
Improving Responsiveness for Virtualized Networking Under

Intensive Computing Workloads

Tommaso Cucinotta

Scuola Superiore Sant’Anna

Pisa, Italy

cucinotta@sssup.it

Fabio Checconi

IBM Research, T.J. Watson

Yorktown Heights, NY, USA

fchecconi@gmail.com

Dhaval Giani

Scuola Superiore Sant’Anna

Pisa, Italy

dhaval.giani@gmail.com

October 5, 2011

Abstract

In this paper the problem of providing network response guarantees to multiple Virtual Machines
(VMs) co-scheduled on the same set of CPUs is tackled, where the VMs may have to host both responsive
real-time applications and batch compute-intensive workloads. When trying to use a real-time reservation-
based CPU scheduler for providing stable performance guarantees to such a VM, the compute-intensive
workload would be scheduled better with high time granularities, to increase performance and reduce
system overheads, whilst the real-time workload would need lower time granularities in order to keep the
response-time under acceptable levels. The mechanism that is proposed in this paper mixes both concepts,
allowing the scheduler to dynamically switch between fine-grain and coarse-grain scheduling intervals
depending on whether the VM is performing network operations or not. A prototype implementation of
the proposed mechanism has been realized for the KVM hypervisor when running on Linux, modifying
a deadline-based real-time scheduling strategy for the Linux kernel developed previously. The gathered
experimental results show that the proposed technique is effective in controlling the response-times of the
real-time workload inside a VM while at the same time it allows for an efficient execution of the batch
compute-intensive workload.

Acknowledgements

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7 under grant agreements

n. 214777 “IRMOS—Interactive Realtime Multime-
dia Applications on Service Oriented Infrastruc-
tures” and n. 248465 “S(o)OS – Service-oriented Op-
erating Systems.”

1

1 Introduction and Related

Work

Virtualization is increasingly gaining momentum as
the enabling technology for the management of phys-
ical resources in data centers and Infrastructure-as-
a-Service (IaaS) providers in the domain of Cloud
Computing. Indeed, virtualization enhances the flex-
ibility in managing physical resources, thanks to its
capability to virtualize the hardware so as to host
multiple Virtual Machines (VMs) executing poten-
tially different Operating Systems, and the capability
to live-migrate them as needed without interrupting
the provided service, except for a very low down-
time. Virtualized systems are also capable of ex-
hibiting a performance nearly equal to the one expe-
rienced on the bare metal, due to the hardware virtu-
alization extensions provided by modern processors.

As a consequence of virtualization, multiple
under-utilized servers can easily be consolidated onto
the same physical host. This allows a reduction in
the number of required physical hosts to support a
number of virtualized OSes, leading to advantages in
terms of costs for running the infrastructure and of
energy impact.

However, once multiple VMs are deployed on
the same physical resources, their individual perfor-
mance is at risk of becoming greatly unstable, unless
proper mechanisms are utilized. A VM which tempo-
rararily saturates either the processing, networking,
or storage access capacity of the underlying physical
resources immediately impacts the performance of
the other VMs which share the same resources. This
is a potentially critical issue for IaaS providers where
proper QoS specifications are included in the Service-
Level Agreements (SLAs) with the customers.

The problem of providing a stable performance
to individual VMs has been studied in the past. For
example, Gupta et al. [8] introduce in the Xen hyper-
visor1 a proper CPU scheduling strategy accounting
for the consumption of device driver domain(s) as
due to the individual VMs operations. In [11], an
extension to the Xen credit-based scheduler is pro-
posed, to improve its behavior in presence of multi-
ple different applications with I/O bound workloads.
Also, Liao et al. [9] propose to modify the Xen CPU
scheduler, by making it cache aware, and the net-
working infrastructure to improve the performance
of virtualized I/O on 10Gbps Ethernet.

For the KVM hypervisor2, Cucinotta et al. [3,
4, 5] investigated on the use of hierarchical deadline-

based real-time CPU scheduling [2] for the Linux ker-
nel in order to stabilize the performance of individ-
ual compute-intensive VMs, tackling the problem of
network-intensive VMs later [6].

