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Abstract
This paper presents a hybrid fingerprint matching al-
gorithm for user authentication based on the fusion of
heterogeneous schemes, and designed to run on pro-
grammable smart cards. The approach is based on the
well known texture vector and minutiae based tech-
niques, where image processing and feature extraction
occur on the host, while the card device performs the
final match against the onboard template, which is
never revealed to the outside world. This increases the
security of the template itself and of the applications
using it.

The matching algorithms have been tuned in order to
achieve an acceptable performance despite computation
and memory constraints. Experimental results, gath-
ered from our implementation on a Java Card device,
highlight the feasibility of the hybrid approach. Fur-
thermore, they show to what extent it is possible to
trade precision for speed in the verification process,
using appropriate tuning of the on board matching
parameters.

Introduction
Nowadays security is a fundamental require-
ment in software design, and authentication of
users is one of the crucial issues to be addressed
to meet this requirement. Most systems still rely
on traditional password based authentication,
where users authenticate to a system by proving
knowledge of some secret information. Unfortu-
nately, a password may be easily revealed to, ob-
tained or guessed by unauthorized users, result-
ing in a possibly very low security level. Smart
card technology, especially when used in con-
junction with public key cryptography, allows a
secret based authentication mechanism where it
is technologically impossible, or at least unfeasi-
ble, to reveal the secret to third parties. A
two step authentication system is usually de-
ployed, where the user must prove possession of
his own card and, optionally, knowledge of a
Personal Identification Number (PIN), which is
used to protect access to functionality of the
card. In practice, the method grants authentica-
tion of the plastic card itself, not of the user and,
despite the increase in the security level, a card
may still be given to or stolen by unauthorized
users.

Biometrics technology promises a final solution
to this problem, letting a user authenticate him-
self to a system by showing some unique biologi-
cal characteristics of his own body, such as fin-
gerprint ridges, hand shape or retina. When us-
ing both biometrics and smart card technology, it
is possible to realize a three factor authentica-
tion, where the user is required to prove, at the
same time, knowledge of a secret information,
possession of a physical device, and through the
biometric, his presence.
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This work focuses on solutions where the main
authentication mechanism employs the crypto-
graphic capability of a Java Card device, which
can be accessed only after the user authenticates
by means of a successful fingerprint verification
process. PIN code verification may be
implemented in addition to the biometric
verification or used as an alternative. A possible
application scenario is a secure application run-
ning entirely or in part on a smart card. An ex-
ample is a smart card based digital signature,
where the non repudiation property, usually es-
tablished only at a legal level by dictating card
owner liability, can be enforced by technology
requiring biometrics authentication.

Specifically, our study is targeted at exploring
the feasibility of fingerprint recognition on pro-
grammable smart card devices, through the use
of a hybrid technique based on two well known
algorithms: fingercode and minutiae based matching.
The algorithm design aims at achieving an ac-
ceptable performance for this application con-
text, while keeping complexity low enough to
make an implementation onto a programmable
card device feasible. We do not discuss issues
more strictly related to the security of the finger-
print acquisition process itself, such as how to
protect against the dead finger and residual
print attacks, which, although important, are
beyond the scope of this paper.

Before entering into the technical details of our
approach the next section introduces the basic
concepts about fingerprint verification and the
related literature. The section Matching Algorithm
features an overview of the proposed technique,
with a detailed description of the feature extrac-
tion procedure and of the matching algorithm.
Evaluation results for the proposed algorithm
are reported in Results and specific notes about
the algorithm implementation are reported in
the section Implementation Notes. Finally, the sec-
tion Conclusions and Future Work draws conclu-
sions and presents possible areas of future inves-
tigation.

Background

Fingerprints are a traditional way of identifying
people, because they are a permanent distinctive
feature of each and every person. Things like
cuts and bruises usually cause only minor
changes in their structure over a subject’s life-
time. A fingerprint is characterized by a series of
almost parallel ridges, possessing both a global
and a local structure. The global structure refers
to one of five different kinds of possible ridge
classes [4]: whorl, right loop, left loop, arch and
tented arch. Local characteristics refer to ridge
endings and bifurcations, also known as minu-
tiae (see figure 1) that are unique to each indi-
vidual, making minutiae based verification one
of the most commonly used means of identifica-
tion.

