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Abstract

In this paper, we propose to use resource reserva-

tions scheduling and feedback-based allocation tech-

niques for the provisioning of proper timeliness guar-

antees to audio processing applications. This al-

lows real-time audio tasks to meet the tight tim-

ing constraints characterizing them, even if other in-

teractive activities are present in the system. The

JACK sound infrastructure has been modified, lever-

aging the real-time scheduler present in the Adaptive

Quality of Service Architecture (AQuoSA). The ef-

fectiveness of the proposed approach, which does not

require any modifiction to existing JACK clients, is

validated through extensive experiments under dif-

ferent load conditions.
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1 Introduction and Related Work

There is an increasing interest in considering
General Purpose Operating Systems (GPOSes)
in the context of real-time and multimedia ap-
plications. In the Personal Computing domain,
multimedia sharing, playback and processing re-
quires more and more mechanisms allowing for
low and predictable latencies even in presence
of background workloads nearly saturating the
available resources, e.g., network links and CPU
power. In the professional multimedia domain,
spotting on stages, it is becoming quite common
to see a digital keyboard attached to a common
laptop running GNU/Linux. DJs and VJs are
moving to computer based setups to the point
that mixing consoles have turned from big decks
into simple personal computers, only containing

∗ The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7 under grant agreement n.214777 “IR-
MOS – Interactive Realtime Multimedia Applications on
Service Oriented Infrastructures” and n.248465 “S(o)OS
– Service-oriented Operating Systems.”

audio collections and running the proper mixing
software.

In fact, developing complex multimedia appli-
cations on GNU/Linux allows for the exploita-
tion of a multitude of OS services (e.g., network-
ing), libraries (e.g., sophisticated multimedia
compression libraries) and media/storage sup-
port (e.g., memory cards), as well as comfort-
able and easy-to-use programming and debug-
ging tools. However, contrarily to a Real-Time
Operating System (RTOS), a GPOS is not gen-
erally designed to provide scheduling guarantees
to the running applications. This is why either
large amount of buffering is very likely to oc-
cur, with an unavoidable impact on response
time and latencies, or the POSIX fixed-priority
(e.g., SCHED FIFO) real-time scheduling is uti-
lized, but this turns out to be difficult when
there is more than one time-sensitive applica-
tion in the system. Though, on a nowadays
GNU/Linux system, we may easily find a vari-
ety of applications with tight timing constraints
that might benefit from precise scheduling guar-
antees, in order to provide near-professional
quality of the user experience, e.g., audio acqui-
sition and playback, multimedia (video, gaming,
etc.) display, video acquisition (v4l2), just to
cite a few of them. In such a challenging sce-
nario in which we can easily find a few tens of
threads of execution with potentially tight real-
time requirements, an accurate set-up of real-
time priorities may easily become cumbersome,
especially for the user of the system, who is usu-
ally left alone with such critical decisions as set-
ting the real-time priority of a multimedia task.

More advanced scheduling services than just
priority based ones have been made available for
Linux during the latest years, among the others
by [Palopoli et al., 2009; Faggioli et al., 2009;
Checconi et al., 2009; Anderson and Students,
2006; Kato et al., 2010]. Such scheduling poli-
cies are based on a clear specification that needs
to be made by the application about what is the



computing power it needs and with what time
granularity (determining the latency), and this
scheme is referred to as resource reservations.
This is usually done in terms of a reservation
budget of time units to be guaranteed every pe-
riod. The reservation period may easily be set
equal to the minimum activation period of the
application. Identifying the reservation budget
may be a more involved task, due to the need for
a proper benchmarking phase of the application,
and it is even worse in case of applications with
significant fluctuations of the workload (such as
it often happens in multimedia ones). Rather,
it is more convenient to engage adaptive reser-
vation scheduling policies, where the schedul-
ing parameters are dynamically changed at run-
time by an application-level control-loop. This
acts by monitoring some application-level met-
rics and increasing or decreasing the amount of
allocated computing resources depending on the
instantaneous application workload. Some ap-
proaches of this kind are constituted by [Segovia
et al., 2010; Abeni et al., 2005; Nahrstedt et al.,
1998], just to mention a few.

