An efficient implementation of the BandWidth Inheritance protocol
for handling hard and soft real-time applications in the Linux kernel *

Dario Faggioli, Giuseppe Lipari and Tommaso Cucinotta
e-mail: d.faggioli@sssup.it, g.lipari@sssup.it, t.auatta@sssup.it
Scuola Superiore Sant’/Anna, Pisa (ltaly)

Abstract it already provides many of the needed services: it has an
open source license and an huge base of enthusiastic pro-
This paper presents an improvement of the Bandwidthgrammers as well as a lot of software running on it. Fur-
Inheritance Protocol (BWI), the natural extension of the thermore, it presents a standard programming interface.
well-known Priority Inheritance Protocol (PIP) to resoerc Due to the increasing interest from the world of embed-
reservation schedulers. The modified protocol allows for a ded applications, Linux is also being enriched with more
better management of nested critical section, removes un-and more real-time capabilities [13], usually proposed as
needed overheads in the management of task block and unseparate patches to the kernel, that are progressivelg bein
block events, and introduces a run-time deadlock detectionintegrated into the main branch. For example, a small group
mechanism at no cost. of developers has proposed the PREEMRI patch which
Also, an implementation of the new protocol on the Linux greatly reduces the non preemptable sections of code in-
kernel is presented, along with experimental results gath- side the kernel, thus reducing the worst-case latencies. Th
ered while running some synthetic application load. Pre- support for priority inheritance can be extended to in-kérn
sented results prove the effectiveness of the proposed soluocking primitives and a great amount of interrupt handling
tion in reducing latencies due to concurrent use of resosirce code has been moved to schedulable threads. From a pro-
and in improving temporal isolation among groups of inde- gramming point of view, Linux now supports almost en-
pendent tasks. Also, we show that the introduced overheadirely the Real-Time POSIX extensions, but the mainstream

is low and negligible for the applications of interest. kernel still lacks support for such extensions like sparadi
servers or any Resource Reservation techniques, that would
1 Introduction allow the kernel to provide temporal isolation.

Embedded q ¢ q Resource Reservation (RR) is an effective technique to
mbedded systems are nowadays part of our everydays o qyjje hard and soft real-time applications and to pro-

Iife..As their popglarity and pervasiveness increasesgthe vide temporal isolation among them in open and dynamic
Qewces are.requwed tP provide more and more funCt'on"’ll'systems. According to this technique, the resource band-
IFy, thus their complexity grows higher anq h|gher_. In_par_- width is partitioned between the different applicationsj a
ticular, embedded systems now not only find applicationin », \errun in one of them cannot influence the temporal be-
the domain of se_lf-cont_alne_q, h_ard real-Ume, safetyaalti havior of the others.
oo In sandardResoure Resevaon o lsks ar on
ious degrees of time-sensitiveness and QoS reql’Jirements sidered as_mdependent. In practical applications, idstea

" tasks may interact due to the concurrent access to a shared

The requirements on the real-time operating system plat'resource, which commonly requires the use of a mutex

form on which such applications are |mplemen_teq Increasessemaphore in order to serialize those accesses. For example
in parallel. The RTOS must be robust (also to timing faults),

) . a Linux application may consist of one multi-threaded pro-
secure (also to denial of service attacks) and dependable bb y P

Finally. it i) dd . licati ith cess, and threads may interact and synchronize each other
inatly, It must support open and dynamic applications wi through pthread mutexes. In this case, it is necessary to
QoS requirements.

For th Li is b) h ferred use appropriate resource access protocols in order to bound
h or :c ese reas_onsl, mufx 'Sb z%orgmg the prei e:cre the priority inversion phenomenon [20]. While implemen-
choice for a certain class of embedded systems. In fact,,iiong of scheduling policies for QoS guarantees on Linux

*This work has been partially supported supported by the [&a0 exist [19, 1], the_y do n(_)t provide support for appropriate
FRESCOR FP6/2005/IST/5-034026 project. management of interactions among threads.

Contributions of this paper. In a previous work [14], the

missed deadlines over a given interval of time is often used

Bandwidth Inheritance (BWI) Protocol has been proposed as a valid measure for the QoS experienced by the user.

as the natural extension of the Priority Inheritance Proto-
col [20] in the context of Resource Reservations.

An effective technique to keep the number of missed
deadlines under control is to use Resource Reservation [18,

In this paper, we extend that work with three important 2] scheduling algorithms. According to these techniques,
contributions: first, we propose a simplification of the BWI each task is assigned a virtual resousgesf), with a max-
protocol that allows for a much more efficient implemen- imum budget) and a period®. Resource Reservations pro-
tation, for both memory and computational requirements. vide thetemporal isolatiorproperty to independent tasks: a
This is particularly relevant in the context of embedded sys task is guaranteed to be scheduled for at I€ame units
tems. We also prove that the simplifications do not compro- for every period ofP time units, but at the same time, in
mise the original properties of the protocol. Second, we order to provide guarantees to all tasks in the system, the
present an efficient deadlock detection mechanism basednechanism may not allow the task to execute for more than
on BWI, that does not add any overhead to the protocol it- that amount.
self. Third, we presenta real implementation of the protoco Many RR algorithms have been proposed in the litera-
within the Linux operating system, based on the AQUOSA ture, for both fixed priority and dynamic priority schedul-
Framework and the pthread mutex API, that makes the pro-ing, and the work presented in this paper is applicable to all
tocol widely available for soft real-time applications. of them. However, our implementation is based on a variant

Also, we present experimental results that highlight the of the Constant Bandwidth Server.

