
Migrating Constant Bandwidth Servers on Multi-Cores

Tommaso Cucinotta
Scuola Superiore Sant’Anna

Pisa, Italy
tommaso.cucinotta@santannapisa.it

Luca Abeni
Scuola Superiore Sant’Anna

Pisa, Italy
luca.abeni@santannapisa.it

ABSTRACT

This paper introduces a novel admission test for partitioned CBS

reservations on multi-core systems, that, on a new reservation ar-

rival, is capable of exploiting better the CPU capacity in cases in

which tasks have just recently left the CPU (for example, due to

termination or migration to a different CPU). This is particularly

useful for highly dynamic scenarios (with frequent arrivals of new

tasks or leaves of existing ones) or when adaptive and possibly

power-aware partitioning techniques (in which task migrations

are triggered quite often to re-balance the workload among the

available cores) are used.

CCS CONCEPTS

•Computer systemsorganization→Real-timeoperating sys-

tems; • Software and its engineering → Real-time schedula-

bility.

KEYWORDS

Multi-Core Real-time Scheduling, Real-Time Operating Systems

ACM Reference Format:

Tommaso Cucinotta and Luca Abeni. 2021. Migrating Constant Bandwidth

Servers on Multi-Cores. In 29th International Conference on Real-Time Net-

works and Systems (RTNS’2021), April 7–9, 2021, NANTES, France. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3453417.3453441

1 INTRODUCTION

To improve computational power without increasing energy con-

sumption too much, many hardware manufacturers are starting to

commercialise massively multi-core CPUs. As a result, multi-core

architectures which were traditionally employed in the context of

high-performance computing (HPC), are starting to see interesting

applications in new fields such as, for example, embedded systems.

Here, the higher and higher richness of features demanded bymod-

ern and future embedded scenarios [23], often including real-time

video processing and object recognition or time-series forecasting

algorithms based on deep neural networks, as well as possessing

non-negligible constraints in terms of energy efficiency, needs cor-

respondingly higher complexity in the deployed software stack.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7–9, 2021, NANTES, France

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00
https://doi.org/10.1145/3453417.3453441

This has to be capable of exploiting novel and often highly het-

erogeneous computing platforms, heavily accelerated using multi-

core architectures, as well as graphic processing units (GPUs), ten-

sor processing units (TPUs), or even FPGA fabrics.

This, of course, poses new requirements; first of all, the neces-

sity to respect temporal constraints of real-time tasksets scheduled

on multiple cores. Multi-core real-time schedulers can be organ-

ised in 2 main categories: global schedulers and partitioned sched-

ulers. On a multi-core platform with < cores, a global scheduler

is free to migrate tasks among the cores to respect some kind of

invariant (i.e., the < highest priority tasks are scheduled, the <

earliest deadline tasks are scheduled, etc...), while a partitioned

scheduler statically assigns tasks to CPU cores and uses multiple

instances of a single-core scheduling algorithm to select the tasks

to be executed.

When using a partitioned scheduling approach, tasks are as-

signed to CPU cores so that the taskset bound to each core is schedu-

lable, and the schedulability test, in simple cases, may be conve-

niently performed by using some kind of utilization-based admis-

sion control (the taskset assigned to a CPU core is schedulable if

its utilization is smaller than a least upper bound * ;D1). This way,

the problem of partitioning a set of tasks amongmultiple cores can

be reduced to an instance of the bin packing problem [12]. If real-

time tasks can be dynamically generated and terminated, as well

as if they are dynamically migrated among cores as often needed

for energy efficiency reasons [18], then the utilization of each core

can dynamically change (increasing when a task is associated with

the core and decreasing if a task leaves a core). Then, an on-line bin

packing algorithm can assign new tasks to cores so that their uti-

lization is smaller than* ;D1 . In case this condition cannot be imme-

diately respected, it is commonplace to try to move tasks among

cores to create space for the newly arrived task(s) (this action is

often called re-packing).

In other words, high-performance embedded real-time comput-

ing scenarios of today and tomorrow, have an increasing need for

handling properly situations in which real-time tasks (or reserva-

tions) are migrated dynamically and often among cores.

Unfortunately, the mechanisms currently used to keep track of

the dynamic utilization of the cores, used by the on-line task place-

ment algorithm that assigns tasks to CPU cores, are often either

incorrect (for example, the SCHED_DEADLINE scheduling policy pro-

vided by Linux immediately decreases the utilization of a corewhen

a task migrates away) or too pessimistic [5]. In the former case, the

instantaneous removal of the utilization of a task leaving a core

from the overall core utilization may cause deadline misses if the

admission logic admits new tasks, under quite common conditions

(see Figure 1 later). In the latter case, we have the correct post-

ponement of the removal of the task utilization from the overall

core utilization at a later time, either the last deadline of the task

https://doi.org/10.1145/3453417.3453441
https://doi.org/10.1145/3453417.3453441

RTNS’2021, April 7–9, 2021, NANTES, France Tommaso Cucino�a and Luca Abeni

or, better, its last 0-lag time. However, an admission test that con-

siders the leaving task utilization still occupied and non-available

for an arbitrarily long time in the future reduces unnecessarily the

chances to admit tasks on the CPU, as it will be shown in Section 5,

and is particularly inefficient for highly dynamic scenarios where

real-time tasks may need to be migrated often.

1.1 Contributions

This paper presents a new algorithm to keep track of the dynamic

utilization of a CPU core, which is both correct and not too pes-

simistic, improving schedulability with respect to other correct

mechanisms. Such an improved utilization tracking algorithm can

be used to implement an efficient utilization-based admission con-

trol for dynamic real-time systems (allowing dynamic task creation

and termination) but is also useful for efficiently supporting on-

line bin-packing algorithms (by handling re-partitioning of real-

time tasks or migration of real-time tasks in partitioned systems).

In particular, this technique has been designed to improve the effec-

tiveness of an adaptively partitioned variant [2] of the SCHED_DEADLINE

policy [14] provided by Linux, which implements the CBS algo-

rithm [1], based on EDF [10], using a utilization-based admission

control.

1.2 Paper organisation

This paper is organised as follows: a brief overview of related re-

search in the literature is provided in Section 2. Then, background

concepts and notation elements are introduced in Section 3, which

will be useful for a better understanding of the rest of the paper.

Section 4 introduces some basic concepts related to dynamic par-

titioning. The proposed new approach for performing an effective

utilization-based admission of EDF-scheduled real-time tasks is de-

scribed in Section 5. Then, a proof of correctness of the technique

is provided in Section 6, accompanied by results from an experi-

mental evaluation by simulation, discussed in Section 7, recurring

to the RTSim simulator [20]. Finally, conclusions are drawn in Sec-

tion 8, alongwith a discussion of possible futurework on the topic.

2 RELATED WORK

This paper focuses on dynamically partitioned scheduling of Con-

stant Bandwidth Servers, where each server is bound to a CPU

core and servers are migrated as needed to respond to dynamic

changes of the tasksets hosted on each core. Different approaches

use global scheduling so that explicit per-core utilization tracking

is not needed, and no explicit action is needed when the work-

load changes. For example, the M-CBS algorithm [4] uses a slightly

modified version of global EDF (introducing the notion of “high-

priority server”) to schedule CBSs on multiple processors.

