
Exception-Based Management of Timing Constraints Violations for Soft

Real-Time Applications. ∗

Tommaso Cucinotta, Dario Faggioli

Scuola Superiore Sant’Anna, Pisa (Italy)

{t.cucinotta, d.faggioli}@sssup.it

Alessandro Evangelista

mail@evangelista.tv

Abstract

This paper presents an open-source library for the C lan-

guage supporting the specification and management of tim-

ing constraints within embedded soft real-time applications.

The library provides a set of well-designed C macros that

allow developers to associate timing constraints to code

segments, and to deal with their violations through the well-

established practise of exception-based management.

After a brief overview of the requirements motivating the

work, the exceptions library is presented. Then, the paper

focuses on the specific macros that deal with the specifica-

tion of deadline and execution-time constraints, with a few

notes on how the library has been implemented.

Finally, a few experimental results are shown in order to

discuss the features and limitations of this approach, with

the current implementation (on Linux) that relies almost

completely on POSIX-compliant system calls.

1 Introduction

General Purpose Operating Systems (GOPSes) are be-

ing enriched with more and more support for soft real-time

applications, allowing for an easier development of appli-

cations with stringent timing requirements, such as multi-

media and interactive ones. Still, one of the challenges for

developers is how to specify timing constraints within the

application, and how to properly design the application so

as to respect them.

Furthermore, this kind of systems differ from traditional

hard real-time ones, on a number of different points. First,

a GPOS with a monolithic kernel cannot provide a precise

scheduling of processes. Second, the typical knowledge, by

developers/designers, of the main timing parameters of the

application, such as the execution time of a code segment,

is somewhat limited. In fact, it is not worth to recur to pre-

cise worst-case analysis techniques, and there is a need for

∗The research leading to these results has been supported by the Euro-

pean Commission under grant agreement n.214777, in the context of the

IRMOS Project. More information at: http://www.irmosproject.eu.

using general-purpose hardware architectures (that are opti-

mised for average-case performance, penalising predictabil-

ity) and compression technologies (which cause the execu-

tion times to heavily vary from job to job, depending on

the actual application data). Furthermore, in order to scale

down production costs, a good resources saturation level is

needed. Finally, timing requirements in this context may be

stringent, but they are definitely not safe-critical, therefore

it may be sufficient to fulfil them with a high probability.

Therefore, in such context, timing constraints violations

should be expected to occur at run-time, and developers

need to deal with these events by embedding appropriate re-

covery logic. This usually involves the correct use of timers

and signals, something not always immediate.

This paper presents a framework that allows for adop-

tion of the well-known exception-based management ap-

proach for dealing with timing constraints violations in C

applications. The framework makes it possible to handle

these events similarly to how exceptions are managed in

languages that support such programming paradigm, e.g.,

C++, Java and Ada.

Specifically, two main forms of timing constraints can

be specified: deadline constraints, i.e., a software compo-

nent needs to complete within a certain (wall-clock) time,

and WCET constraints, i.e., a software component needs

to exhibit an execution time that is bounded. Also, the pro-

posed solution allows for an arbitrary nesting of timing con-

straints. In fact, in the expected typical scenario, it is fore-

seen to have one deadline constraint at the outermost level,

and one or more nested WCET constraints.

To the best of the authors’ knowledge, no similar mech-

anism has been previously presented for the C language,

with the same completeness of the one presented here, with

no need to modify the C compiler, and only relying on stan-

dard POSIX features.

Paper outline After a brief overview of the related work

in Section 2, Section 3 identifies the main technical require-

ments that need to be supported by the mechanism, then

1



Section 5 describes the POSIX-based implementation re-

alised for the Linux OS, finally a few experimental results

are presented in Section 6 highlighting the impact of the

Linux kernel configuration on the mechanism precision. Fi-

nally, conclusions are drawn in Section 7 along with direc-

tions for future work.

2 Related Work

The need for having more and more predictable tim-

ing behaviour of system components is well-known within

the real-time community, to the point that modern general-

purpose (GP) hardware architectures are deemed as inap-

propriate for dealing with applications with critical real-

time constraints. In fact, there exist such approaches as Pre-

dictable Timed Architecture [3], a paradigm for designing

hardware systems that provide a high degree of predictabil-

ity of the software behaviour. However, such approaches

are appropriate for hard real-time applications, but cannot

be applied for predictable computing in the domain of soft

real-time systems running GP hardware. Yet, the concept

of deadline exception has been actually inspired by the con-

cept of deadline instruction as presented in [9].