Eif;e:tlveness of our BWI implementation in reducing laten- 22 Critical Sections
Real-time systems are often designed as a set of concur-
Organization of the paper The remainder of the paper rent real-time tasks interacting through shared memony dat
is organized as follows: Sec. 2 provides some prerequisitestructures. Using classical mutex semaphores in a real-tim
definitions and background concepts. Sec. 3 summarizesystem is prone to the well known problem of unbounded
previous and alternative approaches to the problem. Sec. 4yriority inversion [20]. Dealing correctly with such a phe-
describes our modification to the BWI protocol, focussing nomenon is very important, since it can jeopardize the real-
on the achieved improvements. Sec. 5 focusses on detail§ime guarantees and cause significant QoS degradation and
about the actual implementation of the modified protocol waste of resources. Effective solutions have been proposed
on Linux, while Sec. 6 reports results gathered from experi- in classical real-time scheduling algorithms, such as the P
mental evaluation of the described implementation. Fynall Ority Inheritance Protocol (P|P), the Priority Ce|||ng Ryo
Sec. 7 draws some conclusions, and quickly discusses poscol (PCP) [20] and the Stack Resource Policy [4].
sible future work on the topic. In particular, PIP is very simple to implement, it can
work on any priority-based scheduling algorithm (both for
fixed and dynamic priority) and does not require the user
to specify additional scheduling parameters. According to
PIP, when a task;, is blocked trying to access a critical sec-
tion already locked by a lower priority task, 7, lends its
priority to 7; for the duration of the critical section. When
7, releases the critical section, it is given back its priofity
this paper we discuss an extension of the PIP for resource
reservations.

2.3 Constant Bandwidth Server

2 Background
2.1 System Model

A real-time taskr; is a sequence of real-time job’s ;,
each one modeled by an arrival timg;, a computation
time ¢; ; and an absolute deadling ;. A periodic (spo-
radic) task is also associated a relative deadlihe such
thatVj,d, ; = a;; + D;, and a period (minimum inter-
arrival time)T; such that; ;11 > a; ; + T;.

Given the worst case execution time (WCET)ds =
max,;{c; ; }, the processor utilization factdr; of 7; is de- _ .
fined asl/; = <. The Constant BgndW|dth- Server (QBS [2]) is a we[l-

In this pape}, we considepen system®], where tasks known RR schgdulmg algorithm Wo.rkmg on top of Earll-
can be dynamically activated and killed. In open systems, €St Deadline First (EDF [15]). As in any RR algorithm,
tasks belonging to different, independently developed, ap €ach task is associatedistual resourcewith parameters)
plications can coexist. Therefore, it is not possible to-ana (the maximum budget) an# (the period). Eaclres can
lyze the entire system off-line. be seen as a sppr_ad|c tE.iSk Wlth. Wor.st-case execution time

Also, hard real-time tasks must respect all their dead- €ual to@ and minimum inter-arrival time equal . The

lines. Soft real-time tasks can tolerate occasional vimrhast 1 , . :

. . . . We use the term virtual resource instead of the classical sarver,
_Of their t!mlng ConStr_amtS’ lLe., it COUld_ happen that some 1, avoid confusion in readers that are not expert of aperisdivers in
job terminates after its absolute deadline. The number ofreal-time scheduling.

EDF system scheduler uses thes parameters to schedule BWI unblocking rule when taskr; releases the lock oR

the associated tasks. and wakes up;, thenr; is discarded from the list of
The fundamental idea behind CBS is that each request vres S;. If othervres addedr; to their list, they have to
for a task execution is converted into a request of the cor- replacer; with ;.

respondingres with associated a dynamic deadline, calcu-
lated taking into account the bandwidth of tres. When

the task tries to execute more than its associatedbud-
get, thevres deadline is postponed, so that its EDF priority
decreases and it is slowed down.

The CBS algorithm guarantees that overruns occurring

on taskr; only affectr; itself, so that it carstealno band-
width assigned to any other task. This form of temporal

protectionproperty is also called Bandwidth Isolation Prop- A blocking chain between two tasks andr; is a se-
J

erty (BIP [2]). quenceH; ; = {7, R1,72,...,Ry,_1,7,} Of alternating

2.4 Critical Sections and the CBS algorithm tasks and resources, such that, the first and the last tasks
in the chain arer;, = 7, and7, = 7;, and they access,
respectively, resourceB; and R,,_1; each taskr; (with

1 < k < n) accesses resourég, in a critical section nested

BWI is considered the natural extension of PIP to re-
source reservations. In fact, when a task is blocked on a
mutex, the lock-owner task inherits its entires. In other
words, the owner task; can execute on its owes andin
the inheritedrres (the one with the highest priority), so that
the blocking time ofr; is shortened. Most importantly, the
BWI protocol preserves the bandwidth isolation properties
between non-interacting tasks.

Unfortunately, when two tasks belonging to different
vres share mutually exclusive resources, the bandwidth iso-

lation property is broken. In fact, one assumption of every = - X
inside a critical section o®;,_;. For example, the follow-

RR algorithm is that theres with the highest priority should . blocki hai N : f
be executed at each instant. However, when using mutex"9 Plocking chainfy 5 = {71, R1, 7, Ry, 75} CONsists 0

semaphores, a task (and its correspondirg) could be 3 tasks:7; accesses resourdg, with a mutexmo; 7> ac-
blocked on the semaphore and not able to execute. Even i](:esseng with a critical section nested inside a critical sec-
we are able to bound the blocking time of eacds by using tion onRy; 7y accesse;. At run-time,r; can be directly

an appropriate resource access protocol like the PIP, ve sti blo_lcfked by|:2 and(;ndlregtly bloc}(equyga v itth
have to perform a careful off-line analysis of all the catic WO tasksr; andr; areinteractingitand only if there ex-

section code, in order to be able to compute the bIocking'StS ablocking chaw_betv_veenr_l- andr;. The BWI protoco_l
time and use it in the admission control policy. Moreover, guarantees bandwidth isolation between pairs of non inter-

using the PIP with resource reservations is not straightfor acting tasks: if; andr; are not interacting, the behavior of
ward, since it is not clear, for example, the budget of which cannotinfluence the behavior ofand viceversa.