The utilization tracking problem described in this paper is a par-

ticular case of transient analysis (analysing the schedulability of

time-changing tasksets, with focus on the time intervals around

the changes).

In previous work, scheduling transients have been mainly anal-

ysed in order to cope with mode changes of applications [9, 21,

22, 24], whereas this paper focuses on moving tasks between CPU

cores in (dynamically) partitioned scheduling (a similar approach

has been previously considered in semi-partitioned scheduling [6]).

Most of the previous analysis is based on computing the demanded

time1 of a taskset (either through an exact approach or some effi-

cient approximation to be used online [7, 8]). In some cases, the

analysis is simplified (time-demand analysis can be computation-

ally expensive) by considering the effects of a scheduling transient

on the taskset to be finished after the latest deadline between the

jobs involved in the transient [19] (and this is, of course, a very pes-

simistic approach). In other cases [13], the schedulability analysis

is extended to consider the worst-case transient caused by possi-

ble mode changes, but this approach cannot be used in case of re-

packing of dynamic tasksets (which are not known a-priori).

In this paper, a simpler utilization-based approach is introduced,

which generalises, formally proves and discusses in-depth, what

was quicklymentioned in [5] while discussing an example of mode

change due to elastic modifications to the periods of tasks. The ap-

proach introduced in this paper is both computationally simple and

not too pessimistic: when a task leaves a core (either because it ter-

minates or because it is migrated to a different core), the exact time

at which the task utilization should be removed from the core uti-

lization is computed, instead of simply waiting the end of the task

period as done (for example) by r-EDF [3]. At the same time, when

admitting a new task with a given period, a straightforward inspec-

tion of the scheduled changes of the active core utilization due to

tasks that recently left the CPU, possibly falling within the first in-

stance of the new task being admitted, allows for computing a safe

maximum runtime for the task, that may be significantly higher

than the one considered by traditional pessimistic admission tests

that only look at the current instantaneous active utilization.

While some previous works on partitioned real-time schedul-

ing analysed static tasksets, finding utilization-based conditions

for the partitionability/schedulability [17], this paper focuses on

dynamic tasksets, improving both the capacity of a system to ac-

cept new dynamically-created tasks, and its capability to dynami-

cally migrate tasks among CPUs, as needed for example by energy

management policies or other reasons.

3 BACKGROUND

3.1 Terminology and definitions

A real-time application is modelled as a set Γ = {g8 } of real-time

tasksg8 = (�8 ,)8), where�8 is theworst-case execution time (WCET)

of the task and)8 is the (minimum) inter-arrival time between task

instances (jobs). In this work, the real-time tasks are assumed to be

independent and self-suspension is not considered (task dependen-

cies, shared resources, and self-suspension are left to futureworks).

Each task is associated with a dedicated reservation (&8 , %8), mean-

ing that g8 is allowed (and guaranteed) to execute for&8 time units

every %8 . The fraction of CPU time reserved for the task (known

as reservation bandwidth) is *8 = &8/%8 .

When the CPU reservation is implemented using the CBS [1]

algorithm and a single processor is considered, if&8 ≥ �8 ∧%8 ≤)8
and all the reserved bandwidths satisfy

∑
8

&8

%8
≤ * ;D1 (1)

1More specifically, the demand bound function

Migrating Constant Bandwidth Servers on Multi-Cores RTNS’2021, April 7–9, 2021, NANTES, France

(with * ;D1
= 1 as EDF is being used), then g8 is guaranteed not to

miss any deadline.

According to the CBS algorithm, a server (8 = (&8 , %8) is used to

assign a current budget @8 (C) ≤ &8 and a scheduling deadline 38 (C),

to each task g8 , so that the tasks can be scheduled according to EDF

using their scheduling deadlines.

When the CBS starts handling a task, @8 (C) and 38 (C) are ini-

tialised to 0. Then, when task g8 wakes up at time C , the sched-

uler checks if the current scheduling deadline 38 (C) can be used

(if @8 (C) < (38 (C) − C)
&8

%8
), otherwise a new value 38 (C) = C + %8

for the scheduling deadline is generated and the runtime @8 (C) is

recharged to &8 . The current budget of a task g8 executing from

time C to time C + 3C is consumed as @8 (C + 3C) = @8 (C) − 3C and

when it arrives at 0 the task is depleted. When a task is depleted, it

cannot be scheduled until its budget is recharged to&8 (@8 (C) = &8)

postponing the scheduling deadline by %8 (38 (C) = 38 (C) + %8). This

replenishment can be performed immediately when the task is de-

pleted (as done in the original CBS paper — this is the so-called

“soft CBS” behaviour), or later at time 38 (C) (as done by Linux —

this is the so-called “hard CBS” behaviour). When task g8 blocks at

time C , its current runtime @8 (C) and scheduling deadline 38 (C) are

kept unchanged, to be eventually re-used for the next task activa-

tions. Finally, when task g8 terminates the server (8 associated to it

is destroyed, discarding the remaining budget (however, its utiliza-

tion should be remembered for some time, as we will see later).

When partitioned scheduling is used, each task (and the CBS

serving it) is bound to a specific CPU core; the set of tasks (or

equivalently reservations) bound to core ℎ is indicated as Γℎ . If a

dynamic partitioning approach is used, then the tasks partitioning

can be occasionally moved between cores (adapting the partition-

ing to dynamic changes in the workload). In this case, the set of

tasks (or reservations) bound to core ℎ is indicated as Γℎ (C) as it is

a function of the current time C .

The utilization of core ℎ at time C (due to dynamic tasks parti-

tioning) is indicated as +ℎ (C):

+ℎ (C) =
∑

g8 ∈Γℎ (C)

*8 . (2)

In the simple case of statically partitioned task sets, Γℎ (C) and+ℎ (C)

are constant, and, under the assumption of periodic (or sporadic)

and independent real-time tasks, in light of Equation (1) the set of

tasks g8 ∈ Γℎ (C) is schedulable if

+ℎ (C) ≤ * ;D1 . (3)

3.2 A CBS implementation

An example of a real scheduler implementing a multi-processor

variant of the CBS (similar to [4]) is the Linux SCHED_DEADLINE

policy [14].

Although SCHED_DEADLINE implements global EDF by default,

it is possible to configure it (either using task affinities or config-

uring exclusive scheduling domains via cpusets) to use as a parti-

tioned EDF approach (which allows re-using the single-processor

schedulability analysis)2 .

The focus of this paper is on making use of SCHED_DEADLINE as

a partitioned CBS-based scheduler, where a set of real-time tasks

2More info at: https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt.

can be partitioned across the available CPUs, and tasks can dy-

namically be created or terminated, or even migrated among CPUs

for various reasons, as mentioned in Section 1. Our investigations

dig into dynamic and adaptive partitioned CBS-based scheduling

of tasks on multi-cores, an area that showed promising results in

a prior work of ours [2] including extensive experimentation by

simulation. In this context, a simple and efficient online admis-

sion test is a fundamental element, where it is interesting to re-use

utilization-based tests due to their particular efficiency.