The latter works rely on the use of a reservation-
based scheduler [2] for the CPU (a hard-reservation
variant of the Constant Bandwidth Server [1]) that
allows for configuring the scheduling guarantees for
a given VM in terms of a budget (Q) and a period
(P). The scheduler will guarantee that each VM will
be scheduled for Q time units every period of P time
units, under the usual assumption of non-saturation
for EDF (

∑
i
Qi

Pi

≤ 1, see [10] for details). The
reservation period can be specified independently for
each VM, and it constitutes the time granularity over
which the CPU allocation is granted to the VM.

A shorter period improves the responsiveness of
the VMs at the cost of higher scheduling overheads,
thus being beneficial for time-sensitive workloads.
On the other hand, a longer period leads to lower
scheduling overheads, thus it is beneficial for batch
and high-performance workloads, at the cost of po-
tentially longer time intervals during which the VM
is unresponsive (in the worst-case, a VM might have
to wait as much as 2(P −Q) before being scheduled
again). However, for VMs embedding both batch
computing activities (including both main VM func-
tionality or typical bookkeeping OS activities, such
as updating indexes) and time-sensitive tasks (e.g.,
reporting on the progress of batch tasks, or realizing
independent features), both configurations do not fit
very well, as highlighted by Dunlap in the discussion
about future work on the new upcoming Xen Credit
Scheduler [7].

In this paper we propose a novel mechanism for
scheduling VMs with both compute-intensive and
network-responsive workloads. In absence of exter-
nal requests the VM progresses with its (long) period
configuration (e.g., hundreds of ms) and can perform
batch computing activities reducing scheduling over-
heads to the minimum. However the occurrence of
external requests allows the VM to be woken up by
the scheduler within a much shorter interval (e.g., ms
or tens of ms), to perform relatively short activities
configured at a higher priority inside the VM, so as
to respond very quickly to external events.

1
More information at: http://www.xen.org/.

2
More information at: http://www.linux-kvm.org/.

2

2 Approach

The mechanism proposed in this paper applies to vir-
tual machines scheduled under a reservation-based
real-time scheduler like the one presented in [2]. For
the sake of simplicity the focus is on single-core VMs
scheduled according to a partitioned EDF policy (so
one or more VMs are pinned on each physical core
and scheduled on it).

Each VM can be configured with a set of schedul-
ing parameters denoted by (Q,P), with the meaning
that Q time units are granted to the VM for each P
time units. The interest in having Q/P < 1, thus the
possibility to have multiple VMs co-scheduled on the
same processor and core, comes from the fact that
the infrastructure provider may have an interest in
“partitioning” the big computing power available on
a single powerful core into multiple VMs with lower
computing capabilities and rent them separately, or
merely from the fact that the hosted VMs have an
expected workload (e.g., as due to requests coming
from the network) that cannot saturate the comput-
ing power on the underlying physical core, thus en-
abling the provider to perform server consolidation.
The Q value constitutes both a guarantee and a lim-
itation (i.e., we are using hard reservations). This
ensures that the performance of each VM is not af-
fected (too much) from how much intensively other
VMs are computing [5, 4].

Roughly speaking, at equal Q over P ratios, the
chosen value for P regulates the responsiveness of the
associated VM. It is easy to see that, if the VM is
running alone, then its schedule comes out as shown
in Figure 1, and the non-responsiveness time interval
for the VM may be as long as P −Q. However, the
worst-case condition when the VM is co-scheduled
with other VMs is the one shown in Figure 2, with
the budget granted to the VM at the beginning of a
P time window (for example, because at that time
all other VMs were idle), and at the end of the time
window immediately following (for example, as due
to the wake-up of a VM at the beginning of this sec-
ond time window, with a deadline slightly shorter
than the first VM, under theoretical saturation for
the EDF scheduler).

FIGURE 1: Example schedule of a
VM with generic scheduling parameters of
(Q,P), when running alone, exhibiting a non-
responsiveness time interval of P −Q.

FIGURE 2: Example schedule of a
VM with generic scheduling parameters of
(Q,P), when co-scheduled, exhibiting a non-
responsiveness time interval of 2(P −Q).

Also, P controls the scheduling overheads im-
posed on the system. In fact, the scheduler forces a
context switch at least every interval as long as the
minimum P value across all the reservations config-
ured on the core.