vres should be depleted and the deadline of which should be3 Related Work

postponed when an inheritance is in place. o _

Such a limitation is hard to tolerate in modern systems, Many practical |mplgmentat|0ns of the RR framework
since multi-threaded applications are quite common, es-Nave been proposed since now. In the context of general-
pecially within multimedia environments, and the various PUrPOse OSes, the most widely known is probably Lin-
tasks often need to communicate by means of shared meml-JX/RK [19], de_ve_loped as a research project at CM_U and
ory data structures needing mutual exclusive access. Fofater commercialized by TimeSys. More recently, an imple-

this reason the BandWidth Inheritance protocol (BWI [14]) mentation of the Pfair [S] scheduling algorithm for reserv-

has been proposed as an extension of PIP suitable for resefNd shares of the CPU in a multi-processor environment, in
vation based systems. the Linux kernel, has been developed by H. Anderson et

]) al. [1] in the LITMUSET project. However, to the best
2.5 The BandWidth Inheritance Protocol of our knowledge, these approaches did not provide support

The description of BWI in this section is not meant to for mutually exclusive resource sharing. S
be exhaustive, and the interested reader is remanded to [14] A quite common approach [12] when dealing with crit-

for any further detail. The BWI protocol works according ical sections and capacity-based servers is to allow a task
to the following two rules: to continue executing when tlvees exhausts its budget and

the task is inside a critical section. The extra budget thle ta
BWI blocking rule when a task; blocks trying to access has been provided is then subtracted from the next replen-
a shared resourde already owned by another task ishments. Coupling this strategy with the SRP [4] reduces
thenr; is added to the list of the tasks served by the the priority inversion phenomenon to the minimum. The
vres S; of 7;. If 7; is also blocked, the chain of blocked technique has been applied to the CBS algorithm in [6]. In
tasks is followed until one that is not blocked is found, general, this approach is very effective for static systems
and all the encountered tasks are added to the list ofwhere all information on the application structure and on
Si; the tasks is known a-priori. However, it is not adequate to

open and dynamic systems. In fact, in order to computewhat follows, we assume that each task competing for ac-
the preemption levebf all the resources, the protocol re- cess to shared resources is served by a dedieated
quires.that the programmer declares in advance all the taskg, 1 Nested Critical Section Improvement

that will access a certain resource. Moreover ks pa-

rameters have to be fixed, and cannot be easily changed at In presence of nested critical sections, the two BWI rules
run-time. Finally, this approach cannot protect the system do not correctly account for all possible situations. Cdasi
from overruns of tasks while inside a critical section. the case of a task that blocks on another tas, after hav-

An approach similar to BWI protocol has been imple- ing been added to sonvees S}, different from its original
mented in the L4 microkernel [21]. The Capacity-Reserve ON€ ©:), due to previous inheritance (i.e., another tasis
Donation (CREDO) is based on the idea of maintaining a Plocked waiting forr; to release some lock). By following
task state contesnd ascheduling contexts two, separated ~ the blocking rule of BWI, task;; is added only to5;, but,
and independently switchable data structures. Accordingt Pecause alse, is blocked waiting forr;, the blocking de-
the authors, the technique can be applied to either PIP od@ys induced orr, may be reduced if; would have added
Stack-Based PCP. Although being quite effective this mech-10 S» as well.
anism is thoroughly biased toward message passing micro- N general, we are saying thaf should be attached to
kernel system architectures, and cannot be easily traedpos all the vres to which 7; was bound (both directly and by
to shared memory systems. Furthermore, to enable PIP oinheritance due to BWI) before blocking itself.

SRP on top of CREDO, it is necessary to carefully assign ~AS an example, consider the situation depicted in Fig-
the priority of the various tasks in the system, otherwige th ure 1, where we have four tasks,, 75, 7¢ and 7p,
protoco| can not work proper|y_ each bound to its ownres. S haSUSA = 6/25 utiliza-

Also, in the context of micro-kernels, Mercer et al. [16] tion, Sp hasUs, = 3/20 utilization, Us. = 3/15 and
presented an implementation of a reservation mechanisn/s, = 4/10. 74, 7c and7p use mutexn; andr, andrp
on the real-time Mach OS. Interestingly, the implementa- US€ mutexns. Also noticer, acquires the second mutex
tion allowed for accounting the time spent within kernel While holding the first one (nested critical section).
services, when activated on behalf of user-level reserved In this figure, and in all the figures of Sec. 6, symbols
tasks, to the reserves of the tasks themselves. Kernel serL(;) andU(;) denote wait and signal operations on mu-
vices might be considered, in such context, as shared retexm;. Light-gray filled rectangles denote tasks executing
sources to which applications concurrently access. How-inside a critical section, with the number in the rectangle
ever, the problem of regulating application-level critica Peing the acquired mutex. Vertical dashed arrows denote

sections managed through explicit synchronization primi- the time instants a task is attached (and detachedytesa
tives, so to avoid priority inversion, is not addressed. different from its own one due to BWI inheritance. White

All this given, we say BWI is a suitable protocol for re- filled ones denote a task being able to execute insidesa
source sharing in open, dynamic embedded systems, for thélifferent from its original one thanks to BWI, with the num-
following reasons: ber in the rectangle being the mutex that caused the inheri-

tance.

