
An efficient implementation of the BandWidth Inheritance protocol
for handling hard and soft real-time applications in the Linux kernel ∗

Dario Faggioli, Giuseppe Lipari and Tommaso Cucinotta
e-mail: d.faggioli@sssup.it, g.lipari@sssup.it, t.cucinotta@sssup.it

Scuola Superiore Sant’Anna, Pisa (Italy)

Abstract

This paper presents an improvement of the Bandwidth
Inheritance Protocol (BWI), the natural extension of the
well-known Priority Inheritance Protocol (PIP) to resource
reservation schedulers. The modified protocol allows for a
better management of nested critical section, removes un-
needed overheads in the management of task block and un-
block events, and introduces a run-time deadlock detection
mechanism at no cost.

Also, an implementation of the new protocol on the Linux
kernel is presented, along with experimental results gath-
ered while running some synthetic application load. Pre-
sented results prove the effectiveness of the proposed solu-
tion in reducing latencies due to concurrent use of resources
and in improving temporal isolation among groups of inde-
pendent tasks. Also, we show that the introduced overhead
is low and negligible for the applications of interest.

1 Introduction

Embedded systems are nowadays part of our everyday
life. As their popularity and pervasiveness increases, these
devices are required to provide more and more functional-
ity, thus their complexity grows higher and higher. In par-
ticular, embedded systems now not only find application in
the domain of self-contained, hard real-time, safety critical
systems, but their applicability is undergoing a tremendous
growth in the range of soft real-time applications, with var-
ious degrees of time-sensitiveness and QoS requirements.

The requirements on the real-time operating system plat-
form on which such applications are implemented increases
in parallel. The RTOS must be robust (also to timing faults),
secure (also to denial of service attacks) and dependable.
Finally, it must support open and dynamic applications with
QoS requirements.

For these reasons, Linux is becoming the preferred
choice for a certain class of embedded systems. In fact,

∗This work has been partially supported supported by the European
FRESCOR FP6/2005/IST/5-034026 project.

it already provides many of the needed services: it has an
open source license and an huge base of enthusiastic pro-
grammers as well as a lot of software running on it. Fur-
thermore, it presents a standard programming interface.

Due to the increasing interest from the world of embed-
ded applications, Linux is also being enriched with more
and more real-time capabilities [13], usually proposed as
separate patches to the kernel, that are progressively being
integrated into the main branch. For example, a small group
of developers has proposed the PREEMPTRT patch which
greatly reduces the non preemptable sections of code in-
side the kernel, thus reducing the worst-case latencies. The
support for priority inheritance can be extended to in-kernel
locking primitives and a great amount of interrupt handling
code has been moved to schedulable threads. From a pro-
gramming point of view, Linux now supports almost en-
tirely the Real-Time POSIX extensions, but the mainstream
kernel still lacks support for such extensions like sporadic
servers or any Resource Reservation techniques, that would
allow the kernel to provide temporal isolation.

Resource Reservation (RR) is an effective technique to
schedule hard and soft real-time applications and to pro-
vide temporal isolation among them in open and dynamic
systems. According to this technique, the resource band-
width is partitioned between the different applications, and
an overrun in one of them cannot influence the temporal be-
havior of the others.

In standard Resource Reservation theory, tasks are con-
sidered as independent. In practical applications, instead,
tasks may interact due to the concurrent access to a shared
resource, which commonly requires the use of a mutex
semaphore in order to serialize those accesses. For example,
a Linux application may consist of one multi-threaded pro-
cess, and threads may interact and synchronize each other
through pthread mutexes. In this case, it is necessary to
use appropriate resource access protocols in order to bound
the priority inversion phenomenon [20]. While implemen-
tations of scheduling policies for QoS guarantees on Linux
exist [19, 1], they do not provide support for appropriate
management of interactions among threads.

1



Contributions of this paper. In a previous work [14], the
Bandwidth Inheritance (BWI) Protocol has been proposed
as the natural extension of the Priority Inheritance Proto-
col [20] in the context of Resource Reservations.

In this paper, we extend that work with three important
contributions: first, we propose a simplification of the BWI
protocol that allows for a much more efficient implemen-
tation, for both memory and computational requirements.
This is particularly relevant in the context of embedded sys-
tems. We also prove that the simplifications do not compro-
mise the original properties of the protocol. Second, we
present an efficient deadlock detection mechanism based
on BWI, that does not add any overhead to the protocol it-
self. Third, we present a real implementation of the protocol
within the Linux operating system, based on the AQuoSA
Framework and the pthread mutex API, that makes the pro-
tocol widely available for soft real-time applications.

Also, we present experimental results that highlight the
effectiveness of our BWI implementation in reducing laten-
cies.

Organization of the paper The remainder of the paper
is organized as follows: Sec. 2 provides some prerequisite
definitions and background concepts. Sec. 3 summarizes
previous and alternative approaches to the problem. Sec. 4
describes our modification to the BWI protocol, focussing
on the achieved improvements. Sec. 5 focusses on details
about the actual implementation of the modified protocol
on Linux, while Sec. 6 reports results gathered from experi-
mental evaluation of the described implementation. Finally,
Sec. 7 draws some conclusions, and quickly discusses pos-
sible future work on the topic.

2 Background
2.1 System Model

A real-time taskτi is a sequence of real-time jobsJi,j ,
each one modeled by an arrival timeai,j , a computation
time ci,j and an absolute deadlinedi,j . A periodic (spo-
radic) task is also associated a relative deadlineDi, such
that ∀j, di,j = ai,j + Di, and a period (minimum inter-
arrival time)Ti such thatai,j+1 ≥ ai,j + Ti.

