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Abstract

In scheduling real-time tasks, we face the challenge of meeting hard deadlines
while optimizing for some other objective, such as minimizing energy consump-
tion. Formulating the optimization as a Multi-Armed Bandit (MAB) problem
allows us to use MAB strategies to balance the exploitation of good choices based
on observed data with the exploration of potentially better options. In this paper,
we integrate hard real-time constraints with MAB strategies for resource man-
agement of a Stochastic Parallel Synchronous Task. On a platform with M cores
available for the task, m < M cores are initially assigned. Prior work has shown
how to compute a virtual deadline such that assigning all M cores to the task
if it has not completed by this virtual deadline guarantees that the deadline will
be met. An MAB strategy is used to select the value of m. A Dynamic Power
Management (DPM) energy model considering CPU sockets and sleep states is
described. Experimental evaluation shows that MAB strategies learn consistently
suitable m, and perform well compared to binary exponential search and greedy
methods.

Keywords: Multicore scheduling, Multi-Armed Bandit, DAG task, Parallel
Synchronous Task

1 Introduction

When scheduling real-time tasks, we often want to manage the use of resources to
optimize some objective and also ensure that the tasks’ deadlines are met. The objec-
tive may be, for example, minimizing energy consumption or maximizing the processor
time available for other tasks in uninterrupted time periods. The problem can be
modeled as a Multi-Armed Bandit (MAB) problem (Slivkins, 2019), where a decision
maker repeatedly selects one of several fixed options, known as arms or actions; the
impact of each action is not known a priori, and it is influenced by uncertainty. MAB
strategies optimize for the average case while balancing exploration and exploitation
to achieve the best expected result over a time period. The average behavior is often
the main concern in resource management beyond strict timing requirements. For



example, minimizing the energy consumption implies minimizing the integral of the
power consumption over time, essentially minimizing the average power consumption.
This paper gives an example of the integration of strict timing guarantees with MAB
strategies to minimize energy consumption.

A scheduler initially assigns m cores to a DAG task but can use M > m identical
computing cores if needed. For a compute-bound task and a work-conserving schedule,
Papadopoulos et al. (2022) have shown that the task’s deadline is met if it is assigned
all M cores at a virtual deadline V. V depends on the initial number of cores m
assigned and the worst-case properties of the DAG task. We rely on these results
to ensure that deadlines are met and outline an MAB approach to select m over
time, balancing exploration and exploitation. In Papadopoulos et al. (2022), resource
management strategies are evaluated, selecting m based on response time and m of the
most recent task invocation. These strategies aim for the lowest possible m that keeps
the response times below V(m). The MAB approach differs in two important ways
compared to these strategies. 1) Optimization is done with respect to the expected
reward over time instead of the most recent observation. 2) The reward function is
decoupled from the arm selection, allowing for optimizing the resource management
towards any goal dependent on the arm response times.

The reward function is constructed to minimize the energy consumption under an
energy model of a multicore system with CPU sockets and Dynamic Power Manage-
ment (DPM) with sleep states. The energy model is based on data from Schone et al.
(2015).

Contribution: The main contribution is the MAB application to improve aver-
age behavior while ensuring hard real-time guarantees. For this application, we define
and use a Stochastic Parallel Synchronous Task, a special case of a DAG task but
a generalization of the Parallel Synchronous Task (Saifullah et al., 2013). We derive
response time bounds for different initial core allocations. Each arm represents a choice
of initial core allocation. The MAB is implemented as a bootstrap/ bag approxima-
tion (Oza and Russell, 2001) of Thompson sampling (Slivkins, 2019). In the proposed
partial-feedback MAB, information about unexplored arms is derived from arms that
have been explored, using the response time bounds.

In the evaluation, the proposed MAB core allocation strategy is compared with
an MAB not using the derived response time bounds, the Binary-Exponential Search
(BES) strategy from Papadopoulos et al. (2022) adapted to the energy model, and a
greedy strategy based on the energy model. The evaluation is performed for several
selected task structures with different computation time variances and deadlines.

Outline of the paper: A background on Multi-Armed Bandits is given in
Section 2. In Section 3 related work regarding task models with precedence constraints,
bandit scheduling and energy-aware scheduling is outlined. Notation, the task model,
and scheduling along with definitions are presented in Section 4. In Section 5 the
resource management problem is formulated (Section 5.1). Methods from Papadopou-
los et al. (2022) are introduced with an example (Section 5.2). The proposed partial
feedback MAB and the response time bounds are presented in Section 5.3. The energy
model for the reward function is outlined in Section 6, and the evaluation in Section 7.
In Section 8 conclusions and future work are discussed.



2 MAB Background

A MAB problem is a reinforcement learning problem in which an algorithm makes
decisions over time under uncertainty (Slivkins, 2019). The algorithm selects one out of
K possible actions, called arms, in each of T rounds. Each action generates a reward
according to a fixed but unknown probability distribution, and the goal is to maxi-
mize the total reward over the T rounds, the horizon. There are many applications
of MAB approaches, including healthcare, finance, dynamic pricing, recommender
systems, anomaly detection, and telecommunications (Bouneffouf et al., 2020).

A standard approach to comparing different MAB algorithms is the concept of
regret. Here, the sum of rewards for an algorithm over a horizon of T" rounds is com-
pared with the sum of expected rewards when consistently choosing the arm with the
highest possible expected reward. That is, with a fixed but unknown reward distri-
bution Dy, of each arm k, the mean reward of an arm is denoted ux = E[Dg]. The
highest possible mean reward is p! = maxy, py. The regret R(T) over horizon T of an
algorithm that at each round i takes an action a; leading to reward p(a;) is defined as:

R(T)=p"-T =3 plai) (1)

Feedback from a chosen action can be structured into three types (Slivkins, 2019).
Bandit feedback provides the reward for the chosen arm and no additional information.
In a complete feedback setting, the agent can retrospectively observe the reward for all
arms. Partial feedback implies that further information is provided beyond the reward
of the chosen arm. In our case, an arm’s response time provides information about the
task’s properties that is useful for all arms.

The reward model can be i.i.d. (independent and identically distributed), where the
rewards of each arm are drawn from the same probability distribution, independent
of the round and previous actions and rewards. Other reward models include rewards
chosen by an adversary or evolving according to a random process (Slivkins, 2019). In
our case, we consider i.i.d. rewards.

The arm choice at a round 7 is based on the current estimates of the mean rewards
ur of each arm. Algorithms often consider confidence intervals of the mean rewards.
One common algorithm, Successive Elimination, removes an arm a from consideration
when the upper bound of the confidence interval for y, is lower than the lower bound of
the confidence interval for the mean reward gy, of some other arm b. Another common
algorithm, UCBI1, always selects the arm with the highest upper confidence bound on
the mean reward. The intuition is that upper confidence bound is high due to the arm
being a good choice, or due to the arm being unexplored and having a large confidence
interval.

Bayesian bandits use the concepts in Bayesian statistics and assume that an
unknown quantity is sampled from a known distribution (Slivkins, 2019). The expected
reward is maximized over the distribution, referred to as a belief model. Before select-
ing an arm in round ¢, we refer to the prior distribution of the belief. After obtaining
the reward, the belief model is updated, and we refer to the posterior distribution.



The posterior can be used as a prior in the next round. An algorithm for arm selec-
tion in a Bayesian bandit is Thompson sampling. In each round, every arm is assigned
a probability of selection equal to the probability that the arm is optimal, given the
history of previous rounds. An equivalent formulation is the following: at each round,
a reward is sampled from the prior distribution over the expected reward of each arm.
The arm corresponding to the highest reward is selected.

In some cases, the posterior distribution can be derived as a closed-form expression
from a conjugate prior of the same family. However, in many cases, the posterior
belief model is approximated (Bietti et al., 2021). One such approximation method is
Bagging or Online Bootstrap Thompson Sampling (Bietti et al., 2021; Oza and Russell,
2001). In this approach, several bags or replicates estimate the mean reward of the
arms from observations in the past. Each replicate is updated with a new observation
with a certain probability, resulting in the bags having different histories and mean
reward estimates. In this way, the set of bags estimates the belief distribution of the
reward mean.

In Contextual Multi-Armed Bandit (CMAB) problems, some feature vector or
context is observed prior to the decision, and reward distributions are different for
different contexts. For example, in a recommender system, the context could be user
demographic information.

In a restless bandit setting (Whittle, 1988), the reward distributions associated
with the arms, including non-selected arms, may change across rounds. The objective
is to maximize the average reward over an infinite horizon.

This paper considers the traditional MAB setting. There is no context information
prior to the arm choice, and each arm’s reward distribution remains fixed, but our
knowledge about them evolves.

3 Related Work
3.1 Task Models With Precedence Constraints

Modeling precedence constraints with DAGs is common, both for precedence con-
straints between different tasks (Graham, 1969) and for precedence constraints within
the same task (Baruah et al., 2012; Saifullah et al., 2013). In Graham’s list schedul-
ing (Graham, 1969), a ready task is selected for processing each time a processor is
idle. A ready task is a task with no precedence constraints or fulfilled precedence
constraints. Graham’s list scheduling does not produce a sustainable schedule (Burns
et al., 2008), but bounds for the response time differences are presented (Graham,
1969).