Coming to software approaches relying on the services

of the Operating System (OS) and standard libraries, the

POSIX.1b standard [5] exhibits a set of real-time extensions

that suffice to the enforcement of real-time constraints, as

well as to the development of software components exhibit-

ing a predictable timing behaviour. However, working di-

rectly with these very basic building blocks is definitely

non-trivial. The code for handling timing constraints viola-

tions, as well as other types of error conditions, needs to be

intermixed with regular application code, making the devel-

opment and maintenance of the code overly complex. As it

will be more clear later, the proposed framework improves

usability of these building blocks, by enabling the adoption

of an exception-based management of these conditions.

Such an approach is not new, in fact it is used in other

higher-level programming languages, such as Java, with

the Real-Time Specification for Java (RTSJ) [1] extensions.

These, beyond overcoming the traditional issue of the un-

predictable interferences of the Garbage Collector with nor-

mal application code, also include a set of constructs and

specialised exceptions in order to deal with timing con-

straints specification, enforcement and violation.

Also, the Ada 2005 language [2] has a mechanism that

is very similar to the one presented in this paper, namely

the Asynchronous Transfer of Control (ATC), that allows

for raising an exception in case of an absolute or relative

deadline miss, and/or of a task WCET violation, that cause

a jump to a recovery code segment.

However, the focus of this paper is on the C language,

probably still the most widely used language for embed-

ded applications with high performance and scarce resource

availability constraints. By making such a mechanism eas-

ily and safely available in C, the work presented in this pa-

per contributes in enriching the C language with an essential

feature useful for the development of real-time systems.

Focusing on the C language, the RTC approach proposed

by Lee et al. [7] is very similar to the one that is introduced

in this paper. They theorised and implemented a set of ex-

tensions to the C language allowing one to express typical

real-time concurrency constraints at the language level, and

deal with the possible run-time violations of them, and treat

these events as exceptions. However, while RTC introduces

new syntactic constructs into the C language, requiring a

non-standard compiler, this paper presents a solution based

on a set of well-designed macros that are C compliant and

may be portable across a wide range of Operating Systems.

Furthermore, RTC explicitly forbids nesting of timing con-

straints, while the approach presented in this paper does not

suffer of such a limitation.

Finally, the concept of time-scope introduced in [8] is

also similar to the “try within” code block that is presented

in this paper. However, that work is merely theoretic and

language-independent, and it does not present any concrete

implementation of the mechanism.

3 Requirements Definition

The basic requirements that drive the work of this pa-

per are presented here as drawn out by a simple example:

a multimedia, component based application, designed as a

single thread of execution1 activated periodically or sporad-

ically. For example, consider the Video Decoder applica-

tion, whose behaviour is outlined in the UML Activity Dia-

gram of Figure 1.

From a design level perspective, as Video Decoder will

be co-scheduled with other applications, it would be highly

desirable to characterise each component with such typical

information: (1) WCET (or an appropriate statistic of exe-

cution time distribution); (2) relative or absolute deadline;

(3) minimum period of activation. Also, it might be desir-

able that Video Decoder actually respects both the declared

WCET and the deadline constraint, also in cases of over-

load, e.g., when a frame is particularly difficult to decode.

Now, assume that a Frame Decoder is used in the main

loop of Video Decoder. Due to the in-place timing require-

ments, it would be useful to characterise Frame Decoder

invocations with the WCET to be expected at run-time.

In fact, as shown in Figure 1, such information, plus the

WCETs of the Stream Parser, Filtering and Visualization

components, sum up to the WCET of the Video Decoder

itself. However, video decoding architectures are highly

modular, and make heavy use of third-party video and au-

dio decoding plug-ins, e.g., depending on the stream format.

1For example, the fflay player, part of the widely used open-source

ffmpeg project, is designed as a single threaded application.

2



Figure 1. UML Activity diagram for the example video

decoder thread.

Thus, in order to allow for an appropriate use of Frame

Decoder within real-time applications, it would be highly

desirable for libraries developers to have a WCET estima-

tion such that either: (1) the decoding operation terminates

within the WCET limit, or (2) it is aborted.