Given the worst case execution time (WCET) isCi =
maxj{ci,j}, the processor utilization factorUi of τi is de-
fined asUi = Ci

Ti
.

In this paper, we consideropen systems[9], where tasks
can be dynamically activated and killed. In open systems,
tasks belonging to different, independently developed, ap-
plications can coexist. Therefore, it is not possible to ana-
lyze the entire system off-line.

Also, hard real-time tasks must respect all their dead-
lines. Soft real-time tasks can tolerate occasional violations
of their timing constraints, i.e., it could happen that some
job terminates after its absolute deadline. The number of

missed deadlines over a given interval of time is often used
as a valid measure for the QoS experienced by the user.

An effective technique to keep the number of missed
deadlines under control is to use Resource Reservation [18,
2] scheduling algorithms. According to these techniques,
each task is assigned a virtual resource (vres1), with a max-
imum budgetQ and a periodP . Resource Reservations pro-
vide thetemporal isolationproperty to independent tasks: a
task is guaranteed to be scheduled for at leastQ time units
for every period ofP time units, but at the same time, in
order to provide guarantees to all tasks in the system, the
mechanism may not allow the task to execute for more than
that amount.

Many RR algorithms have been proposed in the litera-
ture, for both fixed priority and dynamic priority schedul-
ing, and the work presented in this paper is applicable to all
of them. However, our implementation is based on a variant
of the Constant Bandwidth Server.

2.2 Critical Sections

Real-time systems are often designed as a set of concur-
rent real-time tasks interacting through shared memory data
structures. Using classical mutex semaphores in a real-time
system is prone to the well known problem of unbounded
priority inversion [20]. Dealing correctly with such a phe-
nomenon is very important, since it can jeopardize the real-
time guarantees and cause significant QoS degradation and
waste of resources. Effective solutions have been proposed
in classical real-time scheduling algorithms, such as the Pri-
ority Inheritance Protocol (PIP), the Priority Ceiling Proto-
col (PCP) [20] and the Stack Resource Policy [4].

In particular, PIP is very simple to implement, it can
work on any priority-based scheduling algorithm (both for
fixed and dynamic priority) and does not require the user
to specify additional scheduling parameters. According to
PIP, when a taskτh is blocked trying to access a critical sec-
tion already locked by a lower priority taskτl, τh lends its
priority to τl for the duration of the critical section. When
τl releases the critical section, it is given back its priority. In
this paper we discuss an extension of the PIP for resource
reservations.

2.3 Constant Bandwidth Server

The Constant Bandwidth Server (CBS [2]) is a well-
known RR scheduling algorithm working on top of Earli-
est Deadline First (EDF [15]). As in any RR algorithm,
each task is associated avirtual resourcewith parametersQ
(the maximum budget) andP (the period). Eachvres can
be seen as a sporadic task with worst-case execution time
equal toQ and minimum inter-arrival time equal toP . The

1We use the term virtual resource instead of the classical term server,
to avoid confusion in readers that are not expert of aperiodic servers in
real-time scheduling.

2



EDF system scheduler uses thevres parameters to schedule
the associated tasks.

The fundamental idea behind CBS is that each request
for a task execution is converted into a request of the cor-
respondingvres with associated a dynamic deadline, calcu-
lated taking into account the bandwidth of thevres. When
the task tries to execute more than its associatedvres bud-
get, thevres deadline is postponed, so that its EDF priority
decreases and it is slowed down.

The CBS algorithm guarantees that overruns occurring
on taskτi only affectτi itself, so that it canstealno band-
width assigned to any other task. This form of thetemporal
protectionproperty is also called Bandwidth Isolation Prop-
erty (BIP [2]).

2.4 Critical Sections and the CBS algorithm

Unfortunately, when two tasks belonging to different
vres share mutually exclusive resources, the bandwidth iso-
lation property is broken. In fact, one assumption of every
RR algorithm is that thevres with the highest priority should
be executed at each instant. However, when using mutex
semaphores, a task (and its correspondingvres) could be
blocked on the semaphore and not able to execute. Even if
we are able to bound the blocking time of eachvres by using
an appropriate resource access protocol like the PIP, we still
have to perform a careful off-line analysis of all the critical
section code, in order to be able to compute the blocking
time and use it in the admission control policy. Moreover,
using the PIP with resource reservations is not straightfor-
ward, since it is not clear, for example, the budget of which
vres should be depleted and the deadline of which should be
postponed when an inheritance is in place.

Such a limitation is hard to tolerate in modern systems,
since multi-threaded applications are quite common, es-
pecially within multimedia environments, and the various
tasks often need to communicate by means of shared mem-
ory data structures needing mutual exclusive access. For
this reason the BandWidth Inheritance protocol (BWI [14])
has been proposed as an extension of PIP suitable for reser-
vation based systems.

2.5 The BandWidth Inheritance Protocol

The description of BWI in this section is not meant to
be exhaustive, and the interested reader is remanded to [14]
for any further detail. The BWI protocol works according
to the following two rules:

BWI blocking rule when a taskτi blocks trying to access
a shared resourceR already owned by another taskτj ,
thenτj is added to the list of the tasks served by the
vres Si of τi. If τj is also blocked, the chain of blocked
tasks is followed until one that is not blocked is found,
and all the encountered tasks are added to the list of
Si;

BWI unblocking rule when taskτj releases the lock onR
and wakes upτi, thenτj is discarded from the list of
vres Si. If othervres addedτj to their list, they have to
replaceτj with τi.