In the parallel synchronous task model (Saifullah et al., 2013), a task’s jobs consist
of sequential segments, each containing threads that can run in parallel.

Even richer DAG-based models have been developed and studied. In the conditional
parallel DAG task model (Melani et al., 2015), parallel nodes are combined with nodes
representing if-then-else clauses. The multi-DAG model (Fonseca et al., 2015) models
different execution flows as separate DAGs.

Papadopoulos et al. (2022) is the work most closely related to this paper, and we
describe the necessary content in Sections 4 and 5.2.



3.2 Bandit Scheduling

Yu et al. (2018) have proposed using Restless Bandits for stochastic deadline schedul-
ing in a data center. Here, arms represent positions in the job queue, and selecting
an arm is equivalent to processing the job at that position in the queue on one pro-
cessor. The problem is shown to be indexable. Whittle’s index policy is not optimal,
but the gap-to-optimality is bounded. Chen et al. (2022) used a measure of informa-
tion freshness in a restless bandit setting to determine which states to update. In a
network setting, Raghunathan et al. (2008) selected packets for broadcasting with a
similar restless bandit approach. Borkar et al. (2017) have applied a restless bandit
approach in which a queue is selected for packet transmission on a channel, consid-
ering costs modeling the delay constraints and transmission energy consumption. To
the best of our knowledge, bandit scheduling has not been applied to DAG or syn-
chronous task models. Most of the approaches in the literature use arms to represent
packets or jobs. This requires a restless bandit approach as the states of all packets/
jobs evolve, whether or not they are transmitted/ processed. In our work, an arm rep-
resents the number of cores initially assigned to a task. This enables a more simplistic
MAB problem while the considered task model is more complex.

3.3 Energy-Aware Scheduling

In modern processors, the two main approaches to control energy consumption are
Dynamic Voltage and Frequency Scaling (DVFS), in which the voltage and CPU
frequency are lowered at times, and Dynamic Power Management (DPM), in which a
number of different processor idle states (C-states®) are used (Bambagini et al., 2016).
Deeper idle states save more power by turning off additional components in the CPU,
but they require higher wake-up latencies. As noted in Le Sueur and Heiser (2010), the
potential advantages of DVFS over DPM are decreasing. One reason is that reduced
transistor sizes lead to an increased proportion of leakage currents, as these are a
quantum phenomenon (Bambagini et al., 2016).

Bambagini et al. (2016) survey and discuss work on energy-aware scheduling for
real-time systems. Sheikh and Pasha (2018) presented a survey on energy-efficient
multicore scheduling for hard real-time systems. Xie et al. (2021) surveyed low-energy
parallel scheduling algorithms focused on DVFS techniques. Additional works that
focused recently on the use of DVFS and big. LITTLE architectures for real-time tasks
can be found in Mascitti et al. (2021). The former work introduces BL-CBS, an exten-
sion of the Adaptive Partitioned EDF scheduler in Abeni and Cucinotta (2020), where
each real-time task CBS server is dynamically placed on the most energy-convenient
CPU, chosen among big or LITTLE ones, considering the impact of possible frequency
changes, needed to preserve schedulability, on the power consumption of the whole
affected island. The technique is further extended in Mascitti and Cucinotta (2021)
to schedule real-time DAG tasks.

The power P, of a single active gate is described as a function of the probability
of gate switching «, the loading capacitance Cp,, the supply voltage V, the clock

1C0 is actually the name of the fully operational state of the CPU, when it is executing instructions, C1 is
the first software-only idle state, whereas C2, C3, etc... are the deep idle states. For more details, see: https://
doc.opensuse.org/documentation/leap/archive/42.2 /tuning/html/book.sle.tuning/cha.tuning.power.html.
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https://doc.opensuse.org/documentation/leap/archive/42.2/tuning/html/book.sle.tuning/cha.tuning.power.html

frequency f, the short circuit current Is. and the leakage current Ij..; (Bambagini
et al., 2016; Chandrakasan et al., 1992; Sheikh and Pasha, 2018)?:

Pgate:a'CL'VQ'f+V'Isc+V'Ileak (2>

An important part of the power savings of DVFS is the concurrent reduction in the
supply voltage enabled by a reduced clock frequency (Le Sueur and Heiser, 2010). In
some work (Pillai and Shin, 2001; Aydin et al., 2001; Bambagini et al., 2016), the
dynamic power component is assumed to be P(f) = - f%, 2 < § < 3. With today’s
low core voltages, the voltage-scaling window is reduced, resulting in a smaller benefit
of the dynamic component (Le Sueur and Heiser, 2010). A lower clock frequency also
implies a longer computation time, limiting when a low-power idle state can be used.

Schone et al. (2015) describe the per-core C-states of x86 processors, and Pack-
age C-states that can be entered if all the cores in a socket are in a sleep state. In
these Package C-states, power demand is reduced further, for example, by partially
disabling the last-level cache. Recent work by Antoniou et al. (2024) have proposed
an alternative architecture to significantly reduce the wake-up latency of sleep states
while retaining most of the power savings.

Sleep state arbiters have been developed to minimize data center response times
and latency while saving energy. Examples include feedback control (Zhan et al., 2016)
and machine learning (Sharafzadeh et al., 2019). In Chou et al. (2019), sleep states are
coordinated with request delays and voltage frequency scaling to reduce tail latency
and energy consumption. Request tail latency is estimated using random variables.

Despite the reduced gains in DVFS techniques, these and hybrid methods com-
bining DVFS and DPM are common in the literature. The energy model presented
in Section 6 uses DVFS only as a complement to DPM for cores in sleep states.
This model can be incorporated into the framework with virtual deadlines for DAGs
developed in Papadopoulos et al. (2022) with minimal modification.

4 System Model and Notation

The main notation used in the paper is listed in Table 1.

4.1 Task Model

We consider a periodic task 7, generating a sequence of jobs J;, ¢ € N. Job arrivals
are separated by the period p, and we refer to the arrival of J; as round i. The task,
referred to as a stochastic parallel synchronous task, has the internal structure of a
parallel synchronous task (Saifullah et al., 2013). That is, 7 is composed of s sequential
computation segments. There are u; threads in the j-th segment of 7, and the total
number of threads is U. The task structure is illustrated in Fig. 1.

Each segment ends in a synchronization point, so all threads in one segment must
be completed before the next segment can begin its execution. In our task model, the
execution time e;;;, of the k-th thread in job i’s j-th segment is the outcome of an

2In Bambagini et al. (2016) « also multiplies the second term.



Table 1 Notation used in this paper.

Symbol Description
T, J; Task, job (at round) 4 of the task.
p Task period.
s Number of segments in a parallel synchronous 7.
Uy Number of threads in the jth segment of 7.
U Total number of threads in 7.
&; Execution time random variable of the kth thread in the jth segment of 7.
€ijk Execution time of thread k in the jth segment of J;.
LW The deterministic worst-case span, and work of 7.
T The response time of J;.
w; The total work of J;.
D The relative deadline of 7.
M The maximum number of cores available for 7.
m; The number of cores assigned to J; at its arrival.
Q The number of valid m.
V(m) The virtual deadline of 7 associated with m.
Si(t), Qi(t) | The partial schedule and profile at time ¢ after arrival.
Ng, Nes Number of sockets, and number of cores per socket.
Px The power consumption of a core in power state X.
Axy Transition latency in transitioning from power state X to Y and back to X.
Paxy The average power consumption during Axy .
Csxy Cra The cores out of x cores that make up full sockets, and the remaining cores.
E; The modeled energy consumption from arrival to deadline of J;.
ET, EY The maximum and minimum possible energy consumption of a job.
T Horizon (a specified number of rounds).
p Reward.
B Bag (bootstrap replicate) to estimate arm mean rewards.
K Number of bags.

Fig. 1 A stochastic parallel synchronous task example.

iid. random variable &£;, with bounded support. The work w; of job % is the sum of
the execution times of all threads.

The main difference with respect to the model in Saifullah et al. (2013) is the
specification of thread execution times. In Saifullah et al. (2013) the execution times of
threads in a segment are specified by the worst case execution requirement of the task
segment. In our model, execution times are outcomes of random variables. We assume
that a fixed but unknown probability distribution specifies the execution requirement



for a thread in a segment; different threads in the same segment may have different
probability distributions.

The worst-case span L and work W of a DAG task are defined in Papadopoulos
et al. (2022), and we define them here for the stochastic parallel synchronous task.
The worst-case span L of 7 is a deterministic conservative estimate of the sum of the
longest thread execution times from each segment as formalized in Eq. (3)

S
L> Z:l k:r?,??fuj €ijk, Vi (3)
=

W is the worst-case work of 7, a deterministic conservative estimate of the worst-case
total computation time of all threads, as stated in Eq. (4).

w Z izjeijk,Vi (4)

j=1k=1

The assumption of bounded support for the execution time distribution of the k-
th thread of the j-th segment &), of T is necessary to assume that 7 has deterministic
worst-case work and span.

Let r; denote the response time of J;. The response time for any job should not
exceed the relative deadline D. The deadline is implicit, D = p.

4.2 Scheduling

As in Papadopoulos et al. (2022), jobs are scheduled on up to M identical cores. At
the arrival, J; is assigned m,; cores. Depending on m, a virtual deadline V" is calculated
according to Eq. (5).