4 DYNAMIC PARTITIONING

Dynamically partitioned scheduling is particularly useful for dy-

namic and open real-time systems, where tasks can dynamically

enter and leave the system at any time. In these cases, we may

need to occasionally re-arrange the tasksets partitions, for exam-

ple to make room on a core for a newly arrived task (this is the

so-called “re-packing” operation). Therefore, at some time C , we

may need to migrate a task g8 from a core Γℎ to a different core Γ: .

When a task g8 ∉ Γℎ (C
−) (C− denotes a time instant just before

time C) is admitted onto a core ℎ (due to a migration from another

core, or creation of a new task), after verifying that this does not

violate Equation (3), the task utilization*8 has to be added instan-

taneously to+ℎ (C), therefore +ℎ (C) = +ℎ (C
−) +*8 .

However, when a task g8 ∈ Γℎ (C
−) leaves its core ℎ at time C,

(because it terminates, or because it is moved to a different core),

its utilization*8 cannot be immediately removed from +ℎ (C). Oth-

erwise, the admission test risks to admit real-time tasks that can

cause deadline misses.

An example of the issue is depicted in Figure 1, where two tasks

g1 and g2 saturate the CPU they are running onto. Upwards arrows

denote arrival times, downwards ones denote absolute deadlines,

and grey boxes represent when tasks are scheduled on the CPU. As

visible, if task g1 dies just after having consumed its whole budget,

and its utilization is mistakenly immediately subtracted from the

total utilization+ℎ (C) of the CPU, then any task g3 admitted right

after, with a deadline earlier than the one of the remaining task g2,

would cause a deadline miss of g2.

Figure 1: Example of deadlinemiss when the utilization of a

task C1 that is removed from the CPU runqueue, is forgotten

immediately and a new task C3 is mistakenly admitted too

early.

A commonway to avoid the just mentioned schedulability issue

is to subtract*8 from+ℎ (·) not at time C , but after the next deadline

of g8 has passed (if the CBS is used, only after time38 (C)). However,

if g8 is removed from Γℎ (C) when it has consumed an amount of

https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt

RTNS’2021, April 7–9, 2021, NANTES, France Tommaso Cucino�a and Luca Abeni

budget @ < &8 smaller than the maximum budget &8 (hence, the

current budget is @8 (C) = &8 − @), then it is well-known that [5]

the safe time to subtract *8 from +ℎ (C) is X8 = 38 (C) − @8 (C)/*8
3,

where “C” is the time when the task leaves the core. This time X8 is

often called 0-lag time and corresponds to the time instant when

C = E (C), where E (C) is the virtual time as defined by the GRUB

algorithm [15].

Summing up, if a task g8 leaves Γℎ (C) at time C , its utilization*8

has to be remembered on core ℎ until time X8 , in the form of an

active migrated utilization+<
8,ℎ

(C), defined as:

+<
8,ℎ

(C) =

{
*8 if g8 ∉ Γℎ (C) ∧ C < X8

0 otherwise (if g8 ∈ Γℎ (C) ∨ C ≥ X8).
(4)

To keep track of the active migrated utilization of the tasks leav-

ing a CPU core, when task g8 leaves Γℎ (C) at time C it is added to a

set ofmigrated tasks Γ<
ℎ
(C). Task g8 will be removed from Γ

<
ℎ
(C) at

time X8 . Based on this, the overall activemigrated utilization+<
ℎ

(C)

of core ℎ at time C is given by the sum of the contributions due to

all previously migrated tasks g8 ∈ Γ
<
ℎ
, and is a piece-wise constant

function:

+<
ℎ (C) =

∑
g8 ∈Γ

<
ℎ

(C)

+<
8,ℎ (C) . (5)

Note that, albeit Equation (5) seems to consider the whole his-

tory of tasks that migrated across CPUs, from a practical perspec-

tive the active utilization of a migrated and/or dead task expires

and can be forgotten after its 0-lag time has passed (g8 is removed

from Γ
<
ℎ
(C) at time X8). Therefore, in a real scheduler implementa-

tion, when at time C a task g8 leaves the CPU ℎ, it is sufficient to

post a single-shot timer that, at time X8 will decrease +
<
ℎ

(C) by an

amount equal to*8 . Such a timer is already used by SCHED_DEADLINE

in the Linux kernel to keep track of the inactive utilization of tasks

as used by the CPU reclaiming mechanism. This is the so-called

task inactive timer.

5 PROPOSED APPROACH

The core utilization+ℎ (C) and the activemigrated utilization+<
ℎ

(C)

can be used to implement an efficient and correct admission test

for dynamic tasksets, where tasks can dynamically move between

CPU cores. This new test relies on three main elements:

• the mechanism used to track the instantaneous active uti-

lization of each CPU core, used for admission control;

• the observation that, when a task needs to enter a CPU

core, the admission test can keep into account the sched-

uling deadline of the CBS serving the task to make a precise

assessment of the maximum admissible budget;

• the application of this scheme to the dynamic migration of

tasks in multi-core systems. This allows ensuring schedu-

lability and precise accounting of CBS budgets without the

excess of pessimism typically used in these scenarios.

5.1 Tracking per-core utilizations

Remember that +ℎ (C) represents the overall utilization of all tasks

g8 ∈ Γℎ (C) bound to core ℎ at time C , while +<
ℎ

(C) represents the

3In [5] the current job deadline and the remaining execution time 28 (C) are used
instead of the current budget and the server deadline, but the result is equivalent.

U
act

1.0

t0 t1 t2

X X

X

Delta max
Proposed Approach

Figure 2: Example of the evolution of the per-core utilization

with the proposed approach (continuous line) and according

to [5] (dashed line).

utilization of tasks g8 ∈ Γ
<
ℎ
(C) that left core ℎ but still contribute to

its active utilization at time C . These definitions allow extending the

classical utilization-based admission tests shown in Equation (3) to

support tasks that can dynamically enter and leave a CPU core by

considering both +ℎ (C) and +
<
ℎ

(C). Hence, at time C a new task g8
can be admitted on core ℎ if

+ℎ (C) ++
<
ℎ

(C) +*8 ≤ * ;D1 ⇐⇒ *8 ≤ * ;D1− (+ℎ (C) ++
<
ℎ

(C)) (6)

with* ;D1
= 1 if EDF is used as a scheduler.

The value of+ℎ (C) ++
<
ℎ

(C) is a step function decreasing at the 0-

lag times of the tasks that recently left coreℎ, as shown for example

in Figure 2. This example describes the evolution of the total per-

core utilization (considering the tasks assigned on the core and the

contributions of previously migrated tasks) when 3 tasks leave the

core at times C0 , C1 and C2 (marked with an “X”). As it is possible to

notice, the utilization does not decrease immediately at the times

marked with “X”, but is decreased later, at the 0-lag times of the 3

tasks. This is an important difference with respect to [5], where the

utilization of a core is considered as constant until the 0-lag time

of the latest task changing its utilization (in this case, leaving the

core). In the figure, the dashed line (named “Delta max”) indicates

the evolution of the per-core utilization according to this last ap-

proach, clearly showing the advantages of the approach proposed

in this paper (for example, a new task arriving — or migrating to

this core — around time C2 has a much higher probability to be

accepted).