BWI is considered the natural extension of PIP to re-
source reservations. In fact, when a task is blocked on a
mutex, the lock-owner task inherits its entirevres. In other
words, the owner taskτj can execute on its ownvres and in
the inheritedvres (the one with the highest priority), so that
the blocking time ofτi is shortened. Most importantly, the
BWI protocol preserves the bandwidth isolation properties
between non-interacting tasks.

A blocking chain between two tasksτi andτj is a se-
quenceHi,j = {τ1, R1, τ2, . . . , Rn−1, τn} of alternating
tasks and resources, such that, the first and the last tasks
in the chain areτ1 = τi and τn = τj , and they access,
respectively, resourcesR1 and Rn−1; each taskτk (with
1 < k < n) accesses resourceRk in a critical section nested
inside a critical section onRk−1. For example, the follow-
ing blocking chainH1,3 = {τ1, R1, τ2, R2, τ3} consists of
3 tasks:τ3 accesses resourceR2 with a mutexm2; τ2 ac-
cessesR2 with a critical section nested inside a critical sec-
tion onR1; τ1 accessesR1. At run-time,τ1 can be directly
blocked byτ2 and indirectly blocked byτ3.

Two tasksτi andτj areinteractingif and only if there ex-
ists ablocking chainbetweenτi andτj . The BWI protocol
guarantees bandwidth isolation between pairs of non inter-
acting tasks: ifτi andτj are not interacting, the behavior of
τi cannot influence the behavior ofτj and viceversa.

3 Related Work

Many practical implementations of the RR framework
have been proposed since now. In the context of general-
purpose OSes, the most widely known is probably Lin-
ux/RK [19], developed as a research project at CMU and
later commercialized by TimeSys. More recently, an imple-
mentation of the Pfair [5] scheduling algorithm for reserv-
ing shares of the CPU in a multi-processor environment, in
the Linux kernel, has been developed by H. Anderson et
al. [1] in theLITMUSRT project. However, to the best
of our knowledge, these approaches did not provide support
for mutually exclusive resource sharing.

A quite common approach [12] when dealing with crit-
ical sections and capacity-based servers is to allow a task
to continue executing when thevres exhausts its budget and
the task is inside a critical section. The extra budget the task
has been provided is then subtracted from the next replen-
ishments. Coupling this strategy with the SRP [4] reduces
the priority inversion phenomenon to the minimum. The
technique has been applied to the CBS algorithm in [6]. In
general, this approach is very effective for static systems
where all information on the application structure and on
the tasks is known a-priori. However, it is not adequate to

3



open and dynamic systems. In fact, in order to compute
the preemption levelof all the resources, the protocol re-
quires that the programmer declares in advance all the tasks
that will access a certain resource. Moreover, thevres pa-
rameters have to be fixed, and cannot be easily changed at
run-time. Finally, this approach cannot protect the system
from overruns of tasks while inside a critical section.

An approach similar to BWI protocol has been imple-
mented in the L4 microkernel [21]. The Capacity-Reserve
Donation (CREDO) is based on the idea of maintaining a
task state contextand ascheduling contextas two, separated
and independently switchable data structures. According to
the authors, the technique can be applied to either PIP or
Stack-Based PCP. Although being quite effective this mech-
anism is thoroughly biased toward message passing micro-
kernel system architectures, and cannot be easily transposed
to shared memory systems. Furthermore, to enable PIP or
SRP on top of CREDO, it is necessary to carefully assign
the priority of the various tasks in the system, otherwise the
protocol can not work properly.

Also, in the context of micro-kernels, Mercer et al. [16]
presented an implementation of a reservation mechanism
on the real-time Mach OS. Interestingly, the implementa-
tion allowed for accounting the time spent within kernel
services, when activated on behalf of user-level reserved
tasks, to the reserves of the tasks themselves. Kernel ser-
vices might be considered, in such context, as shared re-
sources to which applications concurrently access. How-
ever, the problem of regulating application-level critical
sections managed through explicit synchronization primi-
tives, so to avoid priority inversion, is not addressed.

All this given, we say BWI is a suitable protocol for re-
source sharing in open, dynamic embedded systems, for the
following reasons:

• BWI is completely transparent to applications. As with
the PIP, the user must not specify additional scheduling
parameters, as “ceiling” or “preemption-level”;

• BWI provides bandwidth isolation between non-
interacting tasks, even in the case of tasks that overrun
inside a critical section. Therefore, it is not necessary
to implement any additional budget protection mecha-
nism for the critical section length;

• BWI is neutral to the underlying RR algorithm and
does not require any special property of the scheduler.
This allows us any modification of the scheduling al-
gorithm without the need to reimplement BWI.

4 Improvements to the protocol

In this section, we focus on the limitations of the original
formulation of the BWI protocol, and propose two modifi-
cations to its rules that, without compromising the guaran-
tees, allow for a simplification of the implementation. In

what follows, we assume that each task competing for ac-
cess to shared resources is served by a dedicatedvres.

4.1 Nested Critical Section Improvement

In presence of nested critical sections, the two BWI rules
do not correctly account for all possible situations. Consider
the case of a taskτi that blocks on another taskτj , after hav-
ing been added to somevres Sh, different from its original
one (Si), due to previous inheritance (i.e., another taskτh is
blocked waiting forτi to release some lock). By following
the blocking rule of BWI, taskτj is added only toSi, but,
because alsoτh is blocked waiting forτi, the blocking de-
lays induced onτh may be reduced ifτi would have added
to Sh as well.

In general, we are saying thatτj should be attached to
all the vres to which τi was bound (both directly and by
inheritance due to BWI) before blocking itself.

