Dynamic Partitioned Scheduling of Real-Time DAG Tasks on
ARM big.LITTLE Architectures®

Agostino Mascitti
Tommaso Cucinotta
agostino.mascitti@santannapisa.it
tommaso.cucinotta@santannapisa.it
Scuola Superiore Sant’Anna
Pisa, Italy

ABSTRACT

This paper evaluates the combination of a Directed Acyclic Graph
(DAG) task splitting technique already proposed in the literature
and the state-of-the-art, energy-aware version of the well-known
CBS server (BL-CBS), which dynamically partitions and schedules
real-time task sets in an energy-efficient way on multi-core plat-
forms based on the ARM big.LITTLE architecture. The approach
is designed to be used with any DAG in a transparent way as an
on-line and adaptive scheduler supporting “open” systems. The ap-
proach is validated and evaluated through the open-source RTSim
simulator, which has been extended integrating an energy model of
the ODROID-XU3 board and the code-base needed to perform the
DAG task decomposition and scheduling. Simulations on randomly
generated DAGs show that the approach leads to promising results.

CCS CONCEPTS

« Computer systems organization — Real-time operating sys-
tems; - Hardware — Platform power issues.

KEYWORDS

Real-time scheduling, ARM big.LITTLE, heterogeneous multicore
processing, energy-efficiency, DAG scheduling

ACM Reference Format:

Agostino Mascitti and Tommaso Cucinotta. 2021. Dynamic Partitioned

Scheduling of Real-Time DAG Tasks on ARM big.LITTLE Architectures*
. In 29th International Conference on Real-Time Networks and Systems

(RTINS’2021), April 7-9, 2021, NANTES, France. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3453417.3453442

1 INTRODUCTION

In recent years, embedded systems faced a relentless growth in the
requirements posed by users on their computing capabilities, with a

OThis work has received funding from the European Commission through the EU
H2020 research project AMPERE (A Model-driven development framework for highly
Parallel and EneRgy-Efficient computation supporting multi-criteria optimization)
under the grant agreement no. 871669.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7-9, 2021, NANTES, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04...$15.00
https://doi.org/10.1145/3453417.3453442

pervasive switch to multi-core platforms. Specifically, in the area of
mobile and battery-operated embedded systems, we have witnessed
a widespread adoption of novel energy-efficient architectures, first
and foremost the ARM big LITTLE one, nowadays a fundamental
component of a plethora of smartphone and tablet devices on the
market, where the timeliness of soft real-time applications in do-
mains like multimedia and gaming is becoming more and more
important.

The big LITTLE design deviates from classical symmetric multi-
processing (SMP), in that it introduces two different types of cores
sharing the same instruction-set architecture (ISA), but with differ-
ent frequency vs power consumption curves. In these platforms,
the operating system can migrate tasks among different core types
at run-time, as needed according to its power-aware scheduling and
placement strategies. LITTLE cores specialize in low-energy com-
puting whilst big cores specialize in performance. The two types of
cores are normally capable of switching among principally different
but partially overlapped frequency steps. However, the differences
in the internal micro-architecture and pipeline design for the two
core types causes a task running on a LITTLE core to take longer for
execution and to consume less power than when running on a big
core at the same frequency. Nowadays, the Dynamic Voltage and
Frequency Scaling (DVES) capabilities of big.LITTLE architectures
are constrained to being able to set a single frequency for each
of the two core type islands, albeit the most recent and advanced
developments of the architecture, named DynamIQ [4], will remove
this constraint.

However, much of the work on energy saving has been carried
out until now on independent and sequential real-time tasks, with-
out considering intra-task parallelism (refer to [7] for a survey),
while in this paper we focus on that. These complex tasks can be
deterministically represented as Directed Acyclic Graphs (DAGs) of
tasks at the operating system (OS) level. An efficient scheduling of
these DAG tasks is imperative, for example, in case of low-latency
audio and multimedia processing, where soft real-time scheduling
techniques can be used to ensure the expected Quality of Service
(QosS) for the application. For example, in audio/video processing,
filters and effects to apply can be represented as nodes in a DAG
characterized by their WCETs, and precedence constraints whose
presence adds complexity to the scheduling problem. Indeed, the
deadline miss of a node delays its successors, which can be poten-
tially perceived by the user and degrade the final experience with
annoying audio hiccups or undesirable audio/video delays.

https://doi.org/10.1145/3453417.3453442
https://doi.org/10.1145/3453417.3453442

RTNS’2021, April 7-9, 2021, NANTES, France

When dealing with real-time workloads, the Linux default sched-
uler, the completely fair scheduler (CFS), is not effective in coordi-
nating the energy-management features of the hardware with the
timing requirements of the deployed real-time applications, leading
to experiencing unnecessary deadline misses. More appropriate
solutions are needed like the SCHED DEADLINE scheduler, which
has been recently made available in the mainline Linux kernel, and
that is a multi-processor variant of the CBS server [1], exploiting a
reservation-based scheduling strategy that can be conveniently con-
figured as using either global, partitioned or clustered EDF schedul-
ing underneath. However, it cannot be used directly for scheduling
real-time DAGs in an energy efficiency way on ARM big. LITTLE
architectures, which is the subject of this paper investigations.

1.1 Paper Contributions

In this paper, we deal with the problem of correct use and configu-
ration of a reservation-based scheduler like SCHED DEADLINE,
for scheduling real-time DAG tasks (i.e., sets of OS tasks with
precedence constraints linking them into DAG topologies) on ARM
big. LITTLE architectures in an energy-efficient way. To this pur-
pose, we leverage on our previous work [33] on energy-aware
scheduling for independent real-time tasks on big.LITTLE architec-
tures, adding the support for soft real-time DAG tasks. The focus is
on an “open” environment, where real-time DAGs can enter and
leave the system at any time, due to activation or termination of
applications at run-time. The proposed approach is based on com-
bining the mentioned prior work of ours with task decomposition
techniques proposed in [24, 25] for transparently grouping the
nodes of each DAG into CBS servers, and partitioning them among
the available CPU cores. The proposed approach is extensively eval-
uated by simulation under various conditions, where the OS tasks
belonging to each DAG are dynamically assigned to the available
cores, trying to minimize the power consumption of the platform.
The simulations focus on synthetic, albeit realistic scenarios for
mobile personal computing devices (e.g., smartphones, tablets) in
which DAG tasks are dynamically activated (or terminated) due
to user interactions. Simulations have been performed extending
the well-known RTSim simulator platform [38] with a realistic
big LITTLE energy model [33] reflecting tightly the capabilities of
a real octa-core big.LITTLE platform, and the possibility to host
arbitrary real-time DAGs, integrating the DAG decomposition and
acceptance tests mentioned above.

From the presented evaluation, our approach: (1) guarantees that
the DAG tasks admitted into the system are scheduled within their
deadlines; (2) achieves the lowest expected power consumption for
executing the DAG tasks.