e BWIis completely transparentto applications. As with At time t = 7 7¢ blocks on mutexn, owned byr,,

the PIP, the user must not specify additional scheduling and -, is added to theres of 7. Then, at timet = 11,
parameters, as “ceiling” or “preemption-level”; 71 blocks on mutexn; too. Again,r4 is attached to the

e BWI provides bandwidth isolation between non- Vres of 7p, and it can now run inside any of the threes
interacting tasks, even in the case of tasks that overrun€xhausting their budget on time instants 9 (for 7¢) and
inside a critical section. Therefore, it is not necessary t = 13 (for 7p).

to implement any additional budget protection mecha- ~ SUPpose that at time = 15 74 blocks on mutexn,:
nism for the critical section length; honoring the original BWI rulerp is added only to theres

of 74, whereasr4 remains attached to thees of rp and

e BWI is neutral to the underlying RR algorithm and ¢, although being blocked. In this way; can not take

does not require any special property of the scheduler. advantage of the bandwidth assigneddaandrp, delaying
This allows us any modification of the scheduling al- thejr own unblocking. Notice this behavior is incidentd: i

gorithm without the need to reimplement BWI. 7c andp would start executingfter 74 blocks onms,
4 Improvements to the protocol then7p would have been added to all thees of the three
tasks.

In this section, we focus on the limitations of the original . . .
formulation of the BWI protocol, and propose two modifi- 4.2 Simplified BWI blocking rule
cations to its rules that, without compromising the guaran- In order to face with the just shown issue, we propose a
tees, allow for a simplification of the implementation. In rewrite of the BWI blocking rule as follows:

TA

B

TC

™D

L) () additionally bound tasks in those servers. Since each task
h__l_l I I [T l 7; can, at timet, be blocked at most by only one other task
L() 1 i l 75, the just stated property always holds.
Ah__TI ! ! As an example if we have:
i %(1) 1 l
: e taskr, owningm; and running;

% l e taskrp owningmy and blocked omn; (owned byr,);

0 2 4 6 8 10 12 14 16 18 20 22 24 26 L] taSkTC 0Wn|ngm3 and bIOCked OMno (OWned byTB),

Figure 1: example of nested blocking situation not correctly han- when a fourth task, taskp, tries to lockms, it blocks.
dled by the original BWI protocol According to original BWI protocol, we have to bing:,
7 and 7,4 to thevres of 7p. In the new formulation we
only bind74 (the sole running task).

The main consequence of the new blocking rule on
the implementation is lower memory occupation of the
data structure needed by BWI, what is particularly rele-
vant mainly in the context of embedded systems, especially
when the task set is characterized by tight interactions and
nested critical sections would cause the run-time creation

Basically, the difference between the original and the non-trivial blocking trees. In fact, even this is not neeess
new BWI formulation may be highlighted in terms of the ily of practical relevance (in a well-designed system inter
invariant property of the algorithms. To this purpose, con- actions should be kept at the bare minimum), the memory
sider the wait-for-graph at an arbitrary point in time, wer overhead complexity of the new BWI formulationlisear
nodes represent tasks and an edge from mod&® node in the number of interacting tasks, while in the original BWI
Tp denotes that some resource is heldgyand requested ~ formulation it wasguadratic
by 74. Now, consider any ready-to-run task and letG; 4.3 Correctness
denote the set of tasks directly or indirectly blocked on mu- . o
texes held byr;. Well, the new BWI formulation has the ~ The original description of the BWI protocol [14] was
invariant property that the running task is bound to all the @companied by a proof of correctness in the domain of
vres of the tasks inGZ;, so that eachres of any such task hard real-time systems. The proof aimed at showing that, if
needs to bound dynamically (due to BWI) at most one task the maximum interferences of the interacting tasks is prop-

(the ready-to-run oney,), in addition to the one (blocked) erly accounted for in the admission control test, then the
explicitly bound to it. Furthermore, the original BWI for- System scheduled with BWI allows all tasks to respect their

mulation also required each of theses to be dynami- deadlines. The following result constitutes the basistier t

cally bound (due to BWI) to all (blocked) tasks found in Proof:
the blocking chain: from the task explicitly bound to it up
to Tj-

Therefore, the following property holds for the new BWI
formulation:

new BWI blocking rule when a taskr; blocks while try-
ing to access a shared resouiRealready owned by
another task, the chain of blocked tasks is followed un-
til one that is not blocked is found, let it bg. Then,
7; is added to theres 7; belongs to. Furthermore;
is replaced withr; in all vres that previously added
to their task list due to this rule, if any.

Lemma 1. Each activevres always has exactly one ready
task in its list.

Proof. The lemma is clearly valid before any task blocks.

BWI one-blocked-task property Given avres S;, at each Assume that the lemma holds true_until timevh_en taskr;
time instant it can have in its list of tasks only one other PIOCks on a resource, and, following the chain of blocked
task in addition to its original task. tasks, 7; is selected. Our modified version of the BWI

blocking rule only differs from the original one in stating

This is achieved because, according to the new block-that the running task; replaces; in all the lists of thesres
ing rule, every time a task; blocks, if its mutex-owneris where task; has been bound (as opposed to only the last
blocked too, we need to follow the blocking chain until a one). Notice that; has been added to theses because of
ready taskr; is found, and add it t&;. Obviously a mech- one running task in each of them blocked on a resource di-
anism which make it possible to traverse such a chain ofrectly or indirectly shared with;. Thus, just before block-
blocked task has to be provided by the operating system (asng, if the lemma is truer; was the only ready task in all
the Linux kernel does). Furthermore,7f was on its own of them. Sincer; is blocking,7; becomes on its turn the
already bound to other servers due to BWI, we need to re-only runnable task in evernyes, so the lemma continues to
placer; with 7; in those servers, keepingathe number of hold. O

Although this result may be used to prove that the new for an easier integration of other scheduling policies.-Sec
protocol is still correct, further details are omitted fbet ond, although being a general-purpose time-sharing kernel
sake of brevity. it includes the POSIX priority-based scheduling policies
4.4 Lightweight Deadlock Detection SCHED_FI FO and SCHED_RR, that may result useful for
real-time systems. Third, the recently introduced support
in the kernel mainstream of the support for high-resolution
timers is of paramount importance for the realization of
high-precision customized scheduling mechanisms, and for
the general performance of soft real-time applications.