As an example, consider the situation depicted in Fig-
ure 1, where we have four tasks,τA, τB , τC and τD,
each bound to its ownvres. SA hasUSA

= 6/25 utiliza-
tion, SB hasUSB

= 3/20 utilization, USC
= 3/15 and

USD
= 4/10. τA, τC andτD use mutexm1 andτA andτB

use mutexm2. Also noticeτA acquires the second mutex
while holding the first one (nested critical section).

In this figure, and in all the figures of Sec. 6, symbols
L(i) and U(i) denote wait and signal operations on mu-
tex mi. Light-gray filled rectangles denote tasks executing
inside a critical section, with the number in the rectangle
being the acquired mutex. Vertical dashed arrows denote
the time instants a task is attached (and detached) to avres
different from its own one due to BWI inheritance. White
filled ones denote a task being able to execute inside avres
different from its original one thanks to BWI, with the num-
ber in the rectangle being the mutex that caused the inheri-
tance.

At time t = 7 τC blocks on mutexm1, owned byτA,
andτA is added to thevres of τC . Then, at timet = 11,
τD blocks on mutexm1 too. Again,τA is attached to the
vres of τD, and it can now run inside any of the threevres
exhausting their budget on time instantst = 9 (for τC ) and
t = 13 (for τD).

Suppose that at timet = 15 τA blocks on mutexm2:
honoring the original BWI rule,τB is added only to thevres
of τA, whereasτA remains attached to thevres of τD and
τC , although being blocked. In this way,τB can not take
advantage of the bandwidth assigned toτC andτD, delaying
their own unblocking. Notice this behavior is incidental: if
τC and τD would start executingafter τA blocks onm2,
thenτB would have been added to all thevres of the three
tasks.

4.2 Simplified BWI blocking rule

In order to face with the just shown issue, we propose a
rewrite of the BWI blocking rule as follows:

4



0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

τB

τC

τD

L(1)
1 1

L(2)

L(2)
2

L(1)
1

L(1)
1

Figure 1: example of nested blocking situation not correctly han-
dled by the original BWI protocol

new BWI blocking rule when a taskτi blocks while try-
ing to access a shared resourceR already owned by
another task, the chain of blocked tasks is followed un-
til one that is not blocked is found, let it beτj . Then,
τj is added to thevres τi belongs to. Furthermore,τi

is replaced withτj in all vres that previously addedτi

to their task list due to this rule, if any.

Basically, the difference between the original and the
new BWI formulation may be highlighted in terms of the
invariant property of the algorithms. To this purpose, con-
sider the wait-for-graph at an arbitrary point in time, where
nodes represent tasks and an edge from nodeτA to node
τB denotes that some resource is held byτB and requested
by τA. Now, consider any ready-to-run taskτj , and letGj

denote the set of tasks directly or indirectly blocked on mu-
texes held byτj . Well, the new BWI formulation has the
invariant property that the running task is bound to all the
vres of the tasks inGj , so that eachvres of any such task
needs to bound dynamically (due to BWI) at most one task
(the ready-to-run one,τj ), in addition to the one (blocked)
explicitly bound to it. Furthermore, the original BWI for-
mulation also required each of thesevres to be dynami-
cally bound (due to BWI) to all (blocked) tasks found in
the blocking chain: from the task explicitly bound to it up
to τj .

Therefore, the following property holds for the new BWI
formulation:

BWI one-blocked-task property Given avres Si, at each
time instant it can have in its list of tasks only one other
task in addition to its original taskτi.

This is achieved because, according to the new block-
ing rule, every time a taskτi blocks, if its mutex-owner is
blocked too, we need to follow the blocking chain until a
ready taskτj is found, and add it toSi. Obviously a mech-
anism which make it possible to traverse such a chain of
blocked task has to be provided by the operating system (as
the Linux kernel does). Furthermore, ifτi was on its own
already bound to other servers due to BWI, we need to re-
placeτi with τj in those servers, keeping at1 the number of

additionally bound tasks in those servers. Since each task
τi can, at timet, be blocked at most by only one other task
τj , the just stated property always holds.

As an example if we have:

• taskτA owningm1 and running;

• taskτB owningm2 and blocked onm1 (owned byτA);

• taskτC owningm3 and blocked onm2 (owned byτB);

when a fourth task, taskτD, tries to lockm3, it blocks.
According to original BWI protocol, we have to bindτC ,
τB andτA to the vres of τD. In the new formulation we
only bindτA (the sole running task).

The main consequence of the new blocking rule on
the implementation is lower memory occupation of the
data structure needed by BWI, what is particularly rele-
vant mainly in the context of embedded systems, especially
when the task set is characterized by tight interactions and
nested critical sections would cause the run-time creationof
non-trivial blocking trees. In fact, even this is not necessar-
ily of practical relevance (in a well-designed system inter-
actions should be kept at the bare minimum), the memory
overhead complexity of the new BWI formulation islinear
in the number of interacting tasks, while in the original BWI
formulation it wasquadratic.

4.3 Correctness

The original description of the BWI protocol [14] was
accompanied by a proof of correctness in the domain of
hard real-time systems. The proof aimed at showing that, if
the maximum interferences of the interacting tasks is prop-
erly accounted for in the admission control test, then the
system scheduled with BWI allows all tasks to respect their
deadlines. The following result constitutes the basis for the
proof:

Lemma 1. Each activevres always has exactly one ready
task in its list.

