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ABSTRACT
Monitoring and Metering are essential activities for Service Oriented Infrastructures (SOI) and 
Cloud services. The information collected through monitoring is necessary to ensure the correct 
execution of the applications in the Cloud and the monitoring of the SLA compliance.
This chapter will present the reasons and difficulties for monitoring and metering on Cloud 
infrastructures. The approaches for monitoring of the execution environment and the network on 
virtualised infrastructures will be described together with the existing monitoring tools present 
on different commercial and research platforms.

INTRODUCTION
Cloud Computing Overview
Cloud computing has become a new computing paradigm as it can offer dynamic IT 
infrastructure, configurable service and QoS guaranteed computing environment (Wang et al., 
2008)1.1.1.7. Cloud computing can be illustrated from the following aspects: 
 SPI model - Cloud computing originates from the concept “Hardware as a Service” (HaaS), 
“Software as a Service” (SaaS). Cloud now advances from SaaS to “Platform as a Service” 
(PaaS) and “Infrastructure as a Service” (IaaS), known as SPIi model. In Cloud computing, 
customers can avoid capital expenditure on hardware and software by renting the usage from 
service provider of third party, rather than owning the physical infrastructure by themselves. The 
hardware and software are rendered to customers as IT services. 
Scalability / elasticity - Klems and Gaw (in Geelan, 2008) claim that automatic scale of 
infrastructure for load balancing is a key element in Cloud computing. The delivered services 
can elastically / dynamically grow its capacity on an as-needed basis so that the Quality of 
Service (QoS) can be guaranteed: “on-demand services are all cloud computing based” (de 
Haaff, 2008). 
“Pay-per-use” / “Pay-as-you-go” / “Utility computing” - There is also a vision that Cloud 
computing is more like a business revolution, rather than a technology evolution. Business 
model, or we call “pay-per-use”, “pay-as-you-go”, and ”utility computing” is another feature of 
Cloud computing (Geelan, 2008; Watson, Lord, Gibson et al., 2008); Buyya, Yeo, Venugopal, 



2009; McFedries, 2008). The usage of the resource will be metered and service customers will 
pay bill to service provider for the actual resource usage. 
Data centre - Another view of Cloud presents the data centre as the basic unit of the Cloud 
infrastructure (Vaquero, Rodero-Merino, Caceres and Lindner, 2009). Data centre can offer huge 
amount of computing power and data storage.  The capacity of the data centre can change 
dynamically when handling a task. According to Vaquero, Rodero-Merino, Caceres and Lindner 
(2009), this is associated with the concept “massive data scalability” proposed by Hand (2007).  
Virtualisation - Cloud computing can also be regarded as a “virtualised hardware and software” 
(Sheynkman in Geelan, 2008). This perspective emphasizes the use of virtualisation technology 
in the Cloud computing. Virtualization technologies multiplex hardware and have made the 
flexible and scalable provision of resource as hardware and software on demand easier. Virtual 
machine techniques, such as VMware (http://www.vmware.com) and Xen (http://www.xen.org), 
offer virtualized IT-infrastructures on demand. Virtual network advances, such as Virtual Private 
Network (VPN), support users with a customized network environment to access Cloud 
resources.

Why does Cloud need Metering and Monitoring  
Monitoring tasks comprise a fundamental functionality in every distributed computing system. 
Every service should be monitored in order to check its performance and allow for corrective 
actions in case of failure. Monitoring data represents an operational snapshot of the system 
behaviour along the time axis. Such information is fundamental in determining the origin of the 
problems or for tuning different system components. For instance, fault detection and recovery 
mechanisms need a monitoring component to decide whether a particular subsystem or server 
should be restarted due to the information collected by the monitoring system (Litke et al., 2005). 
Metering tasks are necessary for checking the disk space, network and memory usage from the 
machines of the platform. This information is vital to allocate services under conditions of 
optimum performance.
Metering and monitoring play an important role in Cloud computing, which can be attributed to 
the following reasons: 
From Cloud computing SPI model perspective – Customer consumes services provided by a 
service  provider  and  service  provider  outsources  the  service  hosting  to  the  dedicated 
infrastructure  providers.  Service  Level  Agreement  (SLA) is  usually  employed  to  serve  as  a 
bilateral  contract  between  two  parties  to  specify  the  requirements,  quality  of  service, 
responsibilities and obligations. SLA can contain a variety of service performance metrics with 
corresponding Service Level Objectives (SLO). Therefore we need to meter values of associated 
metrics defined in the SLA at the usage stage to monitor whether the specified service level 
objectives are achieved or not.  
From Cloud computing “Pay-per-use” / “Pay-as-you-go” / “Utility computing” perspective - 
Cloud service provider delivers QoS-assured services and other commitments in exchange for 
financial commitments based on an agreed schedule of prices and payments. This requires the 
service / resource usage to be metered, based on which the bill can then be calculated.
 From  Cloud  computing scalability  /  elasticity  and  data  centre  perspective  -  These  two 
perspectives  have  a  feature  in  common,  that  is,  capacity  on-demand  or  called  on-demand 
resources provisioning. The service and resource usage need to be metered and monitored to 
support this dynamic scale feature on an as-needed basis.  In the report “The Future of Cloud 
Computing”  (Schubert,  Jeffery,  Neidecker-Lutz,  et  al.,  2010)  produced  by  the  EC with  the 
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support of a group of external experts, it  has been identified that Cloud computing is facing 
following challenges. From the technical aspects, the challenging issues are mainly related to: (i) 
scalability  and elasticity,  (ii)  trust,  security and privacy, (iii)  handling data in Clouds is still 
complicated,  especially  large amount  of data  and heterogeneous  data,  and (iv)  programming 
model  are  currently  not  aligned  to  highly  scalable  applications  and  thus  cannot  exploit  the 
capabilities  of Clouds.  The Cloud scalability  and elasticity  issue which is  directly  related  to 
monitoring and metering is listed at the top of the challenges that need to be addressed.