The approach that is envisioned in this paper is aimed

at simplifying design of such a complex software, and it is

based on the adoption of an exception-based programming

paradigm. A timing constraint violation is seen as an ex-

ceptional situation whose occurrence must be foreseen by

the programmer, without necessarily subverting the flow of

control that is normally realised.

However, it is clear that the possibility for the program

to jump asynchronously to exception handling code seg-

ments is not something that may be seamlessly incorpo-

rated within an application. The latter should be designed

so as to tolerate this kind of operation abortion, so as to

not introduce memory leaks, and to properly cleanup any

resources that might be associated with the aborting code

segment. For example, a multimedia encoding/decoding li-

brary in which all the needed buffers are allocated at initial-

isation time, and the encoding/decoding functions only op-

erate on these buffers (without any memory allocation nor

mutex locks acquisition), the encoding/decoding functions

may probably be safely asynchronously aborted. If this is

not the case, then one should generally modify the code so

as to catch the deadline exception at appropriate points in

the code, so as to trigger the proper cleanup logic.

From the above sketched example, the following set of

high-level requirements may be identified for the proposed

mechanism.

Requirement 1 it should be possible to associate a dead-

line constraint to a code segment, either specifying relative

or absolute time values;

Requirement 2 it should be possible to associate a WCET

constraint to a code segment;

Requirement 3 when a timing constraint is violated, it

should be possible to activate appropriate recovery logic

that allows for a gracefully abort of the monitored code

segment; also, it should be possible for the recovery code

to either be associated to a generic timing constraint vio-

lation, or more specifically to a particular type of violation

(deadline or WCET);

Requirement 4 it should be possible to use the mechanism

at the same time in multiple applications, as well as in mul-

tiple threads of the same application;

Requirement 5 nesting of timing constraints should be al-

lowed, at least up to a certain (configurable) nesting level.

In fact, this is a key feature for component based design

of real-time applications. For example, not only Video

Decoder should be associated with overall deadline and

WCET constraints, but also Frame Decoder should be as-

sociated with its own WCET constraint;

Requirement 6 it should be possible to cancel a timing

constraint violation enforcement if the program flow runs

out of the boundary of the associated code segment, e.g.,

when it ends normally or when another kind of exception

requests abort of the code segment;

Requirement 7 the latency between the occurrence of the

timing constraint violation and the activation of the appli-

cation recovery code (from here on referred to as handler

activation latency) should be known to the designer/devel-

oper, and it should be possibly negligible with respect to the

task execution time;

Requirement 8 the mechanism should allow the program-

mer to specify some “protected” section of a code segment

that will never be interrupted by a timing constraint viola-

tion notification. Thus, if that happens, the execution of re-

covery code would be delayed while inside such a section;

Requirement 9 the mechanism could provide support for

gathering benchmarking data of the code segments, in-

stead of enforcing their timing-constraints. This opera-

tional mode could be enabled at compile time, and used for

tuning the actual parameters used as timing constraints for

the various code segments;

Requirement 10 the mechanism could be portable to as

many Operating Systems as possible.

3



4 Proposed approach

Here a mechanism complying with the above enumer-

ated requirements is presented, with a focus on the program-

ming paradigm and syntax. First, the generic framework for

exceptions handling for the C language is presented. Then,

the extensions for dealing with timing constraints violations

are presented. Finally, for the sake of completeness, a few

implementation details are discussed.

4.1 Exceptions for the C language

The framework for exception-management for the C lan-

guage is distributed as part of the open-source project Open

Macro Library (OML) 2, whose description is out of the

scope of this paper. OML Exceptions supports hierarchical

arrangement of exceptions, where all exceptions must de-

rive from the common “type” exception. The syntax of

such framework (from here on referred to as OML Excep-

tions) comprises the following macros:

define exception...extends: this macro may be

used to define new application-specific exceptions;

try: this macro delimits the code segment subject to ex-

ception handling;

finally: this macro identifies the code segment that will

be executed both in case of exception and normal try

termination;

handle...handle end: these two macros must en-

close the (optional) when clauses;

when: this macro identifies the code segment that is ex-

ecuted in reaction to each particular type of exception

(or sub-type); the first matching when clause is the one

that catches the exception; if no when clause catches

the exception, then it is automatically re-thrown;

re-throw: this macro may be used to explicitly re-throw

an exception from within a when clause, after it has

been caught.

