
Optimal Deployment of Cloud-native Applications with
Fault-Tolerance and Time-Critical End-to-End Constraints

Remo Andreoli
Scuola Superiore Sant’Anna

Pisa, Italy
remo.andreoli@santannapisa.it

Harald Gustafsson
Ericsson Research
Lund, Sweden

harald.gustafsson@ericsson.com

Luca Abeni
Scuola Superiore Sant’Anna

Pisa, Italy
luca.abeni@santannapisa.it

Raquel Mini
Ericsson Research
Lund, Sweden

raquel.mini@ericsson.com

Tommaso Cucinotta
Scuola Superiore Sant’Anna

Pisa, Italy
tommaso.cucinotta@santannapisa.it

ABSTRACT
Cloud environments are becoming increasingly interesting to host
time-critical use cases with far more stringent latency requirements
than conventional cloud-native applications, such as smart indus-
trial control systems or cloud-enabled autonomous vehicles. In
these emerging domains, fault tolerance mechanisms play a critical
role, due to the catastrophic consequences a fault might lead to,
in the real world. This work presents a formal model for design-
ing and deploying time-critical, cloud-native applications under
fault conditions. Our model considers the interactions and interfer-
ences among service components and the possible occurrence of
faults. We present an optimization framework to solve the deploy-
ment problem of minimizing the resources needed to achieve fault-
tolerance under precise end-to-end deadline constraints. The ability
of the optimizer to deliver precise temporal and fault-tolerance
guarantees is validated through extensive simulations.
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1 INTRODUCTION
Cloud computing has emerged as a key technology for the growth
and development of modern web applications, thanks to the tremen-
dous benefits it offers to a wide spectrum of clients, ranging from
large businesses to private customers and public administrations.
These are relieved from the burden of managing physical resources
of a traditional on-premise infrastructure [6], exploiting compu-
tational, networking, data management, security, auditing, and
other services with a pay-for-use cost model. Moreover, with cloud-
native [17] services and the recent Serverless Computing para-
digm [32], we are seeing a shift of the complete DevOps toolchain
to the cloud, easing the tasks of continuous deployment, integra-
tion, proper resource provisioning, and adaptation. Not only this
paradigm shift reduced drastically the complexity of application
life-cycle management, but it also led to the emergence of fully-
managed services with performance guarantees. For instance, Dy-
namoDB [14] or BigTable [15] promise “single-digit millisecond
latency” when accessed from within the provider’s infrastructure,
attracting even more time-sensitive use-cases.

However, providing a reliable cloud service through the network
is not easy: services must be replicated and spread across geograph-
ical locations with independent powering systems, but must also be
“close enough” to quickly scale in case of temporary traffic outbursts
or migrate virtual resources in case of faults. The use of traditional
QoS-aware networking techniques [22, 34], as well as of novel
technologies such as 5G and Time-Sensitive Networking [16], are
crucial to facilitate deterministic and low-latency communications.
The physical hosts themselves are another source of unpredictabil-
ity, due to the contention of shared resources, which is typical of
multi-tenant architectures: caches, memory controllers, and buses
are contended in unpredictable ways. There have been multiple
studies [10, 25, 33] proposing mechanisms to provide temporal iso-
lation for time-critical applications on shared servers, thus reducing
the unpredictability among co-located virtualized components.

These latest developments towards performance predictability,
coupled with the recent advancements in 5G technologies, have
exponentially increased the interest in hosting innovative time-
critical applications on cloud-based infrastructures, with a strong
focus on private, dedicated and geo-distributed cloud/edge infras-
tructures [26, 31]. Contrary to conventional web and time-sensitive
applications, time-critical ones require a high level of availability
and reliability, as well as precise latency guarantees, sometimes
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in the order of milliseconds [4]. Such strict requirements must be
met regardless of the other workloads deployed within the cloud
system, or the possible occurrence of hardware/software/network
failures [9]. Typical interactive multimedia cloud services, such as
video-call platforms, are not seriously impacted, in the event of
temporary slowdowns. On the other hand, an emerging use case
like a machine vision system for intersection safety in smart cities
requires cloud/edge-based services to be constantly up and running.
The inability to respect temporal constraints may have critical, if
not catastrophic, consequences. A cloud provider may decide to
dedicate a single-tenant infrastructure for a time-critical system
or offer dedicated hardware-software interfaces [12, 28]. However,
such approaches most likely result in a huge waste of resources and
money for both the provider and the customer, if not fully utilized,
especially considering the recent efforts towards reducing energy
consumption in cloud datacenters [24]. Hence, the need to take full
advantage of multi-tenancy and shared resources to minimize costs
and resource waste, while ensuring performance guarantees.

Contributions. This paper focuses on the management and opti-
mization of time-critical, fault-tolerant applications in cloud infras-
tructures. A formal model is introduced to represent a cloud-native
application as a composition of microservices in a Directed Acyclic
Graphs (DAG) topology, with associated precise end-to-end tempo-
ral constraints. The individual microservices may be shared among
amultitude of applications, causing resource contentions at runtime.
Fault tolerance is implemented through replication and resubmis-
sion. At the heart of our proposal, there is an analysis tool able
to evaluate if the to-be-deployed, time-critical applications can be
admitted to the cloud infrastructure without violating the temporal
constraints of the co-hosted workloads. The main goal is to config-
ure the distributed applications and services to use the minimum
amount of resources to achieve reliability (i.e., use replication as
little as possible) while ensuring compliance with the temporal and
fault-tolerance constraints. The deployment problem is solved in
two ways: standard and capacity planning modes. The first one
adopts an optimization approach based on Mixed-Integer Linear
Programming (MILP), and it is used to decide at design-time the
best fault tolerance technique to detect a fault in a timely manner
and react to it within the temporal constraints, for a pre-defined
configuration of the microservices. The second mode is based on
(non-convex) Mixed-Integer Quadratic Constraint Programming
(MIQCP), and it serves to suggest the best microservice configura-
tion to comply with the requirements above.

This paper tackles the problem of fault-tolerance in real-time
Cloud Computing introduced in [1], where no solution was pro-
posed, and is an extension of [5], where a preliminary evaluation
of the MILP optimizer was conducted. Here we present for the
first time: the complete mathematical formulation, the complete
optimization-based methodology needed to tackle it using either a
MILP or a MIQCP approach (see Section 3), and an extensive evalu-
ation of the approach based on the optimization and simulation of
randomly generated scenarios (see Section 4).

2 PROBLEM FORMALIZATION
This section formally presents the application, the reference cloud
infrastructure, and the fault model for time-criticality.

Figure 1: Parallel real-time applicationA𝑔 modeled as a DAG.

