-
by-case by leveraging the insightful information contained
in the stack trace.

5.2 Understanding the causes of the thread latency

Timerlat is mainly helpful in understanding the causes of
thread latency. An example is in Fig. 11, in which a high
thread latency (9.52 us, fourth line) follows a low IRQ
latency value (1.64 us, third line). This example was run
on a non-PREEMPT_RT Linux. The thread latency is mainly
caused by a btrfs file system operation in the kernel, man-
aged by the kworker/u40:0:306130 (kworker threads
are general worker threads used by the kernel to perform
background tasks) for 501.68 us (see line “Blocking thread”)
since the kernel is non-preemptive, it causes blocking until
a scheduling point is reached. The blocking also extended
the window for capturing high-priority interference: indeed,
the timerlat thread suffered interference from the local timer
IRQ handler, 3.68 us, the timer and RCU softirgs (the latter
are mechanisms used in the kernel to manage deferred
processing of Read-Copy-Update - RCU - operations), 3.71
us and 0.49 us, respectively, and the migration thread that
runs at the highest thread priority in the system (6.21 us).
Again, thanks to the integrated measurement and tracing
features of timerlat, Linux practitioners can more easily

now = get_time ()
absolute_next_period = now + relative_period
wait_next_period(absolute_next_period) <-- hrtimer sleep
while (should_measure()) {

now = get_time ()

diff = now - absolute_next_period

if (diff > max_latency_threshold)

exit and report

collect measured latency (diff)

absolute_next_period = absolute_next_period + relative_period

wait_next_period(absolute_next_period)

Fig. 12: timerlat in a nutshell.

understand the root cause of a latency spike, which allows
for a faster resolution of latency issues and time-to-market
with respect to what was allowed before by cyclictest and
separate tracing sessions.

6 TIMERLAT IMPLEMENTATION DETAILS

A key advantage of timerlat is its capability to dif-
ferentiate between the different components that account
for the total latency reported by the measuring workload.
This feature is essential to eliminate wrong conjectures
concerning the factors that caused such latency, leading the
troubleshooting and debugging activities in the wrong di-
rections and causing delays in resolving issues in expensive
and critical systems.

As described in Section 4.2, the timerlat measuring thread
uses a high-resolution timer to cause periodic wakeups and
observe the latency of such events, essentially the pseudo-
code depicted in Fig. 12. This is of course very similar to how
existing tools (e.g., cyclictest) approach measuring wakeup
latency. The key differentiating feature of timerlat is that it is
capable of decomposing latency in three components: IRQ
(IRQ_CONTEXT), Thread (THREAD_CONTEXT) and Ret user
(THREAD_URET), which corresponds to the IRQ, Thr, and
Usr latencies discussed in Section 4.2. Starting from the top
(Ret user), each user-space thread issues a blocking read call
onto a per-CPU file descriptor created by the kernel while
initializing timerlat (timerlat_£d), and it then records
the measured latency for THREAD_URET when it returns
from such call. The in-kernel implementation of the read
function will perform the bulk of the behavior detailed
in Fig. 12, by getting the reference time for the periodic
activation, sleeping until next period and reporting the
measured latency for THREAD_CONTEXT. To complete the
picture, instrumentation in the timer call back records the
measured latency for IRQ_CONTEXT. In this way, timerlat
is able to provide a complete and detailed picture of latency,
enabling precise reporting within s of granularity required
by several use cases, such as, for example, network-function
virtualization.

Furthermore, timerlat is designed to be lightweight, in-
troducing minimal overhead to the system under analysis.
This efficiency is achieved by leveraging the highly opti-
mized tracing facilities provided by the Linux kernel. These
facilities are optimized through several mechanisms: they
operate primarily in kernel space to avoid costly context
switches, utilize per-CPU buffers to reduce locking over-
head in multicore environments, and employ ring buffer
designs for efficient data handling with minimal contention.