For example, Figure 2 shows an application that de-

fines a custom exception, ENotReady, extending the

exception basic “type”, which is raised by using the

throw() macro within the foo() function. Finally,

the exception is caught by means of the when() macro

within a handle...end block. The hierarchical arrange-

ment of exceptions is useful for allowing a single when

clause to specify a generic type and catch any exception

descending from the specified one. As all exceptions derive

from exception, a clause when(exception) may be

used for catching any type of exception (similarly to the

catch(...) syntax of C++).

2More information at: http://oml.sourceforge.net.

define_exception(ENotReady) extends(exception);

void foo() {

if (cond)

throw(ENotReady);

}

void bar() {

try {

/* Potentially faulty code segment */

foo();

} finally {

/* Clean-up code executed both on normal

* termination _and_ on exception */

}

handle

when (ENotReady) {

/* Handle the ENotReady exception */

}

when (exception) {

/* Handle any exception that is not

of ENotReady type nor sub-type */

}

handle_end;

}

Figure 2. Example code segment

Notice that OML Exceptions is both process and thread

safe. Moreover, it allows exception throwing/catching code

to be nested. However, due to how the macros are defined,

there are a set of limitations in the use of them. For exam-

ple, within try blocks, it is forbidden to use any C mecha-

nism that would cause an attempt to cross the block bound-

ary, such as return statements, goto statements (and

also longjmp calls) with destinations outside the block,

and continue and break statements referring to itera-

tive loops enclosing the try block. The full discussion of

these aspects is omitted for the sake of brevity.

4.2 Timing Constraints Based Exceptions

OML Exceptions includes a support for notifying tim-

ing constraints violations by means of the following con-

structs3:

try within abs: this macro allows for starting a try

block with an absolute deadline constraint;

try within rel: convenience macro macro useful for

specifying a relative deadline constraint, however the

effect of a relative deadline expiring is not distinguish-

able from the one of an absolute deadline expiring (see

note at end of section);

try wcet: this macro allows for starting a try block

with a maximum allowed execution time (WCET);

3This support is available within the dlexception branch on the

CVS repository of the OML project.

4



#include <oml_exceptions.h>

void Decoder() {

next_deadline = current_time();

for (;;) {

next_deadline += period;

/* absolute deadline constrained code */

try_within_abs(next_deadline) {

StreamParser();

if (FrameDecoder() == 0)

ImagePostProcessing();

Visualization();

}

handle

when (ex_deadline_violation) {

/* e.g., re-use last decoded frame */

}

handle_end;

/* Wait for next activation */

}

}

int FrameDecoder() {

int rv = 0; /* Normal return code */

try_wcet(12000) {

DecodeAudioFrame();

DecodeVideoFrame();

}

handle

when (ex_wcet_violation) {

/* Notify caller of incomplete decoding */

rv = -1;

}

handle_end;

return rv;

}

Figure 3. Example code of an video/audio player using

the proposed mechanism.

ex timing constraint violation: this is the

common basic type for timing constraint violation

exceptions; it may be used for the purpose of catch-

ing a generic timing constraint violation, without

distinguishing between them;

ex deadline violation: this exception occurs as a

result of a try within rel or try within abs

segment not terminating within the specified relative

or absolute deadline;

ex wcet violation: this exception occurs as a result

of a try wcet segment not terminating within the

specified execution time constraint.

A simple example of how to use these macros is shown in

Figure 3. The Decoder main body is a typical periodic

thread where each activation has the next activation time as

absolute deadline. Also, the FrameDecoder() function

has a nested WCET constraint of 12ms.

As a final remark, consider the particular erroneous

usage of the framework shown in Figure 4. If the

try_within(10) {

...

try_within(50) {

...

}

handle

when (ex_deadline_violation) {

/* handle violation of try_within(50) *

* and not the one of try_within(10) *

* which is the first that is raised. */

}

handle_end;

}

handle

when (ex_deadline_violation) {

/* handle the violation of try_within(10) *

* which has to be captured here and not *

* in the previous when clause. */

}

Figure 4. Typical example where relating each try

clause with its when is needed.

try within statements are used in different components,

then such a situation may occur during development. OML

Exceptions includes a special exception matching rule for

the when clauses involving timing constraint exceptions:

if the raised exception is associated to a try block that is

external (in the run-time sense) to the current try block,

then the exception is propagated instead of being stopped.