Unfortunately, the Linux kernel has also some character-
istics that make it impossible to realize hard real-time ap-
plications on it: the monolithic structure of the kernel and
the wide variety of drivers that may be loaded within, the
impossibility to keep under control all the non-preempgabl
sections possibly added by such drivers, the general struc-
Theorem 1. If there is a deadlock situation, the protocol ture of the interrupt management core framework that privi-
detects it at run-time. leges portability with respect to latencies, and othersvHo

_ever, the wide availability of kernel drivers and user-g&pac
Proof. As stated by Coffman et al. [7], necessary condition |ipraries for devices used in the multimedia field constitut

for deadlock is that there is a cycle in the wgit-for-graph also a point in favor of the adoption of Linux in such ap-
of the system. To detect a deadlock, every time a sk pjication area. Furthermore, recent patches proposed by
blocks on another task;, we have to add an edge from the group of Ingo Molnar to the interrupt-management core
to 7; in the graph and check if a cycle has been created.framework, aimed at encapsulating device drivers within
Suppose that just before timéhere are no cycles, and so kernel threads, are particularly relevant as such appesach

no deadlqck is in place, and that at timéask r; blocks. would highly increase predictability of the kernel behawio
Also consider the fact that, from any task, at most one edge At the kernel level, mutual exclusive access to critical

can exit, directed toward the task’s Iock-_owner. Therefore ¢qde sections is managed in Linux through classical spin-
if a cycle has been created by the blocking of taskhen |ocks, RCU primitives, mutexes and rt-mutexes, a variant
7; must be part of the cycle. Hence, following the block- 4t mytexes with support for priority inheritance. The lat-
ing chain fromr;, if a deadlock has been created, we will ey ones are particularly worth to cite, because they allow
come back tar; itself, and so our algorithm can detect all o the availability of the PIP in user-level synchronipati
deadlocks. . primitives. This is not only beneficial for time-sensitive
applications, since thanks to the rt-mutex run-time sup-
port, we have been able to implement the BandWidth In-
heritance protocol without any modification to the kernel
mutex-related logics.

At the user/application level, locking and synchroniza-

Finally, we improved the BWI protocol by adding the
ability to detect deadlocks at run-tirde

Deadlock detection rule when applying the new BWI
blocking rule to a task; that blocks, for each task;
encountered while iterating the blocking chainmgfif
7 = T4, then a deadlock attempt is detected.

This is a lightweight yet effective approach for deadlock
detection and below is a proof of correctness of it.

It is noteworthy that the deadlock detection rule may be
realized with practically zero overhead, adding a compari-
son in the search for a ready-to-run task, while we are fol-
lowing the chain of blocked tasks, according with the block-

[le.

ing ruie tion may be achieved by means of futexes (Fast Uerspace
5 BandWidth Inheritance Implementation muTEX [11]) or of standard POSIX mutexes, provided by
5.1 The Linux Kernel the GNU C Library [10] and, on their turn, implemented

Although not being a real-time system, the 2.6 Linux through futexes. One remarkable peculiarity of futexes and
kernel includes a set of features making it particularlg-sui POSIX mutexes, is that their implementation on Linux in-
able for soft real-time applications. First, it is a fully- volves the kernel (thus a relatively expensive system call)
preemptable kernel, like most of the existing real-time op- only when there is a contention that requires arbitration.
erating systems, and a lot of effort has been spent on re5.2 The AQUOSA Framework

ducing the length of no-n-preem.ptable sections (the major 1he cpu scheduling strategies available in the standard
source of _kerr_1e| latencies). It is noteworthy that the 2.6 | ;ux kernel are not designed to provide temporal protec-
kernel series introduced a new scheduler with a bounded;jon among applications, therefore they are not suitate fo
gxecutmn time, res_ultmg in a highly decrgased schedul-tjme-sensitive workloads. The AQUOSA framework [17]
ing latency. Also, in the latest kernel series, a modular i qijaple at http://aquosa.sourceforge.net) aims andill
framework has been introduced that will possibly allow g gap, enhancing a standard GNU/Linux system with

2The method proposed here differs from the method proposkdiin _scheduling strategies based on the RR techniques described
as it is much more efficient. in Sec. 2.3.

AQUOSA is designed with a layered architecture. At e does not modify the libraries and the APIs;
the lowest level there is a small patch (Generic Scheduler
Patch, GSP) to the Linux kernel that allows dynamically
loaded modules to customize the CPU scheduler behaviour,

e does not remove or alter the core algorithms inside the
framework, especially with respect to:

by intercepting and reacting to scheduling-related events — scheduling: it is not necessary to modify the
such as: creation and destruction of tasks, blocking and implementation of various scheduling algorithms
unblocking of tasks on synchronization primitives, reeeiv available inside AQUOSA;

by tasks of the specis&l GSTOP and Sl GCONT signals). — vres queues: we do not modify the task queues
A Kernel Abstraction Layer (KAL) aims at abstracting the handling, so that the old routines continue to
higher layers from the very low-level details of the Linux work seamlessly;

kernel, by providing a set of C functions and macros that) .)

abstract the needed kernel functionalities. The Resource — blocking/unblocking: when BWI is not re-
Reservation layer (RRES) implements a variant of the CBS quired/enabled the standard behaviour of AQu-
scheduling policy on top of an internal EDF scheduler. The 0SA is not modified by any means.