2.1 Application Model
A cloud platform hosts a collection of 𝑛A cloud-native applications
A = {A𝑔}𝑛A

𝑔=1, where A𝑔 is built by composing a set of 𝑛𝑔 inde-
pendent and loosely coupled tasks Γ𝑔 = {𝜏𝑔

𝑖
}𝑛𝑔
𝑖=1. A task 𝜏𝑔

𝑖
∈ Γ𝑔

is a sequential activity that receives some input data, processes it,
and then generates output data. An application is constructed as a
Directed Acyclic Graph (DAG) whose topology is represented as a
set of directed edges E𝑔 ⊆ Γ𝑔 × Γ𝑔 . A directed edge (𝜏𝑔𝜇 , 𝜏

𝑔

𝑖
) ∈ E𝑔 is

a logical communication link between two tasks, such that 𝜏𝑔𝜇 sends
its output data to 𝜏𝑔

𝑖
. More specifically, 𝜏𝑔𝜇 is a predecessor of task 𝜏

𝑔

𝑖
,

and 𝜏𝑔
𝑖
is a successor of task 𝜏𝑔𝜇 . To ease readability, directed edges

are also represented with the notation 𝜏𝑔𝜇 → 𝜏
𝑔

𝑖

def⇐⇒ (𝜏𝑔𝜇 , 𝜏
𝑔

𝑖
) ∈ E𝑔 .

Figure 1 depicts a possible application. Tasks are synchronously
“activated”, meaning that each task 𝜏𝑔

𝑖
waits for all its predeces-

sors 𝑃𝑟𝑒𝑣𝑔
𝑖
= {𝜏𝑔𝜇 ∈ Γ𝑔 : (𝜏𝑔𝜇 , 𝜏

𝑔

𝑖
) ∈ E𝑔} to generate their outputs,

before processing them as input. Once the computations are fin-
ished, the resulting output is then propagated to all the successors
𝑁𝑒𝑥𝑡

𝑔

𝑖
= {𝜏𝑔

𝜆
∈ Γ𝑔 : (𝜏𝑔

𝑖
, 𝜏
𝑔

𝜆
) ∈ E𝑔}, concluding the task activation.

A single activation of an application A𝑔 may cause multiple tasks
in Γ𝑔 to be concurrently activated, according to the topology in E𝑔 .
The latter defines explicit dependencies between contiguous tasks, as
well as implicit dependencies: two non-contiguous tasks 𝜏𝑔

𝑖
, 𝜏
𝑔

𝑗
∈ Γ𝑔

have an implicit dependency if there is at least a directed path con-
necting the two. More generally, any two tasks 𝜏𝑔

𝑖
, 𝜏
𝑔

𝑗
∈ Γ𝑔 have

a dependency (either explicit or implicit), represented as 𝜏𝑔
𝑖
∼ 𝜏

𝑔

𝑗

(or equivalently 𝜏𝑔
𝑗
∼ 𝜏

𝑔

𝑖
), if there exists at least a directed path

connecting them in either direction:

𝜏
𝑔

𝑖
∼ 𝜏𝑔

𝑗

def⇐⇒ ∃{𝜏𝑔
𝑖1
, 𝜏
𝑔

𝑖2
. . . , 𝜏

𝑔

𝑖𝑘
} : 𝜏𝑔

𝑖1
→ 𝜏

𝑔

𝑖2
∧ ... ∧ 𝜏𝑔

𝑖𝑘−1
→ 𝜏

𝑔

𝑖𝑘
∧

∧((𝑖1 = 𝑖 ∧ 𝑖𝑘 = 𝑗) ∨ (𝑖𝑘 = 𝑗 ∧ 𝑖1 = 𝑖)) .

For each activation of an application A𝑔 , only tasks without a
dependency (i.e., 𝜏𝑔

𝑖
≁ 𝜏

𝑔

𝑗
or 𝜏𝑔

𝑗
≁ 𝜏

𝑔

𝑖
) may activate in parallel.

Each application A𝑔 has exactly one task with no predecessors
(i.e., 𝑃𝑟𝑒𝑣𝑔1 = ∅), called the input task, which is assumed to be
𝜏
𝑔

1 ∈ Γ𝑔 , without loss of generality. Analogously, there is exactly
one task with no successors (i.e., 𝑁𝑒𝑥𝑡𝑔

𝑛𝑔
= ∅), called the output

task, which coincides with 𝜏𝑔
𝑛𝑔

∈ Γ𝑔 . In what follows, the special
notation 𝜏𝑔𝑒 ≡ 𝜏𝑔

𝑛𝑔
will be used for ease of reading. An application

activates when 𝜏𝑔1 receives input data from an external source (i.e.,
a user request) and concludes after 𝜏𝑔𝑒 generates an output. Every
application corresponds to a completely connected DAG so that for
every node 𝜏𝑔

𝑖
∈ Γ𝑔 there is always at least a directed path from the

input to the output task which includes 𝜏𝑔
𝑖
.
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Figure 2: Two tasks from two different applications A1 and
A2, mapped to the same microservice 𝑆𝑙 = 𝜑1 (𝜏1𝑖 ) = 𝜑

2 (𝜏2
𝑗
).

Each time-critical applicationA𝑔 is characterized by a minimum
inter-arrival period 𝑃𝑔 , which specifies the minimum time interval
between two consecutive activations of the input task 𝜏𝑔1 , and an
end-to-end deadline 𝐷𝑔 (relative deadline), assumed to be 𝐷𝑔 ≤ 𝑃𝑔 .
An application activation must be completed within 𝐷𝑔 time units
to be considered successful. More formally: the 𝑘𝑡ℎ activation of
application A𝑔 , requested at time 𝑡𝑔

𝑘
, is considered successful if it

concludes before its absolute deadline 𝑑𝑔
𝑘
= 𝑡

𝑔

𝑘
+ 𝐷𝑔 .

2.2 Cloud Model
A task activation is realized by a service component hosted on
the cloud infrastructure. To this end, the cloud platform offers a
set of𝑚𝑆 microservices S = {𝑆𝑙 }𝑚𝑆

𝑙=1, each dedicated to the execu-
tion of a certain activity. A microservice 𝑆𝑙 is implemented by a
pool of 𝑀𝑙 workers, normally cloud instances such as containers
or virtual machines, and a load balancer to distribute the work-
load among them. The load balancer routes the input data coming
from the preceding microservice(s) to a worker, which processes
it (thus realizing the task invocation). Then, the produced output
data is sent to subsequent microservice(s), as instructed by the
application topology calling the execution. A set 𝜑 = {𝜑𝑔}𝑛A

𝑔=1 of
task-to-microservice mapping functions 𝜑𝑔 : Γ𝑔 → S is required to
distinguish the tasks of different applications that share the same
microservice. Such mapping functions are important to assess the
worst-case response time of a microservice according to the number
of tasks that can be concurrently active on the same microservice.
For instance, Figure 2 depicts an example of two tasks belonging
to different applications but being implemented by the same mi-
croservice. However, there may not be a one-to-one correspondence
between tasks and microservices. Multiple tasks from the same ap-
plication may invoke the same microservice, therefore 𝜑𝑔 may not
be bijective. In general, two tasks 𝜏𝑔

𝑖
∈ A𝑔, 𝜏ℎ

𝑗
∈ Aℎ mapped on

the same microservice 𝑆𝑙 = 𝜑𝑔 (𝜏
𝑔

𝑖
) = 𝜑ℎ (𝜏ℎ

𝑗
), may be concurrently

active only if they belong to different applications (𝑔 ≠ ℎ), or if they
do not have a dependency relationship (𝜏𝑔

𝑖
≁ 𝜏ℎ

𝑖
∧ 𝑔 = ℎ). More

formally: given Γ =
⋃

A𝑔∈A Γ𝑔 the collection of all tasks of all
applications A𝑔 ∈ A, the set Φ𝑙 of subsets of tasks that share 𝑆𝑙
and that may be activated simultaneously, is defined as:

Φ𝑙 = {𝐵 ⊆ Γ |∀𝜏𝑔
𝑖
∈ 𝐵, 𝜑𝑔 (𝜏𝑔

𝑖
) = 𝑆𝑙 ∧ (1)

∧ (∀𝜏ℎ𝑗 ∈ 𝐵,ℎ ≠ 𝑔 ∨ 𝜏𝑔
𝑖
≁ 𝜏ℎ𝑗 )}.