Page 30 of 35

Page 31 of 35

oONOULLDh WN =

\e]

Additionally, their integration into the kernel allows for
direct access to low-level events with minimal latency, while
features such as dynamic tracing enable targeted instru-
mentation, ensuring that only relevant events are captured.
Being a tracer in itself, timerlat can perform pre-processing
of collected data before storing it in the ftrace buffer, further
reducing runtime computational demands and minimizing
the potential for trace-related interference with system per-
formance. These design choices make timerlat well-suited
for performance-critical environments where accurate and
unobtrusive latency measurements are essential.

7 EVALUATION

This section reports on an evaluation that has been per-
formed to assess the latency values obtained by timerlat un-
der different configurations. The evaluation has been carried
out on a Dell PowerEdge 650 server with 40 Intel(R) Xeon(R)
Platinum 8380 cores running at 2.30GHz, with Red Hat
Enterprise Linux (RHEL) version 9.2. In the experiments,
timerlat has been executed in user space. Several config-
urations have been tested. A first classification considers
the usage of the PREEMPT_RT patch (i) RHEL with PRE-
EMPT_RT and (ii) RHEL without PREEMPT_RT. For each
of these two cases, the system has been configured to work
(a) in isolation (isol), meaning that interfering workload
has been restricted to two housekeeping cores with timerlat
measuring threads running on separate isolated cores and,
(b) with interfering workloads (workload), meaning that
interfering workload and timerlat measuring threads has
been co-scheduled on all the available cores. Interfering
workloads consists of running a scheduler benchmark, hack-
bench, (CPU bound) while compiling the Linux kernel (CPU,
memory and IO bound). The rteval [22] tool manages (starts
and stops) such workloads and controls the execution of
measuring threads (timerlat or cyclictest, which is used for
comparison in one of the experiments). More information
about the workloads and how to replicate the setup is
available in Section 7.2. For each of the four configurations,
ie., (i-a), (i-b), (ii-a), (ii-b), an experiment of 6 hours has
been performed, collecting the IRQ, Thread, and Ret user
latencies.

7.1 Evaluation Results

Latency occurrences. Fig. 13 and Fig. 14 shows the number
of occurrences of IRQ, Thread, and Ret user (IRQ, Thr, and
Usr, for short) latency samples for each of the 40 cores in
the range [0,250] ps in the isol configurations under RHEL
(first row, without PREEMPT_RT) and RHEL-RT (second
row, with PREEMPT_RT). The figures are 3D histograms
with fixed parameters that report the occurrences of latency
values (on the horizontal axis) for each core in the platform
(40 cores for the workload configuration and 38 for the isol
configuration since the latter two cores are used for house-
keeping). Different levels of yellow represent an increasing
number of latency occurrences: darker yellow corresponds
to a higher number of occurrences; light yellow corresponds
to a low level of occurrences; finally, white corresponds to no
occurrences of a certain latency level. Fig. 13 targets the isol
configuration, and Fig. 14 the workload configuration. Fig. 13

Transactions on Computers

shows that both RHEL and RHEL-RT achieve small latency
values in the isol configuration, with values generally be-
low 20 ps. Instead, Fig. 14 illustrates how in the presence
of interfering workloads (workload configuration), latency
values are generally much different. With RHEL (without
PREEMPT_RT), the latency distribution covers the whole
interval [0,250] us, with considerably higher observed la-
tencies. Under RHEL-RT with PREEMPT_RT, the latency
values are much smaller, with the latency distribution cov-
ering the interval [0,60] ps. This is because one of the
main objectives of the PREEMPT_RT patchset is to provide
bounded wake-up latencies, as those measured by timerlat.
Finally, by comparing IRQ, Thr, and Usr latencies, it can
be observed that in all the configurations, IRQ latencies are
generally much smaller (more occurrences are registered
for low latency values), while Thr and Usr latencies are
slightly higher. Furthermore, Usr latencies are higher than
Thr latencies. This whole trend is expected because the
measurement interval of the Usr latency is longer than in
Thr’s case, which is, in turn, longer than in IRQ’s case.
In all the configurations, the behavior with respect to the
cores is consistent, with similar latencies registered across
them. However, it is worth noting that all the plots refer
to the interval [0,250] ps, which is the default interval
used by timerlat to collect latency samples. However, some
configurations led to higher latencies. This information can
still be interpreted with timerlat thanks to the maximum
aggregate latency provided by timerlat.