The difficulties of performing monitoring and metering in the Cloud
There are different ways of collecting monitoring data, for instance:

1. Obtain information from the Operating System or the Virtual Machine Unit (VMU) in 
relation to the CPU usage, the network interfaces and the storage connected to the 
machine.

2. Simple Network Management Protocol (SNMP) is used mostly on network system, and 
can be used to monitor the status of the network and detect error events (SNMP traps 
enable an agent to notify the management station of significant events by way of an 
unsolicited SNMP message). Besides SNMP there are other protocols provided by 
network vendors to monitor and gather usage statistics, for instance NetFlow is a network 
protocol developed by Cisco Systems to run on Cisco IOS-enabled equipment for 
collecting IP traffic information.

3. Extract the information from the application log files, searching for specific patterns that 
provide information about interesting events in the application, for instance: error in the 
interaction with the client (this also could be related to denial of service (DoS) attacks) or 
number of client interactions performed.

4. Specific ad-hoc monitoring mechanism. Applications that do not provide standard 
mechanisms (like SNMP) to deliver monitoring data can implement a private API for 
monitoring. This mechanism could be a set of proprietary functions or more generically a 
SOAP interface with an XML specific message format.

The following steps are required for monitoring and link the raw monitoring data to the 
behaviour of the application (Heroix, 2006):

1. Collect and correlate to reveal service performance. One of the problems to perform 
correctly this correlation of information from the different sources is time 
synchronization. On a virtualized environment where the physical resources are shared by 
different applications and the infrastructure has the ability of reallocate the resources 
depending on the needs in each specific moment, one portion of a network or one server 
is not longer associated to a single service or application. The monitoring system will be 
unable to associate the corresponding data of the different systems to the application 
unless a precise time synchronization mechanism is in place. Global Positioning System 
(GPS) (http://www.gps.gov) afford one way to achieve synchronization within several 

3



tens of µsec. Ordinary application of NTP (http://www.ntp.org/) may allow 
synchronization within several msec. The different granularities of those time 
synchronization mechanism determine the precision of the monitoring system at a whole 
(e.g. it is not possible to detect network delays of the order of milliseconds or less if the 
time difference of the clocks is also of this order).

2. Interpret the business impact. It is not trivial to deduce from the monitoring data 
collected from the different systems the performance of the application, and infer if the 
application is performing correctly. From one side, a complete outage in one segment of 
the network affecting some servers inside the application architecture could have no 
effect in the performance perceived by the user, for instance during low usage period 
where the rest of the service platform is able to provide the requested performance to the 
user. On the other side, a completely functional infrastructure could be insufficient to 
provide the QoS requested by the users. Accordingly, the monitoring system should 
gather information from the infrastructure and from the application components 
themselves to have a complete view of the execution and performance of the application.

3. Resolve quickly; prevent when possible. The ideal situation is the prevision of the user 
demand so that the provider can anticipate the requirements and adapt the application 
dynamically to support this demand. This is the promise of the cloud, the easy adaptation 
of the application to the changing environment that affects it. To support this, the 
application must be designed in advance to allow the dynamic deployment of application 
components, and the reconfiguration of the application to support these changes in the 
internal architecture of the application.
When an unexpected error occurs that affects the performance of the application, the 
cloud provider should provide the mechanism to detect those events and react to them to 
minimize as possible the negative effects on the clients. From an operational point of 
view the desired situation is when the monitoring application is able to suggest corrective 
actions to errors and events that can affect the application performance.

APPROACHES, IMPLEMENTATIONS & COMPARISONS
There are several approaches in the design and development of monitoring and metering 
systems. This section presents briefly the techniques used to monitor the execution environment 
and the network on virtualised infrastructures. Finally, different monitoring tools of existing grid 
and cloud platforms are described, including commercial platforms like Amazon Web Services 
and Google App Engine; and monitoring systems used on open source and academic solutions 
like GRIA, Akogrimo, Edutain@Grid, Globus Toolkit and gLite.

Monitoring CPU usage in virtualized SOIs
Monitoring of actual resources usage in SOIs is of paramount importance due to the value that 
the corresponding information flow possesses in the overall resource allocation and management 
strategies. In fact, monitoring data may be used by resource providers for a variety of purposes, 
including:
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• foreseeing the future loads for an optimum allocation of the available physical 
infrastructures;

• identifying possible bottlenecks within the infrastructure leading to either temporary or 
permanent performance degradations;

• fine-tuning their price lists and business model policies.

More specifically, monitoring data about the actual usage of computing power in a distributed  
virtualized infrastructure is particularly critical because not only the availability of CPU power 
is at the basis of providing compute-intensive services to the final users, but also for I/O 
intensive ones. In fact, retrieving selected portions/cuts of large amounts of data from remote 
disks and routing them to the final data consumers may require significant amounts of computing 
power for such tasks as:

• streaming the data on the network;

• selecting the requested data and/or aggregating or transforming it as requested (think of 
database applications);

• routing them among possibly virtualized gateway nodes.

Depending on the involved Operating Systems, the virtualization technologies in use, and 
specifically on the level of para-virtualization of the I/O and networking layers, the computing 
requirements due to a given data throughput may largely vary. Furthermore, when more VMUs 
run concurrently on the same physical node, a computing power shortage due for example to a 
CPU-intensive VMU may result in a degraded network throughput for another data-intensive 
VMU and vice-versa. Such situations need to be properly detected on-time and compensated 
(e.g., by live-migrating VMUs for load-balancing purposes), and monitoring plays a key role in 
this context.
However, monitoring of the CPU usage is not as easy as it is for other resources like network and 
memory, where objective metrics may be used for monitoring purposes, such as the number of 
transferred bytes. In fact, there are various factors that need to be properly considered in a 
monitoring process:

• the accuracy of the used sensors, in terms of time-precision by which they are capable of 
reporting CPU usage;

• the granularity at which the monitored data is collected, for example one may collect per-
thread, per-process, per-VMU or per-node CPU usage data;

• CPU power-saving capability of the monitored physical nodes.