Notice that set Φ𝑙 contains every possible subset of tasks mapped
to microservice 𝑆𝑙 whose activations might interfere with each
other, regardless of the application they belong to. The worst-case
maximum number of tasks sharing microservice 𝑆𝑙 that activate at
the same time is the cardinality 𝑁𝑙 of the largest subset in Φ𝑙 :

𝑁𝑙 = max
𝐵∈Φ𝑙

|𝐵 |. (2)

The execution of a given task 𝜏𝑔
𝑖
by a worker in 𝑆𝑙 takes at most

a worst-case execution time (WCET) 𝑐𝑙 . More specifically, 𝑐𝑙 is as-
sumed to account for the maximum amount of time required to
process the input data and generate an output, regardless of the
type of request, the application submitting it, and the data size. In
other words, we associate a single WCET 𝑐𝑙 to all the tasks exe-
cuted by 𝑆𝑙 . But since a microservice may simultaneously receive
𝑁𝑙 requests from the same or different applications, the execution
of a task invocation may experience a queuing delay, if the number
of concurrent task activations exceeds the number of workers (i.e.,
𝑁𝑙 > 𝑀𝑙 ). This delay adds up to the execution time of the request, af-
fecting the response time of the microservice. Therefore, a provider
interested in providing temporal guarantees for co-located time-
critical applications should plan the capacity of its infrastructure
taking into account the overall worst-case response-time (WCRT)
𝐶𝑙 = 𝑐𝑙 + 𝑞𝑢𝑒𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 for a microservice invocation.

In relation to what is described about the network in the intro-
duction (Section 1), we make the assumption that packet transmis-
sions among microservices and end-users are carried out within a
maximum known time. This assumption is reasonably verified in
scenarios where the provider has physical control over the network-
ing infrastructure, such as private clouds, Cloud-Edge continuum
environments [13], horizontal communications within a datacenter,
or inter-datacenter communications over dedicated or leased lines.
Therefore, we assume a maximum communication time of 𝛿 (𝑁𝐸𝑇 ) .

2.3 Fault Model
In a conventional cloud infrastructure, a worker may fail due to
a software issue, a hardware fault, or a network disconnection.
However, deadline misses and timeouts due to resource contention,
or a lack of resource availability, are also considered faults in the
context of time-sensitive applications.

We model two possible ways to handle a fault: i) static replica-
tion: submit the task invocation request in parallel to 2 workers; ii)
task invocation re-submission: the failed invocation is re-submitted,
allowing the load balancer to choose another, healthy worker. In
both cases, the 2 workers are assumed to reside in different physical
machines or availability zones, so that it is safe to assume that
the simultaneous failure of 2 workers is an event with negligible
probability (more on this later). Clearly, we assume that the soft-
ware is capable of handling multiple invocations of the same task
in parallel, or sequentially, keeping functional correctness. How
exactly this is done, is out of scope for the present paper.

Figure 3 shows how a fault is handled by each method for a
given task 𝜏𝑔

𝑖
. Static replication is a well-known fault tolerance

methodology, but it may lead to a waste of resources. Task re-
submission does not require redundant cloud resources, but it may
extend the aggregated duration of all task activations beyond the
end-to-end deadline. Each method incurs a different WCRT, namely
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(a) (b)

Figure 3: Fault handling in the case of task 𝜏𝑖 : (a) activated
with static replication; (b) re-submitted after failure. The
dotted lines highlight the fact that each task activation is
realized by a different container of the same microservice
(the 𝑔 superscripts have been removed to simplify the figure).

𝐶𝑟𝑒𝑝𝑙 for static replication, and𝐶𝑙 +𝐶′
𝑙
for re-submission. The latter

is due to the fact that the total WCRT for a task activation must take
into account both the first execution (i.e.,𝐶𝑙 ) and the re-submission
(i.e., 𝐶′

𝑙
), as highlighted in Figure 3b.

In our model, an invocation of a task 𝜏𝑔
𝑖
completes successfully if

it finishes within a relative partial deadline 𝐷𝑔

𝑖
since the application

activation at time 𝑡𝑔
𝑘
, despite possible faults occurring during its

execution (i.e., this time should account for possible re-execution if
needed in case of fault). An activation of an application is success-
ful only if: all task activations throughout the whole topology are
successful; the partial deadlines are assigned so that their sum does
not exceed the application deadline 𝐷𝑔 on every end-to-end path.
A naïve fault model might need to assume that all task activations
of the application may experience a fault, but this is highly unlikely
to happen in practice, as some of these failures may actually be
deadline misses due to transient problems like occasional spikes
in execution times or transmission times due to unforeseeable in-
terferences. Therefore, in our approach, we aim at guaranteeing
successful completion of an application activation, assuming that at
most 𝐹 tasks may experience a fault throughout the whole execution
path for each activation of each application, with 𝐹 being a tunable
parameter. Formally, it is convenient to introduce the absolute par-
tial deadline within which a task activation needs to complete to be
successful: 𝑑𝑔

𝑘,𝑖
= 𝑡

𝑔

𝑘
+ 𝐷𝑔

𝑖
. The partial deadline 𝐷𝑔

𝑖
directly depends

on the partial deadlines on the predecessors of 𝜏𝑔
𝑖
in the topology

E𝑔 , but also on the fault tolerance method chosen for each task,
and the associated WCRT. More precisely, the 𝑘𝑡ℎ activation of task
𝜏
𝑔

𝑖
is considered successful if it is concluded by time

𝑑
𝑔

𝑘,𝑖
= 𝑡

𝑔

𝑘
+ 𝐷𝑔

𝑖
=

{
𝑡
𝑔

𝑘
+max{𝐷𝑔

𝜇 | 𝜏𝑔𝜇 ∈ 𝑃𝑟𝑒𝑣𝑔
𝑖
} + X𝑔

𝑖
(𝑖 ≠ 1)

𝑡
𝑔

𝑘
+ X𝑔

𝑖
(𝑖 = 1)

(3)

where X𝑔

𝑖
∈ {𝐶𝑟𝑒𝑝𝑙

𝑙
,𝐶𝑙 + 𝐶′

𝑙
,𝐶𝑙 } is the WCRT of the underlying

microservice, such that 𝜑𝑔 (𝜏𝑔
𝑖
) = 𝑆𝑙 . If the task activation is config-

ured with static replication, then X𝑔

𝑖
= 𝐶

𝑟𝑒𝑝𝑙

𝑙
, and therefore it can

tolerate a worker fault without incurring extra delays; if a possible
fault is handled by re-submission, then X𝑔

𝑖
= 𝐶𝑙 +𝐶′

𝑙
. Finally, we

may have the case in which 𝐹 faults have already been considered
in the tasks preceding 𝜏𝑔

𝑖
, resulting in X𝑔

𝑖
= 𝐶𝑙 .