Maximum latency. Fig. 15 and Fig. 16 show the maximum
IRQ, Thr, and Usr latencies obtained in the workload and
isol configuration, respectively, with RHEL (violet bars) and
with RHEL-RT (green bars), considering the same 6 hours
runs as in the previous plots. In Fig. 15, the y-axis is in
the log scale. From Fig. 15, it can be observed how RHEL-
RT is effective in limiting the maximum latency, showing
values up to 58 ps. Instead, the RHEL configuration leads
to much higher maximum latencies, up to 4454, 26223, and
26229 us for IRQ, Thr, and Usr latency, respectively. As
expected, Fig. 16 shows lower values of latency in all the
configurations. RHEL-RT achieves maximum latency values
of 10 us, for both IRQ, Thr, and Usr latency. RHEL also
achieves generally good performance, but it has a spike of 38
s of latency. By comparing Fig. 15 and Fig. 16, we highlight
a key message to achieve very low latencies: both using
PREEMPT_RT and a proper system configuration in which
interfering workloads are restricted to separated cores are
needed. Indeed, by using PREEMPT_RT only (RHEL_RT
workload configuration), the maximum latency still reaches
58 us. Instead, by leveraging housekeeping cores for inter-
fering workloads, the maximum latency can be reduced to
10 ps only, thus making it practical to use Linux for low-
latency use cases, such as VRANs. Timerlat enables reaching
such a low latency figures thanks to the root-cause analysis
features it provides, discussed in Section 5.

Overhead and comparison with cyclictest. To empirically
verify that timerlat adds a negligible overhead for measuring
latencies, a comparison (using the PREEMPT_RT kernel) has
been made against a different legacy tool implementing the
same functionality, which was, de-facto, the state-of-the-art
tool used by Linux practitioners before: cyclictest, discussed

oONOULLDh WN =

latency

(a) RHEL - isol - IRQ latency

Seguaunno
S o ", 9
o My

S0

S o
S 8 8 W
~N o

latency

(d) RHEL-RT - isol - IRQ latency

Transactions on Computers

latency

(b) RHEL - isol - Thr latency

9,

0
;%,

10
20
30

s37URIN
1

o u

50

S o
o wn 8 H
N o

latency

(e) RHEL-RT - isol - Thr latency

o
7%/ V’047

S97URIINID!

o u o,

S & 9o o
s S o 3 B
< & 8

latency

(c) RHEL - isol - Usr latency

v’o@

0
7.
1,

10
20
30

So7uRIINID!
@

0w o,

S o
& & 8§ 8 W
- N =]

latency

(f) RHEL-RT - isol - Usr latency

Page 32 of 35

Fig. 13: Occurrences of latency values (IRQ, Thr, and Usr, in us) obtained by running Timerlat for 6 hours in the isol

configuration on 40 cores running RedHat Enterprise Linux with (second row) and without (first row) PREEMPT_RT.

(o]
s,

10
20
30

S97URIINID!
@9

o S

s> o 40
& s 8 §

0S¢

latency

(@) RHEL - workload - IRQ latency

N

0

S 10

20
S 30
()

Se;ua)lﬂ)')
@9

S o 40
L?Em(%

05¢

latency

(d) RHEL-RT - workload - IRQ latency

o
75, %,

10
20
30

S97URIINID!
@9

o S

> o 40
& s 8 §

0S¢

latency

(b) RHEL - workload - Thr latency

0
;%,

10
20
30

s37URIN
w2

o m

S o 40
u?ng'J%
- & &

latency

(e) RHEL-RT - workload - Thr latency

7%/ V’047

10
20
30

<9ua1IN20
@9

o m

o 40
8§ & 7

200
0S¢

latency

(c) RHEL - workload - Usr latency

v’o@

0
7.
St

20
30

SoouRIINID!
@

0o m

5 © o o 40

latency

(f) RHEL-RT - workload - Usr latency

Fig. 14: Occurrences of latency values (IRQ, Thr, and Usr, in ps) obtained by running Timerlat for 6 hours in the workload

configuration on 40 cores running RedHat Enterprise Linux with (second row) and without (first row) PREEMPT_RT.