This kind of scheduler allows heterogeneous vir-
tualized workloads to safely coexist as far as they
belong to different VMs. One can easily configure a
short P value for a VM with a real-time workload
that needs to be responsive, and a long P for a VM
that performs mainly batch computations. However,
mixing such types of workloads in the same VM may
lead to problems. One can configure the responsive
activities in the VM to run at a higher priority as
compared to the batch computing ones (i.e., by ex-
ploiting priority-based scheduling as available on ev-
ery OS). However, still the non-responsive periods
of the VM will largely dominate the response time
of the real-time task(s). So, in order to keep such
response times low, the normal option would be the
one to use small P values, obtaining high schedul-
ing overheads also while the VM is doing its batch
computing activities without any request from the
outside triggering the real-time functionality.

In order to resolve this problem, in this paper
we propose the following mechanism (see Figure 3).
The VM is normally attached to a reservation con-
figured with scheduling parameters (Q,P), with a
period P tuned for the batch computing case, i.e., it
is relatively large, for example in the range of hun-
dreds of milliseconds. In addition, a second “spare”
reservation is configured in the system with parame-
ters (Qs, Ps) tuned for the operation of the real-time
activity, i.e., Ps is relatively small, for example in
the range of tens of milliseconds or shorter, and Qs

sufficient to complete an activation of the real-time
activity. Now, whenever the VM receives a network
packet and its current budget is exhausted (i.e., it
is in the non-responsiveness time frame), the VM

3

is temporarily attached to the “spare” reservation.
Having a much shorter deadline, the spare reserva-
tion forces the VM to be scheduled and receive Qs

execution time units on the processor within the Ps

deadline from the packet receive time; this will cause
the VM to run, receive the packet and possibly ac-
tivate the real-time activity that will perform some
fast computation (and possibly provide a response
packet). If the real-time activity cannot complete
within the first activation of the spare reservation, it
will be resumed during the subsequent activations,
so it will receive additional Qs time units during the
following Ps time window, and so on, till the time
of replenishment of the original reservation budget,
at which time the VM relinquishes the spare reserva-
tion. With a proper tuning of the Qs and Ps parame-
ters a VM configured for batch computing activities
should exhibit a tremendously improved response-
time to sporadic requests coming from the network,
at the cost of keeping some extra-capacity unused in
the system.

FIGURE 3: Example schedule of a VM
with generic scheduling parameters of (Q,P),
and a spare reservation of (Qs, Ps) which
is dynamically activated and attached to the
same VM on a new packet arrival. Despite the
budget for the VM at packet arrival time was
exhausted, the VM can complete a short real-
time activity of duration Qs within the spare
reservation period Ps.

The requirements of the real-time workload are
assumed to be relatively small, and in any case the
additional reservation to be attached dynamically to
a VM cannot bee too large in terms of utilization
(budget over period), because it needs to remain un-
used for all the time in which the VM does not ac-
cess the network. For example, it might require a
10% or a lower CPU utilization to complete. This
should allow the real-time activity triggered by the
received network packet to complete, assuming it is
configured in the VM for running at higher prior-
ity than other activities. For example, the VM may
perform kernel-level activities inside the networking
driver and stack, and relatively short userspace ac-
tivities, which may be running in a task that was
waiting for the packet arrival.

Finally, in order to avoid keeping a spare reser-
vation for each and every VM hosted onto the same
physical host, we propose to use a pool of spare reser-
vations which can be used for the purpose illustrated
above. The idea is that, exploiting statistical multi-
plexing of the networking traffic patterns among in-
dependent VMs, one can assume that the probability
of having all the VMs requiring a spare reservation
attached dynamically at the same time be very small.
This way, the additional utilization to keep for spare
reservations may be kept limited.

Therefore, a pool of a few reservations with short
periods will be ready to be used for boosting reser-
vations (with longer periods) of VMs when they re-
ceive packets from the external world but their nor-
mal budget is exhausted due to compute-intensive
activities. This allows for a very quick reaction-time
of the VMs.

3 Implementation Details

In order to validate the proposed approach we im-
plemented a proof of concept in the Linux kernel,
using the KVM hypervisor to execute the VMs. We
started from the IRMOS scheduler [2], modifying it
to include support for reservations providing “spare”
bandwidth, and introducing the glue code needed to
use this new feature.

From the interface point of view, each reservation
may have the property of providing spare bandwidth
to the reservations needing it, and/or the property
of using spare bandwidth from reservations provid-
ing it. The system administrator controls the pa-
rameters of the reservations and the dependencies
between users and providers of spare bandwidth us-
ing the CGROUP filesystem interface.