M-(D-L)—(W-L)
Mfmi

V(m;) = { J ,mi < M (5)

If J; is not completed at the time of V(m;), all M cores are assigned to J; at this
point. As shown in Papadopoulos et al. (2022) this guarantees that J; will meet its
deadline.

When a job J; is completed, the resulting response time r; and total computation
time w; are reported, and this information is available to determine subsequent core
assignments.

The guarantee that jobs meet their deadlines is based on the bound on the response
time r(m) of a DAG task job assigned m cores until completion in Eq. (6).

r(m)SLJrWiL

(6)

This relies on the fact that the mean work of one of the cores and not on the critical
path is at most % (Melani et al., 2015), assuming no interference from other tasks,



a constrained relative deadline (D < p) and a work-conserving schedule. Wﬂ:L is the
latest possible point when one core is available to process the work on the critical path.

The threads within a task are scheduled according to list scheduling (Graham,
1969); that is, the threads are ordered in a list. Threads ready to execute will be run
in the order they are listed. We assume that the list starts with the threads of the first
segment, followed by the threads of the second, third, and so on. This is without loss of
generality - assume that in a list ordering LO, thread a of segment H precedes thread
b of segment H', H' < H. Since thread a cannot start execution until all threads of H’
have completed execution, it follows that moving thread a just after the last thread
of segment H' in LO will give the same schedule.

We provide the definitions below for the partial schedule, profile, and the ahead
relation of profiles of a stochastic parallel synchronous task with threads scheduled
according to list scheduling.

Definition 1. The partial schedule S;(t) of job J; at time t, 0 < t < D, specifies for
each thread the total time the thread has been processed up to time t.

The profile Q;(t) of a wpartial schedule S;(t) is the list Q;(t) =
(q1(t),q2(¢),...,qu(t)) where q(t), | = 1,2,...,U, represents the remaining process-
ing time at time t after the job’s arrival of thread | from J;, with threads ordered
according to the list scheduling priority.

Since the threads’ processing times are unknown, the remaining thread process-
ing times are unknown. Next, we introduce an ordering relation among profiles that
corresponds to different partial schedules of the job at different points in time.
Definition 2. The profile Q}/(t") = (¢ (t"),¢5 ("), ..., q;(t")) is ahead of profile
QUE) = (@ (E), Gy (), - ay (#)) if q(t") < qL(¥),¥a. We denote this as QU (") <
QUt).

We note that the ahead relation is transitive. If Q7 (t") < Q}(¢') and QY (") <
Q;/(t//) then Qg//(t///) < Q;(t/)

We also note that if at time ¢’ the partial schedule S, executes a thread from
segment H', and at time t” the partial schedule S}’ executes a thread from segment
H" that follows H', then QY (¢") is ahead of Q}(t').

5 Resource Management

In this section, the problem formulation is outlined in Section 5.1. A motivating exam-
ple is presented in Section 5.2, along with descriptions of methods from Papadopoulos
et al. (2022). The proposed partial feedback MAB approach is outlined in Section 5.3.
In Section 5.4 we return to the motivating example.

5.1 Problem Formulation

We want to choose the number of cores m to initially assign to a stochastic parallel
synchronous task 7 as described in Section 4, that minimizes a regret related to the
task’s response time distribution for the arms. In other words, we want to choose the
arm that maximizes the total reward over a specified time horizon, where the reward
of a job depends on the response time, execution requirement, and core assignment.
The exact structure of the task is unknown to the scheduler, only the worst-case work



W and span L are known. The scheduler observes the response time and total work of
jobs after their execution. The deadline is guaranteed to be met, given that M cores
are assigned to the task at the virtual deadline.

5.2 Motivating Example and Methods From Related Work

In Papadopoulos et al. (2022), the objective was to find the ideal initial assignment of
cores, resulting in a response time as close as possible to the virtual deadline without
exceeding it. We can reformulate this to the probabilistic case - assume the objective
is to find the initial assignment of cores, resulting in the average response time as close
as possible to the virtual deadline without exceeding it. Let us outline and apply two
of the methods evaluated in Papadopoulos et al. (2022), namely the binary search and
the binary-exponential search, to a task as defined in Section 4. We will discuss why
these methods are unsuitable for the stochastic parallel synchronous task model.

The general structure of the algorithms is outlined in Algorithm 1. After some
initialization, at each round a core allocation is selected. The next job is run with
the selected allocation, and the resulting response time and work are observed. Some
update is performed based on the observations and the selected allocation.

Algorithm 1: General structure for core allocation over a horizon.

Input: Horizon T
Output: Allocations (my,--- ,mr), response times (r1,--- ,77), work (w1, -- ,wr)
1 Function CoreAllocatorHorizon(T):
Init()
foriel:T do
m; < CoreAllocator()
r;, w; < RunTask(m;)
Update(m;, r;, w;)

[<XIN BNV M)

Example 1. Our example task has s = 2 segments, the first segment has uy = 8
threads, and the second has us = 4 threads. The number of cores m to assign is in the
range [1, M|, M = 10. The scheduler uses a relative deadline D = 16, worst-case work
W =52, and span L = 8 to calculate the virtual deadlines.

Example 2. In a deterministic version of Example 1, the threads in the first and
second segments have the lengths (2,2,2,5,5,2,2,2) and (1,1, 3,3) in scheduling order.
Example 3. In a stochastic version of Example 1, the threads in the first segment
have a length of 2 with 0.75 probability and 5 with 0.25 probability. The threads in the
second segment have a length of 1 with 0.5 probability and 3 with 0.5 probability.

5.2.1 Binary Search for Selecting m

We recall the binary search algorithm from Papadopoulos et al. (2022), intended
for tasks with unknown and constant typical workload. It maintains an interval (lo,
hi],lo < hi. For a deterministic task, the interval contains the ideal m resulting in a

10



Algorithm 2: Binary search initialization.

Input: Maximum number of cores M
Output: (lo, hi] interval
1 Function InitBS(M):

2 lo<+ 0
3 hi < M

response time as close as possible to the virtual deadline without exceeding it. Ini-
tially lo = 0 and hi = M - Algorithm 2 is the Init-function in Algorithm 1. The core
allocation-function is Algorithm 3, m; = (%1 In the following rounds, m;y; is
determined and the (lo, hi] interval is updated from m; and r;, where ¢ represents the
round when J; arrives. The algorithm for updating the interval is outlined in Algo-
rithm 4. Note that although lo starts at 0, m; > 0, Vi because of the ceiling operation
and that hi is only assigned to previous values of m.

Algorithm 3: Binary search for selection of m at round i.

Input: (lo, hi] interval
Output: Cores m;
1 Function CoreAllocatorBS(r;, m;, lo, hi):

2 t m; [loghi-‘

Algorithm 4: Binary search update of (lo, hi] interval.

Input: Response time r;, cores m;, (lo, hi] interval
Output: Updated (lo, hi] interval
1 Function UpdateBS(r;, m;, lo, hi):

2 if r; > V(m;) then
3 L lo < my;
4 if r; < V(m;) then
5 | hi—m;

We apply the binary search allocation to the deterministic task in Example 2.
The allocation m and the interval are shown in Fig. 3, and the scheduling for the
different m are shown in the first row of Fig. 2. The binary search starts with the
interval (lo = 0, hi = 10] and an initial m; = 5 corresponding to V(5) = 7 calculated
from Eq. (5). In the first segment, three threads with length 2 and two with length
5 are scheduled, and the three remaining threads are scheduled at time 2, resulting
in the completion time of 5 for the first segment. The response time r; = 8 is longer
than the virtual deadline, and lo is updated to 5. The next my = [(5 + 10)/2] = 8,
corresponding to V(8) = 18. The response time is 10, below V' (8), so hi is updated to

11
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Fig. 2 Scheduling in the motivating example.

8, and the next mgs = 7. Here we have V(7) =12 and r3 = 8, and a new hi = 7. This
gives my =6, r4 = 8, V(6) = 9, leading to hi = 6. From this stage, we will remain at
m = [(5+6)/2] = 6, the lowest m resulting in r < V(m).

Next, we apply the binary search allocation to the stochastic task in Example 3.
The evolution of the range and m selection is shown in Fig. 3 and the scheduling in
the second row of Fig. 2. We first select m; = 5. At this time, the threads in the
first segment have lengths (2,2,2,5,2,2,2,2), and in the second (1,1,3,1). The first
segment has a completion time of 5, as all three threads in the first segment scheduled
at 2 have length 2. The response time is therefore 8, longer than V(5) = 7, so lo is
replaced with 5, and the new msy = 8. In this job instantiation, the threads in the
first segment have lengths (2,2,2,2,5,2,2,2), , and the threads in the second segment
have lengths (3,1, 1,3), resulting in ro = 8. V(8) = 18 > 8, and hi = 8. Next, mg =7
and the thread lengths of the first and second segment are (2,5,2,2,2,2,2,2) and
(3,3,3,1) respectively. This results in a response time of r3 = 8 < V(7) = 12, and
hi = 7. In the next round, m4 = 6, and the threads in the first segment have the
lengths (2,2,2,2,5,2,2,5), and in the second segment thread lengths are (3,1, 3, 3).
Now there is one thread of length 5 starting at 2, so the first segment completes at 7
and the response time is 10 > V(6) = 9. leading to lo = 6. From now on, we will always
select m = 7, although m = 6 is the lowest allocation where the average response time
is lower than the virtual deadline. The binary search allocation is not suitable when
the thread execution times may vary between jobs, such as in the stochastic parallel
synchronous task.