10

Page 33 of 35

oONOULLDh WN =

timerlat
workload max: 102us / avg: 3.9us
isol max: 8us / avg: 2.0us

cyclictest
max: 109us / avg: 3.2us
max: 7us / avg: 2.1

TABLE 1: Comparison with cyclictest

in Section 1. Timerlat measures the same quantity (Usr
latency) of cyclictest: in addition, it also reports on IRQ and
Thr latencies and provides integrated tracing features, as
extensively discussed in the paper. Therefore, the overhead
introduced by timerlat with respect to the previous de-
facto standard practice is measured by comparing the two.
Two setup scenarios (workload and isol) for each tool have
been run for 3 hours on 40 cores. Average and maximum
are computed over all the values collected on all 40 cores,
amounting to over one billion samples per configuration.
We run a three-hour experiment considering both the work-
load and isol configurations. The results are reported in
Table 1 and show that both the reported average and maxi-
mum latencies have negligible differences: the difference in
terms of average latency is below 1 us in all configurations;
the difference in terms of maximum latency is 1 us for the
isol configuration and 7 us in the workload configuration
(in which the maximum latency is more variable due to
the interfering workload). The experiment shows that timer-
lat introduces a negligible overhead while providing more
advanced features, such as extensive support to find the
root causes of the latency, as discussed in Section 5.1 and
Section 5.2.

7.2 Replicating the Experiments

All the software used for the experimental evaluation in
this section is open-source and publicly available through
repositories or as packages distributed depending on the
Linux distribution. Replicating the experiments is therefore
straightforward from a setup perspective. However, system
tuning at the BIOS level is beyond the scope of this paper.
Readers interested in configuring their machines for low-
latency mode should consult their system vendor’s BIOS
documentation for guidance. The key steps for running
similar experiments involve:

1) Obtaining or compiling a stock (i.e., non PREEMPT_RT)
and a PREEMPT_RT kernel.

2) Tune the system for low latency using the tuned tool,
using the realtime profile;

3) Run the experiments using timerlat and cyclictest
through rteval [22], a benchmarking tool designed to
evaluate a Linux system’s real-time performance and,
in particular, to measure the system’s ability to handle
real-time tasks with minimal latency.

4) Collect the results.

Detailed steps for conducting the experiments are avail-
able at this link [25].

8 CONCLUSIONS

This paper presented timerlat, a new tool for measuring the
Linux scheduling latency while allowing us to understand
the root causes of a latency spike through its integration
with the Linux tracing infrastructure. Thanks to timerlat,

11

Transactions on Computers

20000

10000

2000
1000

500

0
0
0 10 20 30

Cores

(a) IRQ latency

2

S

=)

Maximum Latency (us, logscale)

[0

20000

10000

2000
1000

500

200

100

50||
0 10 20 30

Cores

(b) Thr latency

Maximum Latency (us, logscale)

20000

10000

2000
1000

500

200

100

0||||||||||||||“||“||
0 10 20 30

Cores

Maximum Latency (us, logscale)
«

(c) Usr latency
‘. RHEL-RT B RHEL ‘

Fig. 15: Bar chart of the maximum latency values (logscale)
obtained by running Timerlat for 6 hours in the workload
configuration on 40 cores running RHEL (in violet) and
RHEL-RT (in green).

oONOULLDh WN =

\e]

N
N

Transactions on Computers

45

40

35

30

w
2
>

2 25
g
5

c 20
g

% 15
O
=

10

5

o b d bl we oo e boooon oo eeldnshnn
0 10 20 30
Cores
(a) IRQ latency

45

40

35

w 30
2
)

2 25
9

g 20
£
3

S 15
x
©
=

10

D
0 10 20 30
Cores
(b) Thr latency

. 45

) 40

35

7,,\ 30
2
>

g 25
9
©

- 20
IS
3

1S 15
x
T
=

10
0 10 20 30

Cores

(c) Usr latency
‘. RHEL-RT B rHEL ‘

Fig. 16: Bar chart of the maximum latency values obtained
by running Timerlat for 6 hours in the isol configuration on
40 cores running RHEL (in violet) and RHEL-RT (in green).