To recognize the events that are related to VM
I/O, and consequently activate the spare bandwidth
mechanism we modified the networking code. In our
modified kernel, when a packet arrives we check its
destination and if is headed towards a Virtual Ma-
chine we retrieve its server using a simplified hash
table. If the server has run out of bandwidth we set
a flag to mark that it needs to access its spare reser-
vation. Setting the flag may also imply requeueing
the running tasks belonging to the same VM, as they
may need to access the spare bandwidth too.

When a task is activated, along as performing a
regular activation, the scheduler checks if the task
belongs to a virtual machine, and if the VM’s server
needs spare bandwidth; if this is the case, the task
is not only enqueued in its own server, as would be

4

done anyway, but it is also enqueued in the server
providing the spare reservation.

The flag set on the VM’s server needs to be re-
set, and this may happen on two conditions. The
first possibility is when the emergency bandwidth
has been set for a certain duration, empirically de-
termined not as a function of time, but rather of the
chances the server has had to execute its tasks. The
other possibility is when the original server has its
bandwidth restored.

4 Experimental Results

The approach presented in the previous section was
validated through an experiment conducted on a pro-
totype implementation of the mechanism, evaluated
on a Linux 2.6.35 kernel patched with the IRMOS
real-time scheduler [2], running on an Intel Core 2
Duo P9600 CPU configured for running at a fixed
2.66 GHz frequency. The VM was configured with
the CPU thread running at real-time priority lower
than the one used for all its other threads. We were
unable to use the full implementation described in
Section 3, and we used only a subset of it, handling
part of the transition to the spare reservation from
userspace; however in the experiments we made sure
that the mapping of the VMs to the reservation was
compatible with the described approach.

In order to show the advantages of the technique,
the ping times for reaching the VM have been mea-
sured under various conditions (so, the ping time
is representative of the responsiveness of the VM),
while a fake compute-intensive workload was used
inside the VM, using a throughput utility that has
the capability to measure how many repetitions of
a basic for loop with a few arithmetic operations
have been realized over a time horizon. Note that
a ping packet only reaches the kernel-level network
driver of the target VM (which runs at higher priority
as compared to user-space computing applications).
The evaluation of the technique with real user-space
applications (e.g., a webserver that needs to remain
responsive) is deferred as future work on the topic.

In the experiment, the potential of the mech-
anism is highlighted by measuring the worst-case
responsiveness of the system, under the assump-
tion of sporadically interspaced, non-enqueuing ping
requests, while the VM is under heavy compute-
intensive workload. This has been achieved running
the throughput utility inside the VM, attaching it
to a reservation with scheduling parameters (Q,P) =
(40ms, 100ms), and by using a spare reservation con-
figuration of (Qs, Ps) = (4ms, 10ms). Also, in or-

der to evaluate the worst-case latency experienced by
ping, the VM was pinned on the first physical core of
the host, while a user-space tool, pinned on the other
core, was used to spin-wait for budget exhaustion of
the associated reservation, and issue a ping request at
that time. As highlighted in Section 2, the minimum
observed ping time is theoretically P − Q = 60ms
in this case (but far higher values were observed, ac-
tually). However, the mechanism introduced in this
paper foresees the attachment of the spare reserva-
tion to the VM at the ping packet receive time, thus
the VM has a chance to run for Qs = 1ms within the
deadline of Ps = 10ms (and for an additional 1ms
for each subsequent 10ms time window, till the re-
plenishment of the original reservation budget), thus
responding to the request much more quickly.

The obtained ping times with the VM running
under the real-time scheduler are shown in Figure 4.
As it can be seen when using the spare reservation
(bottom curve) mechanism, the experienced ping
times are highly reduced as compared to when not
using it (top curve).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

P
in

g
tim

e
(m

s)

Request

"< sed -e ’s/^.*time=\\([0-9.]\\+\\) ms/\\1/’ ping-notrick.dat"
"< sed -e ’s/^.*time=\\([0-9.]\\+\\) ms/\\1/’ ping-trick.dat"

FIGURE 4: Obtained ping times with-
out the additional spare reservation (top
curve) and with the spare reservation (bottom
curve).