In the example, this mechanism allows the outer handler

to correctly detect the deadline violation, because it is not

stopped by the nested handler.

OML Exceptions complies with all of the requirements

introduced in Section 3, with the few notes outlined in the

following section.

5 Implementation

This section provides an overview of how the proposed

mechanism has been implemented, always bearing the out-

lined requirements in mind.

5.1 TimeScoped Segment Implementation

OML Exceptions has been realized by means of the

POSIX sigsetjmp() and siglongjmp() functions.

The former saves the execution context such that the latter

is able to restore it, and continue program execution from

that point.

For the try within abs and try within rel

constructs, the time reference is the POSIX

5



CLOCK MONOTONIC clock. For the try within wcet

macro, the time reference is the POSIX

CLOCK THREAD CPUTIME ID clock. Events are

posted using interval timers (POSIX itimer).

Notification of asynchronous constraint violations is

done by delivering to the faulting thread a real-time sig-

nal (i.e., a POSIX signal with the property of being queued

and guaranteed not to be lost). The OML Exceptions signal

handler performs a siglongjmp to the appropriate con-

text, jumping to the handle...handle end block for

the check of the exception type.

This implementation is portable to any Operating System

providing support for POSIX real-time extensions.

5.2 Deadline and WCET Signal Handling

In case one (or more) specified constraint is violated, a

signal has to be sent to the correct thread, in order to ful-

fil Requirement 4. However, signal delivery to a specific

thread is not covered by POSIX. In fact, when a signal is

sent, it reaches the whole process, and it is not possible to

determine in advance which thread will receive and han-

dle it. Therefore, the standard suggests to have one only

thread receiving the signal, and all the others ignoring it,

so that the receiving thread may notify the correct thread

by means of other inter-thread synchronization primitives.

However, such an approach would imply that every time

a timing constraint is violated, the CPU incurs additional

context switches, not to mention the additional overheads

of managing (creating and destroying) the “signal router”

thread.

On the other hand, Linux supports delivery of signals to

specific threads thanks to an extension of the POSIX se-

mantics built into the kernel. Therefore, OML Exceptions

is implemented by using this extension, which, at the cost

of sacrificing Requirements 10, allows for a much more ef-

ficient implementation of the mechanism on Linux (see also

Figure 5). However, a version of OML Exceptions perfectly

compliant with POSIX is being implemented as well, so that

the framework will be capable of choosing the best imple-

mentation at compile-time.

5.3 Benchmarking Operational Mode

In order to cope with requirement 9, a compile-time

switch has been provided that, when enabled, gathers in-

formation on the duration of all the try...handle code

segments. This allows developers to easily obtain statistics

about execution times of the time-scoped sections.

5.4 NonInterruptible Code Sections

Requirement 8 is achieved by providing two

additional macros, oml within disable and

oml within enable, within which developers may en-

close atomic code segments that cannot be asynchronously

interrupted by a timing constraint violation. These two

macros simply disable and enable, respectively, delivery of

the time constraint violation real-time signals. If a signal

occurs in the middle of such a protected code region, then

it is enqueued by the OS, and delivered immediately at the

end of the section.

5.5 Precision Limitations and Latency Issues

With respect to the maximum precision with which tim-

ing constraints are checked and enforced, this is limited by

the time-keeping precision of the underlying Operating Sys-

tem. This is true also for the preliminary implementation

on Linux, and thus a description of how timers and task ex-

ecution time accounting are dealt with in the Linux kernel

follows.

From mainstream kernel version 2.6.21, the kernel has

been enriched by the high resolution timers. Thanks to

them, timers are no longer coupled with the periodic system

tick, and thus they can achieve as high resolution as permit-

ted by the hardware platform. Nowadays, large number of

microprocessors, either designed for general purpose or em-

bedded systems, are provided with precise timer hardware

that the OS can exploit, e.g., the TSC cycle counter register

of the CPU. Therefore, if a Linux process or thread posts a

timer to fire at a certain instant, it could expect to be woken

up quite close to that point in time.

Despite this, there still exist Linux kernel subsystems de-

pending on the periodic system tick. With respect to the pre-

sented work, the most relevant one is the time accounting

mechanism, i.e., how the system tracks how much a thread

is executing. In fact, this is done by the kernel at each oc-

currence of the following events:

• at each periodic system tick;

• at each task scheduling event, i.e., enqueue, dequeue

or preemption.