5.2.2 Binary-Exponential Search for Selecting m

The binary-exponential search(BES) from Papadopoulos et al. (2022) enables adjust-
ment of the interval (lo, hi] from changes to the response times. For example, if the
algorithm has converged, so that m; = hi, but the response time is longer than the
virtual deadline, r; > V(hi), it seems that we have converged to the wrong value. In
this case hi will be increased by 2. If the response time in the next round is still longer
than V' (hi), hi is increased by 4, with an exponential increase of hi or decrease of lo
if response times are misaligned with the virtual deadlines of the (lo, hi] interval. In
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Fig. 3 The (lo, hi] interval and the core allocation m in the motivating example task.

Algorithm 5: Binary-exponential search initialization.

Input: Maximum number of cores M
Output: (lo, hi] interval, inc, dec
1 Function InitBES(M):

2 lo<+ 0

3 hi <+ M
4 inc <+ 2
5 dec + 2

addition to the (lo, hi] interval, the BES maintains the variables inc and dec, initial-
ized to 2 as outlined in Algorithm 5. These are used to enable an exponential increase
of hi or decrease of lo if response times are misaligned with the virtual deadlines of
the (lo, hi] interval. The core allocation part is the same as for the binary search
(Algorithm 3), and the modified update function is outlined in Algorithm 6.

Applying the BES algorithm to Example 3 leads to the interval being updated
frequently, as illustrated in Fig. 3. The algorithm will select m near the ideal allocation,
but the random variations in the response times will cause repeated updates of the
search interval. The BES algorithm is constructed for core assignment for a task that
changes characteristics at certain points in time, but where the structure and thread
execution times remain the same between these points. Therefore, it is not well suited
for finding m that is good over time for a stochastic parallel synchronous task.

5.3 Partial Feedback Bayesian MAB

An MAB algorithm selects the initial number of cores m; assigned to J;. Each m that
is valid represents an arm. The task must be schedulable for each valid arm, and a
necessary schedulability condition is that the virtual deadline according to Eq. (5) is
non-negative. There may be further restrictions on valid m; the energy model presented
in Section 6 and used in the evaluation is one such example. The number of valid m
is denoted by €.

The MAB models a current belief about each arm’s reward and response time.
The arms’ response time distributions all depend on the properties of the parallel
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Algorithm 6: Binary-exponential search update of (lo, hi] interval.

Input: Response time r;, cores m;, (lo, hi] interval, interval update terms inc, dec
Output: Updated (lo, hi] interval and terms inc, dec
1 Function UpdateBES(r;, m;, lo, hi, inc, dec):

2 if r; > V(m;) then

3 if m; = hi or r; > V(hi) then
4 hi < min(hi + inc, M)

5 inc < inc- 2

6 | lo+my

7 if r; < V(m;) then

8 if r; <V(m; — 1) then

9 if mj =1lo+1 orr; <V(lo)then
10 lo < max(lo — dec, 0)
11 dec < dec - 2
12 | hi+m;
13 if hi — lo <1 then
14 inc <2
15 | dec<+2

synchronous task. Generally, we expect a higher initial number of cores to result in
a shorter response time. However, this is not always the case, as was already pointed
out in Papadopoulos et al. (2022). In Section 5.3.3 we will discuss this further and
provide response time bounds for different initial core allocations. The response time
bounds are used in partial feedback to derive information about the reward of one arm
from observations of another arm. The response time bounds are derived using the
stochastic parallel synchronous task model, but without assumptions on the number
of segments or threads. An MAB approach without response time bounds may be
applied to a general DAG task.

The MAB maintains & bags (bootstrap replicates), each estimating the mean
reward for every arm. In Thompson sampling, an arm is selected with a probability
equal to the probability that it is the best arm (that it has the highest mean reward)
based on the history. We have chosen a bag implementation of the MAB, as it is appli-
cable for general reward distributions and straightforward to implement and explain.
There are many options for MAB implementations (Slivkins, 2019; Bietti et al., 2021),
and many of these may perform better but may restrict the reward model or require
additional steps, for example optimization. There are caveats (Rubin, 1981; Russo
et al., 2018) with and benefits (Eckles and Kaptein, 2019) of the bootstrap method.
For example, a low number of bags tends to make the algorithm greedy (Eckles and
Kaptein, 2019).
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Algorithm 7: MAB initialization.

Input: set of valid arms validArms, horizon, number of bags k
Output: Initialized bags, valid arms.

1 Function InitMAB(validArms, k):

bags < k empty bags

minArm < min(validArms)

maxArm < max(validArms)

W N

5.3.1 Notation Related to the Partial Feedback MAB Algorithms

U(a, b) denotes a uniform probability distribution on the range [a,b]. We use the same
notation for the continuous uniform distribution on [0, 1] and the discrete uniform dis-
tribution on an integer range. Poisson(\) refers to the Poisson probability distribution
with expectation A.

In pseudocode, we use the function SampleFrom. If the argument is a probability
distribution, SampleFrom returns a sample generated from the probability distribution.
If the argument is a set, SampleFrom returns an element drawn uniformly at random
from the set.

For estimating rewards, each bag B keeps the sum of rewards obtained for an
arm m, in B.rewSum[m]. The number of rewards observed for the arm is stored in
B.numObs|m]. To provide estimates for other arms, all observed response times and
work for m in B are stored in the arrays B.rt[m]| and B.work[m] respectively. The
nearest lower and higher arm with observations are stored in B.nearLoMap[m| and
B.near HiMap|m], respectively.

5.3.2 Main Algorithms for M AB Initialization, Core Assignment
and Update

The overall MAB algorithm has the general structure as Algorithm 1. In Algorithm 7,
the initialization of the bags is performed. In each round, one of the bags is selected at
random, and the arm m; is chosen as the arm with the highest mean reward according
to this bag, as outlined in Algorithm 8. The estimate of mean rewards in a bag is
described in detail in Section 5.3.4. We schedule J; with m; core assignment, then
retrieve the response time r; and total work w;. In the update algorithm Algorithm 9
the reward p; is calculated. For each bag B, we generate nUpdatesBag as an outcome
of Poisson(1l), and update B with nUpdatesBag copies of m;, r;, w;, and p;. This
means that the expected number of observations in each bag after round 7 is 7, but
the bags will contain different parts of the history. A bag used to select m; at round
i is equally likely as any other bag to be updated with the resulting observation in
one or more copies. Since the bags contain randomly selected parts of the history,
the proportion of bags where an arm has the highest mean reward estimate is an
approximation of the probability that the arm has the highest mean reward given the
history. In this way, selecting a bag at random and taking the best arm given the bag’s
observations is an approximation of selecting an arm with the probability that it is
the best given the history.
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Algorithm 8: MAB core allocation at round i.

Input: set of k bags bags, min and max valid arm minArm, maxArm.
Output: Core allocation m;
1 Function CoreAllocatorMAB(bags, minArm, maxArm):

2 B < SampleFrom(bags)

3 if B.empty() then

4 L m; < SampleFrom(U(minArm, maxArm))

5 else

6 L m; < HighestEstMeanRew (B, minArm, mazArm)

Algorithm 9: MAB update at round 1.
Input: set of k bags bags, arm m;, observed response time, work r;, w;
Output: Updated bags.

1 Function UpdateMAB(bags, m;, r;, w;):

2 p; < Reward(r;, w;, m;)

3 for B € bags do

4 nUpdatesBag < SampleFrom(Poisson(1))

5 for k € 1 : nUpdatesBag do

6

7

8

9

B.rewSum[m;] + B.rewSum[m;] + p;
Add (B.rt[m;], ;)

Add (B.work[m;], w;)

B.numObs[m;] < B.numObs[m;] + 1

5.3.3 Response Time Bounds

In this section, we provide upper and lower response time bounds for a job scheduled
with different number of cores initially. These are used in the partial feedback MAB, to
obtain reward estimates for unexplored arms by using observations in explored arms,
as outlined in Section 5.3.4. This is done with a counterfactual reasoning: for a job
scheduled with m, assignment and observed response time and work, what would the
response time have been if it was instead scheduled with m;, assignment? In this way,
we can avoid unnecessary exploration of non-optimal arms.

First, we derive a bound for the response time difference due to a lower initial
number of cores having a smaller virtual deadline and M assignment at an earlier
point. Next, we derive a bound on the response time difference resulting from different
initial core allocations, based on Graham (1969). We also provide response time bounds
based on the job’s work, since that does not change with the choice of allocation.

For example, consider a parallel synchronous task with two segments, each segment
containing four threads. For simplicity, we assume that the computation time required
for each thread is deterministic. In Fig. 4 we illustrate the scheduling or this task with
initial core assignment of m = 2 to the left or m = 3 to the right. From Eq. (5) we
conclude that V(2) < V(3). As observed in Fig. 4, this can lead to a longer response
time with a higher number of cores assigned initially, because all M = 4 cores are
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Fig. 4 A higher initial m resulting in a longer response time.

assigned at a later point in time. The response time difference is bounded by the
difference of the virtual deadlines.