A minutiae based live scan fingerprint verifica-
tion system consists of various components [11]:

- a fingerprint scanner, producing a two dimen-
sional, grey level bitmap image representing
the fingerprint;

- a feature extraction module, which runs a feature
extraction algorithm producing a list of finger-
print minutiae; and

- a matching algorithm, which is run to compare
the extracted minutiae with those correspond-
ing to the person identity to be verified, also
called the template.

The template is produced in a separate phase,
the enrollment, during which the user is regis-
tered into the system, along with the representa-
tion of his fingerprint, after proper identity veri-
fication is performed by an official.

The feature extraction procedure works in two
steps: first, it produces a set of claimed minutiae,
which typically also includes false minutiae. For
example, two ridge endings might be detected
near a bruise on a ridge, causing two minutiae
very close to each other to be detected. A minu-
tiae selection algorithm is then needed to iden-
tify and discard false minutiae. The matching al-
gorithm is usually based on point pattern match-
ing techniques, in order to be tolerant to transla-
tions and rotations of the live scanned image
with respect to the stored template, as well as to
distortions caused by the adhesion of the finger
surface to the sensor.

Correct use of biometrics and smart cards is not
as straightforward as it could seem. Several
works explore the possible attacks against a sys-
tem integrating such technologies. For example,
in [7] it is emphasized that biometrics do not
provide the expected increase in the security
level unless they are properly managed and em-
bedded in a strong cryptographic protocol con-
trolling interactions among the components of
the authentication system. The authors also
highlight the need to keep the biometrics data as
secret as possible, especially in the context of the
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Figure 1 - Example of minutiae detection. Some false
minutiae have been detected on the image border.
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‘’fake organ’’ problem, i.e. when the sensor is
not able to distinguish between a live organ and
a properly designed synthetic one. In [11], after
an estimation of the bit strength of a minutiae
based matching algorithm, resulting in roughly
40 bits of information for 15 minutiae and in 82
bits for 25 minutiae, a minutiae search brute
force attack is presented.

Recently, the European Union has focussed at-
tention on matching on card technologies, as re-
ported in [15], where it is stressed that, in the
context of electronic signatures, the possibility of
identifying people based on biometric character-
istics is of fundamental importance, due to the
non repudiation security requirement.

Concerning feature extraction from fingerprint
images, [6] presents a good overview of the gen-
eral structure of automatic fingerprint identifica-
tion systems (AFIS), emphasizing the main chal-
lenges. In [5] the authors demonstrate how an
image enhancement algorithm based on Gabor
filters can significantly improve the perfor-
mances of an AFIS by enhancing the reliability
and the precision of the minutiae extraction pro-
cess. In [10] Prabhakar proposes an innovative
approach to fingerprint analysis and matching,
based on the use of a Gabor filter bank to extract
statistical information from the fingerprint im-
age. This approach has been proven to degrade
more gently with image quality than classical mi-
nutiae based algorithms. The method has been
further developed in [12] to achieve acceptable
performance even when data is acquired from
small sensors providing only a limited portion of
the fingerprint image. In the same work, the au-
thors introduce the idea of combining the output
of different fingerprint matching algorithms to
achieve a better performance despite the high
correlation between the results of the individual
methods.

The problem of combining two fingerprint
matching algorithms to improve performance is
finally addressed in [3], where the focus is on
the experimental comparison of different meth-
ods to combine the scores from different match-
ing algorithms.

With respect to previous investigations on hy-
brid fingerprint matching, our approach is spe-
cifically focussed on the feasibility of the imple-
mentation of these techniques onto programma-
ble smart cards. For this purpose, a graph based
encoding of the minutiae has been adopted to
transfer minutiae data from the host to the card
and a careful tuning of the on card matching al-
gorithm has been made, in order to minimize
the computation overhead onto the device.

We also present an on card architecture for im-
plementing our matching algorithm, realized as
an extension of the protocol and the JavaCard
Applet introduced in [1], and we report experi-
mental data gathered from the execution of the
proposed algorithm onto a JavaCard device.