12

troubleshooting high latency values is also possible for non-
experts by leveraging timerlat’s user-friendly interface. The
tool is a part of the mainline Linux kernel, thus being easily
accessible to all Linux users. Future work includes the exten-
sion of timerlat to support hardware-related features, e.g.,
by integrating information from the performance counters.

ACKNOWLEDGMENT

In memory of Daniel Bristot De Oliveira: a great professional,
researcher, and friend.

This work has been partially supported by the European
Union’s Horizon Europe Framework Programme project
NANCY under the grant agreement No. 101096456, and the
project SERICS (PE00000014) under the MUR National Re-
covery and Resilience Plan funded by the European Union
— NextGenerationEU.

REFERENCES

[1] D. Kreutz, E. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, 2014.

[2] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidji,
“Low-latency software defined network for high performance
clouds,” in 2015 10th System of Systems Engineering Conference
(SoSE). IEEE, 2015, pp. 486—491.

[3] N.Bhushan, T. Ji, O. Koymen, J. Smee, J. Soriaga, S. Subramanian,
and Y. Wei, “5g air interface system design principles,” IEEE
Wireless Communications, vol. 24, no. 5, pp. 6-8, 2017.

[4] R. Hat, “What is nfv?” https://www.redhat.com/en/topics/
virtualization/what-is-nfv, 2021.

[5] Intel, “Flexran,” https://github.com/intel/FlexRAN, 2021.

[6] L. Mandyam and S. Hoenisch, “Ran work-
load performance is equivalent on bare metal
and vsphere,” https:/ /blogs.vmware.com/telco/

ran-workload-performance-tests-on-vmware-vsphere/, 2021.

[71 T. Cucinotta, L. Abeni, M. Marinoni, R. Mancini, and C. Vitucci,
“Strong temporal isolation among containers in openstack for nfv
services,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp.
763-778, 2021.

[8] A.Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak, “A survey
of deep-learning frameworks,” in 2017 International Conference on
Inventive Systems and Control (ICISC). IEEE, 2017, pp. 1-7.

[9] P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kastner,
“Towards consolidating industrial use cases on a common fog
computing platform,” in 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2020

L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A
measurement-based analysis of the real-time performance of
linux,” in Proceedings. Eighth IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, Sep. 2002.

F. Reghenzani, G. Massari, and W. Fornaciari, “Mixed time-
criticality process interferences characterization on a multicore
linux system,” in 2017 Euromicro Conference on Digital System
Design (DSD), Aug 2017.

B. Herzog, L. Gerhorst, B. Heinloth, S. Reif, T. Honig, and
W. Schroder-Preikschat, “Intspect: Interrupt latencies in the linux
kernel,” in 2018 VIII Brazilian Symposium on Computing Systems
Engineering (SBESC), Nov 2018, pp. 83-90.

P. Regnier, G. Lima, and L. Barreto, “Evaluation of interrupt
handling timeliness in real-time linux operating systems,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 6, p. 52-63, 2008.

F. Cerqueira and B. Brandenburg, “A comparison of scheduling
latency in linux, preempt-rt, and litmus rt,” in 9th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications.
SYSGO AG, 2013, pp. 19-29.

H. Fayyad-Kazan, L. Perneel, and M. Timmerman, “Linux
preempt-rt vs commercial rtoss: How big is the performance gap?”
GSTF Journal on Computing, vol. 3, no. 1, 2013.

[10]

[11]

[12]

[13]

[14]

[15]