QoS Manager layer allows applications to take advantage
of Adaptive Reservations, and includes a set of bandwidthUsing BWI Since BWI is the natural extension of PIP
controllers that can be used to continuously adapt the budgefor RR-based systems, in our implementation the pro-
of avres according to what an application needs. An user- tocol is enforced every time two or more tasks, with
space library layer allows to extend standard Linux applica Scheduling guarantees provided through AQUOSAWRR,
tions to use the AQUOSA functionality without any further also share a POSIX mutex that has been initialized with
restriction imposed on them by the architecture. PTHREAD_PRI O.I NHERI T as its protocol. This way the
Thanks to an appropriately designed access controlapplication is able to choose to use BWI or not on a
model [8], AQuOoSA is available not only to tmeotuser (as ~ per-mutex basis. Furthermore, all the code already using
it happens for other real-time extensions to Linux), bubals the Priority Inheritance Protocol automatically benefits o
to non-privileged users, under a security policy that may be BandWidth Inheritance, if the tasks are attached to some
configured by the system administrator. vres.
_ An interesting feature oftheAQuoSAarchitecture isthat Deadlock detection Once a deadlock situation is de-
it does not replace the default Linux scheduler, but cogxist tected, the current implementation may be configured for

with it, giving to soft real-time tasks a higher priority tha realizing one of the following behaviors: 1) the system for-

any pon-real-time Linux ta_sk. F_urthermore, the AQuoSA bids the blocking task from blocking on the mutex, and re-
architecture follows a non-intrusive approach [3] by keep- .« 21 error EDEADLK): 2) the system logs a warning

ing at the bare minimum (the GSP patch) the modifications message notifying that a deadlock took place

needed to the Linux kernel. 54 Implementation Details
5.3 Bandwidth Inheritance Implementation ' P

Design goals and choices The implementation of the The BWI code is completely integrated inside the AQu-
BWI protocol for AQUOSA has been carried out with the 0SA architecture and only entails very little modification t
following design objectives: the following software components:

e to provide a full implementation of BWI; o the KAL layer, where the KAL API has been extended

with macros and functions exploiting the in-kernel rt-
mutexes functionality, for the purpose of providing, for
e to allow the use of BWI on a per-mutex basis; each task blocked on an rt-mutéxthe rt-mutex on
which it is blocked on, and the task that owns such an
rt-mutex;

¢ to allow for compile-time disabling of BWI;

e to impact as low as possible on the AQuoSA code;
to have as little as possible run-time overheads. .
¢ P ¢ the RRES: where the two BWI rules are implemented.

In order to achieve such goals, our implementation:) o
The core of the BWI implementation is made up of a few

e uses the C pre-processor in order to allow compile- changes to the AQUoSA data structures, and of only four
time inclusion or exclusion of the BWI support within main functions (plus a couple of utility ones):

AQUOSA,; . .
_ _ . . 1. rres_bw attach(), called when a task is at-
e does not modify the Linux kernel patch (i.e., BWI is tached to ares:

entirely implemented inside the kernel modules);

4Note that such information is available inside the kerndy dar rt-
SFor a more detailed description, the interested reader efayto [17]. mutexes, for the purpose of implementing PIP.

2. rres_bw _bl ock(), called when a task blocks on Notice that the use of BWI notably reduces the tardi-
an rt-mutex, that enforces the new BWI blocking rule ness of both tasks, improving the system performance. This
(Sec. 4.1); comes from the fact thatz always arrives first and grabs

the lock on the shared mutex. If BWI is not used, tharis

able to lock the mutex and run only aftes ran for2 msec
eachb msec time interval and completed itsmsec execu-
tion (at which instant it releases the lock). Thug, skips
4. rres_bwi detach(), called when a task is de- repeatedly the opportunity to run every twes instances
tached from ares. out of three: quite an outstanding waste of bandwidth. If
BWI is in place, as soon ag arrives and blocks on the mu-
The produced code can be found on the AQUOSA CVS tex, 753 is attached to itsres and completes execution much
repository, temporarily residing in a separate develogmen earlier, so that 4 is now able to exploit twares instances

branch. It will be merged soon in the very next releases of out of three’ and the System does not waste any reserved
AQUOSA. It has been realized on top of the 2.6.21 kernel handwidth at all.

3. rres_bw _unbl ock(), called when a task un-
blocks from an rt-mutex, that enforces the BWI un-
blocking rule;

release and tested up to the 2.6.22 release. In Fig. 3 we show how the protocol is able to effectively
In Tab. 1 the impact of the implementation on the source enforce bandwidth isolation, by means of an example con-
code of AQUOSA is briefly summarized. sisting of 5 tasksr4 andr¢ sharingm;, 7p andrg sharing

me, andrp. Notice thatr, does not share any mutex with

dded dified d . .
| | added | modified | removed | 5. Also, 75 has an earlier deadline thap andrz, but a

[sourcefiles [2] 0 [0 |

[Tnesofcode| 260 | 6 | 0 | later one thamr4, and this is a possible cause of priority in-
o version. When BWI is not used (top schedule), afteand
Table 1: Impact of our modification on AQUOSA sources. 75 having lockedn, andm, (respectively), they are both

. | luati preempted by, and the inversion occurs. Furthermore,
6 Experimental evaluation as a consequence of succeeding in lockingn, since it