Matching Algorithm
This section contains an outline of the algo-
rithms that have been developed to match a fin-
gerprint image against its template definition in-
side the smartcard. The image undergoes a first
preprocessing phase on the host, which en-
hances the relevant content and reduces the ef-
fect of noise, misplacement of the finger on the
sensor device and other errors.

After preprocessing, the feature extraction phase
takes place and, finally, the match is performed
by a purposely defined search algorithm inside
the card device. In the following description,
some values are expressed in pixels. These are
relative to an image scanned at a resolution of
500 dpi.

Preprocessing
The preprocessing phase consists of three se-
quential steps aimed at improving the quality of
the image and detecting a reference core point
inside it, which is later used by the subsequent
feature extraction and matching phases. These
steps are functional to both methods of finger-
code and minutiae based matching.

Direction Field
The fingerprint image (figure 2(a)) is first divided
into small square blocks. The blocks with a lumi-
nance contrast below a given threshold are ig-
nored. Then, the direction of ridges is computed
for each block as follows. First, the gradient at
each point is computed by applying the Sobel

a b

c d

Figure 2 - Preprocessing phases
(a) Original fingerprint image
(b) Orientation field
(c) Core detection
(d) Enhancing
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operator. Then, the vector field obtained by dou-
bling (modulo 360) the gradient angle at each
point is averaged and the main direction of the
ridges inside each block is computed by halving
the angle of the average vector. Finally, in order
to reduce the imprecision caused by poor quality
blocks, a low pass filter is applied to the ob-
tained ridge direction field (Figure 2(b)).

Reference Point
The next step is finding a reference point (or
core) inside the fingerprint image (Figure 2(c)).
This greatly simplifies the problem of matching
the scanned image with the template (i.e. find-
ing the correct rototranslation). The core is de-
fined as the point of maximum curvature of the
concave ridges, according to the definition pro-
vided in [10].

First, a set of ‘’candidate’’ blocks, possibly con-
taining the core, is determined using a method
known as Poincaré index. Given a block B, its
Poincaré index PB is computed as:

PB = d d
k k

k

�
�

� �

� 1 8
0 7 90 90

(mod )
... ...

where d0… d7 are the main ridge directions in-
side the eight blocks adjacent to B, taken in
clockwise order, and | · |-90…90 is the operator
that applies a modulus 180 and represents the
result as an angle in the range -90…90. PB may
only assume values, which are multiples of 180°,
where a value of +180° denotes the presence of
a core inside B or one of its eight adjacent
blocks.

Finally, the orientation field is convolved with a
filter designed to highlight image portions de-
scribing a downward arch: the centre of the
block giving the maximum convolution among
the candidates is chosen as the fingerprint core.

Image Enhancement
In this stage, each block of the image is approxi-
mated by a sinusoidal plane wave of specific di-
rection and frequency. Directions are already
known thanks to the orientation field, whilst the
frequency is determined for each block by ana-
lysing its two dimensional Fourier spectrum and
by extracting its dominant component. Given

these two parameters, the block can be en-
hanced using a well tuned Gabor filter [8]. As a
result the contrast between ridges and valleys is
increased and the background noise (due to the
sensing process and to cuts or bruises) is radi-
cally reduced (Figure 2(d)).

Features Extraction

The main feature extraction stages required by
the two methods of fingercode and minu-
tiae based matching will now be outlined.

The list of minutiae is arranged in a graph struc-
ture that is suitable for the on card matching
phase, where the matching problem is trans-
formed into a graph similarity problem, exploit-
ing local relationships that are more robust to
the finger skin stretching caused by the pressure
on the sensor.

Fingercode

The fingercode is extracted from a circular region
with a diameter of 120 pixels, centred on the fin-
gerprint core, which Prabhakar defines as the re-
gion of interest. This region is first normalized to a
given mean and variance. This operation re-
moves the luminance variations due to finger
pressure differences on the surface of the sensor.
The image is then filtered by means of eight
Gabor filters (Figure 3 shows the effect of one of
them) and subsequently tuned over eight differ-
ent directions. Each filter enhances the contrast
of the ridges parallel to its direction whilst blur-
ring the rest of the image.