1.1 Contribution of This Paper

This work focuses on how to provide enhanced
timeliness guarantees to low-latency real-time
audio applications on GNU/Linux. We use
adaptive reservations within the JACK au-
dio framework, i.e., we show how we modi-
fied JACK in order to take advantage of AQu-
oSA [Palopoli et al., 2009], a software architec-
ture we developed for enriching the Linux kernel
with resource reservation scheduling and adap-
tive reservations. Notably, in the proposed ar-
chitecture, JACK needs to be patched, but au-
dio applications using it do not require to be
modified nor recompiled. We believe the discus-
sion reported in this paper constitutes a valu-
able first-hand experience on how it is possible
to integrate real-time scheduling policies into
multimedia applications on a GPOS.

2 JACK: Jack Audio Connection Kit

JACK 1 is a well-known low-latency audio
server for POSIX conforming OSes (including
Linux) aiming at providing an IPC infrastruc-
ture for audio processing where sound streams
may traverse multiple independent processes
running on the platform. Typical applications
— i.e., clients — are audio effects, synthesis-

1Note that the version 2 of JACK is used for this
study

ers, samplers, tuners, and many others. These
clients run as independent system processes, but
they all must have an audio processing thread
handling the specific computation they make on
the audio stream in real-time, and using the
JACK API for data exchanging.

On its hand, JACK is in direct contact with
the audio infrastructure of the OS (i.e., ALSA
on Linux) by means of a component referred to
as (from now on) the JACK driver or just the
driver. By default, double-buffering is used, so
the JACK infrastructure is required to process
audio data and filling a buffer, while the under-
lying hardware is playing the other one. Each
time a new buffer is not yet available in time,
JACK logs the occurrence of an xrun event.

3 AQuoSA Resource Reservation
Framework

The Adaptive Quality of Service Architec-
ture (AQuoSA2) is an open-source frame-
work enabling soft real-time capabilities and
QoS support in the Linux kernel. It in-
cludes: an deadline-based real-time sched-
uler; temporal encapsulation provided via the
CBS [Abeni and Buttazzo, 1998] algorithm; var-
ious adaptive reservation strategies for building
feedback-based scheduling control loops [Abeni
et al., 2005]; reclamation of unused bandwidth
through the SHRUB [Palopoli et al., 2008] al-
gorithm; a simple hierarchical scheduling capa-
bility which allows for Round Robin schedul-
ing of multiple tasks inside the same reser-
vation; a well-designed admission-control log-
ics [Palopoli et al., 2009] allowing controlled ac-
cess to real-time scheduling capabilities of the
system for unprivileged applications. For more
details about AQuoSA, the reader is referred
to [Palopoli et al., 2009].

4 Integrating JACK with AQuoSA

Adaptive reservations have been applied to
JACK as follows. In JACK, an entire graph
of end-to-end computations is activated with
a periodicity equal to buffersize

samplerate and it must

complete within the same period. Therefore, a
reservation is created at the start-up of JACK,
and all of the JACK clients, comprising the real-
time threads of the JACK server itself (the au-
dio “drivers”), have been attached to such reser-
vation, exploiting the hierarchical capability of
AQuoSA. The reservation period has been set

2More information is available at: http://aquosa.
sourceforge.net.



equal to the period of the JACK work-flow acti-
vation. The reservation budget needs therefore
to be sufficiently large so as to allow for com-
pletion of all of the JACK clients within the pe-
riod, i.e., if the JACK graph comprises n clients,
the execution time needed by all of the JACK
clients are c1, . . . cn, and the JACK period is
T , then the reservation will have the following
budget Q and period P :Q =

∑n
i=1 ci

P = T
(1)

Beside this, an AQuoSA QoS control-loop
was used for controlling the reservation budget,
based on the monitoring of the budget actu-
ally consumed at each JACK cycle. The per-
centile estimator used for setting the budget is
based on a moving window of a configurable
number of consumed budget figures observed in
past JACK cycles, and it is tuned to estimate
a configurable percentile of the consumed bud-
get distribution (such value needs to be suffi-
ciently close to 100%). However, the actual allo-
cated budget is increased with respect to the re-
sults of this estimation by a (configurable) over-
provisioning factor, since there are events that
can disturb the predictor, making it potentially
consider inconsistent samples, and thus nullify
all the effort of adding QoS support to JACK, if
not properly addressed. Examples are an xrun
event and the activation of a new client, since
in such case no guess can be made about the
amount of budget it will need. In both cases, the
budget is bumped up by a (configurable) per-
centage, allowing the predictor to reconstruct
its queue using meaningful samples.