As +<
ℎ

(C) is a piece-wise constant function, it can be modelled

as a sequence of (X8 ,*8) pairs, meaning that *8 must be removed

from the utilization of core ℎ at time X8 . This approach will be used

in Section 6 to represent the per-core utilization+ℎ (C) ++
<
ℎ

(C).

5.2 Considering the scheduling deadline of the
new server

A second brick of our proposed approach is how the step function

+ℎ (C) ++
<
ℎ

(C) is used in the admission test. For now, we make the

simplifying assumption that the task needs to be admitted right af-

ter having been created, or after amigration occurred synchronously

with the arrival of a new job for the task. In the next subsection,

we will discuss how to remove this assumption.

The utilization-based test of (6) is improved taking into consid-

eration also the scheduling deadline and the budget of the CBS

serving the new task g8 . Using this information and remembering

Migrating Constant Bandwidth Servers on Multi-Cores RTNS’2021, April 7–9, 2021, NANTES, France

that if g8 activates at time C then 38 (C) = C + %8 , we can trans-

late the available utilization on the target core at time C (which

is * ;D1 − (+ℎ (C) ++
<
ℎ

(C))) into a maximum acceptable budget for

the incoming task:

&8 ≤ %8

(
* ;D1 −+ℎ (C) −+<

ℎ
(C)

)
. (7)

However, in this paper, we claim (and prove in Section 6) that

we can exploit more budget coming from the additional bandwidth

that is going to be freed due to any upcoming 0-lag times possibly

falling between time C and 38 (C) = C + %8 .

The maximum amount of budget that can be used by a new task

g8 between time C and C + %8 without breaking the taskset schedu-

lability can be computed as:

&8 ≤ %8

(
* ;D1 −+ℎ (C)

)
−

∫ C+%8

B=C
+<
ℎ

(B)3B, (8)

where the integral can be replaced with a sum made over the steps

of the +<
ℎ

(C) function, considering all the changing points falling

between C and C + %8 . In particular, these points X1, ...X: are caused

by the : tasks4 g 9 ∈ Γ
<
ℎ
(C) : X 9 ≤ C +%8 which recently left the sys-

tem (are in Γ
<
ℎ
(C)) and have a 0-lag time in [C, 38 (C)]. Hence, the in-

tegral
∫ C+%8
B=C

+<
ℎ

(B)3B can be computed as
∑
g 9 ∈Γ

<
ℎ

(C):X 9 ≤C+%8 (X 9 −

C)* 9 and Equation (8) becomes:

&8 ≤ %8

(
* ;D1 −+ℎ (C)

)
−

∑
g 9 ∈Γ

<
ℎ

(C)

min{X 9 − C, %8 }* 9 , (9)

Visually, Figure 3 compares the maximum runtime &<0G ad-

missible according to our new proposed technique in Equation (9),

with respect to the lower one that would be admissible according

to Equation (7), when evaluating admission of a new task g8 served

by a CBS with period %8 .

5.3 Handling migrations across CPU cores

When a task needs to be admitted onto a CPU core ℎ because it is

migrating from a different core : , two cases need to be considered

• In the first case, the task is migrated at the time of arrival of

a new job. This is often done in order not to interfere with

the task while it is executing, to avoid to incur in additional

migration overheads

• In dynamic scenarios as mentioned above, it may arise the

need for migrating a task in the middle of the execution of

one of its jobs, for example to re-balance the workload after

a task termination on another core. Still, such migration is

only recommendable exploiting amoment in which the task

is ready-to-run but not being scheduled (in SCHED_DEADLINE,

the task is pushable).

In the second case, a task g8 that migrates at time C from core :

to core ℎ comes with its leftover budget @8 (C) ≤ &8 , and its current

absolute deadline 38 (C). To guarantee correct completion of the job

under execution on the target coreℎ by the deadline 38 (C), we need

to deal with the first instance of the task as though it were served

by a CBSwith a runtime equal to @8 (C), and period equal to38 (C)−C .

From the subsequent job onwards, the server exhibits its regular

4Notice that the taskset can be reordered so that the : tasks leaving the core are
g1, ...g: .

Figure 3: Highlight of the gain in the admitted budget for

the proposed technique relying on Equation (8) (highlighted

area in the bottomplot), compared to the one admittedusing

Equation (7) (highlighted area in the top plot).

periodic demand of &8 time units every period %8 . Therefore, this

case requires the task to pass two (simple) tests that need to be

jointly performed:

(1) the budget-based admission test from Equation (9), using

the current leftover budget @8 (C) as the runtime (budget) to

admit, and the value38 (C)−C as the server period over which

to apply the test;

(2) the utilization-based test from Equation (6), (using the static

CBS parameters &8 and %8) applied at time 38 (C). If there is

at least a 0-lag time X 9 ≤ 38 (C), then this check allows admit-

ting more tasks than the simple application of Equation (6)

at time C , because +<
ℎ

(38 (C)) < +<
ℎ

(C).

The first test is useful when the task schedule is “lagging behind”

on the source core : compared to a “fluid” execution, i.e., its 0-lag

time is still in the past, so the first instance of the task needs higher

utilization than the CBS static parameters would require. The sec-

ond test is useful when the task schedule is “running ahead” of

its “fluid” execution, i.e., its 0-lag time is in the future, so the first

instance of the task needs temporarily a lower bandwidth to be

available for its first instance, but it will need higher bandwidth

from the second instance onwards. If the second test is not passed,

but there are scheduled decreases of the active migrated utilization

+<
ℎ

(C) in correspondence of additional future 0-lag times between

38 (C) and 38 (C) + %8 , then it is possible to refine the test applying

again the budget-based admission test from Equation (9), but per-

formed as we had to admit at time 38 (C) the full budget &8 of g8 .

Finally, a particular case of mention is deserved to the special

(but very unlikely) case of a task g8 that migrates from core ℎ to

core : at a time C and comes back to coreℎ at a later time C ′ ∈]C, X8]

with a leftover budget @8 (C
′) ≤ @8 (C) and the same deadline 38 (C).

Assuming no other tasks were admitted on core ℎ in the interval

RTNS’2021, April 7–9, 2021, NANTES, France Tommaso Cucino�a and Luca Abeni

[C, C ′], with the proposed admission test, the task can resume exe-

cution on core ℎ with no need for any special handling. Since the

task left core ℎ at time C with runtime @8 (C) and deadline 38 (C), its

utilization*8 = &8/%8 is scheduled to be removed from the core uti-

lization at the 0-lag time X8 = 38 (C) −
@8 (C)
*8

. In the worst case of the

task coming back at the same time C ′ = X8 , with still its full resid-

ual budget @8 (C), the task can be admitted because the maximum

budget available till the deadline 38 (C) contains at least the budget

that is scheduled to be subtracted starting from the 0-lag time just

mentioned. More formally, the additional runtime exploitable till

the deadline 38 (C) in the admission test from Equation (9), due to

g8 having left, is:

*8 (38 (C) − X8) = *8

(
38 (C) −

(
38 (C) −

@8 (C)

*8

))
= *8

(
@8 (C)

*8

)
= @8 (C)

which is exactly what is needed to admit the task back.