Proof. The lemma is clearly valid before any task blocks.
Assume that the lemma holds true until timet, when taskτi

blocks on a resource, and, following the chain of blocked
tasks,τj is selected. Our modified version of the BWI
blocking rule only differs from the original one in stating
that the running taskτj replacesτi in all the lists of thevres
where taskτi has been bound (as opposed to only the last
one). Notice thatτi has been added to thesevres because of
one running task in each of them blocked on a resource di-
rectly or indirectly shared withτi. Thus, just before block-
ing, if the lemma is true,τi was the only ready task in all
of them. Sinceτi is blocking,τj becomes on its turn the
only runnable task in everyvres, so the lemma continues to
hold.

5



Although this result may be used to prove that the new
protocol is still correct, further details are omitted for the
sake of brevity.

4.4 Lightweight Deadlock Detection

Finally, we improved the BWI protocol by adding the
ability to detect deadlocks at run-time2:

Deadlock detection rule when applying the new BWI
blocking rule to a taskτi that blocks, for each taskτk

encountered while iterating the blocking chain ofτi, if
τk = τi, then a deadlock attempt is detected.

This is a lightweight yet effective approach for deadlock
detection and below is a proof of correctness of it.

Theorem 1. If there is a deadlock situation, the protocol
detects it at run-time.

Proof. As stated by Coffman et al. [7], necessary condition
for deadlock is that there is a cycle in the wait-for-graph
of the system. To detect a deadlock, every time a taskτi

blocks on another taskτj , we have to add an edge fromτi

to τj in the graph and check if a cycle has been created.
Suppose that just before timet there are no cycles, and so
no deadlock is in place, and that at timet task τi blocks.
Also consider the fact that, from any task, at most one edge
can exit, directed toward the task’s lock-owner. Therefore,
if a cycle has been created by the blocking of taskτi, then
τi must be part of the cycle. Hence, following the block-
ing chain fromτi, if a deadlock has been created, we will
come back toτi itself, and so our algorithm can detect all
deadlocks.

It is noteworthy that the deadlock detection rule may be
realized with practically zero overhead, adding a compari-
son in the search for a ready-to-run task, while we are fol-
lowing the chain of blocked tasks, according with the block-
ing rule.

5 BandWidth Inheritance Implementation
5.1 The Linux Kernel

Although not being a real-time system, the 2.6 Linux
kernel includes a set of features making it particularly suit-
able for soft real-time applications. First, it is a fully-
preemptable kernel, like most of the existing real-time op-
erating systems, and a lot of effort has been spent on re-
ducing the length of non-preemptable sections (the major
source of kernel latencies). It is noteworthy that the 2.6
kernel series introduced a new scheduler with a bounded
execution time, resulting in a highly decreased schedul-
ing latency. Also, in the latest kernel series, a modular
framework has been introduced that will possibly allow

2The method proposed here differs from the method proposed in[14],
as it is much more efficient.

for an easier integration of other scheduling policies. Sec-
ond, although being a general-purpose time-sharing kernel,
it includes the POSIX priority-based scheduling policies
SCHED FIFO andSCHED RR, that may result useful for
real-time systems. Third, the recently introduced support
in the kernel mainstream of the support for high-resolution
timers is of paramount importance for the realization of
high-precision customized scheduling mechanisms, and for
the general performance of soft real-time applications.

Unfortunately, the Linux kernel has also some character-
istics that make it impossible to realize hard real-time ap-
plications on it: the monolithic structure of the kernel and
the wide variety of drivers that may be loaded within, the
impossibility to keep under control all the non-preemptable
sections possibly added by such drivers, the general struc-
ture of the interrupt management core framework that privi-
leges portability with respect to latencies, and others. How-
ever, the wide availability of kernel drivers and user-space
libraries for devices used in the multimedia field constitutes
also a point in favor of the adoption of Linux in such ap-
plication area. Furthermore, recent patches proposed by
the group of Ingo Molnar to the interrupt-management core
framework, aimed at encapsulating device drivers within
kernel threads, are particularly relevant as such approaches
would highly increase predictability of the kernel behaviour.

At the kernel level, mutual exclusive access to critical
code sections is managed in Linux through classical spin-
locks, RCU primitives, mutexes and rt-mutexes, a variant
of mutexes with support for priority inheritance. The lat-
ter ones are particularly worth to cite, because they allow
for the availability of the PIP in user-level synchronization
primitives. This is not only beneficial for time-sensitive
applications, since thanks to the rt-mutex run-time sup-
port, we have been able to implement the BandWidth In-
heritance protocol without any modification to the kernel
mutex-related logics.

At the user/application level, locking and synchroniza-
tion may be achieved by means of futexes (Fast Uerspace
muTEX [11]) or of standard POSIX mutexes, provided by
the GNU C Library [10] and, on their turn, implemented
through futexes. One remarkable peculiarity of futexes and
POSIX mutexes, is that their implementation on Linux in-
volves the kernel (thus a relatively expensive system call)
only when there is a contention that requires arbitration.

5.2 The AQuoSA Framework

The CPU scheduling strategies available in the standard
Linux kernel are not designed to provide temporal protec-
tion among applications, therefore they are not suitable for
time-sensitive workloads. The AQuoSA framework [17]
(available at http://aquosa.sourceforge.net) aims at filling
this gap, enhancing a standard GNU/Linux system with
scheduling strategies based on the RR techniques described
in Sec. 2.3.

