
Period Estimation for Linux-based Edge Computing
Virtualization with Strong Temporal Isolation

Luca Abeni, Tommaso Cucinotta, and Daniel Casini
Scuola Superiore Sant’Anna, Pisa, Italy.

{name.surname}@santannapisa.it

Abstract—Virtualization of edge nodes is paramount to avoid
their under-exploitation, allowing applications from different
tenants to share the underlying computing platform. Neverthe-
less, enabling different applications to share the same hardware
may expose them to uncontrolled mutual timing interference, as
well as timing-related security attacks. Strong timing isolation
through SCHED_DEADLINE reservations is an interesting solu-
tion to facilitate the safe and secure sharing of the processing
platform: nevertheless, SCHED_DEADLINE reservations require
proper parameter tuning that can be hard to achieve, especially
in the case of highly dynamic environments, characterized by
workloads that need to be served without knowing any accurate
information about their timing. This paper presents an approach
for estimating the periods of SCHED_DEADLINE reservations
based on a spectral analysis of the activation pattern of the
workload running in the reservation, which can be used to assign
and refine reservation parameters in edge systems.

Index Terms—edge computing, Linux scheduling, resource
reservation, isolation

I. INTRODUCTION

The edge computing paradigm is of key importance to keep
computations closer to where data originates, with advantages
in terms of latency, energy consumption, and privacy with
respect to Cloud-based approaches that provide data to be sent
to the Cloud for being elaborated [1], [2]. In this context,
it becomes crucial to efficiently share edge computing nodes
among diverse applications coming from different tenants. A
representative example comes from the context of mobility,
where autonomous vehicles need to offload computationally
intensive tasks to the closest edge server on their path. A
common virtualization approach consists of just partitioning
a subset of the computational resources and assigning them to
an application in an exclusive way.

Nevertheless, such a coarse-grained partitioning can lead
to underutilization of computing platforms, especially in the
presence of lightweight workloads, which anyway need to
receive an integer fraction of the physical cores to execute.

In many cases, edge nodes are equipped with the Linux
operating system, which affirms as an excellent solution
to achieve performance while remaining compatible with a
plethora of software stacks (e.g., think of frameworks for
artificial intelligence) that are needed by many practical use
cases [3] and which are often incompatible with special
purpose operating systems (e.g., VxWorks or FreeRTOS).

When using Linux, its SCHED_DEADLINE kernel sched-
uler [4] is an excellent solution for providing the fine-
grained virtualization of computational resources. Indeed,

SCHED_DEADLINE implements a resource reservation mech-
anism that allows encapsulating each application in a virtual
platform (VP) composed of several virtual CPUs (vCPUs),
each with a guaranteed fraction of the overall CPU bandwidth
and a bounded latency (service-delay) [5], [6].
SCHED_DEADLINE is a mechanism to obtain (fine-

grained) resource partitioning but also acts as an enforcement
mechanism, meaning that it guarantees that each application
(i.e., VP) receives no more than its allocated processing
bandwidth. This way, it shields applications running on the
same processing platforms from their mutual timing interfer-
ence. Therefore, resource enforcement is especially useful in
contexts where different applications do not trust each other,
and there is the possibility that a misbehaving application (e.g.,
due to bugs in the code or cyber-attacks) can harm the timing
requirements of other co-located applications.

Furthermore, SCHED_DEADLINE is very general, and its
VP abstraction can fit the case of a single Linux thread,
a virtual machine (VM) running on Linux as a host op-
erating system (e.g., leveraging a type-2 hypervisor such
as QEMU/KVM), and a container (in this case, a patch
non-included in mainline Linux is required [7]). Neverthe-
less, to obtain the desired bandwidth and latency for a
SCHED_DEADLINE-based VP, it is required to configure a
budget (also called runtime) of Q time units that are assigned
to a specific vCPU over a period of P time units for each of the
vCPUs of the VP. Therefore, also the number of vCPUs of the
VP is another configuration parameter. However, setting these
parameters is totally non-trivial, especially for applications
arriving dynamically at an edge node without any knowledge
of its timing information, such as execution times, activation
patterns, and required parallelism.
This Paper. This paper targets the problem of finding a proper
parameter tuning for SCHED_DEADLINE reservations in edge
platforms in which workloads (tasks) arrive dynamically (as a
result of an offloading request from a mobile device, for ex-
ample) without any associated information about their timing.