2 3 4 5 6 7
Number of available workers for a given microservice
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Figure 4: Probability of fault(s) in a microservice, using AWS
EC2 uptime percentage values. Note the logarithmic Y scale.

When focusing on a specific microservice, the fault handling
mechanism by replication or re-submission discussed above as-
sumes that a second worker is very unlikely to experience a fault
at the same time of another worker of the same microservice, or in
the period of time prior to the recovery of the first faulty worker.
This is often the case with workers of the same microservice de-
ployed on different availability zones. Indeed, let 𝑝 be the probabil-
ity of a worker being faulty; such value is the overall availability
percentage of a worker. For instance, each individual AWS EC2
instance has a guaranteed instance-level uptime percentage of at
least 99.5% (𝑝 = 0.005)1. Under the assumption of fault indepen-
dence, the probability of event 2F=“𝑒𝑥𝑎𝑐𝑡𝑙𝑦 2 faulty workers” is
P(2F ) = P(F ) · P(F ) = 𝑝2. Consequently, the probability of event
1M=“exactly 1 out of 𝑀 workers are faulty,” must consider all pos-
sible combinations of the 𝑖𝑡ℎ worker being faulty while the other
𝑀 − 1 are healthy:

P(1M) =
(
𝑀

1

)
· P(F ) · P(¬F )𝑀−1 = 𝑀 · 𝑝 · (1 − 𝑝)𝑀−1 . (4)

The same reasoning applies to the probability of event 2M=“exactly
2 out of𝑀 workers are faulty”. All possible combinations of the 𝑖𝑡ℎ

and 𝑗𝑡ℎ workers being faulty, while the other 𝑀 − 2 are healthy,
must be considered:

P(2M) =
(
𝑀

2

)
· P(F)2 · P(¬F)𝑀−2 =

𝑀 (𝑀 − 1)
2

· 𝑝2 · (1 − 𝑝 )𝑀−2 . (5)

The industrial standards for availability make the probability of
event 1M non-negligible, and that of event 2M small enough to
be neglected. Using 𝑝 = 0.005 (the availability probability of a AWS
EC2 instance) and𝑀 = 3 fault-independent workers, the probability
of event 1M is ∼ 0.01485, the probability of 2M is ∼ 0.0000746.
Figure 4 reports some more mathematical computations. Note that
the probability of 2M increases significantly for𝑀 > 3, but from the
point of view of availability, more containers are a great advantage
even if the probability of failure is higher.

3 APPROACH
In this work, we make sure that a set of cloud-native applicationsA
respect their end-to-end relative deadline 𝐷𝑔 , regardless of interfer-
ence or failures suffered during an activation. For each application
A𝑔 ∈ A: i) we introduce a relative partial deadline 𝐷𝑔

𝑖
for each

task 𝜏𝑔
𝑖
∈ Γ𝑔 ; ii) we ensure that the individual relative partial dead-

lines 𝐷𝑔

𝑖
cannot be missed for each task 𝜏𝑖 , regardless of possible

1Accessed on February 2023: https://aws.amazon.com/compute/sla/
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fault conditions we may incur at run-time; iii) we ensure that the
sum of partial deadlines throughout all the end-to-end paths in
the application topology Γ𝑔 does not exceed 𝐷𝑔 ; iv) we optionally
suggest the optimal capacity (number of workers) to be used for
each microservice, to avoid deadline misses.

3.1 WCRT Estimation
Firstly, it is crucial to derive possible formulas for the WCRTs pre-
sented in Section 2. In the worst-case, a task execution on microser-
vice 𝑆𝑙 may have to wait for 𝑁𝑙 − 1 invocation requests already
queued up, over the number of available workers𝑀𝑙 . Considering
also the additional load balancer delay 𝛿 (𝐿𝐵) to select a worker,
the network delay 𝛿 (𝑁𝐸𝑇 ) to receive input and send output data,
respectively, and assuming a Round-Robin load balancing strategy,
we obtain the overall WCRT 𝐶𝑙 for the microservice invocation:

𝐶𝑙 = 𝑐𝑙 +
⌊
𝑁𝑙 − 1
𝑀𝑙

⌋
𝑐𝑙 + 𝛿 (𝐿𝐵) + 2𝛿 (𝑁𝐸𝑇 ) (6)

For static replication, theWCRT of a task execution onmicroservice
𝑆𝑙 depends on all the replicas of the interfering task invocations, as
well as on its own replica. The total delay amounts to 2(𝑁𝑙 −1) +1 =
2𝑁𝑙 − 1 worst-case invocation requests queued up, over the number
of available workers𝑀𝑙 :

𝐶
𝑟𝑒𝑝𝑙

𝑙
= 𝑐𝑙 +

⌊
2𝑁𝑙 − 1
𝑀𝑙

⌋
𝑐𝑙 + 𝛿 (𝐿𝐵) + 2𝛿 (𝑁𝐸𝑇 ) (7)

Finally, for re-submission, the WCRT of a re-executed task activa-
tion takes into account the fact that the number of available, healthy
workers is decreased by one:

𝐶′
𝑙
= 𝑐𝑙 +

⌊
𝑁𝑙 − 1
𝑀𝑙 − 1

⌋
𝑐𝑙 + 𝛿 (𝐿𝐵) + 2𝛿 (𝑁𝐸𝑇 ) (8)

Notice that Equation (7) and (8) work under the “no double fault”
assumption introduced in Section 2.3.

3.2 Optimal Partial Deadline Assignment
The cloud platform model presented in the previous section can re-
act to a fault in two ways: static replication and task re-submission.
A naïve approach to achieve fault tolerance is to use static replica-
tion for every task activation, effectively nullifying the effect of a
fault (under the assumptions of Section 2.3), but this would require
excessive resources. On the other hand, using re-submission for
every task activation may be unfeasible in case of a tight end-to-end
deadline requirement that does not leave enough spare time.