1.2 Paper Organization

This paper is organized as follows: after a brief review of the re-
lated research in Section 2, the computing platform we focus on
and its energy model are described in Section 3, along with some
accompanying notation that is adopted throughout the rest of the
paper. Then, key background concepts related to the adopted task
placement strategy and CBS scheduling are presented in Section
4. The proposed technique is described in Section 5, along with an
example of its usage in Section 5.1. Then, the proposed BL-CBS

Agostino Mascitti and Tommaso Cucinotta

technique is evaluated by simulation in Section 6. Finally, conclu-
sions are drawn in Section 7, sketching out possible directions for
future research on the topic.

2 RELATED WORK

The problem of energy-aware scheduling of sequential real-time
tasks on multicore architectures has been widely studied over the
years and a survey is available in [7]. Some of the authors [15, 17]
use linear programming-based approaches to find the optimal solu-
tion, while others [5, 11, 26, 32, 34, 36, 37, 40, 44] exploit different
techniques and the hardware DVFS capability to reduce the energy
consumption, like we do with DVFS. Notably, [31] also considers
GPUs in the platform model and this brings to a more complete
solution for saving energy. A previous work of ours [33] also ex-
plores the problem of scheduling sequential real-time tasks on
ARM big LITTLE platforms in an energy-aware way, proposing an
innovative dynamic partitioning algorithm that works for “open”
systems, where tasks can come and go at any time. This last work
is used as a base upon which the approach proposed in this paper
builds, extending it to the case of tasks with dependencies (DAGs).
However, the problem becomes more challenging in the case of
DAG tasks because the single DAGs can execute partially on dif-
ferent cores at the same time and nodes have dependencies among
each other, and none of the mentioned works on energy-aware
real-time scheduling deals with DAGs.

A variant of this problem is the one of thermal-aware scheduling
of sequential real-time tasks on multicore systems. While some
approaches aim at minimizing the peak temperature [14, 20, 21, 48],
and some of them exploit ILP methods and other ones the core
speeds, other apporaches employ feedback loops to manage adap-
tively the platform temperature [16, 22, 23]. Finally, other solu-
tions [47] are based on a pattern-based approach that divides a
given time horizon into several time segments, and the proces-
sor can either be making computation or in a dormant mode that
reduces the temperature.

Nevertheless, the problem of scheduling real-time DAG tasks
on multicore platforms has been tackled in other works without
considering the energy issue. The problem is tackled from two
points of view and while [3, 8-10, 12, 28] consider the analysis and
schedulability problem, other works [2, 13, 27, 29, 35, 45, 46, 49,
50] propose partitioning techniques based on various scheduling
strategies like federated and semi-federated scheduling and G-EDF.
One interesting variant of the problem uses the Gang scheduling [2,
39], in which all parallel instances of a same task start and stop using
the processors at the exact same time. Also, specific works [19]
dealing with the particular case of linear topologies, have appeared
in the literature.

As for the problem of energy-aware scheduling of real-time DAG
tasks, it has not received much attention until now, and we report
the major works available in the literature on the topic.

The first work is from Guo et al. [24], and it is based on (and
extends) some previous works of theirs [25, 42], which did not con-
sider ARM big.LITTLE platforms. Our research is based on [24],
which is deepened in Section 4, and exploits the algorithm to de-
compose the DAG tasks into groups of nodes (Task Decomposition)
that can be dispatched onto the cores and executed with EDF. These

Dynamic Partitioned Scheduling...

works are based on the concept of Speed Profile, which, given a DAG
task, provides the time percentage/likelihood needed by the DAG
for each speed available on the platform. This is used to identify an
energy-efficient core-to-task mapping.

In contrast, we propose to use a scheduling strategy combining
an admission test based on the utilization of the tasks, designed
specifically for the ARM big.LITTLE architecture, developed in
our prior research [33], with the DAG decomposition technique
proposed in [24].

The same authors also propose [41] an energy-aware federated
scheduling approach based on ILP to partition DAG tasks on the
ARM big LITTLE architectures and determine the speeds of the
nodes. Then, when the nodes run on their cores, frequencies are
set based on the speeds of the nodes. This approach requires some
offline computations, while ours totally works online for “open”
systems and without any prior knolwedge of the DAGs that will
need to be admitted onto the system at run-time.

3 NOTATION AND ENERGY MODEL

This section presents the models and notation used throughout the
paper to represent the underlying processing platform, the energy
model, and the scheduled task sets.

3.1 Platform Model

The system under consideration has an ARM big.LITTLE archi-
tecture with two homogeneous islands where each island s has
a total of mg cores. DVFS capabilities are available with all cores
in the same island sharing the same CPU frequency. At a higher
level of abstraction, a core is characterized by a power model and
a speed, and X is the maximum speed of the island s. The power
model is given by [6] and it tries to be a good compromise between
representativeness and complexity:

Pepy = Pow + Pip = 8+ (1 + (1 + K V2, (1)

where P, is the power required to charge the transistors and Py is
the power due to leakage effects. Also, K envelopes the capacitance
of the transistor gates and the number of transistors involved in
the frequency switching, y is a temperature-related parameter, 5
is the proportionality factor between the power consumption due
to charging the gates and the power loss due to brief short-circuit
conditions while toggling logic states, and § is used to introduce
some degree of freedom. The formula states that the power con-
sumption depends on voltage and frequency and is in quadratic
proportion to the voltage. These parameters have been tuned via
genetic optimization on real data gathered from a ODROID XU3, as
detailed in [6]. Equation (1) does not consider interferences due to
other tasks in the system nor the implied cache and bus contention.
Including other details would make the CPU model more accurate,
but it would also increase the complexity. In line with observations
in [6], this approach results in a sufficient approximation for our
simulations. We define the speed of a core (either big or LITTLE) as
a number between 0 and 1 representing its computational capacity,
relative to a big core at maximum frequency. On the ODROID XU3,
each big core has maximum speed xg = 1 and each LITTLE core has
maximum speed X1 = 0.345328, which are the maximum per-core
nominal utilizations admissible under EDF (see Equation (4)).

RTNS’2021, April 7-9, 2021, NANTES, France

3.2 Task Model

In this paper we consider a set of real-time DAG tasksT" = {77 ... 7,}
to be scheduled on a number of CPUs. Each 7; € T is represented as
a DAG and it is characterized by a minimum inter-arrival period T;
equal to its relative deadline D; (implicit deadline case). Each DAG
task 7; is made up of n; nodes, each denoted by Nlj with1 <j < n;
(r; = {NIJ }'.l:il) and characterized by the worst-case execution time
(WCET), which will be discussed in depth in the following sections
for the case of the ARM big.LITTLE architecture. An edge from N{
to Nl.k (NIJ — le) means that the execution of Nl.k can only begin
when N{ finishes for every instance (precedence constraint). In this
case, N{ is called parent of Nl.k and Nik is called child of Nlj A node

N{ may have multiple parents or children. The set of parent nodes
{N{} of a node Nl.k is denoted as pred(Nl.k).

Each DAG task 7; generates a sequence of activations, where
each activation rlj arrives at time r{ (causing the j!* activation of
all nodes N{ with pred(N{) = 0) and has a finishing time (equal to
the maximum among the finishing times of the j** activation of all
nodes in the graph) denoted by fi] > r{ . A DAG task 7; respects all
of its deadlines if all of its activations respect the relative deadline
constraint D; = T;: Vj, fij < rl’ +T;. Generally, r{“ S rl; +T5. but
for a periodic real-time task, we have rl’ o rl] +T;.