Thus, the time accounting resolution is limited by the sys-

tem tick frequency, which can be configured by the user

at kernel compile time. Typical values are 100, 250 and

1000 Hertz, which means, respectively, 10, 4 and 1 mil-

lisecond resolution. This is also important, since the CPU-

clock based timers used to implement the WCET timing

constraints are not based on high resolution timers, and rely

only on standard Linux accounting.

6 Experimental Evaluation

The proposed mechanism is effective and useful only if

the latency between the occurrence of the timing constraint

violation and the activation of application recovery logic

(handler activation latency) is relatively small (with respect

to the job execution times of the application), and if its value

is known to the designer (Requirement 7).

In Figure 5 the various components contributing to the

total amount of latency introduced between an actual con-

6



Figure 5. Various components contributing to the handler activation latency for the POSIX compliant (a) and Linux specific (b)

implementations.

straint violation and its notification to the application are

shown.

The handler activation latency has been measured by

means of two experiments, made on the Linux Operating

System (OS), that also highlight how the latency is affected

by the kernel configuration.

6.1 Experiments SetUp

A simple test application, built as a single thread of ex-

ecution, has been used in both experiments, and no other

applications have been launched concurrently. This way,

the measurements were not affected by other components

of the handler activation latency, such as the scheduling la-

tency (the latter should be addressed by adopting a real-time

design strategy). Thus, a task τ with WCET, relative dead-

line and period equal to (C, D, T ) = (50, 50, 100) msec is

used, and run for 1000 consecutive instances. Experiments

have been performed on commonly available desktop PC

hardware, with 3.0 GHz Intel CPU and 2 GB of RAM. De-

bian GNU/Linux version 4.0, with hand-tailored kernel ver-

sion 2.6.28 was the Operating System used. Kernel config-

uration includes the high-resolution timer subsystem, with

support for high precision hardware timing sources. The

one used by the system while running the experiments was

the HPET [6].

In the first experiment, the latency of a deadline viola-

tion is measured 1000 times. This is done by forcing τ to

execute more than 50 msec inside a try within block,

and then subtracting the ideal deadline violation instance

— i · T + D — from the actual time instant Ḋ at which the

deadline miss signal handler is invoked.

In the second experiment, the task again executes more than

50 msec, this time from inside a try wcet block, so to

cause a WCET violation and measure its latency as well.

Both experiments have been run on three different con-

figurations of the Linux kernel, i.e., with 100, 250 and 1000
Hertz as the periodic tick frequency, to study if and how this

affects the latency.

Common statistics on the measured latency figures have

been computed for both experiments on each configura-

tion, and the corresponding cumulative distribution func-

tions (CDF) are reported below. Minimum achieved latency

values have not been reported since they are highly depen-

dant on how close to a system tick (or, in general, an ac-

counting event) a timing violation event occurs. Thus, since

they depend on the actual alignment of the task and the OS

events, they turn out to be unrelated to the system configu-

ration, thus they provide few information about the perfor-

mance of the mechanism.

6.2 Experiments Results

Results of the experiments are shown in Tables 1 and 2

and in Figures 6 and 7. They show that the latency of the

notification of a deadline violation is both small and inde-

pendent from the system tick frequency. In fact, values in

Table 1 are comparable, and the three CDF in Figure 6 are

completely superimposed. The measured latency values are

in the order of the µs, what constitutes a more than accept-

able performance.

Situation is different for WCET violation results. In fact,

7



max mean std. dev.

HZ=100 28610 1724.418 1187.854

HZ=250 17202 1595.095 711.1304

HZ=1000 33394 1602.544 1023.255

Table 1. Deadline latency in ns

max mean std. dev.

HZ=100 18727747 5748948.344 4474771.769

HZ=250 4423164 1233955.255 844593.486

HZ=1000 1999752 522228.673 390837.341

Table 2. WCET latency in ns

as shown by both the values in Table 2 and the three CDF of

Figure 7, the precision achieved in case of a WCET viola-

tion is tightly coupled with the system tick frequency HZ.

Table 2 also shows how the mean WCET latency is close

to HZ

2
, which is exactly what was expected. As it can be

easily seen, for the mechanism to be useful, the value of

HZ = 1000 is strongly suggested.