4.1 Implementation Details

All the AQuoSA related code is contained in
the JackAquosaController class. The oper-
ations of creating and deleting the AQuoSA
reservation are handled by the class construc-
tor and destructor, while operations necessary
for feedback scheduling — i.e., collect the mea-
surements about used budget, managing the
samples in the queue of the predictor, set
new budget values, etc. — are done by the
CycleBegin method, called once per cycle in
the real-time thread of the server. Also, the
JackPosixThread class needed some modifica-
tions, in order to attach real-time threads to the
AQuoSA reservation when a new client registers
with JACK, and perform the corresponding de-
tach operation on a client termination.

The per-cycle consumed CPU time values
were used to feed the AQuoSA predictor and
apply the control algorithm to adjust the reser-
vation budget.

5 Experimental Results

The proposed modifications to JACK have
been validated through an extensive experi-
mental evaluation conducted over the imple-
mented modified JACK running on a Linux sys-
tem. All experiments have been performed on
a common consumer PC (Intel(R) E8400@3.00
GHz) with CPU dynamic voltage-scaling dis-
abled, and with a Terratec EWX24/96 PCI
sound card. The modified JACK framework
and all the tools needed in order to reproduce
the experiments presented in this section are
available on-line 3.

In all the conducted experiments, results have
been gathered while scheduling JACK using
various scheduling policies:

• CFS: the default Linux scheduling policy for
best effort tasks;

• FIFO: the Linux fixed priority real-time
scheduler;

• AQuoSA: the AQuoSA resource reservation
scheduler, without reclaiming capabilities;

• SHRUB: the AQuoSA resource reservation
scheduler with reclaiming capabilities.

The metrics that have been measured
throughout the experiments are the following:

• audio driver timing: the time interval
between two consecutive activations of the
JACK driver. Ideally it should look like an
horizontal line corresponding to the value:
buffersize
samplerate ;

• driver end date: the time interval be-
tween the start of a cycle and the instant
when the driver finishes writing the pro-
cessed data into the sound card buffer. If
this is longer than the server period, then
an xrun just happened.

When the AQuoSA framework is used to pro-
vide QoS guarantees, we also monitored the fol-
lowing values:

• Set budget (Set Q): the budget dynam-
ically set for the resource reservation dedi-
cated to the JACK real-time threads;

3http://retis.sssup.it/~tommaso/papers/lac11/



• Predicted budget (Predicted Q): the
value predicted at each cycle for the budget
by the feedback mechanism;

Moreover, the CPU Time used, at each cycle,
by JACK and all its clients has been measured
as well. If AQuoSA is used and such value is
greater than the Set Q, then an xrun occurs (un-
less the SHRUB reclaiming strategy is enabled).

First of all the audio driver timing in a config-
uration where no clients were attached to JACK
has been measured, and results are shown in Ta-
ble 1. JACK was using a buffer-size of 128 sam-
ples and a sample-rate of 96 kHz, resulting in a
period of 1333µs. Since, in this case, no other
activities were running concurrently (and since
the system load was being kept as low as possi-
ble), the statistics reveal a correct behaviour of
all the tested scheduling strategies, with CFS ex-
hibiting the highest variability, as it could have
been expected.

Table 1: Audio driver timing of JACK with no
clients using the 4 different schedulers (values
are in µs).

Min Max Average Std. Dev
CFS 1268 1555 1342.769 3.028
FIFO 1243 1423 1333.268 2.421
AQuoSA 1279 1389 1333.268 2.704
SHRUB 1275 1344 1333.268 2.692

5.1 Concurrent Experiments

To investigate the benefits of using reserva-
tions to isolate the behaviour of different —
concurrently running— real-time applications,
a periodic task simulating the behaviour of a
typical real-time application has been added to
the system. The program is called rt-app, and
it is able to execute for a configurable amount
of time over some configurable period.

The scheduling policy and configuration used
for JACK and for the rt-app instance in the
experiments shown below are given in Table 2.