Also, looking at the throughput that can be
achieved by the batch computing activities inside
the VM with various equivalent reservation config-
urations (in terms of occupied CPU share), we can
observe that with a reservation of (40ms, 100ms) our
program was reporting 1.11 cycles per microsecond,
while with a reservation of (4ms, 10ms) it was re-
porting 0.56 cycles. The big difference is due to the
additional scheduling overheads due to the ten times
more context switches. Therefore, it is highly ben-
eficial to keep the VM configured with the longer
period, in this case, while our mechanism allows to
greatly improve its responsivenes.

5

5 Conclusions and Future

Work

In this paper we present a novel scheduling mech-
anism to provide efficiently a tight responsiveness
to virtual machines hosting mixed compute-intensive
and real-time workloads. It is possible to sched-
ule such VMs with a reservation-based scheduler by
using a large period for minimum overheads during
compute-intensive periods, but at the same time en-
sure that the VM responds within a much shorter
deadline when receiving input from the outside, as
in the case of receiving a network packet.

The presented mechanism can still be improved,
and various directions for future extension are pos-
sible. Firstly, the mechanism may be improved to
shorten the response-time of the VM also during the
periods in which its own reservation has still budget,
but the deadline is still quite far away. This may
be seen in workloads where the other VMs in the
system have deadlines shorter than the one of the
VM receiving the packet, but still quite far away as
compared to the desired tightness of the real-time ac-
tivity response. Second, the current implementation
is only a proof-of-concept and needs to be better en-
gineered to reach production quality levels. Third,
the idea of the pool of spare reservations has only
been sketched out, but it needs to be refined, imple-
mented and experimented on a real system. Finally,
the presented mechanism needs to be applied to some
real-life workload in order to highlight its full poten-
tial for real application scenarios.

References

[1] L. Abeni and G. Buttazzo. Integrating multi-
media applications in hard real-time systems.
In Proc. IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

[2] F. Checconi, T. Cucinotta, D. Faggioli, and
G. Lipari. Hierarchical multiprocessor CPU
reservations for the linux kernel. In Proceedings
of the 5th International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time
Applications (OSPERT 2009), Dublin, Ireland,
June 2009.

[3] T. Cucinotta, G. Anastasi, and L. Abeni. Real-
time virtual machines. In Proceedings of the 29th

IEEE Real-Time System Symposium (RTSS
2008) – Work in Progress Session, Barcelona,
December 2008.

[4] T. Cucinotta, G. Anastasi, and L. Abeni. Re-
specting temporal constraints in virtualised ser-
vices. In Proceedings of the 2nd IEEE Interna-
tional Workshop on Real-Time Service-Oriented
Architecture and Applications (RTSOAA 2009),
Seattle, Washington, July 2009.

[5] T. Cucinotta, G. Anastasi, F. Checconi, D. Fag-
gioli, K. Kostanteli, A. Cuevas, D. Lamp,
S. Berger, M. Stein, T. Voith, L. Fuerst,
D. Golbourn, and M. Muggeridge. Irmos de-
liverable: D6.4.2 final version of realtime ar-
chitecture of execution environment. Avail-
able on-line at: http://www.irmosproject.

eu/Deliverables/Default.aspx., 1 2010.

[6] T. Cucinotta, D. Giani, D. Faggioli, and
F. Checconi. Providing performance guarantees
to virtual machines using real-time scheduling.
In Proceedings of the 5th Workshop on Virtu-
alization and High-Performance Cloud Comput-
ing (VHPC 2010), Ischia (Naples), Italy, August
2010.

[7] G. Dunlap. Scheduler development update. Xen
Summit Asia 2009, Shanghai, 11 2009.

[8] D. Gupta, L. Cherkasova, R. Gardner, and
A. Vahdat. Enforcing performance isolation
across virtual machines in xen. In Proc.
ACM/IFIP/USENIX 2006 International Con-
ference on Middleware, New York, NY, USA,
2006.

[9] G. Liao et al. Software techniques to improve
virtualized i/o performance on multi-core sys-
tems. In Proc. ACM/IEEE ANCS 2008, New
York, NY, USA, 2008.

[10] C. L. Liu and J. Layland. Scheduling al-
ghorithms for multiprogramming in a hard real-
time environment. Journal of the ACM, 20(1),
1973.

[11] D. Ongaro, A. L. Cox, and S. Rixner. Schedul-
ing i/o in virtual machine monitors. In Proc.
ACM SIGPLAN/SIGOPS VEE ’08, New York,
NY, USA, 2008. ACM.

6