In this subsection, we introduce an offline analysis and optimiza-
tion tool to configure the optimum fault tolerance method for every
task of a given application so that each application meets its given
end-to-end deadline constraint, despite the occurrence of a number
of faults 𝐹 , as well as the interferences from other applications
possibly sharing the same microservices. The idea is to use static
replication only for a few tasks whose failure would otherwise
necessarily violate the end-to-end deadline 𝐷𝑔 . By minimizing the
number of statically replicated tasks, the usage of redundant re-
sources is in turn minimized. In practice, our optimizer computes
the optimal absolute deadline 𝑑𝑔

𝑘,𝑖
within which every 𝜏𝑔

𝑖
invocation

must finish to guarantee a successful activation of the task (recall
Section 2.3). For the sake of readability, the 𝑘 subscript used to

identify the absolute partial deadlines 𝑑𝑔
𝑘,𝑖

of the 𝑘𝑡ℎ activation of
application A𝑔 will be dropped from now. In fact, since we analyze
the task activation patterns under worst-case conditions, the opti-
mizer does not need to take into account the series of individual
application activations over time (however, should the application
topology change, the optimizer would have to be run again). The
role of the optimizer is to choose the best value for eachX𝑔

𝑖
in Equa-

tion (3), regardless of when/where the 𝐹 faults occurred, so that the
application activation is successful (i.e., end-to-end deadline 𝐷𝑔 is
not violated). In short, this means that the optimizer has to figure
out the best possible fault tolerance method for each task activation,
with the main goal of minimizing static replication. For each task
𝜏
𝑔

𝑖
, we use a binary variable 𝑧𝑔

𝑖
to indicate whether it is statically

replicated or not, and a set of possible partial deadline variables
𝑑
𝑔,(𝑓 )
𝑖

, one for each possible number of faults 𝑓 ≤ 𝐹 throughout
the partial execution of the application (i.e., from 𝜏

𝑔

1 to 𝜏𝑔
𝑖
).

𝑧
𝑔

𝑖
=

{
1 if 𝜏𝑔

𝑖
is statically replicated

0 if 𝜏𝑔
𝑖
is 𝑛𝑜𝑡 statically replicated

(9)

𝑑
𝑔,(𝑓 )
𝑖

= partial deadline in case of at most 𝑓 faults (10)

The analysis that follows focuses on a single application A𝑔 , so
the 𝑔 superscripts are dropped whenever they’re implicitly referred
to, without risks of ambiguity. We assume that the application
activation starts at time 0 (i.e., 𝑡𝑔

𝑘
= 𝑡 = 0), simplifying Equation (10)

for the partial deadlines 𝑑 (𝑓 )
𝑖

. Based on what has been said so far,
the following conditional recurrence relations describe how the
𝑑
(𝑓 )
𝑖

are computed based on task dependencies and previous task
activation WCRTs, as previously shown in Equation (10).

i) Base Case: input task 𝜏1 is implemented by a dedicated mi-
croservice 𝑆𝑦 (𝜑 (𝜏1) = 𝑆𝑦 ):

𝑧1 = 1 =⇒
𝑑
(0)
1 = 𝐶

𝑟𝑒𝑝𝑙
𝑦

𝑑
(1)
1 = 𝐶

𝑟𝑒𝑝𝑙
𝑦

; 𝑧1 = 0 =⇒
𝑑
(0)
1 = 𝐶𝑦

𝑑
(1)
1 = 𝐶𝑦 +𝐶′

𝑦

(11)

Equation (11) (left) defines the possible partial deadlines for input
task 𝜏1 if it is statically replicated. Equation (11) (right) defines the
partial deadline if 𝜏1 is not statically replicated: in this case, if a fault
happens (𝑓 = 1), task 𝜏1 is certainly affected by it and therefore
the tentative partial deadline 𝑑 (1)1 must consider the re-submission
execution time.
ii) Recursive Case: intermediate / output task 𝜏𝑖 , each implemented
by a dedicated microservice 𝑆𝑙 (𝜑 (𝜏𝑖 ) = 𝑆𝑙 ):

𝑧𝑖 = 1 =⇒

∀𝜏𝜇 ∈ 𝑃𝑟𝑒𝑣𝑖 :

𝑑
(0)
𝑖

≥ 𝑑 (0)𝜇 +𝐶𝑟𝑒𝑝𝑙
𝑙

𝑑
(𝑓 )
𝑖

≥ 𝑑 (𝑓 )𝜇 +𝐶𝑟𝑒𝑝𝑙
𝑙

∀𝑓 ∈ 𝐾𝑖

𝑑
(𝑓 )
𝑖

≥ 𝑑 (𝑓 −1)𝜇 +𝐶𝑟𝑒𝑝𝑙
𝑙

∀𝑓 ∈ 𝐾𝑖 \ {1}
(12)
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𝑧𝑖 = 0 =⇒

∀𝜏𝜇 ∈ 𝑃𝑟𝑒𝑣𝑖 :

𝑑
(0)
𝑖

≥ 𝑑 (0)𝜇 +𝐶𝑙

𝑑
(𝑓 )
𝑖

≥ 𝑑 (𝑓 )𝜇 +𝐶𝑙 ∀𝑓 ∈ 𝐾𝑖

𝑑
(𝑓 )
𝑖

≥ 𝑑 (𝑓 −1)𝜇 +𝐶𝑙 +𝐶′
𝑙
∀𝑓 ∈ 𝐾𝑖 \ {1}

(13)

where 𝑃𝑟𝑒𝑣𝑖 = {𝜏𝜇 ∈ Γ : (𝜏𝜇 , 𝜏𝑖 ) ∈ E}, as defined in Section 2.1, and
𝐾𝑖 = {1, ...,min{𝐹,𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 (𝜏1, 𝜏𝑖 )}} contains the range of possi-
ble faults between the activation of input task 𝜏1 and 𝜏𝑖 . Procedure
𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 () returns the max number of tasks among the possible
paths between 𝜏1 and 𝜏𝑖 , and it is implemented as a modified ver-
sion of topological sorting, therefore it is solvable in linear time.
Equations (12) and (13) take into account the partial deadlines pre-
viously assigned to the predecessors. If there are no faults so far
(i.e., 𝑓 = 0), the first fault of the application activation has yet to
happen (i.e., to the invocations of subsequent tasks). Conversely,
if a number of faults 𝑓 > 0 have happened, they could all have
happened during the invocations of the preceding tasks. In this case,
there is no need to consider re-submission in the partial deadline.
Otherwise, 𝑓 − 1 faults happened to the task activation sequences
leading to task 𝜏𝑖 , and since 𝑓 ≤ 𝐹 , it may just so happen that the
next fault will affect task 𝜏𝑖 invocation. If static replication is not
in use, the partial deadline must take into account the additional
re-submission WCRT, as shown in the third inequality (13).

The above relations are transformed into constraints for a Mixed-
Integer Linear Programming (MILP) problem using Pyomo2. The
objective is to minimize the number of statically replicated task
invocations (due to the resource waste). The optimizer ensures that
any possible partial deadline assignment does not violate the end-
to-end deadline 𝐷 , regardless of the number of transient faults 𝐹 , or
of the interferences. In other words, the optimizer evaluates every
possible path between 𝜏1 and 𝜏𝑒 , using 𝑧𝑖 as decision variables to
pick a proper WCRT for each task activation. Ultimately, this is
done for all the applications to be deployed:

Minimize
∑︁

A𝑔∈A

𝑛𝑔∑︁
𝑖=1

𝑧
𝑔

𝑖
, subject to: (14)

constraints (11), (12), (13) ∀A𝑔 ∈ A

𝑑
𝑔,(𝐹 )
𝑒 ≤ 𝐷𝑔 ∀A𝑔 ∈ A . (15)

In our proposed approach, this optimization problem constitutes a
capacity test to be run every time there is an attempt to change the
hosted workload characteristics, to check whether the request can
be admitted. This is needed on: (i) new, additional applications to
be deployed; or (ii) a change in the maximum number of concurrent
tasks (i.e., 𝑁𝑙 ) or number of workers for a given microservice (i.e.,
𝑀𝑙 ). For example, this may be due to a horizontal scaling action of
an already deployed application or a microservice, respectively.