6



AQuoSA is designed with a layered architecture. At
the lowest level3 there is a small patch (Generic Scheduler
Patch, GSP) to the Linux kernel that allows dynamically
loaded modules to customize the CPU scheduler behaviour,
by intercepting and reacting to scheduling-related events
such as: creation and destruction of tasks, blocking and
unblocking of tasks on synchronization primitives, receive
by tasks of the specialSIGSTOP andSIGCONT signals).
A Kernel Abstraction Layer (KAL) aims at abstracting the
higher layers from the very low-level details of the Linux
kernel, by providing a set of C functions and macros that
abstract the needed kernel functionalities. The Resource
Reservation layer (RRES) implements a variant of the CBS
scheduling policy on top of an internal EDF scheduler. The
QoS Manager layer allows applications to take advantage
of Adaptive Reservations, and includes a set of bandwidth
controllers that can be used to continuously adapt the budget
of a vres according to what an application needs. An user-
space library layer allows to extend standard Linux applica-
tions to use the AQuoSA functionality without any further
restriction imposed on them by the architecture.

Thanks to an appropriately designed access control
model [8], AQuoSA is available not only to theroot user (as
it happens for other real-time extensions to Linux), but also
to non-privileged users, under a security policy that may be
configured by the system administrator.

An interesting feature of the AQuoSA architecture is that
it does not replace the default Linux scheduler, but coexists
with it, giving to soft real-time tasks a higher priority than
any non-real-time Linux task. Furthermore, the AQuoSA
architecture follows a non-intrusive approach [3] by keep-
ing at the bare minimum (the GSP patch) the modifications
needed to the Linux kernel.

5.3 Bandwidth Inheritance Implementation
Design goals and choices The implementation of the
BWI protocol for AQuoSA has been carried out with the
following design objectives:

• to provide a full implementation of BWI;

• to allow for compile-time disabling of BWI;

• to allow the use of BWI on a per-mutex basis;

• to impact as low as possible on the AQuoSA code;

• to have as little as possible run-time overheads.

In order to achieve such goals, our implementation:

• uses the C pre-processor in order to allow compile-
time inclusion or exclusion of the BWI support within
AQuoSA;

• does not modify the Linux kernel patch (i.e., BWI is
entirely implemented inside the kernel modules);

3For a more detailed description, the interested reader may refer to [17].

• does not modify the libraries and the APIs;

• does not remove or alter the core algorithms inside the
framework, especially with respect to:

– scheduling: it is not necessary to modify the
implementation of various scheduling algorithms
available inside AQuoSA;

– vres queues: we do not modify the task queues
handling, so that the old routines continue to
work seamlessly;

– blocking/unblocking: when BWI is not re-
quired/enabled the standard behaviour of AQu-
oSA is not modified by any means.

Using BWI Since BWI is the natural extension of PIP
for RR-based systems, in our implementation the pro-
tocol is enforced every time two or more tasks, with
scheduling guarantees provided through AQuoSA RRvres,
also share a POSIX mutex that has been initialized with
PTHREAD PRIO INHERIT as its protocol. This way the
application is able to choose to use BWI or not on a
per-mutex basis. Furthermore, all the code already using
the Priority Inheritance Protocol automatically benefits of
BandWidth Inheritance, if the tasks are attached to some
vres.

Deadlock detection Once a deadlock situation is de-
tected, the current implementation may be configured for
realizing one of the following behaviors: 1) the system for-
bids the blocking task from blocking on the mutex, and re-
turns an error (EDEADLK); 2) the system logs a warning
message notifying that a deadlock took place.

5.4 Implementation Details
The BWI code is completely integrated inside the AQu-

oSA architecture and only entails very little modification to
the following software components:

• the KAL layer, where the KAL API has been extended
with macros and functions exploiting the in-kernel rt-
mutexes functionality, for the purpose of providing, for
each task blocked on an rt-mutex4, the rt-mutex on
which it is blocked on, and the task that owns such an
rt-mutex;

• the RRES: where the two BWI rules are implemented.

The core of the BWI implementation is made up of a few
changes to the AQuoSA data structures, and of only four
main functions (plus a couple of utility ones):

1. rres bwi attach(), called when a task is at-
tached to avres;

4Note that such information is available inside the kernel only for rt-
mutexes, for the purpose of implementing PIP.

7



2. rres bwi block(), called when a task blocks on
an rt-mutex, that enforces the new BWI blocking rule
(Sec. 4.1);

3. rres bwi unblock(), called when a task un-
blocks from an rt-mutex, that enforces the BWI un-
blocking rule;

4. rres bwi detach(), called when a task is de-
tached from avres.

The produced code can be found on the AQuoSA CVS
repository, temporarily residing in a separate development
branch. It will be merged soon in the very next releases of
AQuoSA. It has been realized on top of the 2.6.21 kernel
release and tested up to the 2.6.22 release.

In Tab. 1 the impact of the implementation on the source
code of AQuoSA is briefly summarized.

added modified removed

source files 2 0 0

lines of code 260 6 0

Table 1: Impact of our modification on AQuoSA sources.

6 Experimental evaluation

In this section we present some results of the experi-
ments we ran on a real Linux system, with our modified ver-
sion of AQuoSA installed and running, and with a synthetic
workload provided by ad-hoc designed programs. These ex-
periments are mainly aimed at highlighting features of the
BWI protocol under particular blocking patterns, and gath-
ering the corresponding overhead measurements.