We will show in the following that Eqs. (7)—(9) hold, under the scheduling described
in Section 4.2.

mi <mz = ri(ma) <ri(mi)+V(ma) — V(m) (7
((ri(mq) <V (mq)) V (ri(msa) < V(my))) A (my <mz) = ri(me) <ri(my) (8
(ri(ma) >V (m1)) A(mg <ma) = ri(m1)>V(im) (9)

Eq. (7) implies that the response time with a higher initial assignment ms is at
most (V(ms) — V(my)) longer than the response time with a lower initial assignment
m1. In the example of Fig. 4, the response time with the scheduling on the right side
can be at most V(3) — V(2) longer than the response time with the scheduling on the
left side.

Eq. (8) implies that if the response time with a lower initial assignment m; is
shorter than the virtual deadline V(m;), then the response time with a higher initial
assignment mg is at most the same as with m;. Compared to Eq. (7), Eq. (8) provides
a tighter upper bound for r; with the counterfactual ms assignment, for the case when
ri(my1) < V(my). Eq. (8) also implies that if the response time with a higher initial
assignment mg is shorter than the virtual deadline of a lower assignment V' (my), then
the response time with a lower initial assignment m; is at least the same as with
msy. This gives a tighter lower bound than Eq. (7) for r; with the counterfactual m,
assignment, for the case when r;(mz) < V(mq).

Eq. (9) implies that if the response time with a higher initial assignment ms is
longer than the virtual deadline of a lower assignment V(m;), then the response
time with m; must be at least V(m;). Compared to Eq. (7), Eq. (9) provides a
tighter lower bound for r; with the counterfactual m; assignment, for the case when
V(mi) < ri(ma) < V(mae).

In the following, recall the definition of partial schedule S; and profile @; of a job
J; in Definition 1, and the ahead relation of profiles from Definition 2.

Assumption 1. The task model is as outlined in Section 4.
Assumption 2. Scheduling is with list scheduling, with the same list order for all
arms and not modified during execution.
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Assumption 3. 4 job J; is scheduled with two different schedules, S} and S}, resulting
in two different profiles Q) and QY. At time to, profile Q}(to) is ahead of Q}(to),
QY (to) < Qi(to). From time to to time t1 > to, Si assigns my cores to J;, and S
assigns ms cores, my < ms.

Assumption 4. A job J; is scheduled with two initial core assignments my and mo,
my < meg. At the corresponding V(my) and V(mas), respectively, the job is assigned
M cores.

Let us consider a single job J; under different schedules.

Assume that job J; starts execution at time 0 with m cores, resulting in a partial
schedule S;(t) and profile Q;(¢) at time ¢. Let (e1,e2,...,er) denote the execution
times of each thread of J; ordered in the list scheduling order of the threads.

Since thread processing times are unknown, the remaining processing times in the
profile are also unknown. However the following observations on the profile Q;(¢) hold:

® When a thread completes then its remaining processing time is 0: if thread a has
completed execution then g, (t) = 0;

e Since threads are processed using list scheduling the following holds: if ¢,(¢) <
eq then all threads that precede a in list scheduling have started execution and,
therefore, g,(t) < e, for all b,b < a;

e If at time ¢ partial schedule S;(t) executes a thread of segment H and thread
a belongs to a segment that precedes H then a has completed execution, and,
therefore, q,(t) = 0;

® If at time ¢t thread a has been processed for at least the same time interval in
schedule S;(t)" compared to the schedule S} (t) then ¢ (t) < ¢J/(t).

We now compare two different partial schedules S;(t) and S (¢) of J; with different
number of cores. Lemma 1 below will be applied in Proposition 1 to the part of the
task execution taking place before V' (2) for both core allocations illustrated in Fig. 4.

Let Q'(t) = (g1 (1), a5(t), - .-, gy (1)) and Q" (t) = (g7 (), 43 (t), .- ., ¢{;(¢)) denote the
profiles representing the remaining processing times when my and ms, m; < mg, cores
are used in in S’(t) and S”(¢) respectively.

Lemma 1. We use Assumptions 1-3. At any time to < t < t1, Qi(t) > Q/(t), i.e.
Q/(t) is ahead of Qj(t).

Proof. The proof is by induction. The statement is true at time ¢ = t.

Assume that the statement is true at time ¢ — 1 and let A be the set of threads
processed at ¢ in schedule S/(t) (that uses m; cores). If all threads in A are also
processed at ¢ in schedule S/ (t), then the claim is true at ¢ by the inductive hypothesis.

Now assume that there exists a thread a, a € A, that is not executed at ¢ in S/;
if thread a has already completed execution we have ¢//(t) = 0 and the claim holds at
time ¢.

If thread a has not completed execution by time ¢t —1 in S/, the segment executed
at ¢ in S/ must be the segment to which a belongs because of the assumption that
Q'(t—1) > Q"(t—1). Then, at least my threads should precede a in the list ordering
that has not been completed. By the inductive hypothesis, these threads are also
unfinished at time t — 1 in the schedule that uses my cores; since mo > m;y this
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contradicts the assumption that a is executed at ¢ when m; cores are available and
the claim is true at time ¢. This completes the proof of the inductive step. O

Proposition 1. We use Assumptions 1, 2 and 4. At any time 0 < ¢t < V(mq),
QL(t) > QI (t), i.e. QY (t) is ahead of Q}(t).

Proof. Let tg = 0 and t; = V(mq). Then Proposition 1 follows from Lemma 1 because
Q}(0) and Q7 (0) are identical. O

Egs. (8) and (9) follow directly from Proposition 1.

We now consider two partial schedules Si(¢') and S/ (¢") obtained using different
number of cores and execution for different time intervals.

We are interested in comparing the completion times of S(¢') and S (¢) when
M of cores are used to complete Si(t') (S/(t")) after time ¢’ (¢""). Proposition 2 will
be applied to the part of the task execution taking place after V(2) for m = 2 and
after V(3) for m = 3 in Fig. 4. S{(t') (S/(t")) uses M cores after time t' (¢). Let
r} (r]") be the completion time of J; under schedule Si(t') (S/(¢")). The following
Proposition shows that, if QY (¢"), the profile of S/(¢") at time t”, is ahead of Q}(t)
then r) —t" < rl —1t', i.e. the time required to complete S/ is not greater than the
time necessary to complete S; when the same number of cores M is used.
Proposition 2. We use Assumptions 1, 2 and 4. If t > V(mq), t"" > V(ms) and
Q! (t"), the profile of SI'(t"), is ahead of Q}(t'), the profile of Si(t'), then r{ —t" <

/

/
Ty — 1.

Proof. Assume that t’ < t”; (the proof for ¢ < ¢’ is analogous).

Tt is sufficient to prove that, at any time instant ¢, ¢t > t/, Qi(t) > QY (t+ (¢ —t')).
We prove it by induction. The statement is true at ¢ = ¢'. We now assume it is true
for t — 1, and we will prove that it holds at t.

Let A’, A” be the set of threads that are processed at t in schedule S/(t) and at
t+ (" —t')in S (t+ (t" —t')) respectively, and let I"” be the segment to which threads
in A” belong. If A’ = A”, then the proposition is true at time ¢ by the inductive
hypothesis.

Now, assume a thread a, a € A’ — A” exists. If a has already completed execution
in S/(t—1+ (" —1t')) at t — 1+ (¢ — ') then its remaining processing time is 0 and
the proposition holds at time ¢. We now observe that if ¢//(t —1+ (t" —t')) > 0, a must
belong to segment . In fact, if a belongs to a segment that precedes I” then [ has
completed execution in S (t—1+(t" —t')) and this implies that ¢//(t—1+(t"—¢")) = 0.
Since Q}(t—1) > QY (t— 1+ (t" —t')) a cannot belong to a segment that succeeds I".

If a has not completed execution by time ¢ — 1 + (¢ — ¢'), it follows that there
are M uncompleted threads in segment I at time ¢ + (¢ — ') that precede a in list
ordering. By the inductive hypothesis, these threads have not completed execution in
schedule S;(¢t — 1), thus contradicting the assumption that a is scheduled at ¢ in S/(¢).

This concludes the inductive step and the proof. O

Now, we are ready to prove Theorem 1, claiming that a potential increase in a
job’s response time when assigning a higher number of cores initially is bounded by
the difference of the virtual deadlines.
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Theorem 1. We use Assumptions 1, 2 and 4. Then r;(mz2) < ri(m1) + V(mg) —
V(ml)

Proof. Let S{(V(ma1)) (S/(V(ma))) be the partial schedule at time V' (m;) when my
(m2) cores are used and let Q;(V(m1)) (QY(V(m1))) be the profile at time V(mq).
Since mqy > my Proposition 1 implies that Q}(V(m1)) > Q" (Vi(ma)).

We now observe that as V(mg) > V(mq), Q7 (V(m1)) > QY (V(my)).