Under the assumption that a given end-to-end deadline 𝐷𝑔 is
not ill-posed (i.e., application A𝑔 should be able to fulfill 𝐷𝑔 un-
der a no-interference, no-failure condition), the optimizer cannot
find a feasible solution only if a subset of microservices is unable
to accommodate all the to-be-deployed applications. To this end,
our optimizer allows turning some, or all, {𝑀𝑙 } into decision vari-
ables to be optimized. In practice, the WCRT Equations (6), (7) and
2https://www.pyomo.org/

(8) are converted into quadratic constraints. This allows for using
the optimization objective of minimizing for example the amount
of total workers, i.e.,

∑
𝑙 𝑀𝑙 . This capacity planning feature trans-

forms the partial deadline assignment problem into a MIQCP with
a non-convex feasible region, which considerably increases the
computational complexity. This is viable when the availability of
underlying physical resources is sufficiently high to deploy all the
suggested𝑀𝑙 workers for each microservice S𝑙 .

Regarding the complexity of the proposed optimization approach,
the solving time grows with the problem size, which is related to
the number of variables and constraints instantiated in Pyomo.
For estimating the WCRTs, the number of variables is #𝑤𝑐𝑟𝑡𝑉𝑎𝑟 =
8𝑚𝑆 and the number of constraints is #𝑤𝑐𝑟𝑡𝐶𝑜𝑛𝑠𝑡𝑟 = 11𝑚𝑆 . For
assigning the partial deadlines we need #𝑝𝑑𝑉𝑎𝑟 =

∑𝑛A
𝑔=1 2𝑛

𝑔 + 𝐹 𝑛𝑔

and #𝑝𝑑𝐶𝑜𝑛𝑠𝑡𝑟 =
∑𝑛A
𝑔=1 3 + 2 (𝐹 + 1) 𝑛𝑔 . An empirical evaluation of

the solving times is discussed in Section 4.3.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the optimization strategy presented in
Section 3.2, under the assumption of an underlying infrastructure
capable of accommodating all the microservices. We show how the
optimizer computes partial deadlines and decides a fault tolerance
method for each task. For our experiments, we used the Gurobi
solver v9.5.1 on a 112-core system (x86-64 server with 2 Xeon Gold
CPUs and 125 GB of RAM). The quality of the obtained offline
decisions is evaluated with simulations: first, we focus on the sim-
ple scenario depicted in Figure 1 and Table 1, then we perform a
campaign of experiments with randomly generated scenarios.

4.1 Analysis of Scenario in Table 1
For the sake of simplicity, every task activation is realized by a
dedicated microservice, thus tasks and microservices can be re-
ferred to using the same indexes: task 𝜏𝑔

𝑖
activations are executed

by microservice 𝑆𝑙 , where 𝑖 = 𝑙 . This means that every 𝜑𝑔 ∈ 𝜑 is
a bijective mapping. Temporal interferences are modeled by du-
plicating the very same application topology 4 times, i.e., 𝑛A = 4
and ∀𝑆𝑖 ∈ S, 𝑁𝑖 = 4 (simply referred to as 𝑁 in what follows). This
simplifies the description of the example significantly. Since the
application topologies and requirements are all the same, we can fo-
cus the analysis on one of the 4 application deployments, for which
the other 3 ones are considered as interfering workloads. Hence-
forth the 𝑔 superscripts and the 𝑘 subscripts are omitted. Table 1
describes the given characteristics of each microservice, together
with the WCRTs computed using Equations (6) to (8). The total
number of workers is𝑀1 +𝑀2 +𝑀3 +𝑀4 +𝑀𝑒 = 14. For simplicity,
we assume the load balancer delay 𝛿 (𝐿𝐵) and communication time
𝛿 (𝑁𝐸𝑇 ) to be negligible w.r.t. the processing times, in the WCRTs.

We run the optimizer with a variety of end-to-end deadlines, to
compute the number of critical task executions for an application
invocation, and their corresponding partial deadlines. The ability
for a DAG application to meet a given end-to-end deadline generally
depends on the critical path. However, in our context, the critical
path length, which corresponds to the total application end-to-end
worst-case response time (ormakespan), is affected by the choices to
be made by the optimizer for the variables X𝑖 ∈ {𝐶𝑟𝑒𝑝𝑙

𝑖
,𝐶𝑖 ,𝐶𝑖 +𝐶′

𝑖
}

for each task 𝜏𝑖 . Consider a failure-free (𝐹 = 0) and interference-free
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Given Parameters Inferred Parameters
𝑐𝑖 𝑀𝑖 𝐶

𝑟𝑒𝑝𝑙

𝑖
𝐶𝑖 𝐶′

𝑖
𝐶𝑖 +𝐶′

𝑖

𝑆1 10 3 30 20 20 40
𝑆2 15 2 60 30 60 90
𝑆3 33 4 66 33 66 99
𝑆4 10 2 40 20 40 60
𝑆𝑒 20 2 80 40 80 120

Table 1: Characteristics of the microservices implementing
the application depicted in Figure 1. Assuming a one-to-one
task-to-microservice mapping, tasks and microservices can
share the same indexes. The inferred parameters are com-
puted using 𝑁 = 4 tasks sharing each microservice.

(𝑁 = 1) scenario with the characteristics in Table 1: the critical path
for the application under analysis is {𝜏1, 𝜏3, 𝜏4, 𝜏𝑒 } and its makespan
is 𝑐1 + 𝑐3 + 𝑐4 + 𝑐𝑒 = 73 time units. Removing the interference-free
assumption, the makespan becomes 𝐶1 +𝐶3 +𝐶4 +𝐶𝑒 = 113 time
units (depicted in Figure 5). Ideally, 𝑁 = 4 workers per microservice
(20 total workers) are needed to ensure fully parallel executions
with no queuing delay, but this may be too expensive.

If the application activates at time 𝑡 = 0 and 𝐷 = 113, the earliest
absolute partial deadlines assigned for a successful completion are:
𝑑1 = 20, 𝑑2 = 50, 𝑑3 = 53, 𝑑4 = 73, 𝑑𝑒 = 113, using Equation (3) with
X𝑖 = 𝐶𝑖 ∀𝑆𝑖 ∈ S. The partial makespan for task 𝜏𝑖 , defined as the
cumulative worst-case response time up to 𝜏𝑖 , must be lower than
𝑑𝑖 to ensure a reliable application activation at run-time. With the
given {𝑀𝑖 } values, 𝐷 = 113 is clearly the minimum possible end-to-
end deadline that can be met with the microservices in Table 1 in
any possible interference scenario, under a failures-free assumption.
However, it is not possible to meet such a stringent deadline if 𝐹 > 0.
This is because there is no spare time for re-submissions, due to the
partial deadline 𝑑𝑒 of output task 𝜏𝑒 being equal to the end-to-end
deadline 𝐷 . On the other hand, the deadline would be met with
𝑎𝑙𝑙 tasks statically replicated. Indeed, using 2 ∗ 𝑁 = 8 workers
per microservice (40 total workers), would ensure the concurrent
executions of all replicas, leading to an end-to-end critical path
meeting the tight deadline of 𝐷 = 113. However, this may be too
expensive. The solution is to settle for longer deadlines, since a
lax deadline requires fewer workers, or to let the optimizer plan
the optimal number of workers for each microservice. For instance,
the optimizer suggests a 84% increase in virtual resources (from
13 to 24 total workers) if the activation has to tolerate at most
3 transient faults (𝐹 = 3) with deadline 𝐷 = 113, allocated as:
𝑀1 = 4, 𝑀2 = 4, 𝑀3 = 8, 𝑀4 = 4, 𝑀𝑒 = 4. Naturally, this invalidates
the inferred characteristics in Table 1 as well as the critical path in
Figure 5.