A tool to estimate the tasks’ periods (based on previous
work [8]) using a Linux daemon thread with a remote proce-
dure call (RPC) interface is developed and evaluated experi-
mentally under different scenarios. We extensively discuss how
to shape reservation servers under different configurations,
including complex configurations (such as virtual machines
with multiple tasks running in the same vCPUs), which are not
addressed in previous work. Furthermore, we discuss how to

1

use such a dynamic estimation method for reservation periods
in an edge scenario in which mobile devices send offloading
requests to edge nodes.

II. BACKGROUND ON LINUX

Linux is arguably one of the most popular operating system
kernels and runs in many different contexts, ranging from em-
bedded systems and edge computing up to high-performance
computing while encompassing several application areas, in-
cluding robotics, industrial automation, and even space [9].
Since 2014 (kernel version 3.14), Linux has featured the
SCHED_DEADLINE real-time scheduler, which implements
the earliest deadline first (EDF) scheduling algorithm com-
bined with the constant bandwidth server (CBS) reservation
algorithm [5]. Linux provides multiple scheduling policies,
implemented by scheduling classes which are queried in order
(thus implementing an implicit priority hierarchy between
them): the stop_machine scheduling class, which does
not implement any real scheduling policy but is used for
kernel facilities; the SCHED_DEADLINE scheduling policy,
extensively discussed in the following; two variants of the
fixed-priority policy (SCHED_FIFO and SCHED_RR); and the
general purpose policy SCHED_OTHER, based on a propor-
tional share scheduling algorithm.

As previously discussed, under SCHED_DEADLINE each
vCPU of a VP leverages a CBS reservation server that
is characterized by its time budget of Q time units and
a period P . Each reservation server can be scheduled by
either a partitioned or global scheduling approach. The former
approach statically assigns each vCPU to a specific physical
core, forbidding migrations; the latter allows each vCPU to
be scheduled on any core, also allowing runtime migrations.
Both approaches have advantages and disadvantages, which
have been intensely studied in the literature [10], [11]. The
Q and P parameters have a direct mathematical relation with
two other parameters that are easier to relate to the application
key performance indicators: the amount of bandwidth α of the
vCPU and its worst-case maximum service latency ∆. More
precisely, α expresses the fraction of processing capacity that
the reservation server receives in the long run; ∆ denotes the
maximum delay that a task can achieve in a vCPU from when
it becomes ready to execute to when it starts being serviced.

The α and ∆ parameters of a vCPU implemented by
a SCHED_DEADLINE reservation server under partitioned
scheduling is expressed as [6], [12], [13]

α = P/Q, ∆ = 2 · (P −Q) (1)

Different relations and approaches to obtain a bandwidth
and latency requirement from a budget and period pair in
other settings are available in the literature [6], [12]–[17],
depending on the scheduling paradigm used to schedule
SCHED_DEADLINE vCPUs of the VP on the physical cores of
the processing platform and tasks by vCPUs (typically, global
or partitioned scheduling).

III. SYSTEM MODEL

The considered system is composed of a distributed network
of edge nodes. Each edge node is a (Linux-based) computing
platform with homogeneous physical cores.

On each edge node serves a set V of VPs, denoted as
vj , which includes mj vCPUs cj,1, . . . cj,mj . Each vj is
characterized by a tuple (Qj , P j): Qj = (Qj,1, . . . Qj,mj) and
P j = (Pj,1, . . . Pj,mj

) are the vectors of budgets and periods
of each individual vCPU cj,x ∈ vj .

The virtual platforms in set V are scheduled by the Linux
operating system according to the EDF algorithm.