The accuracy of the monitoring data depends on the precision of the hypervisor and involved 
Operating Systems in accounting the processes load. In this section the focus is on the Linux 
Operating System and the kvm (“KVM, Kernel-based Virtualization Driver, Whitepaper”, 2006) 
virtualization solution, both products are open source which allows a major customisation of the 
software. Using kvm, the Virtual Machine Units run as processes of the host Linux instance. 
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Accuracy of monitoring of the CPU usage by individual VMUs depends on the accuracy of 
Linux in tracking the CPU usage of individual processes. Historically, the Linux kernel used to 
perform all of its time-related book-keeping activities, comprising measuring time and firing 
timers, at a precision depending on the frequency of the system tick, whose period is statically 
configured into the kernel to one of a few values between 1ms and 10ms. Even worse, the per-
process monitoring data reported by the kernel used to be collected based on what observed at 
each system tick, independently of the actual CPU usage of a task between ticks, rather than on 
the actual time instants at which tasks where scheduled on the CPUs by the kernel. As a 
consequence, it was also possible for a properly designed unprivileged process in the system to 
consume nearly all of the available CPU power, still having the system report that the system 
was almost idle (Tsafrir, Etsion & Feitelson, 2007)1.1.1.7.
In order to mitigate such problems, it was once necessary to patch the kernel applying the well-
known high-resolution timers patch, which introduced a much more fine-grained notion of time 
within the Operating System. Since the 2.6.16 version, Linux integrates (Corbet, 2006) such 
mechanism in the mainstream kernel, and in recent kernel versions the tasks accounting 
mechanism is done based on the actual CPU schedule. However, even though the kernel had 
high-resolution timers, it was not using them for accounting the CPU time consumed by 
processes. For this reason, in order to get a reliable CPU accounting information, it was usually 
necessary to introduce a custom mechanism flanking the scheduler. This was done, for example 
in the AQuoSA real-time scheduler for Linux (Palopoli, Cucinotta, Marzario & Lipari, 2009).
Also, another important issue to take into consideration is the possible CPU load due to system 
OS elements whose accounting is troublesome. One typical example is constituted by the CPU 
time consumed by interrupt drivers. These occur asynchronously with respect to the running 
processes and possible VMUs, and usually the OS accounts “randomly” the duration of the 
interrupt handlers onto the interrupted processes, what may produce additional undesired noise 
on the measured data. Such phenomenon may at least be controlled at a finer grain level by using 
the peempt-rt patchset (http://www.kernel.org/pub/linux/kernel/projects/rt)(Arthur, Emde & Mc 
Guire, 2007) by Ingo Molnar available on recent Linux kernel series. This introduces into the 
kernel, among others, an infrastructure for dealing with interrupt handlers into dedicated kernel 
threads. Basically, interrupt handling code formerly executing in interrupt context now is split 
into a demultiplexing logic which executes in response to the hardware interrupt, and the actual 
driver running into a kernel thread on its own and which is woken up by the interrupt driver. This 
allows not only for a finer control on the way interrupt drivers are scheduled with respect to 
other activities in the system (Manica, Abeni & Palopoli, 2010), but also for a better monitoring 
of the elements that take up CPU power into a system.
Concerning the interfaces by which monitoring data is made available from the kernel to user-
space processes, Linux offers various alternatives. First, it is possible to rely on POSIX (2004) 
compliant time measurement system calls, such as the clock_getcpuclockid(), clock_gettime() 
and pthread_getcpuclockid(). Using the special CLOCK_PROCESS_CPUTIME_ID and 
CLOCK_THREAD_CPUTIME_ID timers, it is possible to track the CPU power consumed by 
individual processes and threads, respectively. However, the implementation of such 
mechanisms in the Linux kernel is far from being stable, and the actual way it is done is still 
sensitive to the kernel version that is being used. The advantage of relying on standard system 
calls is of course portability of the software components across different Operating Systems.
On the other hand, custom extensions were proposed to get accurate CPU accounting 
information from the kernel. For example, in the AQuoSA real-time scheduler mentioned above 
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(Palopoli, Cucinotta, Marzario & Lipari, 2009), a special API call was introduced for getting at 
once the overall CPU time consumed by the set of tasks attached to a real-time reservation.
Alternatively, on recent kernel versions, the Linux-specific cgroups (Menage, n.d.) virtual 
filesystem may be exploited for defining groups of processes in the system and attaching them a 
specific controller, which is capable of tracking the overall CPU consumption of all of the tasks 
in the group. This way it is possible to track the CPU consumption of an entire VMU (constituted 
by a set of threads composing a VMU process) or a group of VMUs. This method may be easily 
applied, for example, when using the IRMOS real-time scheduler (Checconi, Cucinotta, Faggioli 
& Lipari.2009) for achieving temporal isolation across multiple concurrently running VMUs 
(Cucinotta, Anastasi & Abeni. 2008), which already leverages the cgroups special filesystem for 
configuring real-time reservations and the tasks associated to them. In fact, when configuring 
(via the mount operation) the cgroups filesystem, it is possible to attach a CPU Accounting 
Controller to the same filesystem. This way, a special filesystem entry may be used in order to 
read the overall time spent by the tasks attached to the reservation in user-mode and kernel-
mode. For example, this is extremely useful for the benchmarking (Boniface et al. 2010) phase 
while deploying real-time Virtual Machines (Cucinotta, Anastasi & Abeni. 2009) in the best 
possible (ideally optimum) way (Kostanteli et al. 2009; Cucinotta, Konstanteli & Varvarigou. 
2009).
Power management usually done by modern CPUs by frequency switching and dynamic voltage 
scaling constitutes yet another source of uncertainty and unreliability, for a monitoring 
infrastructure. In fact, a host may figure out as being quite loaded simply because the power 
management system daemon is running the CPU at a reduced frequency. For example, the 
powernowd (http://www.deater.net/john/powernowd.html) daemon implements a simple 
utilization-control loop that aims to keep each CPU saturation level between the configurable 
thresholds, defaulting to 20% and 80%. If power management is active on a system, then CPU 
usage monitoring data needs to be accurately complemented by the data about the actual speed of 
the physical CPUs, in order to gather reliable and meaningful measurements. However, this may 
not be always done precisely, due to the fact that the monitoring infrastructure usually runs 
asynchronously with respect to the power management control logic. In such cases, reliable 
results may be obtained by implementing a custom power-management logic that is tightly 
integrated with the virtualized infrastructure management services. For example, this needs to be 
done anyway if one wants to provide real-time guarantees and/or stable QoS levels to the hosted 
virtualized applications.
Finally, another possibility for taking into account frequency switching into monitoring data is to 
recur to cycle-counters as available on many CPUs, e.g., the RDTSC instruction on Intel 386 
architectures. This way one would base the load information on the number of CPU cycles. 
However, while such data may easily be gathered for the entire system, differentiating the 
monitoring on a per-process basis may not be as easy.