6.1 Examples of execution

In the first example we have two tasks,τA andτB, shar-
ing a mutex. τA has a computation time of2 msec and a
period of5 msec, and is given a reservation of2 msec ev-
ery 5 msec. τB has a computation time of6 msec and a
period of15 msec, and is given a reservation of2 msec ev-
ery 5 msec. In Fig. 2 we show the two schedules obtained
with (bottom schedule) and without (top schedule) BWI.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τA

τB

L(1)
1

U(1) L(1)
1

U(1)

L(1)
1 1 1

U(1) L(1)
1 1 1

U(1)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τA

τB

L(1)
1 1

U(1) L(1)
1

U(1) L(1)
1

L(1)
1

U(1)

L(1)
1 1

U(1) L(1)
1 1

U(1)

Figure 2: BWI effectiveness in reducing the tardiness

Notice that the use of BWI notably reduces the tardi-
ness of both tasks, improving the system performance. This
comes from the fact thatτB always arrives first and grabs
the lock on the shared mutex. If BWI is not used, thenτA is
able to lock the mutex and run only afterτB ran for2 msec
each5 msec time interval and completed its6 msec execu-
tion (at which instant it releases the lock). Thus,τA skips
repeatedly the opportunity to run every twovres instances
out of three: quite an outstanding waste of bandwidth. If
BWI is in place, as soon asτA arrives and blocks on the mu-
tex,τB is attached to itsvres and completes execution much
earlier, so thatτA is now able to exploit twovres instances
out of three, and the system does not waste any reserved
bandwidth at all.

In Fig. 3 we show how the protocol is able to effectively
enforce bandwidth isolation, by means of an example con-
sisting of 5 tasks:τA andτC sharingm1, τD andτE sharing
m2, andτB. Notice thatτA does not share any mutex with
τE . Also, τB has an earlier deadline thanτC andτE , but a
later one thanτA, and this is a possible cause of priority in-
version. When BWI is not used (top schedule), afterτC and
τE having lockedm1 andm2 (respectively), they are both
preempted byτB , and the inversion occurs. Furthermore,
as a consequence ofτE succeeding in lockingm2, since it
has earlier deadline thanτC , τA misses its deadline, which
means bandwidth isolation is not preserved.

0 2 4 6 8 10 12 14 16 18 20 22 24

τA

τB

τC

τD

τE

L(1)
1

U(1)

L(1)
1 1

U(1)

L(2)
2

U(2)

L(2)
2 2

U(2)

0 2 4 6 8 10 12 14 16 18 20 22 24

τA

τB

τC

τD

τE

L(1)
1 1

U(1)

L(1)
1

U(1)

L(2)
2 2

U(2)

L(2)
2 2

U(2)

Figure 3: Example of BWI enforcing bandwidth isolation

On the other hand, when using BWI (bottom schedule),
priority inversion is bounded, sinceτB is no longer able to

8



preemptτC nor τE . Moreover, the behaviour ofτE andτD

can only affect themselves, between each others, and can no
longer causeτA to miss its deadline, and this is the correct
behaviour. Indeed,τD andτE are interacting tasks, and it is
not possible to provide reciprocal isolation between them.

In the last example, in Fig. 5, we demonstrate the ef-
fect of BWI on bandwidth and throughput. We see (with
no reclamation policy enabled) the protocol removes the
waste of bandwidth due to blocking. In fact, while a task
is blocked the bandwidth reserved for itsvres can not be
exploited by anyone else, if BWI is not in place. This is
not the case if we use BWI, since when a task blocks its
lock-owner is bound to such avres and can consume the
reserved bandwidth. Furthermore, thanks to our modifica-
tion to the blocking rule (Sec. 4.1), this is also true in case
of nested critical sections. For this example we used eight
tasks,τA, τB, . . . , τH . The mutexes are five withτA using
m0, m1 andm2; τB usingm2, m3 andm4; τC usingm1

andm4; τD usingm1; τE usingm4; τF usingm2; τG using
m0; τH usingm0 too. Each taskτi is bound to avres with
Ui = 10/100 (10% of CPU). The locking scheme is choose
to be quite complex, in order to allow blocking on nested
critical sections to occur. As an example of this in Fig. 4 the
wait for graph at timet = 40 sec, when all the tasks butτA

are blocked, is depicted.

Figure 4: Wait-for graph for the example in Fig. 5. The numbers
beside each task are the mutex(es) it owns. The number next to
each edge is the mutex the task is waiting for.

Coming back to Fig. 5, the thick black line is the total
bandwidth reserved, for each time instantt, for all the ac-
tive vres. The thin black horizontal line represents the av-
erage value of the bandwidth. The thick gray line, instead,
is the CPU the various running tasks are actually using and
the thin gray line is its mean value. The thick black curve
stepping down means a task terminated and itsvres being
destroyed, and so time values on the graphs are finishing
times.

Comparing the two graphs it is evident that, when BWI
is used (left part),100% of the reservedCPU bandwidth is
exploited by the running tasks, both instantaneously and on
average. On the contrary, without BWI (right part) there
exist many time instants during which the bandwidth that
the running tasks are able to exploit is much less than what it
has been reserved at that time, and the mean value is notably
lower than the reserved one too. This means some reserved
bandwidth is wasted. Finally, notice finishing times are are

Event Max. exec. (µsec) Avg. exec. (µsec)

blocking
BWI unused 0

used 1

BWI unused 0.01
used 0.169

unblocking
unused 0

used 3

unused 0.052
used 0.116

Table 2: Max and mean execution times, with and without BWI

much smaller with BWI enabled.

6.2 Overhead evaluation
We also evaluated the computational overhead intro-

duced by our implementation. We ran the experiments de-
scribed in the previous section on a desktop PC with 800
MHz Intel(R) Centrino(TM)CPU and 1GB RAM and mea-
sured mean and maximum times spent by AQuoSA in corre-
spondence of task block and unblock event handlers, either
whenPTHREAD PRIO INHERIT was used and not.

BWI context switches #

unused
taskτA 26
taskτB 34

used
taskτA 25
taskτB 34

Table 3: context switch number with and without BWI using pe-
riodic sleeping tasks

Tab. 2 shows the difference between the measured values
with respect to the ones obtained when running the original,
unmodified version of AQuoSA (average values of all the
different runs)5.