The eight images obtained by applying the filters
are then tessellated into rings and sectors, and
for each tessel the average absolute deviation of
luminance is computed: tessels corresponding to
high contrast portions of the image feature high
values of deviation, while blurred portions have
near zero deviation. The deviation values of the
640 tessels (80 for each filtered image, for 8 im-
ages), normalized into the range 0…255 and en-
coded in binary format (one byte for each tessel),
constitute the fingercode (Figure 3).

BIOMETRICS

Fingerprint Image Filtered Image (one of Eight) Fingercode (One of Eight)

Filter
Direction

(One of Eight) Higher
Values

Lower
Values

Figure 3 - Directional Filtering of the Region of Interest
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Minutiae Detection
The enhanced image is reduced from gray scale
to black and white (Figure 4(a)) and the ridges
are eroded down to a single pixel width (Figure
4(b)). For each black pixel its eight neighbours
are considered. If only one of them is black the
point is an ending, whilst if more than two of
them are black the point is a bifurcation. Either
way, a minutia mi is detected and saved as the
pair of its position and the angle �i of its ridge,
obtained from the orientation field: mi = (pi , �i).
Finally, a set of heuristics are used to remove
false minutiae.

Graph Construction
Let M = {mi}0�i�k denote the set of all the de-
tected minutiae, where the core point has been
included as m0. An oriented graph representa-
tion of M is built, where each node ni represents
a minutia mi and an edge from ni to nj means
that minutia mj belongs to the neighbourhood of
mi, i.e. it is at a distance between a minimum
value dmin, set to 30 pixels, and a maximum
value dmax, set to 100 pixels. Neighbour minutiae
of mi are characterized by their polar coordinates
relative to mi. Minutiae that are too close are not
considered because at small distances small er-
rors in the position lead to large variations in the
angle. Likewise, minutiae that are too far away
are not considered because at large distances the
elastic deformation of the skin potentially leads
to inaccurate relative positions. Therefore, adop-
tion of the two bounds dmin and dmax in the con-
struction of a minutia neighbourhood makes it

possible to build a representation that is robust
with respect to inaccuracies in the detection
phase. For each minutia, the algorithm allows up
to a maximum number maxout of neighbours
(outdegree) to be represented in the graph as
edges. This limits the computation time needed
on the card device during the matching phase. A
different outdegree limit, maxoutc, is used for the
core point due to its great influence on the preci-
sion and execution time of the on card matching
phase, as shown later in the Results section. Fur-
thermore, each minutia may be referenced in up
to a maximum number maxin (indegree) of other
minutiae after which it is ignored as neighbour
of other minutiae. A careful selection of the
maxout constraint avoids the construction of par-

tial graphs disconnected
from the outer minutiae.
In our experiments we
varied the indegree from
3 to 5 and the outdegree
from 5 to 8.

The graph of minutiae is
constructed by the algo-
rithm represented as
pseudocode in Figure 5.

The representation of a
fingerprint, as output by
the entire process, con-
sists of the list of minu-
tiae {mi}, including, for
each minutia, its carte-
sian coordinates (relative
to the core), ridge direc-
tion and relative position
of its neighbours in po-
lar coordinates. Finally,
the upper left and
lower right coordinates
(relative to the core) of
the bounding box delimit-
ing the set of minutiae
completes the represen-
tation.

Figure 4 - Minutiae Extraction
(a) Binarization

(b) Skeletonization

M={mi}i=0…k // set of input minutiae
ref[1…k] = {0,…,0} // ref[i]
number of incoming edges to mi

pending = {m0} // set of minutiae to process
n = {} // set of neighbouring minutia
c = {} // set of ignored minutia
nodes = {} // set of processed minutia

edges = {} // set of edges in the graph

while (pending not empty){

extract mi from pending
add mi to c
n={}
out_count=0
while (out_count < maxout){

extract closest mj from M\(c�n) s.t. dmin�di,j�dmax
if mj not found then

break

add mi�mj to edges
add mj to n
ref[j]++
if (ref[j]==maxin then

add mj to c

if mj � nodes then

add mj to pending
out_count++

}

add mi to nodes

Figure 5 - Algorithm Building the Graph of Minutiae
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Feature Matching

Fingercode
Given the fingercodes of the two images, the
matching score is computed as the first order
metric distance between the two vectors of
length 640 representing them, i.e. the sum of the
absolute differences between the values associ-
ated with the corresponding tessels. Fingercode
matching tolerates small relative rotations be-
tween the images being compared. Larger rota-
tions can be accounted for by searching for the
relative rotation (multiple of the tessellation sec-
tor angle) between the two fingercodes that
achieves the best matching score scorefc.