Network monitoring in the Cloud
Currently, in most cloud solutions the network is considered as granted and usually information 
about the network performance and its status inside the cloud infrastructure is not provided 
(Oberle et al., 2009). This is a major problem to support interactive real-time applications where 
the characteristics of the network are a key factor for maintaining the performance of the 
application. 
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In several IETF documents IP performance metrics have been specified (Paxson, Almes, 
Mahdavi & Mathis, 1998):
• The metrics must be concrete and well-defined.
• A  methodology  for  a  metric  should  have  the  property  that  it  is  repeatable,  i.e.  if  the 

methodology  is  used  multiple  times  under  identical  conditions,  the  same  measurements 
should result in the same measurement results.

• The metrics must exhibit no bias for IP clouds implemented with identical technology.
• The metrics must exhibit well-understood and fair bias for IP clouds implemented with non-

identical technology.
• The metrics must be useful to users and providers in understanding the performance they 

experience or provide.

For a given set of well-defined metrics, a number of distinct measurement methodologies may 
exist.  Some examples are:
• Direct measurement of a performance metric using injected test traffic.  

Example: measurement of the round-trip delay of an IP packet of a given size over a given 
route at a given time.

• Projection of a metric from lower-level measurements.  
Example: given accurate measurements of propagation delay and bandwidth for each step 
along a path, projection of the complete delay for the path for an IP packet of a given size.

• Estimation of a constituent metric from a set of more aggregated measurements.  Example: 
given accurate measurements of delay for a given one-hop path for IP packets of different 
sizes, estimation of propagation delay for the link of that one-hop path.

• Estimation of  a  given  metric  at  one  time  from a  set  of  related  metrics  at  other  times. 
Example: given an accurate measurement of flow capacity at a past time, together with a set 
of accurate delay measurements for that past time and the current time, and given a model of 
flow dynamics, estimate the flow capacity that would be observed at the current time.

When a quantity is quantitatively specified, we term the quantity a metric. Each metric will be 
defined in terms of standard units of measurement. The international metric system will be used 
(meters, seconds...). Appropriate related units based on thousands or thousandths of units are 
acceptable (e.g. km or ms, but not cm). The unit of information is the bit. When metric prefixes 
are used with bits or with combinations including bits, those prefixes will have their metric 
meaning (related to decimal 1000), and not the meaning conventional with computer storage 
(related to decimal 1024). When a time is given, it will be expressed in Universal Time 
Coordinated (UTC).

Metrics are specified but measurement methodologies are not formally standardized. 
A methodology for a metric should have the property that it is repeatable: if the methodology is 
used multiple times under identical conditions, it should result in consistent measurements. In 
practice, as conditions usually change over time, it is enough to ask for “continuity”, to describe 
a property of a given methodology: a methodology for a given metric exhibits continuity if, for 
small variations in conditions, it results in small variations in the resulting measurements.
Network measurement methods can broadly be classified into passive methods that rely on data 
collected at e.g. routers, and active methods based on observations of actively-injected probe 
packets. Network operators use active measurements because they are easy to conduct, have low 
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overhead and, in contrast to passive data collection methods, measure exactly what normal data 
packets experience. One of the main disadvantages of active measurements is their limited 
accuracy due to the need to be non-intrusive, thus leaving the measured systems uninfluenced by 
the observation, fundamentally affecting accuracy (Machiraju, 2006).
Active techniques, in which traffic is injected into the network. The overall link can be 
characterized and they are not aware of application protocols. This is also known as intrusive 
measurements.
Passive techniques, in which existing traffic is recorded and analyzed. They may deal with 
connections (pair of IP addresses and ports) and they may distinguish between different protocol 
streams.  This is also known as non-intrusive measurements.
For active monitoring, it is clear that as the number of resource pairs increases, the injected 
traffic incurs a significant disruption in the network, so usually such measurements are 
performed sequentially, measuring one or a few paths at a time. In contrast, a passive monitoring 
approach can provide an instant estimation across different paths, independently of their number.
It is recommended in a cloud to follow a strategy of doing passive monitoring rather than active 
monitoring. If active monitoring is unavoidable then it is preferred to do representative 
measurement (e.g. just one per network path) to be as minimal intrusive as possible.

Monitoring in Cloud Platforms

1.1.1.1. Amazon Web Services

One relevant area of monitoring is the so called ‘Cloud’ approaches for online access to 
virtualised and distributed resources and applications.  Amazon’s Web Service suite 
(http://aws.amazon.com/) is a good example.  Amazon’s Web Services include S3 for storage, 
EC2 for compute resource, SQS for queuing and SimpleDB for a database. Various vendors are 
adapting and porting their applications to run on the platform, including J2EE, Solaris and 
mySQL. Relevant to this section is the obvious need for consumers of ‘cloud’ services to 
monitor the performance and availability they are getting from the services, especially when 
using these services to deliver business critical applications. 
Amazon CloudWatch (http://aws.amazon.com/cloudwatch/) is a web service that provides 
monitoring for AWS cloud resources, starting with Amazon EC2. It provides customers with 
visibility into resource utilization, operational performance, and overall demand patterns—
including metrics such as CPU utilization, disk reads and writes, and network traffic. To use 
Amazon CloudWatch, clients simply have to select the Amazon EC2 instances they want to 
monitor; Amazon CloudWatch will begin aggregating and storing monitoring data that can be 
accessed using the AWS Management Console, web service APIs or Command Line Tools.
Amazon CloudWatch provides two APIs: Query and SOAP API to collect programmatically 
monitoring information. The set of metrics that can be collected from the EC2 service are shown 
in the following table (“Amazon CloudWatch Development Guide”, 2009):
Metric Description