7 Conclusions

In this paper, an open-source library has been presented

for the management of timing constraints violations accord-

ing to the well-known exception-based paradigm. This con-

stitutes a valuable support for developers of embedded soft

real-time applications.

A set of basic requirements have been identified, and a

mechanism has been presented fulfilling them. The result is

a framework designed as a set of macros for the C language,

integrated in an open-source project that enables exception

management.

Thanks to the proposed framework, developers may fo-

cus on one hand on the main application flow of control,

which will be executed most of the times (or at least with

a high probability, if the system is properly designed). On

the other hand, the framework allows to catch dynamically

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5000  10000  15000  20000  25000  30000  35000

P
ro

b{
D

ea
dl

in
e 

La
te

nc
y 

<
=

 t}

t

HZ=100
HZ=250

HZ=1000

Figure 6. Cumulative Distribution Function of
the deadline violation latencies. Time on x
axis is in ns.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2e+06  4e+06  6e+06  8e+06  1e+07  1.2e+07  1.4e+07  1.6e+07  1.8e+07  2e+07

P
ro

b{
W

C
E

T
 L

at
en

cy
 <

=
 t}

t

HZ=100
HZ=250

HZ=1000

Figure 7. Cumulative Distribution Function of

the WCET violation latencies. Time on xaxis
in ns

possible violations of the timing constraints associated to

critical parts of the code, due either to particular input data,

or to the non-perfectly predictable behavior of applications

on a soft real-time platform, such as Linux. The code in

compensation or recovery of this is provided in the form of

an exception handler.

An implementation of the proposed mechanism has been

presented for the Linux Operating System, based on stan-

dard POSIX-class primitives. A few experimental results

have been presented highlighting latencies that the applica-

tions using the framework experience in the activation of the

exception management code, compared to the ideal time of

fire of the exception, and the limitations on the precision of

the current solution have been discussed.

Of course, such a framework should be used in combi-

nation with a real-time design methodology, and advanced

real-time scheduling features, available in various forms for

the Linux kernel, such as the POSIX Sporadic Server [4] or

the Adaptive QoS Architecture for Linux [10].

Concerning possible directions for future work, a kernel-

level mechanism is being investigated for the Linux OS,

leading to a reduction in the handler activation latency. Fur-

thermore, a more ambitious macro-based framework for C

is under design that will enrich OML with generic con-

structs for threads management, synchronization and real-

time scheduling.

References

[1] G. Bollella and J. Gosling. The real-time specification for

java. Computer, 33(6):47–54, 2000.
[2] A. Burns and A. Wellings. Concurrent and Real-Time Pro-

gramming in Ada 2005. Cambridge University Press, 2007.
[3] S. A. Edwards and E. A. Lee. The case for the precision

timed (pret) machine. In Proceedings of the 44
th annual

conference on Design automation (DAC’07), pages 264–265,

New York, NY, USA, 2007. ACM.
[4] D. Faggioli, G. Lipari, and T. Cucinotta. An efficient im-

plementation of the bandwidth inheritance protocol for han-

dling hard and soft real-time applications in the linux kernel.

In Proceedings of the 4
th International Workshop on Operat-

8



ing Systems Platforms for Embedded Real-Time Applications

(OSPERT 2008), Prague, Czech Republic, July 2008.
[5] IEEE. Information Technology -Portable Operating System

Interface (POSIX)- Part 1: System Application Program In-

terface (API) Amendment: Additional Realtime Extensions.

2004.
[6] Intel. IA-PC HPET (High Precision Event Timers) Specifi-

cation (revision 1.0a). October 2004.
[7] I. Lee, S. Davidson, and V. Wolfe. RTC: language sup-

port for real-time concurrency. In Proceedings of the IEEE

Real-Time Systems Symposium (RTSS 91), San Antonio, TX,

USA, December 1991. IEEE *** FIXME ***.
[8] I. Lee and V. Gehlot. Language Constructs for Distributed

Real-Time Programming . Technical report, University of

Pennsylvania, May 1985.
[9] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and

E. A. Lee. Predictable programming on a precision timed

architecture. In Proceedings of the International Conference

on Compilers, Architecture, Synthesis for Embedded Systems

(CASES), pages 137–146, Atlanta, Georgia, United States,

October 2008.
[10] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQu-

oSA — adaptive quality of service architecture. Software –

Practice and Experience, 39(1):1–31, 2009.

9