By transitivity, it follows that

Qi(V(m1)) = Q7 (V(ma)) = Q7 (V(ms2))

By Proposition 2 r;(ms) — V(ms) < r;(mq1) — V(mq) follows. O

If we have a response time of a job with one m allocation, Egs. (7)—(9) provide
bounds for one end or the range of possible response times with another allocation.
For the other end of the range, we will show that Eqgs. (10)—(13) hold.

mi

(ri(m2) < V(m1)) V (ri(m1) < V(mi)) = ri(ma) = ri(ma) - i1 (10)
mo mq

ri(my1) > V(my) = ri(ma) > V(my) - ﬁ (11)

ri(ml) > V(ml) . (m1 —+ mo — 1)/m1 = ’I"i(mg) > V(ml) (12)

ri(ms) > V(m) = rs(ms) > ri(ma) — V(ma) - 72— (13)

Eq. (10) provides a lower bound for r; with the counterfactual higher initial assignment
mg, when we observed r;(my) < V(mq). It also provides an upper bound for r; with
the counterfactual lower initial assignment m;, when we observed r;(ms) < V(my).

Eq. (11) provides a lower bound for r; with the counterfactual higher initial assign-
ment ms, when we observed 7;(m1) > V(my). Compared to Eq. (11), Eq. (12) provides
a tighter lower bound for r; with the counterfactual higher initial assignment mo,
when we observed r;(my) > V(my) - (my +mg — 1)/my.

Eq. (13) provides an upper bound for r; with the counterfactual lower initial
assignment my, when we observed r(mg) > V(my).

Eq. (10) is simply a reformulation of Theorem 1 from Graham (1969), which proves
a bound for the response time ratio for a DAG scheduled with list ordering and m;
or mgy cores. Observing r;(my) < V(my), Eq. (10) bounds the potential response
time reduction with a larger number of cores ms. From Eq. (8) we have r;(msg) <
r;(my1), and the conditions from Graham (1969) are fulfilled up until r;(msz). Observing
ri(msg) < V(m1), Eq. (10) bounds the potential response time increase with a lower
number of cores my. This bound still holds if M cores are assigned at V(my). Eq. (11)
follows because according to Theorem 1 from Graham (1969), the part of J; completed
at V(m1) with my cores assigned can be completed earliest at V(m1) - —"1L— with
me cores assigned.

We denote the response time of a job J with allocation m up until ¢ from its arrival,
thereafter M, with r(J,m,t).
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Theorem 2. We use Assumptions 1, 2 and 4. Then Eq. (12) holds.

Proof. The response time if scheduling J; with m; cores until completion, r(J;, my, 00),
is compared to r;(m; ). Because the profiles are identical at V' (m1), we use to = V(my)
in Lemma 1, that gives r(J;, my,00) > r;(my).

We compare r(J;,my,00) to r(J;,ma,00), and Theorem 1 from Graham (1969)
gives that r(J;, ma,00) - %”Irl > r(J;,my,00) > ri(my).

Inserting r;(my) > V(mq) - %”Irl gives r(J;,mg,00) > V(mq). At V(mq)
profiles are identical for scheduling with ms until completion or until V(ms), so
ri(mQ) > V(m1) O

Theorem 3. We use Assumptions 1, 2 and 4. Then Eq. (13) holds.

Proof. The job J; is split into two part-jobs denoted J, and Jp. J, is the threads and
parts of threads completed at V(m;) when the job is scheduled upon ms cores. J, is
the remaining parts of threads and threads at this time.

Scheduling J; with mgy cores up until V(ms), and then with M cores is equivalent
to scheduling J, with mso cores, and immediately schedule J, with ms cores up until
V(mg) — V(m1) and thereafter M. Therefore, we have:

ri(mz) = r(Ja, ma, V(mz)) 4+ r(Jy, ma, V(mz) — V(my))

Clearly r(Jq,ma, V(ms)) = V(my), so ri(ma) = V(my) + r(Jp, ma, V(msa) — V(mq)).
From Proposition 1, 7(Jy, m1,0) < r(Jp, ma, V(msa) — V(my)), giving:

ri(mz) = V(my) + r(Jy, my,0)
Since the split is not done with m, assignment, we have:
ri(my) <r(Je,m1, V(my)) + r(Jp, m1,0)

Combining these gives r;(mg) > V(mq) + ri(m1) — r(Ja, m1, V(my)).

We compare scheduling of J, with m; cores until completion and scheduling it with
my cores until V(m;) and thereafter M cores. The profiles are identical at V(my),
and from Lemma 1 with tg = V(my), 7(Jq, m1, V(m1)) < r(Jq, my, 00).

Theorem 1 from Graham (1969) gives 7(J,, m1,00) < V(ml)%’?l_l. Combining

these results we have r;(ms) > V(my) 4+ r;(my) — V(ml)%’t‘l*l. O

Furthermore, we use the total computation time w; of a given a job J; to derive the
following response time bounds that hold for all m. Eq. (14) states that the response
time cannot be longer than the total computation time (the response time when J; is
scheduled on a single core). Eq. (15) states that the response time cannot be shorter
than the time it takes to complete w; if all assigned cores are busy from start to
completion.

r; < w;, Vm (14)
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wi w; < V(m)-m
i 2 o w; —V (m)-m (15)
V(m) + 2= (m) m

5.3.4 Bag Mean Reward Estimates

The arm with the highest mean reward in a bag B is returned from the algorithm
outlined in Algorithm 10. First, all valid arms are traversed from lowest to highest, to
find the nearest lower arm with observations for every valid arm, if it exists. Second,
the arms are traversed in the reverse order to find the nearest higher arm, if it exists.
Then, a mean reward estimate is retrieved for each valid arm, and the arm with the
highest estimate is returned.

The algorithm for estimating the mean reward of an arm m in a bag B is outlined
in Algorithm 11. If there are observations from this arm in B, we simply take the mean
observed reward in the arm as our estimate. However, if there are no observations,
an observation from another arm is used to obtain the reward estimate. The closest
lower or higher arm with observations in B is used as the source arm, with probability
in relation to the number of observations each of these arms have. We know that in
Algorithm 11 the B contains at least one observation for one arm, due to the check
on Line 3 in Algorithm 8.

The reward estimate for a target arm from an observation in a source arm is
obtained according to Algorithm 12 if the source arm m is lower than the target arm’s.
If the source arm has a higher m than the target arm, the reward estimate is obtained
as described in Algorithm 13. In both these algorithms, an observation is randomly
sampled from the source arm, and the response time and total work are retrieved.
Now, we consider the possible response time range for this observation under the
counterfactual scenario that the job was scheduled with the target arm, although it
was in fact scheduled with the source arm. A response time range with the target arm
is retrieved using the bounds derived in Section 5.3.3. A factor is uniformly sampled
in [0,1], and used to determine where in the range the response time estimate for the
target arm goes. A reward is calculated with m, the estimated response time and the
sampled total work, and used as the mean reward estimate.

In Algorithm 12, the lower end of the range is obtained from Egs. (10)—(12)
and (15).The higher end of the range is obtained from Egs. (7), (8) and (14). Comments
are added in the pseudocode to relate lines to equations.

In Algorithm 13, the lower end of the target arm response time range is obtained
from Egs. (7)—(9) and (15). The higher end of the range is obtained from Egs. (10),
(13) and (14). Comments in the algorithm connect lines to equations.

5.3.5 Time and Space Complexity and Scalability

Time complexity of the core allocation: At each round, the MAB algorithm
randomly chooses one bag. The estimated mean reward for each valid m is computed
according to Algorithm 10 and Algorithm 11. If the arm has observations, the estimate
is simply a division, with constant time complexity. Otherwise, the response time and
work from another arm is used for the estimate (Algorithm 12 or Algorithm 13). These
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Algorithm 10: Find the arm with the highest estimated mean reward in bag
B.

Input: Bag B, min and max valid arm minArm, maxArm

Output: Valid arm with highest estimated mean reward for B
1 Function HighestEstMeanRew (B, minArm, maxArm):
2 nearLo <+ —1
3 B.near LoM ap <+ the empty map
4 for m in minArm : maxArm do
5 if B.numObs[m] > 0 then
6
7
8

L nearLo < m

if nearLo > 0 then
L B.nearLoMap[m] < nearLo

9 nearHi < —1
10 B.nearHiMap < the empty map
11 for m in maxArm : minArm do
12 if B.numObs[m] > 0 then
13 L nearHi < m
14 if nearHi > 0 then
15 L B.near HiMap[m] < nearHi
16 Phigh < EstMeanRew(B, minArm)
17 MpighRew < MinArm
18 for m in minArm + 1 : mazxArm do
19 p < EstMeanRew(B,m)
20 if p > ppign then
21 Phigh < P
22 MhighRew < M
23 return mp;gnRew

consist of conditions and arithmetic operations, resulting in constant time. Finding
the arm to sample from in Algorithm 11 has constant time complexity, leading to
linear complexity with respect to € for the core selection process Algorithm 10.

Time complexity of the update: At each round, a number of copies of the
reward along with the selected arm, observed work, and response time are added to
the bags as outlined in Algorithm 9. Each update involves additions for the reward
and number of observations, and array additions for the work and response time, all
of these requiring constant time. The average number of additions at one round equals
the number of bags, so the time complexity for the update is linear with respect to k.

MAB time complexity: The time complexity for the core allocation and update
in a round is O(Q + k).