The workload running inside each vCPU is scheduled with
one of the other Linux schedulers (e.g., the fixed-priority
scheduler). Each vj serves a workload composed of a set of
tasks Γj . Each task τi ∈ Γj is characterized by a maximum-
observed execution time Ci and an activation period Ti,
meaning that the task is considered releasing a (potentially,
infinite) sequence of instances (called jobs), each one spaced
by Ti time units.

IV. TASK PERIOD ESTIMATION USING PERIODWIZ

To properly set the vCPUs scheduling parameters, it is
paramount to estimate the tasks’ activation patterns accurately.
In particular, it is essential to identify tasks that can be
modeled through periodic activation patterns and to estimate
their activation periods. This can be performed by identifying
tasks’ activation events and performing a frequency-domain
analysis on them [8], [18].

The Linux kernel’s function tracer (ftrace1) is used to
extract the tasks’ “wakeup” events, indicating that a process
or thread becomes selectable by the kernel CPU scheduler,
moving from a blocked state to the ready state. The sequence
of wakeups for each relevant task is registered by modeling
the jth wakeup of task τi, occurring at time ri,j , as a Dirac
delta δ(t − ri,j) centered at time ri,j . After collecting N of
these events, a function ai(t) =

∑
j δ(t − ri,j) describing

the activations of task τi is built and is transformed to the
frequency domain:

F(ai(t)) =

∫ ∞

−∞
ai(t)e

−j2πftdt =

=

∫ ∞

−∞

N∑
j=1

δ(t− ri,j)e
−j2πftdt =

N∑
j=1

e−j2πfri,j

(2)
The energy of this Fourier transform is then computed as

Si(f) =

N∑
j=1

√
cos2(2πri,jf) + sin2(2πri,jf) (3)

Identifying peaks in this energy function can then estimate the
task’s periodicity [8].

The program originally used to detect periodic tasks with
a top-like interface [8] has been modified turning it into
PeriodWiz (the Period Wizard), a daemon that:

1See https://www.kernel.org/doc/html/latest/trace/ftrace.html.

2

• sets up ftrace for tracing the wakeup events of the
monitored real-time tasks;

• stores the functions ai(t) describing the activation pat-
terns of such tasks;

• periodically (with a configurable period T) computes the
energy Si(f) for each monitored task τi, looking at the
peaks in Si(f) and identifying the periodic tasks with
their periods.

PeriodWiz exports an RPC interface that allows clients to
add new tasks to the set of real-time tasks to be monitored
(by registering a new process ID) and to query for the period
of a monitored task.

Clearly, it is essential to compute the Fourier transform
of ai() after collecting an appropriate number N of events:
if a too-small number is selected, not enough samples are
registered in ai(t) and the period estimation risks to be based
on noisy data; on the other hand, if N is too large, we risk to
detect periodic tasks with a too long delay.

Some experiments about this will be reported in Section VI.
To address this issue, the PeriodWiz starts by computing Si(f)
based on a small number of samples and increases N if the
task is not identified as periodic. When a maximum Nmax

is reached without identifying a period, the task is marked as
“not periodic” and N is not increased further.

Another parameter is the period T of PeriodWiz. It has
no influence on the sampling frequency of wakeup events,
which are registered by the tracing facilities. However, it is
important to tune it properly: if T is too long, a period estimate
can be available after too much time after enough samples
have been collected, while if T is too short, PeriodWiz can
spuriously wake up (causing overhead at the operating system
level) without that enough samples being collected.

V. FROM TASK PERIODS TO RESERVATION PERIODS

Classical real-time systems consider the parameters of each
thread to be known and a static workload (no new thread
joins at runtime), enabling the design of the vCPU parameters
offline, at design time. The considered edge computing context
is instead much different and provides a dynamic workload
of VM or containers, which need to correspond to a VP vj .
However, deciding the parameters Qj,x and Pj,x is a hard task
when no prior information about the workload is available.

The tool PeriodWiz presented in this paper allows to detect
the periodicity of a task running in a Linux system.