Figure 6 presents the results from a series of optimization runs
with different end-to-end deadlines (x-axis) higher than 113. The
number of possible faults during an application activation is 𝐹 = 3.
The blue line depicts the minimum amount of statically replicated
task executions required to safely deploy the application in Fig-
ure 1, alongside 3 other interfering instances of the same application,
using the predefined characteristics in Table 1. The number of stat-
ically replicated tasks increases as the end-to-end deadline shrinks,

Figure 5: Critical path and critical path length in a failure-
free scenario (path in bold), using the microservice parame-
ters in Table 1. Since there may be interferences, the length
depends on the WCRTs 𝐶𝑖 .
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Figure 6: Number of statically replicated tasks as the end-
to-end deadline shrinks. The number of tolerable transient
faults is 𝐹 = 3, and the number of deployed applications is
𝑁 = 4. Standard mode uses the characteristics in Table 1. Ca-
pacity Planning mode lets the optimizers decide the optimal
number of workers𝑀𝑖 for microservice 𝑆4 (orange line), and
microservices 𝑆1 and 𝑆4 (green line).
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Figure 7: Total number of suggested workers in capacity plan-
ning mode, as the end-to-end deadline shrinks.

and the assignment problem becomes unfeasible for deadlines ear-
lier than 220. The orange line depicts how the capacity planning
capabilities of the optimizer allow to push back the deadline bound-
ary by using 𝑀4 as a “free” parameter (i.e., the solver picks the
optimal amount of workers for microservice 𝑆4). As the end-to-end
deadline shrinks, the number of statically replicated tasks rises
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again, leading to a bottleneck on a different microservice. Finally,
the green line shows the same trend, but with two free parameters,
𝑀1 and𝑀4. The optimizer avoids static replications more often if it
is allowed to set the capacity of some microservices.

Figure 7 shows the number of total workers, regardless of which
microservice they belong to, as suggested by the optimizer in capac-
ity mode. For instance, the green line demonstrates that it is possible
to deploy 𝑛A = 4 applications and successfully complete an appli-
cation activation within 𝐷 = 300 units of time with half the number
of workers in Table 1, even in the case of 𝐹 = 3 tolerable faults. The
workers are allocated as: 𝑀1 = 1, 𝑀2 = 1, 𝑀3 = 2, 𝑀4 = 1, 𝑀𝑒 = 1.
Similarly, the plot shows that it is not possible to successfully com-
plete an activation within 𝐷 = 170 with less than 24 workers
with only two free parameters (orange line). If all {𝑀𝑖 } are free
parameters, the optimizer suggests an overall better deployment
configuration than Table 1 (brown line). With the given simple sce-
nario, the solving time for the partial deadline assignment ranges
from 200 to 500 milliseconds.

4.2 Evaluation by Simulation
The previous Subsection 4.1 assessed through offline analysis val-
idation the concepts presented in the model, such as the WCRTs
and the idea of a maximum amount of tolerable faults per activa-
tion. This section is dedicated to providing a practical evaluation of
the analysis results. The goal is to show that the partial deadlines
computed by the optimizer are not violated through simulations.
To this end, we developed a realistic simulator in Python using the
discrete event simulator SimPy, which simulates the interferences
and transient faults experienced by a given application topology.
The essential parameters for the simulator are the application topol-
ogy, the number of deployments 𝑁 (with the same topology, like in
the previous subsection) that will be interfering with each other,
a list of microservice characteristics, and the number of 𝐹 faults
that may occur. The simulator sets up the defined microservices
with the required number of workers and a load balancer. A sim-
ulation performs a number of application activations (for each
application instance) by periodically generating execution requests
to the microservice dedicated to the realization of the input task.
Each worker of microservice 𝑆𝑖 is simulated in a separate simulated
thread characterized by a certain processing duration 𝑐𝑖 . A worker
either performs a task execution, picks a new task invocation re-
quest from a dedicatedwait queue (that is fed by a Round-Robin load
balancer), or waits for one to arrive. Consequently, a microservice
𝑆𝑖 can complete 𝑀𝑖 task executions in 𝑐𝑖 units of time (assuming
no failures). The remaining 𝑁 − 𝑀𝑖 pending task activations, if
any, will be delayed until a worker is available. A task completion
generates an activation request for the successors, i.e., is queued on
a corresponding worker, even if it finished earlier than the partial
deadline. This means that parallel task activations at worst-case
may not be synchronized during the simulation, but “spread out”
due to not being delayed to the same partial deadline (because that
depends on the “actual” queuing delay at simulation time).

The simulator offers a set of optional parameters to further per-
sonalize the simulation behaviors, such as several execution time
distributions, application activation patterns and fault rate. For this
evaluation, we have selected a configuration that is at the border
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Figure 8: 100𝑡ℎ percentile partial makespan (from simula-
tions) for each task, compared to the theoretical partial dead-
line for the output task 𝜏𝑒 (dashed line). The star marker
indicates a statically replicated task execution, as decided by
the optimizer. The parameters used are 𝐹 = 3, 𝑁 = 4, 100%
failure rate and the microservice configuration in Table 1.

of the model guarantees (i.e., the worst-case). The applications are
activated with equal periodicity and issued simultaneously. Next, all
task executions last as long as their WCET 𝑐𝑖 . The fault rate is set to
100%, i.e., 𝐹 faults will occur for every activation of an application.
Recall that due to the “no double fault” assumption in Section 2.3,
the replica of a statically replicated task execution always succeeds,
as well as the re-submission of a previously failed task activation.
The failures are modeled as a WCET or partial deadline “overrun”,
which is the latest time a fault detector could have noticed the
failure. The simulation ends after a predefined simulation time.

Figure 8 shows some simulation results for the simple scenario
in Figure 1 and the microservice characteristics listed in Table 1.
The simulator performs roughly 13000 application activations, and
none of them exceeds the end-to-end deadline, as expected from the
offline analysis. The optimizer overestimates the partial deadlines
because it solves the assignment problem in the worst-case scenario,
where every task invocation for a given application activation is
delayed by all other 𝑁 − 1 same task invocations. In reality, task ac-
tivations would be more spread out. Nonetheless, the infrastructure
must be ready to handle the worst-case scenario to guarantee the
highest possible availability and reliability, thus leaving room for
re-submission of the 𝐹 longest tasks execution on the critical path,
at the highest peak of interference. Indeed, the optimizer provides
configurations that are robust regardless of where the faults occur,
as long as they affect no more than 𝐹 tasks (see Section 3).