MAB space complexity: The set of observations in a round (reward, response
time, and work) is stored in some bags. On average, each set of observations is stored
in k bags. For an horizon T, this leads to the space complexity O(k - T'). For long
horizons, it may be desirable to provide a maximum number of observations to keep
in each bag’s arms. In this case, with a maximum array size of L, the space required
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Algorithm 11: Estimate mean reward of an arm m in bag B.

Input: Bag B, arm m
Output: Estimated mean reward p(m) for B

1 Function EstMeanRew (B, m):
2 if B.numObs|m| > 0 then
t B.rewSum[m]

3 return B.numObs[m]

4 sumQObs + 0

5 if 3B.nearLo[m| then

6 loArm «+ B.nearLo|m]

7 sumObs  sumObs + B.numObs[loArm)|

8 if 3B.nearHi[m| then

9 hiArm < B.near Hi[m]
10 sumObs — sumObs + B.numObs[hiArm]
11 useLoArmProb < 0
12 if 3B.nearLo[m] then
13 L useLoArmProb %W
14 s < SampleFrom(U/(0,1))
15 if s <wuseLoArmProb then
16 L return SampleRewardFromLower(B,loArm,m)
17 else
18 L return SampleRewardFromHigher(B, hiArm,m)

is O(k - Q- L). A MAB algorithm not using the response time bounds will require
O(k - Q) space for the reward estimates.

Scalability: The approach considers one task, as is the case also in Papadopoulos
et al. (2022). The cores available to the task may be a subset of cores on the system, so
that M is lower than the total number of cores. Other tasks can be scheduled on the
remaining cores. Further, there are two ways to schedule other tasks on the M available
for 7. First, if the algorithm is restricted to a choice of cores m* < m < m?, then
M —m" cores are available to other tasks until V (m*'). Second, if 7 has a constrained
deadline, D < p, cores are available to other tasks after D. Both these approaches
may affect the reward function - the energy model described in Section 6 would need
to consider the other tasks.

The number of threads in the task does not directly influence the time required for
application of the partial feedback MAB algorithm. However, it is likely that a larger
number of cores will be used for a task with more threads, and that the number of
valid cores will also be greater. The number of valid cores affects the time and space
complexity of the approach.

5.4 Returning To The Motivating Example

Let us return to the motivating example in Section 5.2 and compare the BES algorithm
with our proposed MAB approach. For this purpose, we construct a reward function
p as in Eq. (16). For a selected arm m and the observed response time r, p = 1 if the
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Algorithm 12: Estimate reward in target arm from lower source arm sample.

Input: Bag B, source arm srcArm, target arm tgtArm
Output: Estimated reward p(tgt Arm) for B

1 Function SampleRewardFromLower (B, srcArm, tgtArm):
2 sampleldx < GetRandomIndex (B, srcArm)
3 rt < B.rt[srcArm][sampleldz]
4 w <+ B.awork[srcArm|[sampleldx]
/* Eq. (10) */
5 loRange <+ rt%
/* Eq. (12) */
if loRange > V (srcArm) then
L loRange <+ rt — V (srcArm) - %
8 else
/* Eq. (11) */
9 if rt > V(srcArm) then
10 L loRange + V (srcArm) - —srcAr:;:ﬁ?;;fﬁrm—l
/* Eq. (15) */
11 loRangeWork + tgt%
12 if loRangeWork > V (tgtArm) then
13 L loRangeWork < V (tgt Arm) + w—V(tgtAX/[m)igtArm
14 if loRange < loRangeWork then
15 L loRange < loRangeW ork
/* Eq. (7) */
16 hiRange + rt + V (tgtArm) — V(srcArm)
/* Eq. (8) */
17 if rt < V(srcArm) then
18 L hiRange < rt
/* Eq. (14) */
19 if hiRange > w then
20 L hiRange < w
21 u < SampleFrom(1/(0,1))
22 rtTgt < loRange + u - (hiRange — loRange)
23 return Reward(rtTgt, w,tgt Arm)

response time is between V(m — 1) (or 0 for m = 1) and V(m). Otherwise p = 0.

1 r<V(@1),m=1
p(rym)=¢1 V(im—1)<r<V(m),m>1 (16)

0 otherwise
We use the proposed MAB approach with this reward function, £ = 50 bags, and

the stochastic task described in Section 5.2. The resulting core allocations over 500
rounds compared to using the BES are shown in Fig. 5. In the first round, m = 3 is
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Algorithm 13: Estimate reward in target arm from higher source arm
sample.

Input: Bag B, source arm srcArm, target arm tgtArm
Output: Estimated reward p(tgtArm) for B
1 Function SampleRewardFromHigher (B, srcArm, tgtArm):

2 sampleldx < GetRandomIndex(B, srcArm)
3 rt < B.rt[srcArm]|[sampleldz]
4 w < B.work[srcArm|[sampleldx]
/* Eq. (7) */
5 loRange < rt + V (tgtArm) — V(srcArm)
/* Eq. (8) */
6 if rt < V(tgtArm) then
7 L loRange <+ rt
8 else
/* Eq. (9) */
9 if rt < V(srcArm) then
10 L loRange < V (tgt Arm)
/* Eq. (15) */
11 loRangeW ork «+ tgt%

12 if loRangeWork > V (tgtArm) then

15 L loRangeW ork « V (tgt Arm) + w—V(tgtAJC}n)igtArm

/* Eq. (10) */
14 hiRange < rt - tgtATTg';X«i;?rm_l

/* Eq. (13) */
15 if rt > V(tgtArm) then
16 L hiRange + V (tgtArm) - % + 7t

/* Eq. (14) */

17 if hiRange > w then
18 L hiRange < w

19 u < SampleFrom(l{(0,1))
20 rtTgt + loRange + u - (hiRange — loRange)
21 return Reward(rtT'gt, w,tgt Arm)

randomly selected. In the next 10 rounds, arms in the range 5 — 8 are chosen, with
m = 5 selected 5 times, m = 6 selected 3 times, and m = 7 and m = 8 both selected
once. After this point, m = 6 is chosen most of the time, and exploration is less frequent
the more rounds we add. The response times and rewards for all m are calculated for
each job, and the rewards are summed per m to find the highest mean reward. The
arm m = 6 corresponds to the highest mean reward of 0.554. In Fig. 6, the rewards
of the BES and MAB algorithms are shown. The reward in Eq. (16) is binary, so we
show the average reward over each 20-round interval. The mean reward of m = 6 (the
highest mean reward) is displayed in magenta. Another common way to evaluate MAB
algorithms is the regret, Eq. (1). The difference between consistently choosing the
arm with the highest expected reward and the algorithm choice is calculated over an
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Fig. 5 Core allocation for the BES and MAB in the motivating example.
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Fig. 6 Average rewards over each 20-round interval for the BES and MAB in the motivating example
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Fig. 7 Regrets over different horizons for the BES and MAB in the motivating example.

interval or horizon (T in Eq. (1)). The regret for different horizons is shown in Fig. 7.
Here, it is clear that the BES regret grows linearly with the horizon, while the MAB
regret grows much slower once the algorithm has learned which arm is likely the best.
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6 Energy Consumption for Reward Function

In this section, we show how to use the MAB approach to find initial core allocation
m that minimizes the energy consumption over time. This is done by using an energy
model that estimates energy consumption of jobs within the reward function. We
emphasize that the MAB approach can also be used with other optimization goals.

The energy model is based on an existing microarchitecture with sleep states and
the task model and scheduling from Section 4. In Section 6.1, we discuss how the sleep
state latency affects the schedulability condition.

Consider a job arriving when m cores are in the running (C0) or halt (C1) state,
and M — m cores are in a deep sleep state. The wake-up latency of the sleep state
is denoted as Agg. If the parallel synchronous task has not completed at V — Agg,
the M — m sleeping cores need to be woken up. This model is a simplification: in a
real system, the choice of m needs to be done Agg prior to the job arrival, to ensure
that cores are woken up if needed. This implies that the arm selection should be
performed prior to this point, when the observations from the latest task invocation
may be only partially complete (i.e., either the latest task completed and its execution
time is known, or it is still running and its execution time is known with a small
uncertainty bounded by Agg). This is ignored in what follows, as the effect on the
MARB performance is minor. Sleep states for a full socket can save power by disabling
the last-level cache. This could cause cold misses and longer response times. However,
we would have the same concern when assigning all cores to the task at the virtual
deadline. One of the assumptions stated in Papadopoulos et al. (2022) is that the task
is compute-bound. The total execution time of the threads in a compute-bound task
is related to the amount of performed computations, in contrast to a memory-bound
task, where the execution time is related to the amount of accessed memory. As stated
in Papadopoulos et al. (2022), this assumption is required for finding an optimal core
assignment, but not for ensuring that the deadline is met.