However, once the periods Ti of the tasks τi ∈ Γj assigned
to a VP vj have been obtained, they must be used to configure
the VP itself, i.e., the budgets (Qj,1, . . . Qj,mj

) and periods
(Pj,1, . . . Pj,mj

), and possibly also the number of vCPUs mj .
Clearly, this requires also knowing the execution time Ci of

each task: this parameter can be estimated by extending Peri-
odWiz to trace context switch events too, or can be measured
with state-of-the-art tracing tools such as perf [19]. As an
alternative, feedback scheduling techniques [20] can be used to
adapt the runtimes Qj,i to the tasks’ execution times. Different
design alternatives are possible, depending on how the VPs are
implemented. Figure 1 shows two possible options: inset (a)

Fig. 1. Two different ways of instantiating a virtual platform: inset (a) shows
the case in which the VP is a virtual machine managed by KVM/QEMU;
inset (b) considers the case in which the VP is a container.

refers to the case in which VPs are implemented by KVM-like
virtual machines, and inset (b) considers the case in which the
VP are implemented by containers.

A. The one-vCPU-per-task approach

If the VP is implemented by a container, the host operating
system has complete visibility of all the tasks running in the
container. Therefore, a simple - yet effective - option could be
to assign a SCHED_DEADLINE vCPU to each task, setting its
budget to Qj,i ≥ Ci and Pj,i ≤ Ti.

This parameter assignment guarantees that each job of τi
always receives at least the Ci time units required to complete
before the next activation, which occurs with period Ti [5].
Clearly, this can only be guaranteed if the physical platform
is not overloaded. For example, if vCPUs are assigned to
physical cores following a partitioned scheduling approach, the
physical core in which cj,i is allocated must not be overloaded:
this must be verified by checking that the sum of the ratios
of the budgets and periods of all the vCPUs allocated to a
physical core is less than or equal to one [21].

When using this approach, the number of vCPUs mj is
equal to the cardinality of set Γj (|Γj |).

When VPs are implemented by a KVM-like virtual machine,
this approach is not possible. Indeed, the host operating system
has no visibility about the tasks running inside the VM but
only visibility about the Linux processes that implement the
virtual CPUs of the virtual machine. Also, scheduling the
individual tasks with the SCHED_DEADLINE policy of the
guest kernel would not lead to the intended temporal behavior
since the VM is subject to the scheduling effects occurring at
the host operating system level. Since the guest kernel sees
the host’s “real time”, every time the VM is preempted, the
tasks running in the guest would be accounted for the wrong
runtimes (including the time for which the VM did not run).

To overcome this issue, the m-vCPU approach can be used.

B. The m-vCPU approach

The m-vCPU approach considers a fixed number mj of
vCPUs to implement the VP vj , allowing vCPUs to manage
multiple tasks. As previously discussed, this approach is more
natural for using SCHED_DEADLINE reservations for the
processes implementing the vCPUs of a VM under KVM-like
virtualization.

3

Fig. 2. SCHED DEADLINE in an Edge-based decision-making architecture

Furthermore, this approach can also be used when using
containers to simplify the decision-making problem: for ex-
ample, if mj is fixed, the budget and periods of all the vCPUs
can be set to the same value (Qj,1 = . . . = Qj,mj

= Qj)
and (Pj,1 = . . . = Pj,mj

= Pj), and the set of parameters
needed to identify the timing behavior of a VP just consist of
the triplet (Qj , Pj ,mj).

In this case, suitable budget and period parameters can be
achieved using methods from the real-time systems literature
for the design of the parameters of reservation servers. A
vast literature exists on this topic; however, since in an edge
architecture these parameters need to be defined online, we
refer the interested reader to works [7], [22] that provides
heuristics methods for designing the reservation budgets and
periods in a few milliseconds.

C. Running PeriodWiz inside a VP

The implementation choice for the virtual platform not only
influences the assignment of the reservation parameters from
tasks’ parameters but also affects how PeriodWiz can be used.