Page 34 of 35

Page 35 of 35

Transactions on Computers

1 [16] D. B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta, Juri Lelli Juri Lelli (Red Hat) is a Senior Principal
“Demystifying the real-time linux scheduling latency,” in 32nd Software Engineer at Red Hat working on the
2 Euromicro Conference on Real-Time Systems (ECRTS 2020). Schloss RHEL for Real-Time kernel and related tech-
3 Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020. nologies. He is among the original authors of the
4 [17] S. Rostedt, “Finding origins of latencies using ftrace.” SCHED_DEADLINE scheduling policy in Linux
[18] “Kutrace: Lightweight tracing for performance analysis,” https: and a Linux kernel scheduler maintainer. He
> /github.com/dicksites /KUtrace, 2024. has a PhD degree from the Scuola Superiore
6 [19] D. B. de Oliveira, D. Casini, and T. Cucinotta, “Operating system Sant'Anna of Pisa, Italy (ReTiS Lab). His re-
7 noise in the linux kernel,” IEEE Transactions on Computers, vol. 72, search area covered Real-Time systems, Real-
no. 1, pp. 196-207, 2023. Time Operating systems and Scheduling algo-
8 [20] D. B. de Oliveira, R. S. de Oliveira, and T. Cucinotta, “A thread rithms.
9 synchronization model for the preempt_rt linux kernel,” Journal of
10 Systems Architecture, p. 101729, 2020.
[21] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline schedul-
ing in the Linux kernel,” Software: Practice and Experience, vol. 46,
1 ing in the Linux kernel,” S Practice and Experi 1. 46
12 no. 6, pp. 821-839, 2016.
13 [22] Kernel.org Community, “rteval - a tool for real-time performance
14 eyaluation," https:/ /git.kernel.org/pub/scm/utils/rteval /rteval.
git, accessed: 2024-12-03.
15 [23] D. B. de Oliveira, T. Cucinotta, and R. S. de Oliveira, “Efficient
16 formal verification for the linux kernel,” in International Conference
17 on Software Engineering and Formal Methods. ~Springer, 2019, pp.
315-332.
18 [24] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
19 gglllfiduling Algorithms and Applications, Third Edition. ~ Springer,
20 [25] “Tin{erlat experiments,” https:/ /gist.github.com/jlelli/
21 be016d87b7868f8b0f5734a9%ed9a81cd, accessed: 2024-12-02.
22
23
24
25
26
27
28 Daniel Bristot De Oliveira Daniel Bristot de
29 Oliveira (Red Hat) has a joint Ph.D. degree in
Automation Engineering from UFSC (BR) and
30 Embedded Real-Time systems from Scuola Su- Tommaso Cucinotta has a MSc in Computer
31 periore Sant'Anna (IT). Currently, he is Senior Engineering from University of Pisa (Italy), and a
32 Principal Software Engineer at Red Hat, work- PhD in Computer Engineering from Scuola Su-
33 ing on developing the real-time features of the periore Sant’Anna (SSSA) in Pisa, where he has
Linux kernel. Daniel helps in the maintenance been investigating on real-time scheduling for
34 il of real-time related tracers and toolings for the soft real-time and multimedia applications, and
35 Linux kernel and the SCHED_DEADLINE. He predictability in infrastructures for cloud comput-
is an affiliate researcher at the Retis Lab, and ing and NFV. He has been MTS in Bell Labs
36 researches real-time and formal methods. He is an active member of the in Dublin (Ireland), investigating on security and
37 real-time academic community, participating in the technical program real-time performance of cloud services. He has
38 committee of academic conferences, such as RTSS, RTAS, and ECRTS. been a software engineer in Amazon Web Ser-
39 vices in Dublin (Ireland), where he worked on improving the performance
and scalability of DynamoDB. Since 2016, he is Associate Professor at
40 SSSA and head of the Real-Time Systems Lab (RETIS) since 2019.
41
42
43
44 Daniel Casini (IEEE Member) Daniel Casini is
45 Assistant Professor at the Real-Time Systems
46 (ReTiS) Laboratory of the Scuola Superiore
Sant’Anna of Pisa. He graduated (cum laude) in
47
Embedded Computing Systems Engineering, a
48 Master degree jointly offered by the Scuola Su-
49 periore Sant’/Anna of Pisa and University of Pisa,
50 and received a Ph.D. in computer engineering
at the Scuola Superiore Sant’Anna of Pisa (with
51 honors), working under the supervision of Prof.

52 Alessandro Biondi and Prof. Giorgio Buttazzo.
In 2019, he has been visiting scholar at the Max Planck Institute for

53 Software Systems (Germany). His research interests include software
54 predictability in multi-processor systems, schedulability analysis, syn-
55 chronization protocols, and the design and implementation of real-time
56 operating systems and hypervisors.

57

58

59

60 13