CPUUtilization 

The percentage of allocated EC2 compute units that are currently in use 
on the instance. This metric identifies the processing power required to 
run an application upon a selected instance.
Units: Percent

NetworkIn The number of bytes received on all network interfaces by the instance. 
This metric identifies the volume of incoming network traffic to an 
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application on a single instance.
Units: Bytes

NetworkOut 

The number of bytes sent out on all network interfaces by the instance. 
This metric identifies the volume of outgoing network traffic to an 
application on a single instance.
Units: Bytes

DiskWriteOps 

Completed write operations to all hard disks available to the instance. 
This metric identifies the rate at which an application writes to a hard 
disk. This can be used to determine the speed in which an application 
saves data to a hard disk.
Units: Count

DiskReadBytes 

Bytes read from all disks available to the instance. This metric is used 
to determine the volume of the data the application reads from the hard 
disk of the instance. This can be used to determine the speed of the 
application for the customer.
Units: Bytes

DiskReadOps 

Completed read operations from all disks available to the instances. 
This metric identifies the rate at which an application reads a disk. This 
can be used to determine the speed in which an application reads data 
from a hard disk.
Units: Count

DiskWriteBytes 

Bytes written to all disks available to the instance. This metric is used 
to determine the volume of the data the application writes onto the hard 
disk of the instance. This can be used to determine the speed of the 
application for the customer.
Units: Bytes

These interfaces are now driving the emergence of specialised monitoring services, for example 
CloudStatus that provides online and live feeds on the status of Amazon’s Web Services 
(http://www.cloudstatus.com) as well as longer term statistics on past performance (for example 
bandwidth for S3). CloudStatus is implemented using an open source monitoring and 
management infrastructure called Hyperic HQ (http://www.hyperic.com) which provides an 
extensible approach for application monitoring on SOIs.

1.1.1.2. Google App Engine monitoring tools

This section presents three monitoring tools available to monitor the activity of application 
running on Google App Engine (http://code.google.com/appengine/): Appstats library, 
application log files and the App Engine Scaffold plug-in system.
Appstats (Google, 2010) is a Python and Java library that is linked to the application to allow 
monitoring of the Remote Procedure Calls (RPC) of the application (van Rossum, 2010). This 
tool is included into the SDK provided by Google. Appstats integrates with the applicatoin using 
a servlet filter to record events, and provides a web-based administrative interface for browsing 
statistics.
The Appstats servlet filter adds itself to the remote procedure call framework that underlies the 
App Engine service APIs. It records statistics for all API calls made during the request handler, 
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then stores the data in memcache (“Using Memcache”, 2010). Appstats retains statistics for the 
most recent 1,000 requests (approximately). The data includes summary records, about 200 bytes 
each, and detail records, which can be up to 100 KB each.

Besides this tool, App Engine also maintains a log of messages emitted by the application. App 
Engine records each request in the log. This log file can be browsed using the Admin Console. If 
a developer wants to perform more detailed analysis of the application's logs, he or she can 
download the log data to a file on their computer.

Finally, the App Engine Scaffold 
(http://support.hyperic.com/display/hypcomm/App+Engine+Plugin+Tutorial)Error: Reference
source not found is another tool that allows developers to monitor an application running on 
Google App Engine using Hyperic HQ. The scaffold is a set of files, a plugin descriptor, some 
Python scripts, and a shell script, that the developer can use as a starting point for building a 
special type HQ plugin that enables HQ components to accept and manage metrics generated by 
an application running on App Engine

Together, Hyperic HQ and an HQ App Engine Plugin allow developers to:

• Chart and trend the application metrics over time, to answer questions like "How many 
blog posts did I have in June?"

• Execute and apply alerts to synthetic transactions. For instance, a developer can define an 
alert on the time it takes to create a new user, and be notified when the "create user" 
transaction takes longer than 2 seconds. 

• Apply alerts to metrics, including those that indicate application usage. For instance, 
given a game application, it is possible to calculate a "games_played_today" metric, push 
it to HQ, and define an alert so that clients will be notified if the value is lower than a 
predefined threshold.

• Compare application metrics from different deployment environments. For instance, 
developers can compare how long it takes to run a particular transaction during 
development, QA, and production environments.

1.1.1.3. Akogrimo’s Monitoring System

Akogrimo (http://www.akogrimo.org/)  was an EU research project partially funded by the EC 
under the FP6-IST programme aiming at the definition and realization of a Mobile Grid 
Architecture ensuring the viability of this concept for the different stakeholders in the value 
chain by developing new business models for this commercial platform (Wesner, Järnert & 
Aránzazu).
Within the Akogrimo’s framework an Execution Management System was developed on the 
basis of the OGSA and WSRF specifications. This system was therefore responsible for finding 
execution candidate locations, selecting the most suitable execution location, preparing, initiating 
and managing/monitoring the execution of services. In order to address these tasks and at the 
same time ensure continuous conformation to the terms of the SLA contract, EMS works closely 
together and involves numerous interactions with a Monitoring group of services. 
The Akogrimo Monitoring group of services consists of the following three Grid services, 
developed on the GT4 platform:
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• Metering service, which maintains run-time information on the performance parameters 
related to the business service execution, defined in the SLA. In particular, it measures 
low level performance parameters such as memory, CPU and disk usage. This low level 
information is communicated to the Monitoring service through a notification mechanism 
established between the two services. The notification mechanism was developed on the 
basis of the WS-BaseNotification (Graham, Tibco & Murray,  2006),  a specification that 
belongs  to  the  WS-Notification  family  of  specifications  (OASIS  Web  Services 
Notification TC, 2006) that enables the use of the notification design pattern with Grid 
Services. In more detail, the Metering service has two main functionalities:
o To  notify  the  Monitoring  service  about  the  changes  in  the  following  low  level 

parameters related to the execution of a service:
• CPU usage.
• Memory usage.
• Disk usage.
• Wall clock time (time that elapsed while the business service was running).

o An aggregated version of the information that is calculated by the Metering service is 
communicated to the accounting A4Cii system and used for accounting purposes at 
the end of the service execution.