A critical path is a directed acyclic path with the maximum total
execution among all the other paths in a DAG. L; is the sum of the
execution times of all the nodes that belong to the critical path. It
is a min-span of 7;, i.e. in order to make it schedulable, at least L;
time units are required in every period T; even when the number of
cores is unlimited. Therefore, the condition T; > L; must hold for 7;
to be schedulable. A schedule is said to be feasible if upon satisfying
the precedence constraints, all the sub-tasks (nodes) receive enough
execution time on the CPUs, so that every task 7; completes within
its deadline D; = T; for each activation.

Each node N{ of the DAG task 7; has a known nominal WCET

C{ being the WCET of the node when running on a big core at
maximum frequency. Whenever the task is running on a core of an
island s at an Operating Performance Point (OPP) o, corresponding
to the frequency fs o, its timing is characterized by the scaled WCET
¢! defined as:

i,s,0
J
C]

Xs,0

~J -
i,s,o

C{ f;,ks
A] @

where kg denotes the maximum-frequency OPP available on is-
land s, and x5, , denotes the speed of a core of island s when at
OPP o, x5 denotes the speed of any core of island s when running
at its maximum-frequency OPP and f; ;. denotes the maximum
frequency of island s.

This paper focuses on approaches where the initial task set of
DAG tasks I' is turned into a set of CBS servers I'". Each server
o; of the DAG task 7; groups a set of nodes o; j = {N{} c
7;. This, when running on island s at OPP o, has a scaled budget
equal to the sum of the scaled WCETs of its associated DAG nodes
ink = ZN{eai,k (:‘is’o. At any point in time, each core h of an

island s hosts a subset of CBS servers I ,, C I'” that, in the case of

RTNS’2021, April 7-9, 2021, NANTES, France

a partitioned EDF-based scheduler, need to meet the well-known
condition (for schedulability of the CBS reservations — see Equation

(©)):

> %Sl\ﬂte{l..ms}. 3)

95,k h ik

With reference to a core h of island s at OPP o where the reservation
is deployed, we can introduce the nominal budget Q; i = Q; i /Xs,0
and the nominal utilization B; . = Q; . /P; k., obtaining:

Z Big < %s Vh e {1..mg}.)
i, ks, n

However, we assume to have no prior knowledge as to what real-
time tasks will appear into the scheduler queue over time; thus we
focus on an adaptive approach that can be used for “open” systems
(details in Section 5).

4 BACKGROUND

In this paper, we consider a system where many soft real-time
tasks may be concurrently active on the same CPU and they in-
terfere with each other, jeopardizing their deadlines. Therefore,
we make use of resource reservations to enforce temporal isolation
among tasks. In this paper, we use the Constant Bandwidth Server
(CBS) [1] as a resource-reservation mechanism. So, node groups of
each DAG task are scheduled by means of a CBS reservation o;
with associated scheduling parameters (Q, P), with the meaning
that Q time units (a.k.a., budget) are reserved for scheduling the
corresponding task nodes on the CPU in every time interval of
duration P (a.k.a., reservation period).

In CBS, reservations are realized by means of the Earliest Dead-
line First (EDF) scheduler, which schedules reservations based on
their scheduling deadlines, assigned by the CBS algorithm. When
a reservation is activated, the server checks whether the current
deadline is sufficient to schedule it, otherwise it assigns a new
deadline postponing the current one of a time equal to P. While a
reservation is scheduled, the budget of the associated CBS is accord-
ingly decreased. If tasks in the reservation try to execute for more
than Q time units, the reservation scheduling deadline is postponed
by P. Therefore, each reservation is prevented from executing for
more than Q time units with the same scheduling deadline, and it
is guaranteed a computation bandwidth of Q/P regardless of the
behaviour of other reservations. This ensures temporal isolation,
preventing a misbehaving task to cause deadline misses on jobs of
other tasks with farther away deadline. To guarantee schedulability
of, and temporal isolation among, the reservations {(Q;, P;)} on
the same core, the following schedulability condition must hold:

Qi
P, < Umax (5)

i

with Upgx = 1in case of EDF. A CBS server may be associated
with many tasks, which belong to the same DAG task and that are
related by a dependency relationship in this paper.

An energy-aware extension of the CBS server is GRUB-PA (Greed
Reclamation of Unused Bandwidth - Power Aware), integrating the
ability to reclaim unused processor capacity (bandwidth) that is
not used because some of the servers may have no jobs awaiting

Agostino Mascitti and Tommaso Cucinotta

execution and exploiting the hardware DVFS capabilities to reduce
the cores frequency. GRUB-PA has been implemented in the main-
line Linux running SCHED_DEADLINE CBS reservations, starting
from version 3.14 released in September 2017. Its energy-related
behaviour on multiprocessor platforms could be summarized as
follows. When a new task instance Jj j arrives, the first free core
is selected if available; otherwise, the core with the latest-deadline
task is chosen and the new task is dispatched onto it. Then, in the
case of ARM big.LITTLE, the highest-utilization core of each island
is used to determine the frequency (or the highest frequency is
picked if the busiest core has utilization greater than 1.0). When
a task in a server ends, leaving its core idle, the task with closest
deadline is pulled onto it and the islands frequencies are adjusted.
The reader can find more details about the GRUB-PA in [43].

In this paper, we introduce the support to DAG tasks, whose
nodes are split into groups, enveloped into CBS servers and dis-
patched onto cores. Task Decomposition is a technique to group
nodes and, in this paper, we use a slightly modified and optimised
version of the original one [24, 25], where for example we introduce
the Relaxing Finishing Times phase to further reduce the utilizations
of the CBS servers, which is important to reduce the energy con-
sumption. Also, we adapt and refine the original technique, thought
to deal with the Speed Profiles (see above), for being used in con-
junction with partitioned EDF and with the partitioning strategy
proposed in [33]. The technique is made up of different phases
that aim at assigning each node an arrival and finishing time with
respect to the DAG arrival time and deadline. Since the technique
is a central part of this paper, it is extensively explained in Section
5and Section 5.1 with images.

4.1 Real-time task partitioning

The Task Decomposition technique is coupled with our technique [33]
for partitioning OS tasks dynamically, so we report in this section
this strategy for the sake of completeness. The placement algorithm
is called to decide a target core and its frequency. It loops over all
cores and their frequencies, starting with the same island where
the task is already located, keeping its current frequency if possible.
The first check is that jobs do not miss their deadlines and that they
are schedulable with EDF. Then, it computes the difference between
the power consumption due to the current core assignment, with
the one of an alternate assignment to a different core, consider-
ing the possible impact on frequency scaling. Power consumption
is calculated based on the island and utilization of the new task.
When the loop is over, the core with minimum additional power
consumption is chosen. Note that the power consumption of a core
for a given frequency is actually the difference with respect to its
consumption on idle. Our modified RTSim is actually able to exploit
the full optimized CPU power model as available from [6].

One more check and policy is applied to refine the choice: if the
core that would give minimum additional consumption is already
busy, the algorithm tries to balance the cores load by opting for the
next free one with the same extra consumption, if it exists. This
way, we avoid unneeded migrations.