In practice, it is quite safe to assume that the
user applies the finger almost vertically, so that
only three rotation angles need to be tried: no
rotation, one sector clockwise and one sector
counter clockwise.

Minutiae
The minutiae matching procedure has been in-
spired by the point pattern matching algorithm
described in [9]. The original algorithm is too
complex to be practically implemented onto a
programmable card device, thus we provide a
simplified implementation by exploiting the
availability of a common reference point (the
core) from which the matching process extends
towards the periphery.

Given the graphs organizing the minutiae of the
template and of the submitted fingerprint, the
basic task of the algorithm is to build a spanning,
ordered tree touching as many nodes as possible,
starting from the two cores and visiting the two
graphs by matching edges.

Let 	 

	 


m
i

S

i N� 0�
and 	 


	 

m

h

T

h K� 0�
denote, respec-

tively, the minutiae of the submitted and tem-
plate fingerprints. Given a pair of matching mi-
nutiae 	 
m

i

S and 	 
m
h

T , the vectors p
i j
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,
and p

h k

T

,
represent the position of m
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m
i

S and m
h

T respectively. If �
j
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k
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ridge angles of m

j

S and m
k

T , and 
 is the angle

of mutual rotation between the two sets of sub-
mitted and template minutiae, then the two
minutiae m

j

S and m
k

T match if:

p p
i, j

S
k,h
T- � d
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 �
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where �(p) and p denote the angle and length

of the vector p, dth and �th are the maximum
acceptable tolerance in the length and angle of
the relative positions of m

j

S and m
k

T with respect
to the matching pair � �m m

i

S

h

T, , and �th is the

maximum acceptable difference in the direction
of the ridges of m

j

S and m
k

T . The three toler-
ances have been chosen by performing a statisti-
cal analysis over their respective quantities when
matching pairs of corresponding fingerprints.

The rotation 
 is computed in the very first stage
of the algorithm as the rotation resulting in the
maximum number of matches among the neigh-
bours of the two cores (assumed as the first
matching pair). In order to reduce the amount of
computation, we limit the search to the set of ro-
tation angles which exactly align a pair of neigh-
bours only, one for each set, and with an abso-
lute value less than 20 degrees, since we assume
that the user puts his finger on the sensor almost
vertically, with minimal rotation.

The algorithm counts the number of neighbour
pairs that match under each possible rotation 
.
The tolerances d

th

core( ) , �
th

core( ) and �
th

core( ) used for
matching the neighbours of the core are less re-
strictive than the ones used for matching the
other pairs in order to account for the possible
imprecisions in the localization of the core. If
two rotations 
1 and 
2 give the same number of
matches, the lower one (in absolute value) is pre-
ferred.

Let C denote the set of matching minutiae pairs,
i.e. � �m m

k

T

j

S, �C means that a match between m
k

T

and m
j

S has been found relative to a pair of par-
ent (in the graph) minutiae. Let p and d denote
the sets, initially empty, of pending and processed
minutiae, in the submitted graph. Then, the al-
gorithm building the spanning tree proceeds as
in the pseudocode of Figure 7.

Finally, the number nM
bbS

T of minutiae of T lying
in the bounding box of S, and the number nM

bbT

S

of minutiae of S lying in the bounding box of T
are computed, and the minutiae score scoremin is
evaluated as:

score
numMatches

nM nM
bbS

T

bbT

Smin
�

�
100

2
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m1

m2

m3

m4

m5

m0Core

Bounding Box

Figure 6 - Minutiae Encoding. The Bounding Box Delimits
the Set of Minutiae Included in the Graph.
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Fusion of Scores
Given the two scores scorefc and
scoremin, the overall score is com-
puted as a linear combination
with weights 
 and �:

score = 
scorefc + �scoremin.

