
A. Mascitti (1), T. Cucinotta

(1) PhD student Scuola Superiore Sant’Anna in Pisa

Dynamic Partitioned Scheduling of Real-
Time DAG Tasks on ARM big.LITTLE

Architectures

1

Dynamic Partitioned Scheduling

• More and more multi-processor devices
• Android on billion of devices

• More and more interactive application → real-time

τ

2

Background

• CBS servers
• We make use of resource reservations to enforce

temporal isolation among tasks
• A CBS reservation σi is associated parameters (Q, P),

where Q is the budget and P the reservation period
• While a reservation is scheduled, the budget is

decreased accordingly
• If tasks in the server try to execute for more than Q

time units, the server deadline is postponed by P

• Core schedulability condition: σ𝑖𝑈𝑖 = σ𝑖
𝑄𝑖

𝑃𝑖
≤ 1

3

CBS 1

CBS 2

𝑈𝑚𝑎𝑥

1.0

core

Background

• GRUB-PA
• Greed Reclamation of Unused Bandwidth – Power Aware

• It is an energy-aware variant of CBS server
• Implements unused bandwidth reclamation

• Exploits DVFS capabilities

• Implemented in mainline Linux running SCHED_DEADLINE CBS
reservations from version 3.14 (Sept 2017)

4

CBS 1

CBS 2

𝑈𝑚𝑎𝑥

1.0

core

State of Art

• Energy-aware scheduling of sequential tasks
• Linear Programming-based Methods

• Others consider heuristics and DVFS capabilities

• Also explored in a previous work of ours (deeply explained later)

• Thermal-aware scheduling of sequential tasks
• ILP methods

• Minimizing peak temperature

• Pattern-based approaches (go idle often to reduce temperature)

• Feedback-loop-based approaches

5

State of Art

• Non-energy-aware DAG scheduling
• Some works only consider analysis and schedulability issues

• Partitioning techniques based on Semi-/Federated scheduling

• Gang scheduling

• Energy-aware DAG scheduling
• Not much in the literature

• We base our solution on Guo et al. (deeply explained later)

• Based on the concept of Speed-Profiles (we don’t use)

• Introduces the Task Decomposition technique that we use

6

Notation - CPU

• ARM big.LITTLE platform

7

• Power model already
implemented in RTSim as in [*]
• Tries to be a good compromise

between representativeness and
complexity

• Power consumption depends on
voltage (quadratic) and frequency,
and task workload type

• Tuned on ODROID XU3

• Does not consider interference due
to other tasks, cache and memory

Big island

Umax = xB= 1.0

𝑈 max = 𝑥𝐿 = 0.345328

LITTLE island

Notation - CPU

• ARM big.LITTLE platform

8

• Power model
• Tries to be a good compromise

between representativeness and
complexity

• Power consumption depends on
voltage (quadratic) and frequency,
and task workload type

• Tuned on ODROID XU3

• Does not consider interference due
to other tasks, cache and memory

Big island

Umax = xB= 1.0

𝑈 max = 𝑥𝐿 = 0.345328

LITTLE island

Notation - task

• Set of n soft real-time DAG task: τ1.. τ n
• Implicit deadline (DAG task period = deadline)

• 𝜏𝑖 contains a set of nodes 𝜏𝑖 = 𝑁𝑖
𝑗

𝑗=1

𝑛𝑖
with associated nominal

WCET 𝐶𝑖
𝑗
and period 𝑇𝑖

• Open and dynamic system – user opens and closes apps

9

N1 N2 N3

N4

N5 N6

N7 N8 N9

N1
0

N1
1

Problem

10

N1 N2 N3

N4

N5 N6

N7 N8 N9

N10

N11

Given a DAG task τi :

Problem, Novelty

11

N1 N2 N3

N4

N5 N6

N7 N8 N9

N10

N11

How to split the DAG nodes into groups:

Novelty

12

N1 N2 N3

N4

N5 N6

N7 N8 N9

N10

N11

and place CBS servers
to achieve the lowest energy consumption

& guarantee deadlines

Big island

Umax = xB= 1.0

𝑈 max = 𝑥𝐿 = 0.345328

LITTLE island

Our solution

13

Approach

• Given a DAG task, we need:
• A way to split it into groups of CBS servers

• A way to partition into the CPUs the CBS servers

• Energy-efficiently

• Respecting the soft deadlines

14

N1
10

N2
5

N3
1

N4
6

N5
3

N6
6

N7
5

N8
3

N9
4

N10
10

N11
2

Nominal WCET

Approach – DAG to { CBS server }

• How to split DAG task τ1 into groups of CBS servers?