In this section we present some results of the experi-has earlier deadline thaf, 74 misses its deadline, which

ments we ran on a real Linux system, with our modified ver- M&ans bandwidth isolation is not preserved.
sion of AQUoSA installed and running, and with a synthetic

workload provided by ad-hoc designed programs. These ex-r, TL(l) U(1)
periments are mainly aimed at highlighting features of the
BWI protocol under particular blocking patterns, and gath- -5 ‘-
ering the corresponding overhead measurements.
6.1 Examples of execution © E(l) "
In the first example we have two tasks, andrg, shar- ™ TL(Q) U(2) l
ing a mutex. 74 has a computation time &msec and a Z
period of5 msec, and is given a reservation 8fmsec ev- el | AL@) U(2)
ery 5msec. 7 has a computation time @fmsec and a =1 [= 1
period of15 msec, and is given a reservation dfnsec ev- 0 2 4 6 8 10 12 14 16 18 20 22 24
ery 5msec. In Fig. 2 we show the two schedules obtained
with (bottom schedule) and without (top schedule) BWI. 74 ﬁfll)_l_‘Um l

II
B |IT
) U(1)) U@) P! 1
™ T I U T I U o T’i'(ll)i ;U(l)
™ ook ok) o)
™ | e |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
L(2) YW(2)
R AR ——
A @) U(1) (UGE) AQ) (1)U(1)
0 2 4 6 8 10 12 14 16 18 20 22 24
. g: (1)T g: U(I)T Figure 3: Example of BWI enforcing bandwidth isolation
H H

On the other hand, when using BWI (bottom schedule),

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
priority inversion is bounded, sincg; is no longer able to

Figure 2: BWI effectiveness in reducing the tardiness

preemptrc nor 7. Moreover, the behaviour of; andrp [Event | Max. exec. fisec) | _Avg exec. fisec) |
BWIlunused 0 BWIlunused 0.01

can only affect themselves, between each others, and can no | bl ocki ng used 1 used 0.169
longer cause 4 to miss its deadline, and this is the correct unbl ocki n unused 0 unused 0.052
9 used 3 used 0.116

behaviour. Indeed;, andry are interacting tasks, and it is
not possible to provide reciprocal isolation between them. tapje 2: Max and mean execution times, with and without BWI

In the last example, in Fig. 5, we demonstrate the ef- _
fect of BWI on bandwidth and throughput. We see (with Much smaller with BWI enabled.
no reclamation policy enabled) the protocol removes the 6.2 Overhead evaluation
waste of bandwidth due to blocking. In fact, while a task We also evaluated the computational overhead intro-
is blocked the bandwidth reserved for ites can not be duced by our implementation. We ran the experiments de-
exploited by anyone else, if BWI is not in place. This is scribed in the previous section on a desktop PC with 800
not the case if we use BWI, since when a task blocks its MHz Intel(R) Centrino(TM)CPU and 1GB RAM and mea-
lock-owner is bound to such aes and can consume the sured mean and maximum times spent by AQuoSA in corre-
reserved bandwidth. Furthermore, thanks to our modifica- spondence of task block and unblock event handlers, either

tion to the blocking rule (Sec. 4.1), this is also true in case whenPTHREAD_PRI O.1 NHERI T was used and not.
of nested critical sections. For this example we used eight

. . . BWI text switches #
tasks,74, 7, ..., 7n. The mutexes are five withy using | | Cotr;f: SW'CZZS |
. . TA
mg, m1 andmy; Tp usingmes, ms andmy; 7¢ Usingm; unused | ookrs 34
andmy; Tp usingms; Tg Usingmy; TF USingms; 7¢ using used IZEETA gi
TB

mp; Ty usingmg too. Each task; is bound to arres with
Ui = 10/100 (10% of CPU). The locking scheme is choose Tapje 3: context switch number with and without BWI using pe-
to be quite complex, in order to allow blocking on nested riodic sleeping tasks

critical sections to occur. As an example of this in Fig. 4 the
wait for graph at time = 40 sec, when all the tasks buty

are blocked, is depicted.

Tab. 2 shows the difference between the measured values
with respect to the ones obtained when running the original,
unmodified version of AQUOSA (average values of all the
different runsy.

[BWI | contextswitches # |
taskta 607
unused taskTp 414
taskTc 405
taskta 343
used tasktp 316
taskTe 405

Figure 4: Wait-for graph for the example in Fig. 5. The numbers])))
beside each task are the mutex(es) it owns. The number next tofable 4: Context switch number with and without BWI using
each edge is the mutex the task is waiting for. greedy tasks.

Coming back to Fig. 5, the thick black line is the total ~ As we can easily see, the introduced overhead is negli-
bandwidth reserved, for each time instanfor all the ac- 9gible for tasks not using the protocol. Anyway, also when
tive vres. The thin black horizontal line represents the av- BW! is used, the overhead is in the order of one tenth of
erage value of the bandwidth. The thick gray line, instead, microsecond, and this is definitely an acceptable result.
is the CPU the various running tasks are actually using and With respectto context switches, we see in Tab. 3 that the
the thin gray line is its mean value. The thick black curve Protocol has practically no effect if typical real-time kas
stepping down means a task terminated andarits being with periodic behaviour, are considered.
destroyed, and so time values on the graphs are finishing On the contrary, if “greedy” tasks (i.e., tasks always run-
times. ning without periodic blocks) are used, Tab. 4 shows that

Comparing the two graphs it is evident that, when BWI the number of context switches they experience is dramat-
is used (left part)100% of the reservedCPU bandwidth is ically smaller when using BWI. This is due to the bonus
exploited by the running tasks, both instantaneously and onPandwidth each task gets thanks to the protocol.
average. Or_1 the_ contrary, V\(ithout _BWI (right par.t) there 7 Conclusions and Euture Work
exist many time instants during which the bandwidth that
the running tasks are able to exploitis much less than whatit In this paper, we presented an improved version of the
has been reserved at that time, and the mean value is notabl§W! protocol, an effective solution for handling criticas
lower than the reserved one too. This means some reserved syote that, in the latter case, the useFHREAD_PRI Ol NHERI T by
bandwidth is wasted. Finally, notice finishing times are are tasks implies the use of the original PIP protocol, not thel Byé.