If the virtual platform in which the application is running is
based on a Docker-like container, the host kernel has complete
visibility of the application’s tasks, hence the PeriodWiz
daemon can run on the host and can trace the tasks to identify
their periods without issues.

If, instead, the virtual platform is based on KVM-like
virtualization, then the host kernel only sees the VMM’s
vCPU threads. Hence, PeriodWiz cannot directly trace the
application’s tasks to detect their periods. In this second case,
there are various possibilities:

• The PeriodWiz daemon can be executed inside the VM;
in this case, if the host scheduler does not affect the
applications’ activation pattern, the daemon can still
detect periodic applications and their periods.

• The PeriodWiz daemon can be executed in the host to
analyze the activation pattern of the vCPU threads.

• The applications’ activation patterns can be detected
before starting the applications in the virtual platform by
running the application in a container or on a different
node, where PeriodWiz can analyze it.

We consider some of these cases later in Section VI.

D. PeriodWiz in an Edge decision-making architecture

Figure 2 shows a reference architecture for edge systems
using SCHED_DEADLINE reservations. The figure shows that

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

Frequency

5 samples
10 samples
20 samples

Periodic task, P=40ms

Fig. 3. Energy of the Fourier transform of the activations for a periodic task
with period T = 40ms, for different numbers of samples.

a distributed runtime decision-making logic with orchestra-
tion capabilities (e.g., implemented with SCHED_DEADLINE-
aware versions of Kubernetes [23] or OpenStack [1]).

In this context, the orchestrator receives offloading re-
quests for applications from mobile devices, which require
to be allocated in a VP on the available edge nodes. Using
SCHED_DEADLINE, this involves setting the budget and
period parameters. Computing nodes report to the orchestrator
monitoring data and receive updated values for the budgets
and periods of the vCPUs implementing each VP. When an
offloading request is received by the orchestrator, the period-
icity of the application’s tasks is estimated with PeriodWiz.
As previously discussed, PeriodWiz can be either running on
the same edge node of the deployed VP or in a remote node
(e.g., together with the orchestrator).

If PeriodWiz is deployed on the same edge node, the edge
node can sporadically report the periods of the observed
tasks to the orchestrator, which uses them to decide refined
reservation parameters and communicate them to the edge
node in which the VP is deployed.

If PeriodWiz is deployed on a remote node, the node
running the VP communicates to the remote node running
PeriodWiz which are the tasks to be observed. The remote
node sporadically informs the orchestrator about the observed
task periods, which are again used to derive new budgets and
periods for reservation servers to be communicated to the edge
node running the VP.

Finally, it is worth noting that offloading requests can be
associated with a maximum admission delay: such a delay
directly influences the number of samples N used for making
the period estimate (explained in Section IV).

If the observation period of PeriodWiz is too short, the
number of samples is too low, and the period estimate is
inaccurate. Nevertheless, if the observation period is too long,
the maximum admission delay constraint can be violated. To
find a trade-off, it is suggested to incrementally increase the
number of samples as discussed in Section IV.

4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120 140 160 180 200

Frequency

10 samples
20 samples
50 samples

Audio/Video player, 33FpS

Fig. 4. Energy of the Fourier transform of the activations for an audio/video
player, for different numbers of samples.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

Frequency

20 samples
50 samples

100 samples

Non-Periodic Taks

Fig. 5. Energy of the Fourier transform of the activations for a non-periodic
task, for different numbers of samples.

VI. EVALUATION

We now evaluate the effects of the number N of samples
using our frequency-estimation mechanism on 3 different
applications: a synthetic real-time application composed of
a periodic task with period P = 40ms, the ffplay video
player reproducing a video (with its synchronized audio track)
at 33 frames per second (FPS), and a non-periodic application
performing some processing on data stored on the disk.

Figure 3 shows the energy Si(f) of the Fourier transform for
the periodic task, with N ∈ {5, 10, 20} samples. The figure
shows how increasing the number of samples increases the
energy of the frequency peaks, making it easier to detect them.
Our tool is able to identify the program as periodic (with the
correct period T = 40ms) when N = 10 or N = 20 samples
are used; hence, the minimum delay for identifying the task
as periodic is δ = 40ms · 10 = 400ms.