On the other hand, if the task comes back at a later time C ′ > X8 ,

then the proposed test may generally require a higher bandwidth

to be made available for the first instance of the task (i.e., if it did

not run while away from core ℎ). This includes the case in which

the task may not be admitted back.

The task can also be handled by remembering that it left core ℎ

earlier and modelling the time executed on other cores as a suspen-

sion of the task on core ℎ. In this case, the regular CBS wake-up

rule (checking if @8 (C) < (38 (C)−C)
&8

%8
) is applied to decide whether

keeping the current deadline and budget is safe or not. Notice that

this is consistent with the approach presented above since the CBS

wake-up rule can be re-formulated as “if the task wakes up before

the 0-lag time X8 , then the current budget and scheduling deadline

can be re-used, otherwise a new scheduling deadline must be gen-

erated”. This option might still need to be further investigated and

is not discussed further here for the sake of brevity.

6 SCHEDULABILITY ANALYSIS

As previously discussed, when a new task g=+1 arrives on core ℎ

at time C (because it is created or migrated from a different core)

the new task must pass an admission test. This admission test is

based on the core’s total utilization +ℎ (C) (the utilization of cur-

rently hosted tasks) and active migrated utilization +<
ℎ

(C ′) (for

C ′ > C in the future), which is the utilization of : tasks that previ-

ously left the core (due to migration to other CPUs or termination)

and have the 0-lag time in the future.

The evolution over time of +<
ℎ

(C ′) for C ′ > C can be modelled

through a sequence of pairs (X1, *1) , . . . , (X: , *:) indicating that

* 9 contributes to +
<
ℎ

(C ′) until time X 9 (* 9 is the utilization of the

9Cℎ task g 9 ∈ Γ
<
ℎ
(C) : X 9 ≤ C + %8 that recently left the CPU and

will expire at time X 9 — its 0-lag time).

If the decrements in+<
ℎ

() happening at times X 9 are not consid-

ered, then g=+1 can be accepted onto core ℎ if its CBS has schedul-

ing deadline 38 (C) = C + %8 and maximum budget smaller than the

one computed by Equation (7). However, this admission test can

be pessimistic.

In the following, we prove the correctness of themore advanced

test considering the +<
ℎ

() evolution presented in Equation (9).

To prove the core result, the following lemma will be useful:

τi

di(t)

x

t0

x

time

t

τj

t'

dj(t)

Figure 4: Visualization useful for a better understanding of

the proof of Lemma 6.1.

Lemma 6.1. If a taskset Γ = {g1, ...g= } is schedulable on a core

ℎ when task g8 ∈ Γ is activated at time C with deadline 38 (C) and

budget @(C), the activation time can be moved to C ′ < C (leaving

38 (C) unchanged) without breaking the taskset’s schedulability.

Proof. Let us denote with f () the schedule, indicating with

f (C) which task is scheduled at time C . Now, if we move the release

time of this task g8 from time C back to time C ′ < C, (see Figure 4)

but we leave its absolute deadline at time 38 (C), then we obtain a

different schedule f ′ ().

Since EDF is used and 38 (C) is not changed, g8 ’s priority is the

same in f () and f ′ (). Hence, if g8 does not miss its deadline in f (),

then it does not miss the deadline in f ′ () too. So, we just need to

prove that anticipating the activation time from C to C ′ does not

break the schedulability of the other tasks in Γ.

According to EDF, g8 cannot be scheduled before other tasks

having earlier deadlines. Assuming that all the tasks with earlier

deadlines become idle at some time C0, we need to consider two

cases. If C0 ≥ C , then g8 is scheduled after time C also in f ′ (); hence,

releasing g8 at time C ′ < C instead of time C does not change the

schedule (∀C, f ′(C) = f (C)). If C0 < C , then g8 can execute earlier in

f ′() than in f (), risking to affect the schedulability of tasks with

deadlines later than 38 (C). As a result, if there are missed deadlines

they cannot occur at a time earlier than 38 (C).

Now we prove that no tasks can have deadline misses in f ′()

by contradiction. Let g 9 be the first task to miss a deadline, at time

3 9 (C) > 38 (C). In the original schedule f () without the anticipated

execution of g8 , g 9 would have executed all of its budget @(C ′′)

(where C ′′ is the activation of the g 9 ’s instance missing a deadline)

before its deadline 3 9 (C), but let us assume that with the antici-

pated release of g8 this does not happen. Such a deadline miss is

caused by the fact that in f ′() g8 executes before time C instead of

g 9 or instead of different tasks that have deadline earlier than3 9 (C).

However, the fact that g 9 is not allowed to execute for more than

@8 (C) time units before38 (C) implies that if in f ′ () it executes for an

amount of time @0 before time C , then in the time interval (C, 38 (C))

it will execute for @0 time units less respect to f (). Hence, the tasks

that have been preempted for a time @0 before time C in f ′ () will

have @0 time units for executing in (C, 38 (C)) (which is before their

deadlines).

Hence, we can infer that if g 9 misses its deadline 3 9 (C) in f ′()

then it must do the same also in f () which is a contradiction. �

Migrating Constant Bandwidth Servers on Multi-Cores RTNS’2021, April 7–9, 2021, NANTES, France

max Qn+1

1.0

t time�1

�n+1

dn+1(t) �2

U1

U2

U(t) + Um(t)

Figure 5: Visualization of the maximum admissible budget

&=+1 for the task g=+1 under admission.

Theorem 1. A new task g=+1 served by a CBS (&=+1, %=+1) can be

admitted on core ℎ at time C if the following condition is respected:

&=+1 ≤
©­«
* ;D1 −+ℎ (C) −

∑
g 9 ∈Γ

<
ℎ

(C)

* 9

ª®®¬
%=+1+

∑
g9 ∈Γ

<
ℎ

(C):

X9 ≤C+%8

* 9 (C + %=+1 − X8) .

Proof. According to utilization-based analysis (see Equation (7)),

the schedulability of the taskset is not broken by accepting a new

task g=+1 served by a CBS ((&,%=+1) with period equal to %=+1,

(thus its first deadline equal to 31 (C) = C + %=+1), and budget & ≤

(* ;D1 −+ℎ (C) −
∑
g 9 ∈Γ

<
ℎ

(C) * 9)%=+1. However, a larger budget can

also be admitted, because at time X1 the utilization*8 of a task that

left will be removed from+<
ℎ

(). At said time, it would be possible

to accept a new CBS (′ = (& ′, C + %=+1 − X1) with period equal to

C + %=+1 − X1, first deadline X1 + C + %=+1 − X1 = C + %=+1 = 38 (C),

and maximum budget & ′ equal to:

& ′
= *1 (C + %=+1 − X1) .

Remember from Lemma 6.1 that the arrival time of the new

server (′ can be moved backwards from X1 to the current time C

without impacting on the schedulability. Therefore, (′ is released

synchronously with the server (serving g=+1, and it has the same

deadline, then its budget & ′ can be added to the base budget & of

(.