• QoS Broker  service,  which  is  a  bandwidth  broker  that  can  provide  three  bundles  of 
network services,  each  one of  them corresponding to  a  specific  usage  profile:  audio, 
video or data. It handles QoS network requests, keeps records of information related to 
the client, such as network QoS levels the client is allowed to use according to the SLA 
contract  and is  also  responsible  for  monitoring  network parameters,  such as  network 
bandwidth throughout the execution of a service. 

• Monitoring service, which is the link between the Metering group of services and the 
SLA Enforcement group of services. It receives notifications about the values of the QoS 
parameters related to the execution of the services from the Metering and QoS Broker 
services  and  notifies  the  SLA  Enforcement  group  of  services.  In  more  detail,  the 
Monitoring component can be seen as a set of four components that provide the following 
functionalities:
o Remote control concerning enabling/disabling of the monitoring process.
o Reception of low level parameters from the Akogrimo producer services (Metering 

service and QoS Broker service).
o Sending of QoS object to the SLA enforcement components.
o Storage of monitoring information about the different SLA/services being monitored.

More information on their functionality and their implementation can be found in (Litke et al., 
2005, 2007; Inácio et al., 2005).

1.1.1.4. GRIA Monitoring System

GRIA (http://www.gria.org/) is a service-oriented infrastructure designed to support B2B 
collaborations through service provision across organisational boundaries in a secure, 
interoperable and flexible manner. GRIA uses Web Service protocols based on key 
interoperability specifications. GRIA is available free and open source (most of the software is 
LGPL).
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The GRIA SLA Management Service Error: Reference source not foundwas developed in the 
SIMDAT project (http://www.simdat.org/) to monitor and manage a wide range of services. The 
main objective of the SIMDAT project was to test and enhance grid technology for product 
development and production process design as well as to develop federated versions of problem-
solving environments by leveraging enhanced Grid services.
The SLA Service in GRIA takes responsibility for pulling usage reports from managed services, 
evaluating the usage of the services against the SLAs in force and enacting the necessary 
management actions to maintain the service provider’s commitments.
Each managed GRIA service is instrumented to place usage reports on a WS-BaseNotification 
(Graham, Tibco & Murray, 2006) pull-point which the SLA Service periodically polls.  The usage 
reports are defined in terms of “metrics”, loosely defined as “something measurable” such as the 
number of CPUs, amount of data or number of sessions.  Each metric is represented by its own 
unique URI.  These metrics are also used in to define the service’s capacity, the quality of 
service offered in an SLA and the cost of usage.

The use of metrics is reported and recorded in terms of "instantaneous" and “cumulative” 
measurements.  The cumulative usage is the numerical integration of the instantaneous 
measurements over time.  For some metrics, data-transfer for example, the instantaneous 
measurement is best thought of as a rate (bytes per second) and the cumulative usage (the time 
integral, which in this case is the amount of data transferred) has no time dimension (bytes).  For 
other metrics, such as CPU, the instantaneous measurement is just the quantity in use at the time 
(e.g. 3 CPUs) and it is the cumulative usage that has the time dimension, e.g. 180 CPU.seconds.
By using some basic assumptions, the SLA service can convert between the two.  For instance, if 
the rate of data transfer is reported periodically then, with the assumption that the rate of a metric 
remains constant unless otherwise notified,  the SLA service can compute the numerical time 
integral of this rate to give an approximation of the total data transfer (see Figure 1).  Of course, 
there are easier ways to find the total data transferred, this example just demonstrates the concept 
of inferring one value of a metric from others.

Figure 1: The area under the curve can be approximated by sampling the rate (black dots) 
and performing numerical integration (the hatched area).

Another example is CPU time.  If a job runs on 1 CPU for 5 minutes then the SLA service will 
be notified that the instantaneous measurement of CPU usage went to 1 at the start and then to 0 
five minutes later.  The SLA service can infer that 300 seconds of CPU time have been used 
(1*5*60 = 300 CPU seconds).  Alternatively, if a service reported that it had used 120 units of a 
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resource in a 1 minute period, the SLA service would infer that the average instantaneous 
measurement (rate of usage) had been 2 units/s.
All metrics have both instantaneous measurements and cumulative usage which may be recorded 
or inferred from each other. For some metrics one or other concept will not be useful, but the 
SLA manager has no idea of what it is counting, restricting or billing for in each metric, and so 
can cope with either type of measurement and can always infer the other from it.
A managed GRIA service can report usage of a metric in two main ways:

1. An instantaneous rate report: specifying the rate of usage of a metric at a particular 
instant in time.  For instance, “the number of CPUs in use at 12:53 was 2.2”.

2. A cumulative usage report: specifying the time-integral of a metric between two times. 
For instance, “the number of CPU seconds used between 10:20 and 10:30 was 1320”.

For instance, the standard GRIA job service uses the following metrics:
• http://www.gria.org/sla/metric/activity/current-activities

This is set to one when a job is created and to zero when it is destroyed.
• http://www.gria.org/sla/metric/activity/job

This is set to one when a job is created and to zero when it is destroyed.
• http://www.gria.org/sla/metric/resource/cpu

As a job executes, the number of CPU.seconds used by the process as reported by the 
host operating system is repeatedly reported as cumulative reports.

The standard GRIA data service uses the following metrics:
• http://www.gria.org/sla/metric/activity/current-activities

This is set to one when a job is created and to zero when it is destroyed.
• http://www.gria.org/sla/metric/activity/data-stager

This is set to one when a data-stager is created and to zero when it is destroyed.
• http://www.gria.org/sla/metric/resource/disc

When data is stored in a data-stager, the disc space usage is recorded by setting this to the 
file size.