• DAG Task Decomposition Technique as in [*]
• Guo et al. is based on “Speed-Profile”
• Guo et al. is not about utilizations (we are)

• Optimized for our use-case
• Decrease utilization of CBS servers
• Changes some phases to optimize the goal (see later)

15

N1
10

N2
5

N3
1

N4
6

N5
3

N6
6

N7
5

N8
3

N9
4

N10
10

N11
2

* Guo et al., Energy-efficient real-time scheduling of DAGs on clustered multi-core platforms. RTAS 2019

Approach – { CBS server } to CPUs

• How to place CBS servers onto the
CPUs?

• Dynamic partitioning as in [*]
• Previous work was about sequential tasks

• Extended to DAG tasks

• Transparently assigns CBS parameters

• Decides core and frequency for each
CBS server

• Provides the heuristically best core
giving min (additional) power
consumption

16

N1
10

N2
5

N3
1

N4
6

N5
3

N6
6

N7
5

N8
3

N9
4

N10
10

N11
2

* Mascitti et al, An adaptive, utilization-based approach to schedule real-time tasks for ARM big. LITTLE architectures. Ewili 2020

Big island

Umax = xB= 1.0

𝑈 max = 𝑥𝐿 = 0.345328

LITTLE island

Approach – decrease CBS servers’ utilization

• Smaller CBS utilization -> smaller core utilization -> smaller frequency
-> less energy consumption

• Revisited and optimized version of DAG Decomposition Technique
(original by Guo et al.)

• Performed transparently at DAG task first arrival

• Many phases:

17

Phase 1 – DAG Task Decomposition

• In this phase, nodes are divided
into groups, which are assigned
initial Arrival and Finishing Time
• DAG task has deadline 50

• E.g., N3 and N7 (violet) belong to
one CBS server

• N3 first job (WCET = 1) begins at
t=15 and finishes at t=16

• N7 first job (WCET = 5) begins at
t=16 and finishes at t=21

18

Slack time

Phase 2 – Slack allocation

• Slack time is used to relax nodes
finishing times and thus decrease
CBS utilizations

• Allocated uniformly among
nodes. E.g. (𝐿𝑖is DAG critical path
length):

19

Phase 3 – Segment Extension

• N7 had no reason to finish
within the former 𝑓𝑖

𝑁9 =40

• ⇒ 𝑓𝑖
𝑁9 = 𝑎𝑖

𝑁11 = 48

• CBS utilization is reduced

20

N1
10

N2
5

N3
1

N4
6

N5
3

N6
6

N7
5

N8
3

N9
4

N10
10

N11
2

Nominal WCET

Phase 4 – Relaxing finishing times (ours)

• Further reduces CBS utilization

• Distribute the time window of
each CBS to its nodes,
proportionally to their WCET

• E.g., for CBS S = { N3 = 1, N7 =5 } :

𝜇 ≡
𝑓𝑆
𝑁𝑆
𝑛

− 𝑎𝑆
𝑁𝑆
1

σ
𝑁𝑆
𝑗 𝐶𝑆

𝑗
=
31 − 20

1 + 5
= 1.83

21

Evaluation

• Compare BL-CBS (i.e., this technique) with GRUB-PA

• Random tasksets of {1,2,3} DAG tasks and {24,12,8} nodes
respectively ; Different DAG utilizations { 0.2, 0.25, …, 0.7 }

• Execution time of node instances is set to be uniformly distributed
between 0.1 ms and the node nominal WCET => more dynamic
environment

• For a given CBS server 𝜎𝑖,𝑘 containing a set of nodes { 𝑁𝑖
𝑗
} :

22

Evaluation (Avg energy)

23

BL-CBS < GRUB-PA
BL-CBS << G-EDF

Evaluation (Avg energy)

24

BL-CBS < GRUB-PA
BL-CBS << G-EDF

9000 mJ = 90mJ x 100

Evaluation (Avg energy)

25

BL-CBS <= GRUB-PA
BL-CBS << G-EDF

400.000 mJ = 90 mJ x 4.444

Evaluation (avg frequency)

26

BL-CBS < GRUB-PA

Evaluation (avg frequency)

27

Evaluation (avg frequency)

28

LITTLE island has higher
frequencies than big island

Conclusions

29

τ

Incorporate DAG placement and splitting strategies

Experimental results
• On random tasksets
• Energy saving in average 10% over all

the experiments with respect to the
state-of-the-art GRUB-PA

Improvement for energy saving
• BL-CBS for DAG tasks
• Support to “open” and dynamic system

(Android use-cases)
• Made for ARM big.LITTLE architecture

Future works

• Improve the performance of the placement algorithm

• Place the servers on the cores also considering

• The nodes relationships

• The memory consumption and different workload types

• Consider CPU deep-idle states

• Incorporate Bandwidth reclaiming and feedback mechanisms

30

Thank you!
a.mascitti@santannapisa.it

31

Slide & paper
https://owncloud.retis.santannapisa.it/index.php/s/py1WwfF2aSUjciV

https://owncloud.retis.santannapisa.it/index.php/s/py1WwfF2aSUjciV