The theorem statement is obtained by reiterating the reasoning

made above for all the other 0-lag times X2 ...X: between time C

and C +%8 . The result is that we can admit, synchronously with the

server (serving g=+1, several other servers with the same deadline.

Therefore, their budgets can add up to the base budget of (given

by Equation (7), obtaining the theorem claim. �

Corollary 6.2. A new task g=+1 served by a CBS (&=+1, %=+1)

can be admitted on core ℎ at time C if the condition expressed by

Equation (9) is respected.

Proof. The condition presented in Theorem 1 is equivalent to

Equation (9) and can be obtained from it as follows:

%8

(
* ;D1 −+ℎ (C)

)
−

∑
g 9 ∈Γ

<
ℎ

(C)

min{X 9 − C, %8 }* 9 =

%8
©­
«
* ;D1 −+ℎ (C) −

∑
g 9 ∈Γ

<
ℎ

(C)

* 9

ª®®¬
+

%8
∑

g 9 ∈Γ
<
ℎ

(C)

* 9 −
∑

g 9 ∈Γ
<
ℎ

(C)

min{X 9 − C, %8 }* 9

The first part of this expression is the same as in the theorem, and

the second part can be modified as follows:

%8
∑

g 9 ∈Γ
<
ℎ

(C)

* 9 −
∑

g 9 ∈Γ
<
ℎ

(C)

min{X 9 − C, %8 }* 9 =

∑
g 9 ∈Γ

<
ℎ

(C)

%8* 9−
∑

g9 ∈Γ
<
ℎ

(C):

X9<C+%8

min{X 9−C, %8 }* 9−
∑

g9 ∈Γ
<
ℎ

(C):

X9 ≥C+%8

min{X 9−C, %8 }* 9 =

∑
g9 ∈Γ

<
ℎ

(C):

X9<C+%8

%8* 9 +
∑

g9 ∈Γ
<
ℎ

(C):

X9 ≥C+%8

%8* 9 −
∑

g9 ∈Γ
<
ℎ

(C):

X9<C+%8

(X 9 −C)* 9 −
∑

g9 ∈Γ
<
ℎ

(C):

X9 ≥C+%8

%8* 9 =

∑
g9 ∈Γ

<
ℎ

(C):

X9<C+%8

%8* 9 −
∑

g9 ∈Γ
<
ℎ

(C):

X9<C+%8

(X 9 − C)* 9 =

∑
g9 ∈Γ

<
ℎ

(C):

X9 <C+%8

(%8 + C − X 9)* 9

which gives the condition presented in the theorem. �

Notice that the condition of Equation (9) has an intuitive inter-

pretation represented in Figure 5.

7 EXPERIMENTAL EVALUATION

In this section, an experimental validation of the correctness and

evaluation of the performance of the admission test introduced

in Section 5 is performed by simulation. To this purpose, the RT-

Sim [20] simulator is used. RTSim is an open-source tool with

the ability to simulate the timing of simple real-time tasks. It sup-

ports a number of different real-time scheduling policies and a few

resource-sharing protocols, and platforms with multiple proces-

sors, including the recent addition of asymmetric multi-cores [18].

First, the consistency of the simulated model with the the ad-

mission test proposed in this paper has been validated by check-

ing that when it is used no deadline is missed in the simulations.

A large number of dynamic tasksets (see below for the details)

has been generated and simulated through RTSim (accepting new

tasks only if the new admission test allowed them), verifying that

the generated schedules do not contain any deadline miss. Then,

the improvements in schedulability introduced by the presented

algorithm have been evaluated.

The overall set of results presented in this section can be exactly

reproduced using the software available at:

http://retis.sssup.it/~tommaso/papers/rtns21.php.

http://retis.sssup.it/~tommaso/papers/rtns21.php

RTNS’2021, April 7–9, 2021, NANTES, France Tommaso Cucino�a and Luca Abeni

7.1 Experimental setup

All the experiments are based on random scenarios where tasks

dynamically leave a CPU (it is unimportant whether due to termi-

nation or migration to a different CPU), and other tasks need to

dynamically enter the CPU. The technique introduced in this pa-

per is expected to allow admitting more tasks than without it.

The simulation set-up is as follows:we generate randomly tasksets

with a random number = of tasks between 4 and 10, and a pre-

configured total utilization of*C>C , using thewell-known taskgen.py

from [11]. The generated tasks have periodswith loguniform distri-

bution between 1000 and 2000 time units, with an enforced period

granularity of 100 units. The tasks are scheduled using EDF on a

single processor. The simulation is paused at random times, until

we find a time in which there are at least a prefixed number : of

tasks with 0-lag time in the future. Then, : of said tasks are killed,

and a new task is instantiated with period uniformly distributed

within the earliest and twice the latest future 0-lag times of the

killed tasks, and runtime computed according to the maximum al-

lowed values as from Section 5. The simulation is then continued,

verifying that no tasks missed their deadlines after the instantia-

tion of the new task. This is done for a time equal to 10 times the

biggest period among the tasks. Indeed, once every task has started

a new instance, the “transient” due to the tasks having been killed

and the new one having been started is over, and the taskset re-

mains schedulable due to the classic single-processor test from Liu

& Layland [16].

The above scenario has been repeated 1000 times for each of the

configurations of the parameters*C>C and : , as shown in Table 1.

7.2 Validation of the model

Table 1: Obtained maximum relative response times and av-

erage bandwidth gain for the simulated scenarios.

maximum average

*C>C : resptime/T bw gain

0.90 1 0.9000 2.03741

0.90 2 0.8973 2.99117

0.90 3 0.8973 4.21386

0.95 1 0.9500 3.23395

0.95 2 0.9467 5.18756

0.95 3 0.9467 7.77282

0.99 1 0.9900 12.8519

0.99 2 0.9867 22.8740

0.99 3 0.9867 35.3014

The table highlights in the third column the highest obtained ra-

tio between the response-time (difference between finishing time

and arrival time) and the period of tasks in all 1000 tasksets used

for each configuration. The reported numbers are all strictly lower

than 1.0, highlighting that no task underwent any deadline miss

during the simulated scenarios.

For completeness, we also report in Figure 6 the cumulative dis-

tribution function (CDF) obtained for the response-times relative

to the periods of all the instances of the tasks from all the runs for

each pair of parameters *C>C and : .

7.3 Performance evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
ri

m
e
n
ta

l
C

D
F

Response Time / Period

U=0.90, K=1
U=0.90, K=2
U=0.90, K=3
U=0.95, K=1
U=0.95, K=2
U=0.95, K=3
U=0.99, K=1
U=0.99, K=2
U=0.99, K=3

Figure 6: Experimental CDF of the response times relative

to the periods in various configurations.

To evaluate the performance of the proposed admission test and

highlight its advantages, when instantiating the new task in each

simulation we compare the bandwidth*=4F admitted for the new

task (equal to the maximum allowed according to Section 5), with

the maximum *>;3
= * ;D1 − (+ (C) + +< (C)) ≡ 1.0 − *C>C that

would have been allowed considering only the available active uti-

lization at that time. We define the bandwidth gain as: *
=4F−*>;3

*>;3 .