Figure 4 shows the energy Si(f) of the Fourier transform
for the audio/video player, computed on N ∈ {10, 20, 50}
samples (in this case, N = 5 did not provide any useful
information). Although this application does not exhibit a
clearly periodic activation pattern (it has to display a video
frame every 33.3ms, to periodically decode and play the audio
track, to read the compressed data from disk, etc...) the energy
Si(f) allows to identify some peaks. However, such peaks are

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

Frequency

T1=50ms, T2=75ms

Two periodic tasks in QEMU

Fig. 6. Energy of the Fourier transform of the activations for the QEMU vCPU
thread when two real-time tasks with periods T1 = 50ms and T2 = 75ms
run inside the VM.

visible only when enough samples are used; in particular, the
application is able to identify them for N = 50.

Finally, Figure 5 shows the energy Si(f) of the Fourier
transform for a non-periodic application, computed on N ∈
{20, 50, 100} samples. In this case, it is clearly not possible
to identify any peaks in the energy function, and PeriodWiz
marks the application as “not periodic”.

Moreover, PeriodWiz has been tested to analyze the activa-
tion patterns of various periodic tasks, using cyclictest,
rt-app2 and some synthetic real-time applications, and it
was always able to correctly identify such applications as
periodic (with the correct period). It has also been tested
with some “almost periodic” applications (such as audio/video
players), and it was able to detect periodic activation patterns,
even if with some surprises. For example, an audio/video
player reproducing video at 30FpS was detected as periodic
with a period T = 11.1ms, probably because audio de-
coding/reproduction and file parsing introduced some high-
frequency components. Nevertheless, 11.1ms is a suitable
period for an application at 30FpS (hence with a video period
of 33.3ms) since it is a sub-multiple of the video period.

Finally, some experiments have been performed to check
how PeriodWiz performs when trying to identify tasks running
in a QEMU/KVM VM. To this end, some periodic task
sets have been executed inside QEMU/KVM VMs, using the
PeriodWiz daemon to analyze the activation pattern of the
QEMU’s vCPU threads. For example, running two periodic
real-time tasks with periods T1 = 50ms and T2 = 75ms in
a single-CPU VM, PeriodWiz identifies the vCPU thread as
periodic with period T = 25ms; Figure 6 shows the energy
of S(f), which has a peak in f = 40Hz (corresponding to
T = 1000ms/40 = 25ms) allowing to identify the period.
Similarly, Figure 7 shows the energy of the Fourier transform
when three tasks with periods T1 = 45ms, T2 = 60ms, and
T3 = 105ms run inside the VM. In this case, PeriodWiz
identifies the vCPU thread as periodic with period 15ms.
More experiments revealed that PeriodWiz is generally able

2cyclictest: https://wiki.linuxfoundation.org/realtime/documentation/howto/
tools/cyclictest/start, rt-app: https://github.com/scheduler-tools/rt-app

5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

Frequency

T1=45ms, T2=60ms, T3=105ms

Three periodic tasks in QEMU

Fig. 7. Energy of the Fourier transform of the activations for the QEMU vCPU
thread when three real-time tasks with periods T1 = 45ms, T2 = 60ms,
and T3 = 105ms run inside the VM.

to identify the greatest common divisor of the periods of the
tasks running in the VM; this is actually a very good choice
for the vCPU’s reservation period. Hence, we conclude that
this approach is usable for hypervisor-based VMs, too.

VII. CONCLUSIONS

This paper presented an approach for scheduling time-
sensitive applications in virtual platforms hosted by edge
nodes. Since the platforms’ virtual CPUs are scheduled
through CPU reservations based on the SCHED_DEADLINE
scheduling policy provided by the Linux kernel, it is essential
to identify the applications’ periodicity to properly set the
budget and period parameters of SCHED_DEADLINE reserva-
tions, allowing to achieve the desired bandwidth and maximum
service latency for each vCPU. To this end, we implemented a
tool, named PeriodWiz, which is able to trace the tasks running
on the edge node and to identify their activation patterns.