When a job in a core ends its WCET,j.4, that core can get
either idle or there might be some ready tasks, which would be
scheduled. If there is no ready task, then the core would go idle. In

Dynamic Partitioned Scheduling...

this case, to maximize its utilization and because it may be impossi-
ble to scale down its frequency to the minimum for saving energy
(cores in an island share the same frequency in ARM big.LITTLE),
migrations are performed. A ready task from the big island is picked
and migrated. However, it may not be schedulable in the LITTLE
island with EDF. Therefore, migration is confirmed if:

WCETfn <(1- UPfinal,f")(DabS - 1), 6)

where we want to move a task with absolute deadline D ¢ from its
core with frequency f’ to core pr;,, With frequency f” at time
t. If no task can be moved and all queues in the core island are
empty, its frequency is set to the minimum. The CBS server active
utilization is stored on its ending CPU when it finishes and it is
kept while in releasing state. It is considered when computing the
core total utilization and it is removed when the virtual time [30]
expires or the core goes idle.

Note that the Placement Algorithm depends on the instantaneous
state of the system and that the scheduling decisions are dynamic
(i.e., performed at each task wake up and termination event). It
works with any taskset and, for each task, it only needs its WCET
and period. Moreover, it makes decisions based on 3 factors: (i)
task deadlines are respected; (ii) reduce power consumption when
possible; (iii) accept as many periodic tasks as possible. However,
since the focus has been on the functionality, the placement logic
has not been optimized for efficient execution. This is left as future
work, necessary for a viable solution to be embedded in a real OS
kernel scheduler.

Besides, we clarify that using this scheduling algorithm, we de-
termine the core allocation that minimizes power consumption
using a greedy heruristics. This works by comparing the difference
in power consumption due to placing the new task on the variuos
cores (and at the minimum associated frequencies to keep the reser-
vations schedulable). This way we can determine that a specific
core provides the heuristically best choice that gives the minimum
(additional) power consumption.

5 PROPOSED APPROACH

The proposed approach is the combination of the tecniques pro-
posed in [24], to split the DAG tasks in input into groups of nodes,
and the partitioning technique as proposed in [33], to dispatch the
parallel tasks (nodes) onto their cores.

Real-time DAG tasks are transparently decomposed into a set
of CBS servers as illustrated with an example in Section 5.1 (Task
Decomposition phase), and then they are partitioned among the
available cores as described in Section 4.1, where they are scheduled
on the assigned core using the CBS scheduling policy, based on EDF.
Notice that the partitioning technique is applied at job level when
the tasks wake up to maximize the saved energy. The schedulability
of the admitted tasks is guaranteed on each core using the EDF
admission test as in [24], and the schedulability of the admitted
DAG tasks is assured by the fact that, at each DAG task wake up
(i.e., at each period), all of its servers are dispatched onto their
cores, so that the DAG task is scheduled “all or nothing”. In fact, for
example in the case of audio processing, where a number of filters
are applied to the original audio (the reader can think about it as
a DAG task), the output is correct only if all the filters are applied
in the required order and within their deadlines, which motivates

RTNS’2021, April 7-9, 2021, NANTES, France

our DAG admission choice. Notice that, even when a DAG instance
is not schedulable, it still activates at its next period and we try to
schedule it.

5.1 Motivational example

To clarify the approach, we present an example of Task Decompo-
sition, which is the first step applied when a DAG task enters the
system. The original technique is taken from [24], and it is adapted
and refined for being used in conjunction with partitioned EDF
and with the partitioning strategy described in Section 4.1 and to
further decrease the utilization of the resulting CBS servers.

Consider a DAG task 7; representing a possible task with deadline
D; = T; = 50 that we want to schedule in Table 1, which shows the
nodes and their nominal WCET (i.e., referred to the big island at
maximum speed). For semplicity, the node Nj corresponds to the
parallel task N{ of 7;.

Table 1: Nodes of DAG task for the motivational example.

[Node [NI [N2]
[WCET | 10 | 5 |

N3 [N4 [N5 [N6 [N7 [N8 [N9 [N10 [Ni1 |
1[e[s]e]s[3[a]w]z]

The Task Decomposition algorithm decomposes the DAG task
7; into multiple Sequential Tasks and computes arrival times and
absolute finishing times for all nodes in a way that the Sequen-
tial Task utilization is reduced whenever possible to fit inside the
LITTLE cores and to decrease the island frequency. Then, each Se-
quential Task with its nodes corresponds to a CBS server, and they
are dispatched onto cores based on their utilization. The technique
is made up of different phases, which optimize the result of the
Base Step.

Task decomposition - Base Step. The first step of the Task
Decomposition algorithm is the same as in [24] and finds a number
of Sequential Tasks containing nodes. Figure 1 (Top) is a graphical
representation of its output, where different colors represent dif-
ferent Sequential Tasks. For example, {N1, N2} and {N5, N6, N8}
are two Sequential Tasks.

In addition to assigning nodes to Sequential Tasks, the basic step

ct

J e s . i _ .
also finds for each node Ni its its arrival time a{ = ZNik epred(N7)

and its absolute finishing time fi] = a{ + Cg for the first DAG in-
stance released at time t=0. Using these values, the output of the
basic step can be represented as in Figure 1 (Bottom).

Slack allocation. The basic step leaves some slack time o =
D;—L;, which can be used to relax the nodes deadlines and thus their
utilizations. o is allocated uniformly among the nodes by multipling
the deadline of each node by the factor § = Z_i = g—g = 1.28. The
result is shown in Figure 2, where for example:

N =139 % 1.28] = 50

N0 = [37x 1.28] = 48

fN? =31x1.28] = 40
Segment extension. The absolute final time computed at the
previous step is too strict for the nodes without successors and

thus it can be further extended. The main refinement of this phase
is the reduction of the utilization of some Sequential Tasks. The

RTNS’2021, April 7-9, 2021, NANTES, France

N1 N2 /N3 /N7 N8 . /NI
10 5 1 5/ 3 ® w2/
1 2 > =

N5 N6 /N10Y,
3 6 10/
N1 N2
0 10 15
N3 N7 4
@
16 21 a
@
o
=
21 3
N5 N6 N8 i
I I o
8
18 24 27 g ‘
31
N10 N11
— |

Figure 1: Result of the “Base Step” of the Task Decomposi-
tion. Top: The input DAG is divided into Sequential Tasks,
represented by different colours. Bottom: Arrival and finish-
ing time assigned to each of the produced Sequential Task,
represented by group of nodes in different rows.

N1 N2

N
5
sulpesp ova

N
R
@
I

z

G

0S

Figure 2: Result of the “Slack Allocation” phase. All arrival
and finishing times are updated.

result is shown in Figure 3, where the nodes that can be extended
are highlighted (N7, N4, N9), like N7 that has no reason to finish
within fiN7 = 27 and can be extended to fl.N7 = a%\ls = 35. Notice
that this way the utilization of the Sequential Task is reduced and
this is a key point for the placement algorithm when exploiting the
LITTLE cores.

N1 N2

aulpesp oY

0s =

N10 VIN“

48 5

Figure 3: Result of the “Segment Extension” phase.