If score exceeds a given threshold
thscore the system considers the
proposed fingerprint to be similar
to the enrolled one and the match
succeeds, otherwise the match
fails. The 
 and � coeffcients have
been determined with an a poste-
riori analysis as the ones which
minimize the overall EER.

Results
Given the limited resources avail-
able within a smartcard, both in
terms of memory and computa-
tional power, we are particularly
interested in the tradeoff between the overall al-
gorithm discriminatory efficiency and its execu-
tion time.

As fingerprint recognition systems are based on
an approximate matching of the stored template
against live scanned data, they are characterized
by a set of tunable parameters that allow the
matching phase to be either more restrictive or
more permissive. In the first case, the ability to
reject impostors is enhanced, but the probability
to reject the legitimate user is increased as well.
By making the algorithm more permissive, the
ability to accept legitimate users is enhanced, but
the probability to accept an impostor is increased
as well. Therefore, evaluation of these systems is
based on the achieved False Acceptance and False
Rejection Rates (FAR and FRR), usually evaluated
on a database of biometric data. By varying the
acceptance threshold, the set of FAR and FRR
pairs obtained may be plotted into a curve called
a Receiver Operating Curve (ROC). A point of par-
ticular interest on this curve is the one corre-
sponding to equal FAR and FRR values, the
Equal Error Rate (EER) point. These metrics are
used for the evaluation of various configurations
of the algorithm parameters.

The implementation of the fingercode matching
is straightforward and leaves very little space for
further simplification or optimization.

The complexity of the minutiae matching algo-
rithm depends on the value of the three parame-
ters defining the structure of the oriented graph
produced by feature extraction: the maximum
outdegree max

out c

of the core node, and the
maximum indegree maxin and outdegree maxout
of all the other nodes.

We conducted experiments in order to quantify
the influence of these three parameters (table 1
summarizes the adopted configurations), analys-

ing a database of 480 images (48 fingerprints,
each scanned ten times).

The fingerprint scanner used in the experiments
is the FX2000 USB by Biometrika s.r.l. [17], pro-
viding a portable development kit and API for
access to the acquired biometrics data. The refer-
ence development platform is a RedHat 7.3
Linux system. The Java Card is a Cyberflex Ac-
cess 32K from Schlumberger.

Figure 8 represents the effect of the variation of
the max

out c

parameter over the ROC curve,
while table 2 details, for each configuration, the
EERs obtained (both by the minutiae only match
and by the hybrid one) and the average execu-
tion times on the smartcard, fractioned into their
three main components: the load time spent to
send the fingerprint representation to the card

C = set of matching nodes � �m mk

T

j

S
,

p = set of matching parents mj
S

d = set of visited nodes

numMatches = size(C)
while (p not empty){

extract mi
S
from p

find mh

T
s.t. � �m mh

T

i

S
, � C

for each pair of matching edges m m m mi

S

j

S

h

T

k

T� �, {

add � �m mk

T

j

S
, to C

if m dj

S � then

add mj
S
to p

numMatches++
}

add mi
S
to d

}

output C, numMatches

Figure 7 - Algorithm Building the Matching Spanning Tree

Configuration max outc
max out max in

base 5 5 3

core6 6 5 3

core7 7 5 3

core8 8 5 3

min6 5 6 3

min7 5 7 3

min8 5 8 3

ref4 5 8 4

ref5 5 8 5

ref6 5 8 6

ref7 5 8 7

ref8 5 8 8

max 8 8 6

Table 1 - Configurations of Parameters Compared, for
the Minutiae Based Algorithm.

The Configurations Named base and max are Given as
Lower and Upper References
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and to initialize the algorithm, and the time re-
quired respectively by the finger-
code and minutiae matching
phases. Note that the fingercode
time is not affected by the param-
eters configuration, and its varia-
tion in the table is due to inaccu-
racy in experimental measure-
ments.

The setup time doesn’t appear to
be significantly influenced by the
parameters chosen and, conse-
quently, by the size of the finger-
print representation (which
ranges from about 1650 bytes for
base configuration to about 2300
for Ref8). This leads to the con-
clusion that about 2 seconds are required by the

card’s operating system just to initialize itself.
We assume this delay is card dependent and
outside of our control.