The fourth column in Table 1 shows the average bandwidth gain

obtained among the 1000 scenarios simulated for each configura-

tion of the parameters *C>C and : . Consider that, by construction

of the simulated scenarios, the residual available bandwidth at the

time of arrival of the new task for each configuration is given by

1.0 −*C>C , because the : tasks that have just been killed still have

their active utilization counted in, till their future 0-lag times. This

value is equal to 0.10, 0.05 and 0.01 for the first, second and third

triplet of 3 rows in the table.

As evident from the reported numbers, the average bandwidth

gain throughout the simulations goes from a minimum of 2.037

with *C>C = 0.90 and only : = 1 task that left with expiring uti-

lization falling in the task period, to a maximum of 35.30 with

*C>C = 0.99 and 3 tasks that recently left, with expiring utilization

falling in the new task period. However, consider that the new task

to be admitted has been pickedwith some randomness in its param-

eters, but nonetheless its period has been chosen at random in a

window useful to show the benefits of the proposed new admission

test.

7.4 Relevance of the test

The technique introduced in this paper deals specifically with the

problem of admitting a new task to a core during a transitory time

window in which a few tasks have just been migrated to other

cores (or have terminated), in a moment in which their 0-lag time

was in the future. In order to gain an idea of how likely such a situ-

ation might occur, we performed an additional experiment where

we considered task sets generated similarly to the previous sec-

tion, but with overall utilization ranging from 10% to 90% in step

increments of 10%, and number of tasks being 4, 8 or 12. Each

Migrating Constant Bandwidth Servers on Multi-Cores RTNS’2021, April 7–9, 2021, NANTES, France

simulation run has been paused at random times for ten thousand

times, reporting how many tasks have been found with 0-lag time

in the future during the pause.

The obtained results are shown in Figure 7, where the experi-

mental probability of finding a certain number of tasks with 0-lag

time in the future are reported, for the various simulated task sets.

As visible, depending on the conditions (number of tasks and over-

all utilization), we can easily see a significant probability of finding

a non-null number of tasks with 0-lag time in the future. A possi-

ble migration of any of those tasks at some time C would require

the technique presented in this paper to perform the admission of

some other tasks on the CPU shortly after time C .

8 CONCLUSIONS AND FUTURE WORK

In this paper, a novel admission test for dynamically partitioned

CBS reservations on multi-core systems has been proposed. The

test keeps fundamentally the simplicity of utilization-based tests,

but it leverages knowledge of the future evolution of the active

utilization within each CPU due to tasks that recently left, due to

either termination or migration, which is tracked by any correct

scheduler implementation. This knowledge is combined with the

one about the period of the new task to admit, to obtain the max-

imum admissible budget (or task WCET) that can be admitted. In

highly dynamic scenarios where tasks can bemigrated among CPU

cores, the proposed technique is able to cope correctly with tasks

executing partially on a CPU and partially on another CPU, with

a contained amount of pessimism.

We provided formal proof of correctness of the proposed new

test, as well as an experimental validation by simulation of the

technique, recurring to the open-source RTSim real-time systems

simulator. The performed simulations highlight that the new ad-

mission test introduced in this paper for dynamic partitioned CBS

reservations may lead to a great increase of the chances to admit

tasks on a CPU (and to migrate tasks across CPUs), keeping cor-

rectness of the schedule as no admission is done at the expense

of schedulability of the already accepted and running tasks. The

introduced test is sufficiently simple to constitute an excellent can-

didate to be incorporated in the kernel-level admission logic of an

operating system, and particularly in a dynamic partitioning mod-

ification to SCHED_DEADLINE.

Indeed, as to possible future work on the topic, we plan to com-

bine this test with adaptive partitioning as proposed in [2], and to

prototype the effectiveness of the resulting scheduler on a real plat-

form,modifying SCHED_DEALINEwithin the Linux kernel. Also, the

technique is planned to play a key role in energy-aware multi-core

scheduling policies that may need adaptive placement and replace-

ments of tasks among cores for achieving the maximum possible

energy saving on asymmetric multi-core platforms, as investigated

by simulation in [18].

The implementation of the technique as a minimally-invasive

set of modifications to SCHED_DEADLINE is planned to bemade pub-

licly available as a patch to the kernel, and submitted to the Linux

Kernel Mailing List (LKML) for consideration and discussion for

possible mainline inclusion. The implementation will be applied

to a number of high-performance embedded use-case scenarios, in-

cluding those considered by the AMPERE EU project [23].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3

E
x
p

e
ri

m
e
n
ta

l
p

ro
b

a
b

il
it

y
 (

%
)

Tasks with 0-lag time in the future

Tasks in the task set: 4

U=10%
U=20%
U=30%
U=40%
U=50%
U=60%
U=70%
U=80%
U=90%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

E
x
p

e
ri

m
e
n
ta

l
p

ro
b

a
b

il
it

y
 (

%
)

Tasks with 0-lag time in the future

Tasks in the task set: 8

U=10%
U=20%
U=30%
U=40%
U=50%
U=60%
U=70%
U=80%
U=90%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

E
x
p

e
ri

m
e
n
ta

l
p

ro
b

a
b

il
it

y
 (

%
)

Tasks with 0-lag time in the future

Tasks in the task set: 12

U=10%
U=20%
U=30%
U=40%
U=50%
U=60%
U=70%
U=80%
U=90%

Figure 7: Experimental probability (on the Y axis) of finding

a given number of tasks (on the X axis) with 0-lag time in

the future,when pausing the simulation at random times, in

the cases of 4, 8 and 12 tasks (top, middle and bottom plots,

respectively) and total utilization ranging from 10% to 90%

(various curves in each plot).

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under grant agree-

ment No. 871669 AMPERE – “A Model-driven development frame-

work for highly Parallel and EneRgy-Efficient computation sup-

porting multi-criteria optimisation”.

RTNS’2021, April 7–9, 2021, NANTES, France Tommaso Cucino�a and Luca Abeni

REFERENCES
[1] L. Abeni and G. Buttazzo. 1998. Integrating Multimedia Applications in Hard

Real-Time Systems. In Proc. of the IEEE Real-Time Systems Symp.Madrid, Spain.
[2] Luca Abeni and Tommaso Cucinotta. 2020. Adaptive Partitioning of

Real-Time Tasks on Multiple Processors. In Proceedings of the 35th An-
nual ACM Symposium on Applied Computing (Brno, Czech Republic) (SAC
’20). Association for Computing Machinery, New York, NY, USA, 572–579.
https://doi.org/10.1145/3341105.3373937

[3] Sanjoy Baruah and John Carpenter. 2003. Multiprocessor Fixed-Priority Sched-
uling with Restricted Interprocessor Migrations. In Proceedings of the 15th Eu-
romicro Conference on Real-Time Systems (ECRTS 2003). IEEE, Porto, Portugal,
195–202.