Some preliminary experiments on the PeriodWiz prototype
showed that it is able to correctly identify periodic processes
and threads and to characterize the activation patterns of
“almost periodic” ones. This information can be combined
with some kind of runtime estimation (e.g., based on feed-
back scheduling) to setup the SCHED_DEADLINE scheduling
parameters; as future work, we plan to implement this inte-
gration. Moreover, the usage of the PeriodWiz daemon inside
virtual machines still has to be fully investigated (preliminary
experiments showed that PeriodWiz running in the host is able
to identify periodic patterns in the VM’s vCPU threads, but no
work on PeriodWiz as a VM guest has been performed yet).

ACKNOWLEDGMENT

This work has been partially supported by the Euro-
pean Union’s Horizon Europe Framework Programme project
NANCY under the grant agreement No. 101096456, and
the project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union
– NextGenerationEU.

REFERENCES

[1] T. Cucinotta, L. Abeni, M. Marinoni, R. Mancini, and C. Vitucci,
“Strong temporal isolation among containers in openstack for nfv
services,” IEEE Transactions on Cloud Computing, 2021.

[2] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “Hierarchical resource orchestration framework for
real-time containers,” ACM Trans. Embed. Comput. Syst., vol. 23, no. 1,
jan 2024. [Online]. Available: https://doi.org/10.1145/3592856

[3] E. Quiñones et al., “The AMPERE project: : A model-driven devel-
opment framework for highly parallel and energy-efficient computation
supporting multi-criteria optimization,” in 2020 IEEE 23rd International
Symposium on Real-Time Distributed Computing (ISORC), 2020.

[4] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016.

[5] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[6] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time sys-
tems,” in 7th IEEE Real-Time Technology and Applications Symposium
(RTAS), 2001, pp. 75–84.

[7] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[8] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Adaptive
real-time scheduling for legacy multimedia applications,” ACM Trans.
Embed. Comput. Syst., vol. 11, no. 4, jan 2013. [Online]. Available:
https://doi.org/10.1145/2362336.2362353

[9] L. Tung, “Spacex: We’ve launched 32,000 linux computers into space
for starlink internet,” 2020.

[10] B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in 2016 IEEE Real-Time Systems Symposium (RTSS),
2016, pp. 99–110.

[11] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2405–2416, 2012.

[12] X. Feng and A. K. Mok, “A model of hierarchical real-time virtual
resources,” in Proc. of 23rd IEEE Real-Time Systems Symposium, 2002.

[13] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE Real-Time Systems Symposium, 2003.

[14] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
response-time analysis and server design,” in Proc. of 4th ACM Inter-
national Conference on Embedded Software, Sep. 2004, pp. 95–103.

[15] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms:
Specification and use,” in 2009 30th IEEE Real-Time Systems Sympo-
sium, 2009, pp. 437–446.

[16] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based multi-
proc. scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25–59, 2009.

[17] H. Leontyev and J. H. Anderson, “A hierarchical multiprocessor band-
width reservation scheme with timing guarantees,” Real-Time Systems,
vol. 43, no. 1, pp. 60–92, 2009.

[18] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Self-tuning
schedulers for legacy real-time applications,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
55–68. [Online]. Available: https://doi.org/10.1145/1755913.1755921

[19] A. C. De Melo, “The new linux ’perf’ tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1–42.

[20] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: Framework, modeling, and algorithms,” Real-Time
Systems, vol. 23, pp. 85–126, 2002.

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[22] L. Abeni, A. Biondi, and E. Bini, “Partitioning real-time workloads on
multi-core virtual machines,” Journal of Systems Architecture, vol. 131,
p. 102733, 2022.

[23] S. Fiori, L. Abeni, and T. Cucinotta, “Rt-kubernetes: containerized
real-time cloud computing,” in Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, 2022, pp. 36–39.

6