Bandwidth and CPU Load graph
bwi_test_bandwidth_3, BWHocks used

™= Bandwidth ~ CPU Load

Bandwidth and CPU Load graph
bwi_test_bandwidth_3, BWIlocks not used

== Bandwidth “ CPU Load

‘z;

’ t=68 sec 70
_‘ =80 sec 60
3 50
40 =100 sec 40

20 \— 20

o

time

20 sec
=130 sec

time

Figure 5: Resource usage with BWI

tions in resource reservation based systems. We also pro-[5]
posed an implementation of the protocol inside AQUOSA, a
reservation framework working on Linux. Finally, we ran
some experiments in order to evaluate the overhead the pro-
tocol introduces when used on such a concrete system.

Our modifications improve correctness and predictabil- [*]
ity of BWI, enable deadlock detection capabilities and en- (8]
force better handling of nested critical sections. The im-
plementation is lean, simple and compact, with practically
no need of modifying the framework core algorithms and
structures. The experimental results show this implemen-
tation of BWI is effective in allowing resource sharing and [10]
task synchronization in a real reservation based systean, an
also has negligible overhead.]

Regarding future works, we are investigating how to in- [12]
tegrate ceiling like mechanisms inside the protocol and the
implementation, in order to better deal with the problem of [13]
deadlock, so that we can prevent instead of only check for
it. Work is also in progress to modify a real multimedia [14]
application so that it will use the AQuoSA framework and
the BWI protocol. This way we will be able to show if our
implementation is useful also inside real world applicasio
with their own blocking schemes.

Other possible future works include the investigation [16]
of more general theoretical formulation to extend the RR
methodologies and the BWI protocol to multiprocessor sys- (17
tems. Also, it would be interesting to adapt the AQUOSA
framework to thePREEMPT_RT kernel source tree, so to

(6]

El

[15]

benefit from its interesting real-time features, espectaie (18]
general replacement, within the kernel, of classical medgex
with rt-enabled ones.
[19]
References
[1] Linux Testbed for Multiprocessor Schedul- [20]
ing in Real-Time Systems LITMUSET),
http://ww. cs. unc. edu/ anderson/litnus-rt/.
[2] L. Abeni and G. Buttazzo. Integrating multimedia apptions in [21]

hard real-time systems. IRroc. IEEE Real-Time Systems Sympo-
sium pages 4-13, Madrid, Spain, Dec. 1998.

[3] L.Abeniand G. Lipari. Implementing resource resemas in linux.
In Real-Time Linux WorkshoBoston (MA), Dec. 2002.

[4] T. P. Baker. Stack-based scheduling of real-time preessReal-
Time Systemg3), 1991.

10

S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propoete
progress: A notion of fairness in resource allocatiédgorithmica

6, 1996.

M. Caccamo and L. Sha. Aperiodic servers with resource- co
straints. InIEEE Real Time System Symposilrandon, UK, De-
cember 2001.

E. G. Coffman, M. Elphick, and A. Shoshani. System deekio
ACM Comput. Sury3(2):67-78, 1971. ISSN 0360-0300.

T. Cucinotta. Access control for adaptive reservationanulti-user
systems. IrProc. 14t" |IEEE Real-Time and Embedded Technology
and Applications Symposium (to appeakpril 2008.

Z.Deng and J. W. S. Liu. Scheduling real-time applicagion open
environment. InProc. IEEE Real-Time Systems Symposilrec.
1997.

U. Drepper and I. Molnar. The native posix thread lilyréor linux.
Technical report, Red Hat Inc., February 2001.

H. Franke, R. Russel, and M. Kirkwood. Fuss, futexesfandocks:
Fast userlevel locking in linux. I@ttawa Linux Symposiun2002.

T. M. Ghazalie and T. Baker. Aperiodic servers in a deesdéchedul-
ing environment.Real-Time System8, 1995.

G. Lipari and C. Scordino. Current approaches and &uapportini-
ties. Ininternational Congress ANIPLA 2008NIPLA, November
2006.

G. Lipari, G. Lamastra, and L. Abeni. Task synchrori@atin
reservation-based real-time systemdEEE Trans. Computers53
(12):1591-1601, 2004.

C. L. Liu and J. W. Layland. Scheduling algorithms for Itipro-
gramming in a hard real-time environmerournal of the Associa-
tion for Computing Machinery20(1):46—61, Jan. 1973.

C. W. Mercer, S. Savage, and H. Tokuda. Processor CspRer
serves: An Abstraction for Managing Processor Usagérd. 4th
Workshop on Workstation Operating Systefr#93.

L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. QMOSA —
adaptive quality of service architecturBoftware: Practice and Ex-
perience on-line early view, 2008.

R. Rajkumar, K. Juwva, A. Molano, and S. Oikawa. Reseufer-
nels: A Resource-Centric Approach to Real-Time and Multime
Systems. IrProc. Conf. on Multimedia Computing and Networking
January 1998.

R. R. Rajkumar, L. Abeni, D. de Niz, S. Ghosh, A. Miyoshind
S. Saewong. Recent Developments with Linux/RK. Pimc. 2nd
Real-Time Linux Worksho@rlando, Florida, november 2000.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority intsrce proto-
cols: An approach to real-time synchronizatidEEE Transactions
on Computers39(9), September 1990.

U. Steinberg, J. Wolter, and H. Hartig. Fast componatgraction
for real-time systems. IRroc. 17t* Euromicro Conference on Real-
Time Systems (ECRTS'0F)ages 89-97, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2400-1.