• http://www.gria.org/sla/metric/resource/data-transfer

When data is transferred to or from a data-stager, the transfer is recorded by setting the 
cumulative usage of this metric to the file size.

The information from these reports is stored in a database at the SLA Service and the individual 
data points or the inferred points in between can be queried.  The data, along with the 
mathematical model encoded in the service, provide for flexible SLA terms.  For instance:

• Constraining the total disc space permitted.

• Pricing disc space usage per GB/month (as Amazon S3).

• Pricing disc usage according to the maximum capacity (as many ISPs do).
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• Constraining and pricing total data transfer.

• Monitoring (and potentially constraining) data transfer rate.

• Charging per job at a flat rate and/or according to the CPU time.

• Constraining the CPU time over a period.

• Constraining the maximum number of CPUs permitted at any one time.

All this is achieved without the SLA Service having any specific understanding of the metrics 
being monitored.  When services are adapted to report usage to a GRIA SLA Service the 
developer chooses metrics appropriate to the service.  Usage of these metrics is reported and the 
same variety of functionality is automatically available.

1.1.1.5. Cloud Metering and Monitoring in Edutain@Grid

Edutain@Grid (http://www.edutaingrid.eu/) is an EU-funded project which aimed to develop a 
scalable QoS-enabled business Grid environment for multi-user Real-time Online Interactive 
Applications (ROIA) (Fahringer, Anthes, Arragon, Lipaj et al., 2007). ROIAs (e.g. on-line 
games) are characterised by the high rate of interaction between users, requiring very fast 
updates of information being passed from one computer to another (Ploß, Glinka & Gorlatch, 
2009). Large numbers of users may participate in a single session and are typically able to join or 
leave at any time. Thus an ROIA typically has an extremely dynamic distributed workload, 
making it difficult to host efficiently. In this project, a service-oriented infrastructure with elastic 
resource provisioning (both up and down) and enhanced security features was developed to 
support a business model where multiple independent infrastructure providers provide a level of 
QoS to ROIA service to customers. 
The Edutain business model ( Middleton, Surridge, Nasser & Yang. 2009) introduces a concept, 
namely the “Coordinator”, which can be regarded as an organisation that plays the role of ROIA 
application service provider. However, the Coordinator itself may not have any physical 
infrastructure for running ROIA, instead it outsources the ROIA hosting services to one or more 
'Hosters' (i.e. organisations that provide the infrastructure or platform for running ROIA 
applications). Each Hoster provides a collection of web services required for running the ROIA, 
QoS monitoring (QoS targets defined in a SLA) and invoicing facilities. The Coordinator has an 
account and a bipartite Service Level Agreement with each Hoster and the Hoster provides 
metered services to the Coordinator. When the hosting service finishes, the Hoster sends the bill 
to the Coordinator for the resource usage.
The combination of each autonomous Hoster and the Coordinator provides a scalable virtual 
environment for running the ROIA. The capacity of this virtual environment can dynamically 
grow or shrink through ‘zone migration’ and 'zone replication' across multiple Hosters during a 
live gaming session.
The GRIA middleware was employed in the implementation of the business layer of this system. 
The standard GRIA SLA Management Service adds together metric QoS measurements from 
across all activities.
In Edutain, six metrics to be monitored in the SLA were defined, namely, 

o ServerTickDuration in milliseconds (a measure of server frame rate), 
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o AveragePacketLoss as a percentage,

o ServerThroughputIn in bytes per second, 

o ServerThroughputOut in bytes per second,

o AveragePacketLatency in milliseconds, and  

o ClientConnectionCount.

Associated pricing terms such as variable pricing and penalty costs were also defined for each 
metric. For some metrics such as ServerTickDuration, a penalty is incurred if its peak value 
exceeds the constraint defined in the SLA, whereas for other metrics such as ServerThroughputIn 
and ServerThroughputOut, a fee is calculated depending on the accumulated usage. Once an 
ROIA is in use, it is monitored and QoS measurement data of these metrics are reported back to 
the SLA service. The SLA service aggregates the data and generates the QoS measurement 
report on-demand to the Coordinator’s SLA monitoring service. If the work load of a particular 
Edutain local session is predicted to exceed the threshold defined in SLA, Edutain ‘zone 
migration’  can be triggered either manually or automatically by to migrate the zone to an idle 
Edutain Hoster.   

1.1.1.6. Globus Toolkit Monitoring

The Globus Toolkit (http://www.globus.org/toolkit/) is an open source middleware used for 
building Grid applications. The toolkit includes software services and libraries for resource 
monitoring, discovery, and management, security and file management in a Grid environment 
(Foster, Kesselman & Tuecke. 2001).
The Globus Toolkit provides a Monitoring and Discovery System (MDS) 
(http://www.globus.org/toolkit/mds/) which is the information services component and provides 
information about the available resources on the infrastructure and their status. MDS4 is a WSRF 
implementation of information services released with Globus Toolkit 4.0.
This version of MDS includes WSRF implementations of the Index Service, a Trigger Service, 
WebMDS (formerly known as the Web Service Data Browser) and the underlying framework, 
the Aggregator Framework.
The MDS is a suite of web services to monitor and discover resources and services. This system 
allows users to discover what resources are considered part of a Virtual Organization (VO and to 
monitor those resources. MDS services provide query and subscription interfaces to arbitrarily 
detailed resource data and a trigger interface that can be configured to take action when pre-
configured trouble conditions are met. The services included in the WS MDS implementation 
(MDS4) acquire their information through an extensible interface which can be used to:

• query WSRF services for resource property information,

• execute a program to acquire data, or

• interface with third-party monitoring systems.
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Different computing resources and services can advertise a large amount of data for many 
different use cases. MDS4 was specifically designed to address the needs of a Grid monitoring 
system – one that publishes data that is available to multiple people at multiple sites. As such, it 
is not an event handling system, like NetLogger, or a cluster monitor on its own, but can 
interface to more detailed monitoring systems and archives, and can publish summary data using 
standard interfaces.
MDS4 includes two WSRF-based services: an Index Service (The Globus Alliance, 2005c)Error:
Reference source not found, which collects data from various sources and provides a 
query/subscription interface to that data, and a Trigger Service (The Globus Alliance, 2005a), 
which collects data from various sources and can be configured to take action based on that data. 
An Archive Service, which will provide access to historic data, is planned for a future release.
The Index Service is a registry similar to UDDI, but much more flexible. Indexes collect 
information and publish that information as resource properties. Clients use the standard WSRF 
resource property query and subscription/notification interfaces to retrieve information from an 
Index. Indexes can register to each other in a hierarchical fashion in order to aggregate data at 
several levels. Indexes are “self-cleaning”; each Index entry has a lifetime and will be removed 
from the Index if it is not refreshed before it expires.
The Trigger Service collects information and compares that data against a set of conditions 
defined in a configuration file. When a condition is met, or triggered, an action takes place, such 
as emailing a system administrator when the disk space on a server reaches a threshold.
In addition to the services described above, MDS4 includes several additional software 
components, including an Aggregator Framework (The Globus Alliance, 2005b), which provides 
a unified mechanism used by the Index and Trigger services to collect and aggregate data. 
Currently, MDS4 includes the following sources of information: 

• Hawkeye Information Provider, and Ganglia Information Provider, which include 
information about basic host data (name, ID), processor information, memory size, OS 
name and version, file system data, processor load data and other basic cluster data.

• WS GRAM: The job submission service component of GT4. This WSRF service 
publishes information about the local scheduler, including: queue information, number of 
CPUs available and free, job count information and some memory statistics.

• Reliable File Transfer Service (RFT): The file transfer service component of GT4. This 
WSRF service publishes: status data of the server, transfer status for a file or set of files, 
number of active transfers and some status information about the resource running the 
service.

• And any other WSRF service that publishes resource properties.

Finally, MDS provides a web-based interface to WSRF resource property information called 
WebMDS that is available as a user-friendly front-end to the Index Service. WebMDS uses 
standard resource property requests to query resource property data and displays the results in 
various formats.
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1.1.1.7. gLite-MON: gLite Monitoring System Collector Server

The gLite Monitoring System is based on R-GMA monitoring system collector server. R-GMA 
(Relational Grid Monotoring Architecture) (http://www.r-gma.org/)Error: Reference source not
found is an information system very similar to a standard relational database.
The R-GMA server is a Java servlet-based web application which provides a service for 
information, monitoring and logging in a distributed computing environment. R-GMA makes all 
the information appear like one large relational database that may be queried to find the 
information required. It consists of Producers which publish information into R-GMA, and 
Consumers which subscribe to the information.
In a distributed environment, such as a computing Grid, it is important to be able to find 
information on what resources are available. This may be information on what computers are 
available on various sites to run jobs, including their current load and what software they have 
available. Information may also be needed on mass data storage facilities, including the current 
status and maximum size and number of files that may be stored. It is also important to be able to 
monitor the progress of jobs, especially when the user will probably not know where the job is 
going to be executed when the job is submitted.
The Open Grid Forum (OGF) (http://www.ogf.org/) defined a basic architecture for monitoring 
within the Grid, called the 'Grid Monitoring Architecture' or 'GMA'. This architecture consists of 
three components: Consumers, Producers and a directory service (called Registry).

Figure. Grid Monitoring Architecture (GMA) (http://www.r-gma.org)

In the GMA Producers register themselves with the Registry and describe the type and structure 
of information they want to make available to the Grid. Consumers can query the Registry to 
find out what type of information is available and locate Producers that provide such 
information. Once this information is known the Consumer can contact the Producer directly to 
obtain the relevant data. The Registry communication is shown by a dotted line and the main 
flow of data by a solid line. The GMA architecture was devised for monitoring but it also makes 
an excellent basis for combined information and monitoring system.
The Relational Grid monitoring Architecture (R-GMA) is an implementation of GMA, with two 
special properties:
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• Anyone supplying or obtaining information from R-GMA does not need to know about 
the Registry, the Consumer and Producer handle the registry behind the scenes.

• The Information and monitoring system appears like one large relational database, and 
can be queried as such. Hence the 'R' GMA, a relational implementation of GMA.

Note that R-GMA provides a way of using the relational model in a Grid environment and that it 
is not a general distributed RDBMS. All the producers of information are quite independent. It is 
relational in the sense that Producers announce what they have to publish via an SQL CREATE 
TABLE statement and publish with an SQL INSERT and that Consumers use an SQL SELECT 
to collect the information they need.
To interact with R-GMA APIs are available in various languages. Currently APIs are available in 
Java, C, C++, and Python.
A web browser is available, which allows users to browse the status of a Grid. And a command 
line tool is also available, which helps a user to understand and test out producers and 
consumers.
The R-GMA usage up to now has been as a Grid Information, Monitoring and Logging tool. 
When the user submits the job the Job Manager will need to find a suitable resource to run the 
job. The information System may be used to find the appropriate resource.
The user will also want to track progress of the job - R-GMA can be used to keep track of job 
progress. In this case the user submitting a job does not need to know about R-GMA, it is hidden 
from the user. Besides this, any system where a developer wishes to manage information in a 
distributed system can use R-GMA.
For a more detailed description of R-GMA see the R-GMA architecture (http://www.r-
gma.org/arch-virtual.html).

CONCLUSION
There are currently a great number of tools for monitoring the diverse infrastructure resources 
and the status and performance of applications running on this infrastructure. This chapter has 
presented some tools that are particularly relevant for virtualized and distributed environments. 
The existing diversity on monitoring tools and the metrics used makes difficult the integration of 
monitoring systems as the infrastructure grows. To solve this problem the use of semantic tools 
could be a solution to allow a coherent data access providing a common understanding of the 
different metrics used by the different monitoring systems. It is therefore necessary to agree on a 
common and standardised ontology for monitoring systems. In that sense, the IP traffic 
Measurement for Industrial Ontology Specification Group (ISG MOI) in ETSI is working in the 
specification of an ontology standard for IP traffic measurements. This work should be extended 
to cover the other parts of the infrastructure.
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