[4] S. Baruah, J. Goossens, and G. Lipari. 2002. Implementing constant-
bandwidth servers upon multiprocessor platforms. In Proceedings. Eighth IEEE
Real-Time and Embedded Technology and Applications Symposium. 154–163.
https://doi.org/10.1109/RTTAS.2002.1137390

[5] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. 2002. Elastic scheduling
for flexible workload management. IEEE Trans. Comput. 51, 3 (2002), 289–302.
https://doi.org/10.1109/12.990127

[6] Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. 2017. Semi-
Partitioned Scheduling of Dynamic Real-Time Workload: A Practical Ap-
proach Based on Analysis-Driven Load Balancing. In 29th Euromicro Con-
ference on Real-Time Systems (ECRTS 2017) (Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 76), Marko Bertogna (Ed.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 13:1–13:23.
https://doi.org/10.4230/LIPIcs.ECRTS.2017.13

[7] D. Casini, A. Biondi, and G. Buttazzo. 2019. Handling Transients of Dynamic
Real-Time Workload Under EDF Scheduling. IEEE Trans. Comput. 68, 6 (June
2019), 820–835. https://doi.org/10.1109/TC.2018.2882451

[8] D. Casini, A. Biondi, and G. C. Buttazzo. 2020. Task Splitting and Load Balancing
of Dynamic Real-TimeWorkloads for Semi-Partitioned EDF. IEEE Trans. Comput.
(2020), 1–1. https://doi.org/10.1109/TC.2020.3038286

[9] T. Chen and L. T. X. Phan. 2018. SafeMC: A System for the De-
sign and Evaluation of Mode-Change Protocols. In 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 105–116.
https://doi.org/10.1109/RTAS.2018.00021

[10] M. L. Dertouzos. 1974. Control Robotics: The Procedural Control of Physical
Processes. Information Processing 74 (1974), 807–813.

[11] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the Syn-
thesis of Multiprocessor Tasksets. In Proceedings 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS
2010). Brussels, Belgium, 6–11.

[12] R. L. Graham. 1971. Bounds on Multiprocessing Anomalies and Re-
lated Packing Algorithms. In Proceedings of the May 16-18, 1972, Spring
Joint Computer Conference (Atlantic City, New Jersey) (AFIPS ’72 (Spring)).
Association for Computing Machinery, New York, NY, USA, 205–217.
https://doi.org/10.1145/1478873.1478901

[13] J. Lee and K. G. Shin. 2013. Schedulability Analysis for a Mode Transition in
Real-Time Multi-core Systems. In 2013 IEEE 34th Real-Time Systems Symposium.
11–20. https://doi.org/10.1109/RTSS.2013.10

[14] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. 2016. Deadline
Scheduling in the Linux kernel. Software: Practice and Experience 46, 6 (June
2016), 821–839.

[15] G. Lipari and S. Baruah. 2000. Greedy reclamation of unused band-
width in constant-bandwidth servers. In Proceedings 12th Euromi-
cro Conference on Real-Time Systems. Euromicro RTS 2000. 193–200.
https://doi.org/10.1109/EMRTS.2000.854007

[16] Chung Laung Liu and James W. Layland. 1973. Scheduling Algorithms for Mul-
tiprogramming in a Hard real-Time Environment. Journal of the Association for
Computing Machinery 20, 1 (Jan. 1973), 46–61.

[17] Jose Maria López, Manuel García, José Luis Diaz, and Daniel F Garcia. 2000.
Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor
Systems. In Proceedings of the 12th Euromicro Conference on Real-Time Systems
(ECRTS 2000). IEEE, Stockholm, Sweden, 25–33.

[18] Agostino Mascitti, Tommaso Cucinotta, and Mauro Marinoni. 2020. An
Adaptive, Utilization-Based Approach to Schedule Real-Time Tasks for
ARM Big.LITTLE Architectures. SIGBED Rev. 17, 1 (July 2020), 18–23.
https://doi.org/10.1145/3412821.3412824

[19] V. Nelis, B. Andersson, J. Marinho, and S. M. Petters. 2011. Global-EDF
Scheduling of Multimode Real-Time Systems Considering Mode Independent
Tasks. In 2011 23rd Euromicro Conference on Real-Time Systems. 205–214.
https://doi.org/10.1109/ECRTS.2011.27

[20] Luigi Palopoli, Giuseppe Lipari, Gerardo Lamastra, Luca Abeni, Gabriele
Bolognini, and Paolo Ancilotti. 2002. An object-oriented tool for
simulating distributed real-time control systems. Software: Practice
and Experience 32, 9 (2002), 907–932. https://doi.org/10.1002/spe.467
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.467

[21] P. Pedro and A. Burns. 1998. Schedulability analysis for mode changes in flexible
real-time systems. In Proceeding. 10th EUROMICRO Workshop on Real-Time Sys-
tems (Cat. No.98EX168). 172–179. https://doi.org/10.1109/EMWRTS.1998.685082

[22] L. T. X. Phan, I. Lee, and O. Sokolsky. 2011. A Semantic Framework for Mode
Change Protocols. In 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium. 91–100. https://doi.org/10.1109/RTAS.2011.17

[23] E. Quiñones, S. Royuela, C. Scordino, L. M. Pinho, T. Cucinotta, B. Forsberg, A.
Hamann, D. Ziegenbein, P. Gai, A. Biondi, L. Benini, J. Rollo, H. Saoud, R. Soulat,
G. Mando, L. Rucher, and L. Nogueira. 2020. The AMPERE Project: A Model-
driven development framework for highly Parallel and EneRgy-Efficient com-
putation supporting multi-criteria optimization. In Proceedings of the 23rd IEEE
International Symposium on Real-Time Distributed Computing (IEEE ISORC 2020).
IEEE, Nashville, Tennessee (turned to a virtual event).

[24] Lui Sha, Ragunathan Rajkumar, John Lehoczky, and Krithi Ramamritham. 1989.
Mode change protocols for priority-driven preemptive scheduling. Real-Time
Systems 1, 3 (1989), 243–264.

https://doi.org/10.1145/3341105.3373937
https://doi.org/10.1109/RTTAS.2002.1137390
https://doi.org/10.1109/12.990127
https://doi.org/10.4230/LIPIcs.ECRTS.2017.13
https://doi.org/10.1109/TC.2018.2882451
https://doi.org/10.1109/TC.2020.3038286
https://doi.org/10.1109/RTAS.2018.00021
https://doi.org/10.1145/1478873.1478901
https://doi.org/10.1109/RTSS.2013.10
https://doi.org/10.1109/EMRTS.2000.854007
https://doi.org/10.1145/3412821.3412824
https://doi.org/10.1109/ECRTS.2011.27
https://doi.org/10.1002/spe.467
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.467
https://doi.org/10.1109/EMWRTS.1998.685082
https://doi.org/10.1109/RTAS.2011.17

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper organisation

	2 Related Work
	3 Background
	3.1 Terminology and definitions
	3.2 A CBS implementation

	4 Dynamic Partitioning
	5 Proposed Approach
	5.1 Tracking per-core utilizations
	5.2 Considering the scheduling deadline of the new server
	5.3 Handling migrations across CPU cores

	6 Schedulability Analysis
	7 Experimental Evaluation
	7.1 Experimental setup
	7.2 Validation of the model
	7.3 Performance evaluation
	7.4 Relevance of the test

	8 Conclusions and Future Work
	Acknowledgments
	References