The experiments indicate max
out c

as the most
critical parameter of the minutiae matching al-
gorithm, determining the greatest excursion
both in time (from 4 to 6.38 seconds) and preci-
sion (from 5.5% to 3.7% of EER). The parameter
plays a significant role at the very beginning of
the algorithm, where the cores’ neighbours are
used to determine the best mutual rotation be-
tween fingerprints. An error in its estimation
drastically increases the probability of a failed
match between corresponding fingerprints and,
consequently, raises the algorithm’s FRR.

Larger values of max
out c

provide a better esti-
mate of the mutual rotation; on the other hand,
limiting the search domain to rotations lower
than a given threshold only does not speed up
the search.

This entire phase could be avoided if we were
able to extract a coherent reference axis from the
fingerprint which, combined with the core,
would make fingerprint representations totally
translation and rotation invariant. In reality, the
region around the core exhibits local symmetry,
and some authors have successfully used this
symmetry axis to improve fingerprint classifica-
tion. Unfortunately it cannot be detected with
the precision needed by a fingerprint matcher,
due to the skin’s elastic deformations produced
by the friction between the finger and the sen-
sor.

Incrementing maxout does not appear to affect
the execution time much. The algorithm has lin-
ear complexity over the number of edges of the
graph, which in turn is approximately propor-
tional to maxout; on the other hand its implemen-
tation has been specifically studied to quickly
skip redundant edges, so that the effective com-
plexity is almost linear with the number of mi-
nutiae, independently from their outdegree.

Increasing the maximum indegree (maxin) we in-
troduce more redundancy into the graph. This
improves the algorithm precision by reducing
the probability of missing a pair of matching mi-

Figure 8 - ROC Curves for Various Values of the
max

out c

Parameter

Config
Name

Min.
EER

%

Hyb.
EER

%

Load
time

s

FC
time

s

Min.
time

s

Total
time

s

base 5.5 2.2 2.41 0.96 4.00 7.37

core6 4.6 1.7 2.34 1.02 4.49 7.85

core7 3.8 1.5 2.33 1.09 5.44 8.86

core8 3.7 1.4 2.35 1.15 6.38 9.88

min6 5.2 2.0 2.44 1.00 3.92 7.36

min7 5.0 2.0 2.43 1.04 3.98 7.45

min8 4.6 1.9 2.35 1.06 4.15 7.56

ref4 4.5 2.0 2.64 1.03 4.35 8.02

ref5 4.2 2.0 2.63 1.04 3.92 7.59

ref6 4.0 2.0 2.66 1.01 3.97 7.64

ref7 3.9 2.0 2.67 1.00 3.77 7.44

ref8 4.2 2.0 2.65 1.08 3.62 7.35

max 3.0 1.4 2.74 0.89 6.95 10.58

Table 2 - Performance and Execution Time Obtained
With the Configurations of Parameters in Table 1
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nutiae, and it has also the side effect of lowering
the execution time because a greater fraction of
the edges is skipped during the matching pro-
cess.

When considering the time and EER perfor-
mance of the hybrid algorithm, obtained by
merging the fingercode and minutiae scores, it

becomes clear (Table 2) that the most significant
parameter is the number of core neighbours.

For all the other cases, the overall EER remains
almost constant between 1.9% and 2.0%. The to-
tal execution time also has a maximum differ-
ence of less than 0.7 seconds. However, increas-
ing the number of core neighbours from 5 to 8
allows reducing the EER from 2.2% to 1.4%. with
a corresponding increase of the computation
time of approximately 2.5 seconds (from 7.37 to
9.88).

By choosing the EER point as representative of
the achievable precision with each set of param-
eters, figure 11 plots each EER value against the
execution time needed to achieve it, thus sum-
marizing the choices that are available in the
trade off between precision and speed.

From Figure 8 it is evident that the minutiae al-
gorithm allows, by itself, to achieve an EER of
approximately 3%.