4.3 Randomly Generated Scenarios
In order to validate more generally our optimization framework,
and highlight better how it behaves also in terms of solving time
overheads, we carried out an extensive campaign of experiments
with 100 randomly generated scenarios, with an overall 38588 exe-
cution runs. These include random DAG topologies and chains of
tasks composed of𝑛𝑔 ∈ [4, 7] tasks, replication factor of𝑛A ∈ [1, 3],
number of workers𝑀𝑖 ∈ [2, 8] and number of faults 𝐹 ∈ [0, 3]. The
WCETs are randomly generated in the range of 50 − 100 time units,
and the end-to-end deadlines are randomly generated to compute
feasible solutions. The topologies aim to mimic the typical interac-
tion in a NFV context, i.e., handover of a mobile device between base
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Figure 9: Empirical CDF of the simulated makespan divided
by the end-to-end deadline for the considered scenarios.
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Figure 10: Total solving time over problem size (note the
logarithmic scale on the Y-axis).

stations or baseband packet processing in 5G [2, 27]. We assume
that every task activation is realized by a dedicated microservice.

Figure 9 shows the empirical CDF of the obtained ratio between
the makespan of an application activation (from simulations) and
the end-to-end deadline, for each randomly generated scenario.
We can see that all application activations terminate within their
end-to-end deadline (corresponding to 1.0 on the X axis), with the
majority of tasks completing safely below it. Figure 10 depicts the
increase in solving time as the problem size grows in terms of
number of tasks 𝑛𝑔 and interfering applications 𝑛A . In this case, we
increased the complexity of the generated problems: 𝑛𝑔 ∈ [5, 20]
and 𝑛A ∈ [1, 60]. Each data point corresponds to a randomly
generated application. The optimizer runs in capacity planning
mode (with higher complexity), meaning that it also computes the
optimal number of workers per microservice. As expected, the
solving time ramps up quickly as the problem size grows. We faced
solving times within 1 − 2 seconds for relatively small problems
with up to 200 tasks, and higher solving times for larger problems,
up to ∼10 seconds in the performed runs.

5 RELATEDWORK
Resource management in cloud-based infrastructures is a broad
field of study, and there are many works focusing on fault-tolerance
techniques [19, 20]. There are three types of fault tolerance policies:
1) reactive, which reduces the effect of a failure after it occurs; 2)

proactive, which avoids fault recovery by predicting the fault; 3)
adaptive, a hybrid approach that depends on the current state of the
system or application. The most common reactive approaches are
check-pointing, which reproduces the task executions in another
instance after a fault occurred, and replication. Examples of proac-
tive approaches are preemptive migration and rejuvenation, which
reduce the likelihood of a fault occurring by removing the task
executions from the potentially faulty system, in advance. How-
ever, there is a lack of research in fault detection and recovery for
time-critical cloud-native applications.

Guo et al. [18] focus on the problem of reducing energy consump-
tion when introducing redundancy to ensure fault tolerance for
real-time tasks in cloud-based 5G networks. This is done by schedul-
ing primary and backup copies of real-time tasks to different virtual
machines, which are then dynamically rearranged to fully utilize
the idle time slots. Siyadatzadeh et al. [29] propose a learning-based
primary-backup placement technique to improve the reliability of
fog-based Internet-of-Things (IoT) real-time systems. The proposed
model tolerates failure on the communication links and processing
units by establishing a balance between communication delay and
workload on each fog device. In this way, the backup tasks are only
sent to fog nodes where they will have enough time to complete
within the deadline. Yao et al. [35] presents a scheduling approach
for deadline-constraint independent tasks that selects the proper
fault-tolerant strategy, either resubmission or replication, based on
the characteristics of both task and cloud resources. The proposal
then reserves a suitable amount of resources for task execution and
dynamically adjusts them to improve resource utilization. Ahmad
et al. [3] describes a workflow management system with Quality-of-
Service (QoS) and fault-tolerant capabilities for real-time scientific
applications. A scheduler converts an admitted workflow into jobs
and assigns them the required resources, based on QoS require-
ments. A workflow engine executes the jobs and migrates those
affected by a hardware or software failure to the nearest available
node with the same configuration. Zenpeng et al. [21] presents a
greedy fault-tolerant scheduling algorithm for microservice-based,
deadline-constrained applications. Their heuristic strategy assigns
task replicas to suitable virtual resources so that the task deadline
and reliability requirements are met. Moreover, they propose a re-
source adjustment strategy to improve resource utilization, and
therefore to reduce the cost of the initial task scheduling solution.
Malink and Huet [23] present a fault tolerance scheme for virtual
machine (VM) placement in a real-time cloud scenario. Each real-
time task is replicated and placed on the VMs with the highest
reliability score. The latter is dynamically computed according to
the number of outputs produced within the task deadline: if the VM
produces a correct result within the deadline, its reliability score
is increased. If no VM achieves the pre-defined minimum level of
reliability, the systems will perform backward recovery or other
safety measures, such as stopping it.

Most of the existing approaches to fault tolerance are reactive,
and, specifically, they are based on replication, due to the relatively
low recovery time. In these works, fault tolerance is mainly inves-
tigated and implemented without worst-case latency guarantees.
Furthermore, to be best of our knowledge, no other work considers
interferences between microservice-based applications deployed
on the same cloud infrastructure, as proposed in this paper.
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6 CONCLUSIONS & FUTUREWORK
In this paper, we formalized the problem of design and deployment
of cloud-native, time-critical applications. We introduced a novel
model for describing interferences between time-critical applica-
tions, represented as compositions of software tasks provided by the
cloud platform in the form of microservices. Furthermore, we pre-
sented an optimization approach to tackle the problem of optimum
deployment of time-critical applications with formal fault-tolerance
guarantees, based on the number of expected transient faults and
on the interferences among application instances sharing the same
microservices. The optimizer includes two modes of operation: the
first one evaluates the feasibility of a certain application deploy-
ment, based on the number of workers per microservice; the second
mode allows to plan the capacity of each microservice, in relation to
the available computing resources in the underlying infrastructure,
to guarantee successful activations. The quality of the decisions
taken by the solver is shown through a series of simulations.

In the future, we plan to conduct a number of further investi-
gations: more realistic scenarios that take into account network
latency requirements; additional experimental evaluations using
well-known simulators in the literature [8]; a more advanced CPU
utilization model based on reservations [30]; integration with the
problem of placement over possibly large physical infrastructures.
The latter will cause the optimization problem to quickly become
intractable, so a heuristic-based approach will be investigated to re-
duce the optimization complexity, while still finding good enough
solutions. A starting point is the heuristic algorithms proposed
in [7, 11] to find suboptimal partitions of real-time, graph-based
applications. Last but not least, we are planning to evaluate the
obtained theoretical results on a real-world Kubernetes deployment.
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