Relaxing finishing times. The finishing times of the nodes can
be further reduced in this step by distributing the time window of
each Sequential Task to its nodes proportionally to the node WCET.
The result is shown in Figure 4 and the modified deadlines are
highlighted (N3, N7, N6, N8). The nodes of each Sequential Task

where A = f¥ —a

Agostino Mascitti and Tommaso Cucinotta

A

S with nodes {N}S ... NG} are multiplied by a factor y = —ZNj T
s

NZ N.
S . For instance, in the Sequential Task with

Sll
=11 =183

nodes {N3,N7}, u

N3 =1aN + N3 x] =20 +1x 1.83] = 22

N7 =122 +5x1.83] = 32

N1 N2

aulpeap Dva

N
R
@
8
&

Hz
S

0s =

48
N10 N11

48 9

Figure 4: Result of the “Relaxing finishing times” phase.

The produced Sequential Tasks and their nodes are then turned
into CBS servers, which are dynamically partitioned based on their
utilization using our placement strategy to achieve the minimum
expected energy consumption of the platform and guarantee the
deadlines of the nodes and their DAG tasks. Notice that our place-
ment algorithm is based on the task utilization, while in contrast
the one of [24] is based on the Speed Profile of the nodes.

6 SIMULATION RESULTS

In what follows, we introduce the schedulers taken into account
over all the experiments in Section 6.1, we introduce the paramters
of the experiments for their reproducibility in Section 6.2 and in
Section 6.3 we present our results about the energy efficiency of
our approach compared to other partitioning strategies.

6.1 Compared Schedulers

We validated the BL-CBS algorithm described in Section 5 and
measured its performance and energy consumption through the
class EnergyMRTKernelDAG in RTSim ! with respect to: (i) G-
EDF, as available through the class MRTKernel _Linux5_3_11_DAG
in RTSim, simulating the behaviour of the mainline Linux ker-
nel a few years back, running SCHED_DEADLINE CBS reserva-
tions without GRUB nor power awareness features; (ii) and MRTK-
ernel_Linux5_3_11_GRUB_PA_DAG in RTSim, implementing the
energy-related behaviour of GRUB-PA, i.e. decreasing the frequency
to the minimum required to sustain the utilization of every CPU,
and reflecting (part of) the behaviour of the implementation of
GRUB-PA in the mainline Linux running SCHED_DEADLINE CBS
reservations. In fact, a complete implementation of GRUB-PA would
add the bandwidth reclaiming mechanism, which would not benefit
our simulated scenarios since task overruns are not considered.

! The source code of RTSim with BL-CBS is available at: https://gitlab.retis.santannapisa.
it/a.mascitti/dag_sched_energy_c2021

https://gitlab.retis.santannapisa.it/a.mascitti/dag_sched_energy_c2021
https://gitlab.retis.santannapisa.it/a.mascitti/dag_sched_energy_c2021

Dynamic Partitioned Scheduling...

6.2 Comparison Results

The hardware energy consumption model is the one of the ODROID-
XU3 board, which uses the Samsung Exynos 5422 SoC. This is
an ARM big.LITTLE architecture with four Cortex-A15 and four
Cortex-A7 cores. The model has been taken from [6], where it has
been implemented in RTSim [38].

We performed a number of experiments with DAG nominal uti-
lization Uy = % i . U/ (for the DAG task r;) in the range [0.25:0.7]
with spacing 0.055 for the reservations. For each experiment, we gen-
erated a number of random DAGs with the tool Ggen? by Cordeiro
et al. [18] for each value in the set {1,2,3} with {24,12,8} nodes for
each DAG respectively, corresponding to a total of 24 nodes per ex-
periment, and each node has a probability to get edges of 0.25. Each
experiment has been repeated with BL-CBS, GRUB-PA and G-EDF
using the same task set of DAGs. To represent a more realistic and
dynamic environment (i) for each server containing ncpgs nodes,
the (nominal) WCET of each of its nodes is sized down so as to be
uniformly distributed between n(é.;s and n(é'gs times the budget
of their CBS server; (ii) the Ggen tool is used to generate random
budgets and periods in the range [1;100] ms with a relatively rough
granularity of 0.5 ms, in order to keep under reasonable limits the
resulting hyperperiods; and (iii) to represent an even more dynamic
environment, the execution time of the node instances is set so to
be uniformly distributed between 0.1 ms and the node nominal

WCET. Moreoever, each node N{ is parametrized as in Section 3
and assigned to a CBS server o; ;. with parameters:

Qi’k = ZN.jeai k C-l{
Pik = Znicg,,]~

Since all the servers of a DAG are dispatched onto cores at the
beginning of the DAG period for the reasons explained in Section
5, cores have been assigned an overprovisioning factor of 0.8, so
that the big cores maximum speed is 1.8 and the LITTLE cores
maximum speed is about 1.15.

7

6.3 Energy Saving Results

In this section, the obtained energy saving achieved with our ap-
proach (BL-CBS) when compared with GRUB-PA and G-EDF is
discussed. DAGs are inserted in succession in the system and nodes
assigned to their own CBS servers through the Task Decomposition
as in Section 5.1, which is performed only once per DAG task. Then,
at each DAG period, the servers and their nodes are dispatched
onto cores that give the minimum increase of energy consumption
to the system.

Figure 6 depicts the average energy consumption for (i) BL-CBS,
(if) GRUB-PA and (iii) G-EDF for different DAG nominal utiliza-
tions (different curves) and different number of DAG tasks (different
graphs). The vertical bars associated to each point represent the
standard deviation. BL-CBS has lower energy consumption than
both GRUB-PA and G-EDF for all the utilizations, and this is be-
cause BL-CBS always chooses the core with the minimum power
increase and tries to not raise the island frequencies when pos-
sible, while GRUB-PA chooses the core with latest deadline and,

2The source code of the Ggen tool is availbale at: https://github.com/perarnau/ggen

RTNS’2021, April 7-9, 2021, NANTES, France

Upnag =055

['8
[a)
3 1
E
g 1
o
S
3 1
c
g
£ 7
T
g 1
g
w
BL-CBS ——
0.1 G-EDF - - - - o
GRUB-PA
0 s s s s s ‘
0 0.2 0.4 0.6 0.8 1 12 1.4

Response time / period

Figure 5: Experimental global cumulative distribution func-
tion (CDF) for 10 experiments with DAG nominal utilization
0.55. Jobs take more to complete with BL-CBS than with G-
EDF and GRUB-PA, but all of them terminate before their
deadlines.

like G-EDF, does not take into account the consequent frequency
increase. Moreoever, GRUB-PA consumes less than G-EDF because
the latter keeps the highest frequencies throughout the simulations.
When the DAG nominal utilization grows the energy consumption
is pretty stable for both BL-CBS and GRUB-PA and with a grow-
ing number of DAGs the total energy consumption of the system
increases dramatically, since higher frequencies are used.