The ROC curve, evaluated for 8 neighbour
points at the core, allows for an FRR of only 5%
for a FAR of 1%. Figure 10 shows the perfor-
mance data obtained by combining the two
methods. The two top graphs show the scores
for, respectively, genuine matches and impos-
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Figure 11 - Precision Versus Speed
at Various Parameter Configurations

Figure 10 - (a) (c) Joint Score Distributions for Genuine and Impostor Matches. (d) ROC Curves.
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tors, as measured by the minutiae based algo-
rithm (on the X axis higher scores are better) and
by the fingercode algorithm (on the Y axis lower
scores are better). The linear combination that
statistically performs best for our fingerprint da-
tabase is represented by the separation line plot-
ted in the two graphs.

It is very difficult to understand what is the den-
sity of the scores with the two dimensional dia-
grams on the top of the figure. This is why, in
the left bottom side, we have also provided a 3D
view, which hopefully allows a much clearer un-
derstanding of the density of the points in the
two dimensional score spaces.

Finally, the bottom right hand graph shows the
ROC curve for each matcher taken separately,
and for their combination. The hybrid combina-
tion results in a considerable increase of perfor-
mance, when compared with the individual al-
gorithms. In the hybrid ROC curve, and for each
possible FAR, the value of FRR is consistently
lower than the ones obtainable with the
fingercode and minutiae methods alone. The
EER that can be obtained by the hybrid method
is approximately 1.4%, sensibly lower than the
3% and the 4% values that can be obtained by
the minutiae and the fingercode matchers.

Implementation Notes
The described biometrics authentication system
has been developed as an extension to the MUS-
CLE Card open architecture [1], which defines a
host side smartcard API that applications can use
to access storage, cryptographic and PIN man-
agement on card services in a unified, card inde-
pendent way. Translation of the API functional-
ity into low level smart card commands is dele-
gated to a set of plugins that support a wide
range of devices. One of these plugins supports
the MUSCLE Card Protocol [2], implemented on
JavaCard compliant devices as an open applet.

Briefly, this protocol allows applications to man-
age on board data (arranged into separate con-
tainers, called objects), cryptographic keys and
PIN codes. An access control model allows to
protect objects and keys by associating Access
Control Lists (ACLs) to them. Each ACL states, for
each operation allowed on the key or object,
which authentication mechanisms must have
been successfully run in the smartcard session in
order to allow the operation on the object.

Biometrics authentication has been embedded in
this context by allowing the access to on card re-
sources only after a successful on board finger-
print matching. For example, it is possible to al-
low the reading of an object contents, or the use
of a cryptographic key (such as for digital signa-
ture applications), only after the user has suc-
cessfully run a biometrics authentication mecha-
nism, possibly in addition to a PIN based or
challenge response cryptographic authentication.

Various secure applications have been modified
in order to integrate smart cards through this
framework, and are scheduled to be modified in
order to support the new biometrics authentica-
tion mechanism. Examples are OpenSSH, an
open source implementation of the Secure Shell
[16] protocol for secure remote terminal, and a
command line application for digital signatures.
Higher level middleware components have also
been developed using this framework, like a
PKCS#11 [13] module, allowing integration of all
available applications supporting this standard
on open platforms (such as Netscape or Mozilla),
and a Pluggable Authentication Module (PAM) [14],
allowing smart card based secure login, and
smart card based access to all applications using
this mechanism. All software components are
available for free download either from the Mus-
cle Card web site [18], or from the SmartSign
web site [19].

Conclusions and Future Work
In this paper, a hybrid fingerprint matching
mechanism was introduced, designed with the
aim of running onto a programmable smart card.
The experimental tests show that taking advan-
tage of the simplifications inherent to our sce-
nario and using ad hoc designed data represen-
tations it is possible to implement high perfor-
mance, multi modal matching algorithms even
into such low resource devices as Java cards,
with reasonable execution times.

The work can be extended in many directions.
Currently, the critical factor in our procedure is
the computation of the core. We are now evalu-
ating different filtering options and different
methods for computing a better estimate of the
core position. Furthermore, local features of the
fingerprint (or of the graph encoding) can be
identified and exploited for improving the per-
formance of the matcher. Finally, the Java code
implementation of the algorithm is now under
revision, in order to bring down the complexity
of the program in selected points and to reduce
execution times to an order of magnitude com-
patible with interactive usage.
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