In all of the following experiments, we used a
“fake” JACK client, dnl, constituted by a sim-
ple loop taking about 7% of the CPU for its
computations. The audio processing pipeline
of JACK is made up of 10 dnl clients, added
one after the other. This leads to a total of
75% CPU utilisation. When AQuoSA is used
(i.e., in cases (4) and (5)), JACK and all its
clients share the same reservation, the budget of
which is decided as described in Section 4. Con-
cerning rt-app, when it is scheduled by AQuoSA

Table 2: Scheduling policy and priority (where
applicable) of JACK and rt-app in the experi-
ments in this section

scheduling class priority
JACK rt-app JACK rt-app

(1) CFS CFS – –
(2) FIFO FIFO 10 15
(3) FIFO FIFO 10 5
(4) AQuoSA AQuoSA – –
(5) SHRUB SHRUB – –

or SHRUB, the reservation period is set equal
to the application period, while the budget is
slightly over-provisioned with respect to its ex-
ecution time (5%). Each experiment was run
for 1 minute.

5.1.1 JACK with a period of 1333µs
and video-player alike load

In this experiment, JACK is configured with
a sample-rate of 96 kHz and a buffer-size of
128 samples, resulting in an activation period of
1333µs, while rt-app has period of 40ms and
execution time of 5ms. This configuration for
rt-app makes it resemble the typical workload
produced by a video (e.g., MPEG format) de-
coder/player, displaying a video at 25 frames
per second.

Figures 1a and 1b show the performance of
JACK, in terms of driver end time, and of
rt-app, in terms of response time, respectively.
Horizontal lines at 1333µs and at 40ms are
the deadlines. The best effort Linux scheduler
manages to keep the JACK performance good,
but rt-app undergoes increased response-times
and exhibits deadline misses in correspondence
of the start and termination of JACK clients.
This is due to the lack of true temporal isola-
tion between the applications (rather, the Linux
CFS aims to be as fair as possible), that causes
rt-app to miss some deadlines when JACK has
peaks of computation times. The Linux fixed-
priority real-time scheduler is able to correctly
support both applications, but only if their rel-
ative priorities are correctly set, as shown by
insets 2 and 3 (according to the well-known
rate-monotonic assignment, in this case rt-app
should have lower priority than JACK). On
the contrary, when using AQuoSA (inset 4), we
achieve acceptable response-times for both ap-
plications: rt-app keeps its finishing time well
below its deadline, whilst the JACK pipeline
has sporadic terminations slightly beyond the
deadline, in correspondence of the registration
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Figure 1: Driver end time of JACK (a) and response-times of rt-app (b). The Y axis reports
time values in µs, while the X axis reports the application period (activation) number. The various
insets report results of the experiment run under configurations (1), (2), (3), (4) and (5), from left
to right, as detailed in Table 2. In (c), we report the CPU Time and (in insets 4 and 5) the set and
predicted budgets for JACK during the experiment.

of the first few clients. This is due to the over-
provisioning and the budget pump-up heuristics
which would benefit of a slight increase in those
occasions (a comparison of different heuristics is
planned as future work). However, it is worth
mentioning that the JACK performance in this
case is basically dependent on itself only, and
can be studied in isolation, independently of
what else is running on the system. Finally,
when enabling reclaiming of the unused band-
width via SHRUB (inset 5), the slight budget
shortages are compensated by the reclaiming
strategy: the small budget residuals which re-
main unused by one of the real-time applica-
tions at each cycle are immediately reused by
the other, if needed.

For the sake of completeness, Figure 1c shows
the CPU Time and, for the configurations us-

ing AQuoSA, the Set Q and Predicted Q values
for the experiment. The figure highlights that
the over-provisioning made with a high overall
JACK utilisation is probably excessive with the
current heuristic, so we are working to improve
it.

5.1.2 JACK with a period of 2666µs
and VoIP alike load

Another experiment, very similar to the pre-
vious one but with slightly varied parameters
for the two applications has been run. This
time JACK has a sample-rate of 48kHz and a
buffer-size of 128 samples, resulting in a period
of 2666µs, while rt-app has a period of 10ms
and an execution time of 1.7ms. This could be
representative of a VoIP application, or of a 100
Hz video player.