Figure 7 shows the same data of Figure 6 in a hyperperiod-
independent way and shows the ratio of the total energy consump-
tion (on the Y axis) between (i) BL-CBS and GRUB-PA and (ii) BL-
CBS and G-EDF (different curves) for each DAG nominal utilization
over 10 experiments. Also, the vertical bars represent the minimum
and maximum ratios found among the experiments. While the aver-
age ratio between BL-CBS and GRUB-PA is generally stable for all
DAG nominal utilizations and in all the considered cases (1,2 and 3
DAG tasks), the ratio between BL-CBS and G-EDF decreases with
growing DAG utilization. In general, the consumption of G-EDF
becomes more and more similar to the one of BL-CBS with growing
DAG nominal utilization, while BL-CBS saves more or less the same
with respect to GRUB-PA with both growing DAG utilization and
number of DAG tasks.

Figure 8 depicts the average frequency of the big and the LITTLE
island for BL-CBS and GRUB-PA (different curves) over 10 exper-
iments (on the Y axis) for each DAG nominal utilization (on the
X axis) and for the big island (left) and the LITTLE island (right).
The vertical bar associated to each point represent the average
minimum and maximum values found over the experiments. In the
case of 1 DAG in Figure 8a and Figure 8b, BL-CBS keeps the lowest
frequencies for both the big and LITTLE island, since the utilization
of the CBS servers is low (even if the DAG utilization is higher),
and thus the tasks can be spread among the available cores to re-
duce the frequencies, while GRUB-PA uses higher frequencies and
G-EDF keeps the highest ones. For a growing number of DAGs, the
frequencies used by BL-CBS raise and they grow with increasing
DAG nominal utilization. With both BL-CBS and GRUB-PA and for
each number of DAG tasks, the LITTLE island uses higher average

https://github.com/perarnau/ggen

RTNS’2021, April 7-9, 2021, NANTES, France

1 DAG and 24 nodes

90 T T T T T T T T T
8o - k >I< 1
HEPSLE |

50 1

40 - 1
30

ETEEER S

Avg Energy Consumption (mJ)

=

-10
015 02 025 03 035 04 045 05 055 06 065 07 0.75

DAG nominal utilization
BL-CBS +>—GRUB-PA F>— G-EDF +—>—

(a) 1 DAG and 24 nodes

Agostino Mascitti and Tommaso Cucinotta

2 DAG and 12 nodes

9000

8000 | g
2 7000 }} g
§ 6000 | |
£ %
£ 5000 |- g
2
g 4000 % g
3 3000 g
[
& 2000 - % g
2 1000 |)1(] & .
K % ﬁ(

ol |
1000 ; ; ; ; ; i ; ; ; ;

015 02 025 03 035 04 045 05 055 06 065 07 0.75

DAG nominal utilization
BL-CBS +>—GRUB-PA +»%— G-EDF +—>—

(b) 2 DAG and 12 nodes

3 DAG and 8 nodes

400000 T T T T T T T T T T
350000 | .
’,;
E 300000 .
S X
é 250000 | 1
3 200000 [.
@]
8 i]
O 150000)I(. ’I‘)l(%
=) i]
$ 100000
W % .
2 50000 | H >H< %)H(’H‘)H()H(i
ol s Rk - |
1 1 1 1 1 1 1 1 1 1 1

-50000

015 02 025 03 035 04

045 05 055 06 065 0.7 0.75

DAG nominal utilization

BL-CBS —>—GRUB-PA —>*— G-EDF

—é&—

(c) 3 DAG and 8 nodes

Figure 6: Average energy consumption for both BL-CBS, GRUB-PA and G-EDF for different DAG nominal utilizations, consid-
ering 10 experiments for each utilization. Y axes are in logarithmic scale.

frequencies than the big islands for each nominal utilization. More-
over, the frequencies used by GRUB-PA are higher than the ones
used by BL-CBS in all the considered cases for both the big and the
LITTLE islands.

Finally, the frequency change just discussed has implications
on the jobs response time, which is inversely proportional to the
frequency. Figure 5 shows the obtained global experimental CDF of
the response time relative to the period for all instances of the nodes)
considering 10 experiments and in the cases of BL-CBS, GRUB-PA
and G-EDF. Since BL-CBS keeps the lowest frequencies on both
islands with respect to both GRUB-PA and G-EDF, the response
time of the jobs is higher with BL-CBS than with GRUB-PA and
G-EDF. Moreover, the jobs take more to finish with GRUB-PA than

with G-EDF because G-EDF just keeps the highest frequencies, and
in all the three cases the jobs end within their deadlines.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented and simulated a version of big-
LITTLE Constant Bandwidth Server (BL-CBS) supporting DAG
scheduling in a transparent way and suitable for being used on-line
with “open” systems and able to reduce the energy consumption on
platforms based on the ARM big.LITTLE architecture. An extensive
number of experiments on randomly generated DAG tasks shows
that this approach leads to interesting energy saving, which is in
average 10% over all the performed experiments with respect to
the state of the art GRUB-PA, already implemented in the current
code-base of SCHED DEADLINE in the mainline Linux kernel.

Dynamic Partitioned Scheduling...

Etot, 6rUB-PA’Etot, BL-CBS Eot, -EDF/Etot, BL-CBS F¥
1 DAG and 24 nodes
100 T T T T T T T T T T T

10-1%*%%

_wuﬂ“%”

= |

01 I I I I I I I I I I I
015 02 025 03 035 04 045 05 055 06 065 07 0.75

DAG nominal utilization

Energy ratio

(a) 1 DAG and 24 nodes

Etot, GRUB-PA/Etot, BL-cBS T

RTNS’2021, April 7-9, 2021, NANTES, France

Eiot, GrUB-PA’Etot, BL-CBS Eiot, 6-EDF/Etot, BL-cBS X
2 DAG and 12 nodes
100 T T T T T T T T T T T

10 E

Energy ratio

01 I I I I I I I I I I I
015 02 025 03 035 04 045 05 055 06 065 07 0.75

DAG nominal utilization

(b) 2 DAG and 12 nodes

Etot, G-EDF/Etot, BL-CBS HX—

3 DAG and 8 nodes

100E T T T T T T T T T T T
lo-_ N N N -
9 E Xk {(
P L
(T S R S S S S 1[I of I g -
01 1 1 1 1 1 1 1 1 1 1 1
015 02 025 03 03 04 045 05 055 06 065 0.7

0.75

DAG nominal utilization

(c) 3 DAG and 8 nodes

Figure 7: Energy consumption ratio between (i) G-EDF and BL-CBS; (ii) GRUB-PA and BL-CBS for different DAG utilizations,
considering 10 experiments for each utilization. Y axes are in logarithmic scale.

Concerning possible lines of future work on the topic, we plan
to improve the performance of the placement algorithm and to
evaluate its energy saving. Moreover, we plan to consider different
workload types, to place the servers on the cores also consider-
ing the nodes relationships and the memory consumption, and to
investigate on how to modify the proposed mechanism in order
to properly consider possible deep-idle states of the CPU. Also, it
would be interesting to incorporare bandwidth reclaiming and feed-
back mechanisms within the CBS servers so to better tolerate the
jobs with execution times that exceed the WCET. Besides, it might
be interesting to include some of the hard-real-time approaches in
the empirical study, so to get an indication of what is the price that
a designer must pay for guaranteeing deadlines.