BWI context switches #

unused
taskτA 607
taskτB 414
taskτC 405

used
taskτA 343
taskτB 316
taskτC 405

Table 4: Context switch number with and without BWI using
greedy tasks.

As we can easily see, the introduced overhead is negli-
gible for tasks not using the protocol. Anyway, also when
BWI is used, the overhead is in the order of one tenth of
microsecond, and this is definitely an acceptable result.

With respect to context switches, we see in Tab. 3 that the
protocol has practically no effect if typical real-time tasks,
with periodic behaviour, are considered.

On the contrary, if “greedy” tasks (i.e., tasks always run-
ning without periodic blocks) are used, Tab. 4 shows that
the number of context switches they experience is dramat-
ically smaller when using BWI. This is due to the bonus
bandwidth each task gets thanks to the protocol.

7 Conclusions and Future Work

In this paper, we presented an improved version of the
BWI protocol, an effective solution for handling critical sec-

5Note that, in the latter case, the use ofPTHREAD PRIO INHERIT by
tasks implies the use of the original PIP protocol, not the BWI one.

9



Figure 5: Resource usage with BWI

tions in resource reservation based systems. We also pro-
posed an implementation of the protocol inside AQuoSA, a
reservation framework working on Linux. Finally, we ran
some experiments in order to evaluate the overhead the pro-
tocol introduces when used on such a concrete system.

Our modifications improve correctness and predictabil-
ity of BWI, enable deadlock detection capabilities and en-
force better handling of nested critical sections. The im-
plementation is lean, simple and compact, with practically
no need of modifying the framework core algorithms and
structures. The experimental results show this implemen-
tation of BWI is effective in allowing resource sharing and
task synchronization in a real reservation based system, and
also has negligible overhead.

Regarding future works, we are investigating how to in-
tegrate ceiling like mechanisms inside the protocol and the
implementation, in order to better deal with the problem of
deadlock, so that we can prevent instead of only check for
it. Work is also in progress to modify a real multimedia
application so that it will use the AQuoSA framework and
the BWI protocol. This way we will be able to show if our
implementation is useful also inside real world applications
with their own blocking schemes.

Other possible future works include the investigation
of more general theoretical formulation to extend the RR
methodologies and the BWI protocol to multiprocessor sys-
tems. Also, it would be interesting to adapt the AQuoSA
framework to thePREEMPT RT kernel source tree, so to
benefit from its interesting real-time features, especially the
general replacement, within the kernel, of classical mutexes
with rt-enabled ones.

References

[1] Linux Testbed for Multiprocessor Schedul-
ing in Real-Time Systems (LITMUSRT ).
http://www.cs.unc.edu/ anderson/litmus-rt/.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. InProc. IEEE Real-Time Systems Sympo-
sium, pages 4–13, Madrid, Spain, Dec. 1998.

[3] L. Abeni and G. Lipari. Implementing resource reservations in linux.
In Real-Time Linux Workshop, Boston (MA), Dec. 2002.

[4] T. P. Baker. Stack-based scheduling of real-time processes. Real-
Time Systems, (3), 1991.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation.Algorithmica,
6, 1996.

[6] M. Caccamo and L. Sha. Aperiodic servers with resource con-
straints. InIEEE Real Time System Symposium, London, UK, De-
cember 2001.

[7] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.
ACM Comput. Surv., 3(2):67–78, 1971. ISSN 0360-0300.

[8] T. Cucinotta. Access control for adaptive reservationson multi-user
systems. InProc.14th IEEE Real-Time and Embedded Technology
and Applications Symposium (to appear), April 2008.

[9] Z. Deng and J. W. S. Liu. Scheduling real-time applications in open
environment. InProc. IEEE Real-Time Systems Symposium, Dec.
1997.

[10] U. Drepper and I. Molnar. The native posix thread library for linux.
Technical report, Red Hat Inc., February 2001.

[11] H. Franke, R. Russel, and M. Kirkwood. Fuss, futexes andfurwocks:
Fast userlevel locking in linux. InOttawa Linux Symposium, 2002.

[12] T. M. Ghazalie and T. Baker. Aperiodic servers in a deadline schedul-
ing environment.Real-Time Systems, 9, 1995.

[13] G. Lipari and C. Scordino. Current approaches and future opportini-
ties. InInternational Congress ANIPLA 2006. ANIPLA, November
2006.

[14] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization in
reservation-based real-time systems.IEEE Trans. Computers, 53
(12):1591–1601, 2004.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.Journal of the Associa-
tion for Computing Machinery, 20(1):46–61, Jan. 1973.

[16] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Re-
serves: An Abstraction for Managing Processor Usage. InProc. 4th
Workshop on Workstation Operating Systems, 1993.

[17] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA –
adaptive quality of service architecture.Software: Practice and Ex-
perience, on-line early view, 2008.

[18] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource Ker-
nels: A Resource-Centric Approach to Real-Time and Multimedia
Systems. InProc. Conf. on Multimedia Computing and Networking,
January 1998.

[19] R. R. Rajkumar, L. Abeni, D. de Niz, S. Ghosh, A. Miyoshi,and
S. Saewong. Recent Developments with Linux/RK. InProc. 2nd
Real-Time Linux Workshop, Orlando, Florida, november 2000.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization.IEEE Transactions
on Computers, 39(9), September 1990.

[21] U. Steinberg, J. Wolter, and H. Hartig. Fast component interaction
for real-time systems. InProc.17th Euromicro Conference on Real-
Time Systems (ECRTS’05), pages 89–97, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2400-1.

10