Results are reported in Figure 5. Observa-
tions similar to the ones made for the previous
experiment may be done. However, the inter-
ferences between the two applications are much
more evident, because the periods are closer to
each other than in the previous case. Moreover,
the benefits of the reclaiming logic provided by
SHRUB appears more evident here, since using
just a classical hard reservation strategy (e.g.,
the hard CBS implemented by AQuoSA on the
4th insets) is not enough to guarantee correct
behaviour and avoid deadline misses under the
highest system load conditions (when all of the
dnl clients are active).

Figure 2: Server period and clients end time of
JACK with minimum latency scheduled by CFS.

Figure 3: Server period and clients end time
of JACK with minimum possible latency sched-
uled by FIFO.

5.1.3 JACK alone with minimum
possible latency

Finally, we considered a scenario with JACK
configured to have only 64 samples as buffer-size
and a sample-rate of 96kHz, resulting in 667µs
of period. This corresponds to the minimum
possible latency achievable with the mentioned
audio hardware. When working at these small

Figure 4: Server period and clients end time
of JACK with minimum possible latency sched-
uled by SHRUB (reservation period was 2001µs,
i.e., three times the JACK period).

SHRUB FIFO CFS

Min. 650.0 629.0 621.0
Max. 683.0 711.0 1369.0
Average 666.645 666.263 666.652
Std. Dev 0.626 1.747 2.696
Drv. End Min. 6.0 6.0 5.0
Drv. End Max. 552.0 602.0 663.0

Table 3: period and driver end time in the
3 cases (values are in µs).

values, even if there are no other applications in
the system and the overall load if relatively low,
xruns might occur anyway due to system over-
heads, resolution of the OS timers, unforeseen
kernel latencies due to non-preemptive sections
of kernel segments, etc.

In Figures 2, 3 and 4, we plot the client
end times, i.e., the completion instants of
each client for each cycle (relative to cycle start
time). Such metric provides an overview of
the times at which audio calculations are fin-
ished by each client, as well as the audio period
timing used as a reference. Things are work-
ing correctly if the last client end time is lower
than the server period (667µs in this case).
Clients are connected in a sequential pipeline,
with Client0 being connected to the input
(whose end-times are reported in the bottom-
most curve), and Client9 providing the final
output to the JACK output driver (whose end-
times are reported in the topmost curve). Also
notice that when a client takes longer to com-
plete, the one next to it in the pipeline starts
later, and this is reflected on the period duration
too. Some more details about this experiments
are also reported in Table 3.



6 Conclusions and future work

In this work the JACK sound subsystem has
been modified so as to leverage adaptive re-
source reservations as provided by the AQuoSA
framework. It appears quite clear that both
best effort and POSIX compliant fixed prior-
ity schedulers have issues in supporting multiple
real-time applications with different timing re-
quirements, unless the user takes the burden of
setting correctly the priorities, which might be
hard when the number of applications needing
real-time support is large enough. On the other
hand, resource reservation based approaches al-
low each application to be configured in isola-
tion, without any need for a full knowledge of
the entire set of deployed real-time tasks on the
system, and the performance of each applica-
tion will depend exclusively on its own work-
load, independently of what else is deployed on
the system. We therefore think that it can be
stated that resource reservations, together with
adaptive feedback-based control of the resource
allocation and effective bandwidth reclamation
techniques, allows for achieving precise schedul-
ing guarantees to individual real-time applica-
tions that are concurrently running on the sys-
tem, though there seems to be some space for
improving the currently implemented budget
feedback-control loop.

Along the direction of future research around
the topics investigated in this paper, we plan
to explore on the use of two recently pro-
posed reservation based schedulers, the IR-
MOS [Checconi et al., 2009] hybrid EDF/FP
real-time scheduler for multi-processor systems
on multi-core (or multi-processor) platforms,
and the SCHED DEADLINE [Faggioli et al.,
2009] patchset, which adds a new scheduling
class that uses EDF to schedule tasks.
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Figure 5: From top to bottom: driver end time and its CDF, JACK CPU Time and budgets,
response time of rt-app and its CDF of the experiments with JACK and a VoIP alike load. As
in Figure 1, time is in µs on the Y axes of (a)-(c)-(d), while the X axes accommodate application
cycles.