Finally, we plan to realize this version of BL-CBS supporting
DAGs within the current SCHED DEADLINE codebase in the Linux
kernel, to perform further experimentation and validation using
real application workloads on Linux/Android.

REFERENCES

[1] Luca Abeni and Giorgio Buttazzo. 1998. Integrating multimedia applications in

hard real-time systems. In Proc. 19th IEEE Real-Time Systems Symp.

Ashik ahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Saifullah, Nan

Guan, and Zhishan Guo. 2019. Mixed-Criticality Multicore Scheduling of Real-

Time Gang Task Systems. In 2019 IEEE Real-Time Systems Symposium (RTSS).

IEEE, 469-480.

[3] Bjorn Andersson and Dionisio de Niz. 2012. Analyzing global-edf for multipro-
cessor scheduling of parallel tasks. In International Conference On Principles Of
Distributed Systems. Springer, 16-30.

[4] ARM. 2019. ARM Technologies: DynamlIQ. https://www.arm.com/why-arm/
technologies/dynamiq. Accessed: November 4, 2019.

[2

https://www.arm.com/why-arm/technologies/dynamiq
https://www.arm.com/why-arm/technologies/dynamiq

RTNS’2021, April 7-9, 2021, NANTES, France

Avg Frequency (MHz)

Avg Frequency (MHz)

Avg Frequency (MHz)

1 DAG and 24 nodes

1400 T T T T T T T T T T T
1200 b
L X * [
1000 *
X * *
800 - ¥ * b
600 - b
400 - % jf Jf % b
015 02 025 03 035 04 045 05 055 06 065 0.7 0.75
DAG nominal utilization
BL-CBS, LITTLE —%— GRUB-PA, LITTLE +—%—
(a) LITTLE island, 1 DAG and 24 nodes
2 DAG and 12 nodes
1400 T T T T T T T T T T T
1200 N
1000 - k i o
800 - q
600 - Jf 4{ Jf q
400 |- % % 3} % J
200 I I I I I I I I I I I
015 02 025 03 035 04 045 05 055 06 065 0.7 0.75
DAG nominal utilization
BL-CBS, LITTLE —%— GRUB-PA, LITTLE +—%—
(c) LITTLE island, 2 DAG and 12 nodes
3 DAG and 8 nodes
1400
1200 - 1
1000 : q
x
*
800 - x* 4
600 - q
400 b
200 1 1 1 1 1 1 1 1 1 1 1
015 02 025 03 035 04 045 05 055 06 065 07 0.75

DAG nominal utilization
BL-CBS, LITTLE —%— GRUB-PA, LITTLE +—%—

(e) LITTLE island, 3 DAG and 8 nodes

Avg Frequency (MHz)

Avg Frequency (MHz)

Avg Frequency (MHz)

Agostino Mascitti and Tommaso Cucinotta

1 DAG and 24 nodes

2000 T T T T T T T T T T T
1800 - b
1600 - b
1400 - 4
1200 - b
1000 - b
800 - b
600 - b
400 - (% 1
“Ld & boob b % [P0 al
015 02 025 03 03 04 045 05 055 06 065 0.7 0.75
DAG nominal utilization
BL-CBS, big —©— GRUB-PA, big —O—
(b) big island, 1 DAG and 24 nodes
2 DAG and 12 nodes
1600 T T T T T T T T T T T
1400 4
1200 - b
1000 - b
800 - b
600 - % b
% l% b £e i b |
200 c{h & i R R
015 02 025 03 03 04 045 05 055 06 065 0.7 0.75
DAG nominal utilization
BL-CBS, big —&— GRUB-PA, big —&—
(d) big island, 2 DAG and 12 nodes
3 DAG and 8 nodes
1000
900 - b
800 b
700 - b
600 - b
500 - H b
400 - % % b
300 |- %@ QE 1
200 (% 1 L L 1 1 1 1 1
015 02 025 03 035 04 045 05 055 06 065 0.7 0.75
DAG nominal utilization
BL-CBS, big —&— GRUB-PA, big —6—

(f) big island, 3 DAG and 8 nodes

Figure 8: Average frequency for different DAG nominal utilizations for BL-CBS and GRUB-PA, for the LITTLE island (left)
and the big island (right), considering 5 experiments for each DAG utilization.

[5] Hakan Aydin and Qi Yang. 2003. Energy-aware partitioning for multiprocessor

[6

]

real-time systems. In Proceedings International Parallel and Distributed Processing
Symposium. IEEE, 9—pp.

Alessio Balsini, Luigi Pannocchi, and Tommaso Cucinotta. 2016. Modeling and
simulation of power consumption and execution times for real-time tasks on em-
bedded heterogeneous architectures. In Proc. International Workshop on Embedded
Operating Systems. Torino, Italy.

[7] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016.

[8

]

Energy-aware scheduling for real-time systems: A survey. ACM Transactions on
Embedded Computing Systems (TECS) 15, 1 (2016), 1-34.

Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. 2015. The
global EDF scheduling of systems of conditional sporadic DAG tasks. In 2015
27th Euromicro Conference on Real-Time Systems. IEEE, 222-231.

Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian
Stiller. 2010. Improved multiprocessor global schedulability analysis. Real-Time

Dynamic Partitioned Scheduling...

[10]

[11

[12

[13]

[14

[15

[16]

[17

[18

[19

[20

[21]

[22

[23

[24]

[25]

[26

[27

[28]

[29

[30]

[31]

[32

Systems 46, 1 (2010), 3—-24.

Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie,
and Andreas Wiese. 2012. A generalized parallel task model for recurrent real-
time processes. In 2012 IEEE 33rd Real-Time Systems Symposium. IEEE, 63-72.
Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. 2009. Minimizing CPU energy
in real-time systems with discrete speed management. ACM Transactions on
Embedded Computing Systems (TECS) 8, 4 (2009), 1-23.

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas
Wiese. 2013. Feasibility analysis in the sporadic dag task model. In 2013 25th
Euromicro conference on real-time systems. IEEE, 225-233.

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. 2018.
Partitioned fixed-priority scheduling of parallel tasks without preemptions. In
2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 421-433.

Thidapat Chantem, X Sharon Hu, and Robert P Dick. 2010. Temperature-aware
scheduling and assignment for hard real-time applications on MPSoCs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 19, 10 (2010), 1884—
1897.

Gang Chen, Kai Huang, and Alois Knoll. 2014. Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM
Transactions on Embedded Computing Systems (TECS) 13, 3s (2014), 1-21.
Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. 2009. Proactive speed sched-
uling for real-time tasks under thermal constraints. In 2009 15th IEEE Real-Time
and Embedded Technology and Applications Symposium. IEEE, 141-150.

Alexei Colin, Arvind Kandhalu, and Ragunathan Rajkumar. 2014. Energy-efficient
allocation of real-time applications onto heterogeneous processors. In 2014 IEEE
20th International Conference on Embedded and Real-Time Computing Systems
and Applications. IEEE, 1-10.

Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc
Vincent, and Frédéric Wagner. 2010. Random Graph Generation for Scheduling
Simulations. In Proceedings of the 3rd International ICST Conference on Simula-
tion Tools and Techniques (Torremolinos, Malaga, Spain) (SIMUTools ’10). ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), Brussels, BEL, Article 60, 10 pages.

T. Cucinotta and L. Palopoli. 2010. QoS Control for Pipelines of Tasks Using
Multiple Resources. IEEE Trans. Comput. 59, 3 (March 2010), 416-430. https:
//doi.org/10.1109/TC.2009.116

Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. 2009. Thermal-
aware global real-time scheduling on multicore systems. In 2009 15th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE, 131-140.
Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. 2011. Thermal-
aware global real-time scheduling and analysis on multicore systems. Journal of
Systems Architecture 57, 5 (2011), 547-560.

Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D Kout-
soukos, and Hongan Wang. 2010. Feedback thermal control for real-time systems.
In 2010 16th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. IEEE, 111-120.

Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D Koutsoukos. 2012.
Feedback thermal control of real-time systems on multicore processors. In Pro-
ceedings of the tenth ACM international conference on Embedded software. 113-122.
Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,
and Nan Guan. 2019. Energy-efficient real-time scheduling of DAGs on clustered
multi-core platforms. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 156-168.

Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks. In
29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Ravindra Jejurikar. 2005. Energy aware non-preemptive scheduling for hard
real-time systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS 05).
IEEE, 21-30.

Xu Jiang, Nan Guan, Xiang Long, and Wang Yi. 2017. Semi-federated scheduling
of parallel real-time tasks on multiprocessors. In 2017 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 80-91.

Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. 2013. Outstanding
paper award: Analysis of global edf for parallel tasks. In 2013 25th Euromicro
Conference on Real-Time Systems. IEEE, 3-13.

Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed
Saifullah. 2014. Analysis of federated and global scheduling for parallel real-time
tasks. In 2014 26th Euromicro Conference on Real-Time Systems. IEEE, 85-96.
Giuseppe Lipari and Sanjoy Baruah. 2001. A hierarchical extension to the constant
bandwidth server framework. In Proceedings Seventh IEEE Real-Time Technology
and Applications Symposium. IEEE, 26-35.

Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xiaozhu Lin. 2012.
Power-efficient time-sensitive mapping in heterogeneous systems. In Proceed-
ings of the 21st international conference on Parallel architectures and compilation
techniques. 23-32.

Di Liu, Jelena Spasic, Gang Chen, and Todor Stefanov. 2015. Energy-efficient
mapping of real-time streaming applications on cluster heterogeneous mpsocs.

[33

(34

[35

&
2

[37

[38

@
20,

[40

[41

[42

[43

[44

[45

[46

[47]

[48

[49

(50

RTNS’2021, April 7-9, 2021, NANTES, France

In 2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia
(ESTIMedia). IEEE, 1-10.

Agostino Mascitti, Tommaso Cucinotta, and Mauro Marinoni. 2020. An adaptive,
utilization-based approach to schedule real-time tasks for ARM big. LITTLE
architectures. ACM SIGBED Review 17, 1 (2020), 18-23.

Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and
R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems
on multi-cores. In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 1-12.

Geoffrey Nelissen, Vandy Berten, Joél Goossens, and Dragomir Milojevic. 2011.
Optimizing the number of processors to schedule multi-threaded tasks. RTSS’11-
WiP Session, December 2011 (2011), 5-8.

Santiago Pagani and Jian-Jia Chen. 2013. Energy efficient task partitioning based
on the single frequency approximation scheme. In 2013 IEEE 34th Real-Time
Systems Symposium. IEEE, 308-318.

Santiago Pagani and Jian-Jia Chen. 2014. Energy efficiency analysis for the
single frequency approximation (SFA) scheme. ACM Transactions on Embedded
Computing Systems (TECS) 13, 5s (2014), 1-25.

Luigi Palopoli, Guiseppe Lipari, Luca Abeni, Marco Di Natale, Paolo Ancilotti, and
Fabio Conticelli. 2001. A Tool for Simulation and Fast Prototyping of Embedded
Control Systems. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (Snow Bird, Utah, USA) (LCTES 01).
Association for Computing Machinery, New York, NY, USA, 73-81. https://doi.
org/10.1145/384197.384209

Antonio Paolillo, Joél Goossens, Pradeep M Hettiarachchi, and Nathan Fisher.
2014. Power minimization for parallel real-time systems with malleable jobs
and homogeneous frequencies. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE, 1-10.
Xuan Qi and Da-Kai Zhu. 2011. Energy efficient block-partitioned multicore
processors for parallel applications. Journal of Computer Science and Technology
26,3 (2011), 418.

Abusayeed Saifullah, Sezana Fahmida, Venkata P Modekurthy, Nathan Fisher,
and Zhishan Guo. 2020. CPU Energy-Aware Parallel Real-Time Scheduling. In
32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik.

Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher D Gill. 2014. Parallel real-time scheduling of DAGs. IEEE Transactions
on Parallel and Distributed Systems 25, 12 (2014), 3242-3252.

Claudio Scordino and Giuseppe Lipari. 2004. Using Resource Reservation Tech-
niques for Power-Aware Scheduling. In Proceedings of the 4th ACM International
Conference on Embedded Software (Pisa, Italy) (EMSOFT "04). ACM, New York,
NY, USA, 16-25.

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. 2008. Energy
efficient scheduling of real-time tasks on multicore processors. IEEE transactions
on parallel and distributed systems 19, 11 (2008), 1540-1552.

Corey Tessler, Venkata P Modekurthy, Nathan Fisher, and Abusayeed Saifullah.
2020. Bringing Inter-Thread Cache Benefits to Federated Scheduling. In 2020
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 281-295.

Leping Wang and Ying Lu. 2008. Efficient power management of heterogeneous
soft real-time clusters. In 2008 Real-Time Systems Symposium. IEEE, 323-332.
Chuan-Yue Yang, Jian-Jia Chen, Lothar Thiele, and Tei-Wei Kuo. 2010. Energy-
efficient real-time task scheduling with temperature-dependent leakage. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). IEEE,
9-14.

Buyoung Yun, Kang G Shin, and Shige Wang. 2013. Predicting thermal behavior
for temperature management in time-critical multicore systems. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 185-194.

Dakai Zhu, Nevine AbouGhazaleh, Daniel Mossé, and Rami Melhem. 2002. Power
aware scheduling for and/or graphs in multiprocessor real-time systems. In
Proceedings International Conference on Parallel Processing. IEEE, 593-601.
Dakai Zhu, Daniel Mosse, and Rami Melhem. 2004. Power-aware scheduling
for AND/OR graphs in real-time systems. IEEE Transactions on Parallel and
Distributed Systems 15, 9 (2004), 849-864.

https://doi.org/10.1109/TC.2009.116
https://doi.org/10.1109/TC.2009.116
https://doi.org/10.1145/384197.384209
https://doi.org/10.1145/384197.384209

	Abstract
	1 Introduction
	1.1 Paper Contributions
	1.2 Paper Organization

	2 Related Work
	3 Notation and Energy Model
	3.1 Platform Model
	3.2 Task Model

	4 Background
	4.1 Real-time task partitioning

	5 Proposed Approach
	5.1 Motivational example

	6 Simulation Results
	6.1 Compared Schedulers
	6.2 Comparison Results
	6.3 Energy Saving Results

	7 Conclusions and Future Work
	References