The energy consumption is modeled according to the Sandy Bridge-EP (Xeon E5-
2670) microarchitecture as described in Schone et al. (2015), chosen because the power
savings of the different states were documented here. Cores are distributed on n,
sockets with n.s = 8 cores per socket. We let M = ng-n.s, only this task is scheduled on
ng CPU sockets. Each core is in the running, halt, or sleeping state, corresponding to
the CCO, CC1 and CC6 states. If all cores sharing a socket are in the sleep state, they
enter the package sleep state, corresponding to PC6 in Schone et al. (2015). We assume
that the scheduler can control when a core goes to and leaves the sleeping state. Linux
allows for enabling or disabling individual sleep states either directly, or by specifying
the per-core latency tolerance®. System-wide latency tolerance is set to allow for the
use of deep sleep states. The scheduler restricts the use of deep sleep states for cores
allocated to the task by temporarily setting a lower per-core latency tolerance. We
do not require the cores to run at the highest possible frequency when executing the
work of 7, but at a fixed frequency taken into consideration when determining W, L
and schedulability.

Shttps://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle
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Pr | Py | Ps Pss | Ars | Pars

TWo| AW | 2W | 0.25W | 40us W
Table 2 Core state power consumption and
transition latency in the energy model.

The power consumption of a core in the running state is Pgr. In the halt state, the
power is Py. In the sleep state, the power is Pg, and in the package sleep state the
power is Pgg. Transitions between the halt and running state are instantaneous in the
model, although a delay of less than 2us was seen in Schone et al. (2015). Transitions
to and from the sleep state are associated with a latency of Agg, both for entering
and exiting the sleep state. The average power requirement during this latency period
is PaRrs, and no work is processed during this time. The power consumption values
for the different states are presented in Table 2, along with the transition latency. The
power consumption values are inferred from the power savings compared to the running
state presented in Schone et al. (2015), except for the average power consumption
during the transition to the sleep state, Pars, as it is not presented in Schone et al.
(2015). Therefore, we estimate it as follows. The residency times, that is the minimum
time spent in the sleep state leading to power savings, are documented in the Linux
drivers®. Based on these and the latencies from Schone et al. (2015), we estimate
Pars = TW, equal to the power consumption in the running state.

Now we can describe how we model the power consumption over time from the
arrival of a job J; to its deadline, given the response time r; and the total work w;.
Depending on the relation of D, r; and V' we outline 6 cases, illustrated in Fig. 8. The
left column, Eq. (17), is the case where the job is completed sufficiently early, so it is
advantageous to temporarily move the m cores into the sleep state and wake them up
again before the next job arrival. This is illustrated by all M cores colored blue with
Pgs consumption for a portion of the time on the left column of Fig. 8. The right
column, Eq. (18), is the case where it is more advantageous to keep the m cores in the
halt state.

The condition for the first column is D —r; > A RS%_}I;S

For each column in Fig. 8 (for Egs. (17) and (18)), we have three cases, represented
by the rows in Fig. 8 and the a), b), and c) cases of Egs. (17) and (18). The first
row, a), is the case when the job is completed in time, so we don’t need to wake up
the M —m cores, r; <V — Aprg. Waking them up is illustrated as the red rectangles
with M — m cores having Parg consumption, in the second and third rows of Fig. 8.
The second row, b), is when we wake them up, but it turns out they were not needed.
V — Ags < r; < V. The third row, ¢), is when all M cores are used for completion
of the job, r; > V. This is illustrated as all M colored orange, with Pr or Py, for an
interval in the third row of Fig. 8.

The full transition time Agg is modeled at the time of going from the sleep state
to the running state, although a smaller part of this is at the time of entering the sleep
state.

The energy consumption F;(r;,w;,m) from the arrival until the deadline of J; is
calculated from the selected m, the response time r;, and the total work w;. The

*https://github.com/torvalds/linux/blob/master/drivers/idle/intel_idle.c
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Fig. 8 Energy model illustration, ns = 2, ncs =8, M = 16, m = 6.

direct energy consumption from the computation is w; - Pr appearing in all cases
of Egs. (17) and (18). The rest of the energy consumption comes from halt and sleep
states and transitions between states. A core is in the halt state when it is assigned
to the task by the scheduler, but all threads in the current segment are executing in
other cores. The total time of cores in the halt state from an orange area in Fig. 8 is
the size of the area minus w;, found in all cases of Eqgs. (17) and (18). A core is also
in the halt state when there is no benefit in moving to the sleep state after the job
has completed, shown as yellow areas in the right column of Fig. 8, and appearing in
Eq. (18). The energy consumption while transitioning to and from the sleep state is
determined by the red areas in Fig. 8, and found in Egs. (17), (18b) and (18c). The
energy consumption in the sleep state is shown as blue areas (full sleeping sockets) or
green areas in Fig. 8, and found in all cases of Eqs. (17) and (18). Let cy(a/—pm) denote
the number of cores in M — m that make up full sockets, c;(ar—m) = Ncs - L]Vfl :S’"J
Analogously csp = nes - an:J denotes the number of cores in m that make up full
sockets. Let ¢, (v—m) = M —m — cy(pr—m) and ¢y, = M — Cgpy, denote the remaining
cores in M — m and m that share a socket with non-sleeping cores.

The energy consumption is derived by multiplying the colored areas in Fig. 8 by the
corresponding power consumption. For the orange areas, the total work is multiplied
by Pg, and the orange area minus the total work is multiplied by Pg. The resulting
equations are presented in Eqgs. (17) and (18):

Ei=wi-PR+(ri~m—wi)~PH+ARS-m~PARs+ (17&)
(ri + Ars) - (cs(m—m) - Pss + ¢r(v—m) - Ps) + (D —ri — Ars) - M - Psg
E,=w; - Pr+ (ri - m—w;) - Pg+(V —7r;)(csm + Pss + ¢rm - Ps)+ (17b)
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V- (cs(m—m) - Pss + cr(vf—m) - Ps) + Ars - M - PAps + (D —V — Agg) - M - Pss
E,=w;-Pr+(ri m+(r;—V) - (M—m)—w,;) - P+ (17¢)
V- (cs(M—m) - Pss + ¢r(vi—m) - Ps) + Ars - M - Paps + (D —7; — Ags) - M - Pss

E,=w; -Pp+(ri-m—w;)-Pyg+(D—r;)-m-Pg+ (18a)
D - (cs(pi—m) - Pss + cr(pi—m) - Ps)
E,=w;-Pp+ (ri-m—w;)-Pyg+(D—r;)-m-Pg+ (18b)
+(D = Ars)(cs(vi—m) - Pss + ¢r(vi—m) - Ps) + Ars - (M —m) - Pars
E,=w;-Pp+(ri- m+(r;—V) - (M —m)—w,) - Pg+ (18¢)

(V= Ars + D —1;) - (cs(v—m) - Pss + ¢r(pi—m) - Ps) + Ags - (M —m) - Pagrs

We note that the highest possible energy consumption is ET = W - Pg+ M - ARg -
Pars + (D — Agrs) - M — W) - Py and the lowest is E¥ = M - D - Pss. We use
this to construct a reward function where rewards are in the interval [0, 1], according
to Eq. (19). This function provides the reward 1 for E*, with decreasing reward as
the energy consumption increases. E' leads to reward 0. Compared to the binary
reward function from the motivating example (Section 5.4), Eq. (19) allows for more
fine-grained optimization.

ET — By(ri, w;,m)
p(ri7wi7m) = ET _ E‘L

(19)

6.1 Schedulability Condition Considering Sleep State Latency

The M — m cores that we need to use at the virtual deadline V' may be in the sleep
state, and we need to wake them up at V' — Arg to ensure they are available on time.
This means that with this energy model, a non-negative V(m) according to Eq. (5) is
not sufficient for schedulability, but valid m must fulfill the condition in Eq. (20).

M-(D—L)— (W -L)

Vim) = M—m

> Ags,m <M (20)

7 Evaluation

The main goal of the evaluation is to assess the ability of the proposed MAB algorithm
to find the highest-reward arm quickly, resulting in a low regret. We focus on the
algorithm’s ability to find the best arm, given a reward function depending on the
selected arm, and the job’s work and response time. The secondary goal is to evaluate
how the approach scales to a larger number of cores and threads. By using simulation,
a number of different task structures can be evaluated. In the simulation approach,
we know that tasks comply with the stochastic parallel synchronous task model. The
worst-case span and work are known. It also allows for comparison with the best arm,
as the exact knowledge about the task structure allows us to simulate the reward for
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Algorithm 14: NB_MAB core allocation at round i.

Input: set of k bags bags, min and max valid arm minArm, maxArm.
Output: Core allocation m;

1 Function CoreAllocatorNB(bags, minArm, maxrArm):

2 B < SampleFrom(bags)

3 if B.empty() then

4 m; < SampleFrom(U(minArm, maxArm))

5 else

6 sample ArmsSet <+ (m) s.t. B.numObs|m] = 0

7 if I3m ¢ sampleArmsSet then

8 MmazEst < arg maX,,¢sample ArmsSet EstMeanRew(B, m)
9 sampleArmsSet < sampleArmsSet U (myazEst)

10 m; < SampleFrom(sampleArmsSet)

all possible arm choices. The main limitations of the simulation approach are that
we don’t show the method’s applicability to a real-world use case, and that we don’t
verify that the energy model is an accurate representation of the energy consumption.
The evaluation® is performed with task structures selected to highlight factors that
affect the algorithm’s performance. .

7.1 Evaluated Algorithms
A comparison is performed between:

¢ B_ MAB: The MAB algorithm outlined in Section 5.3.

® BES: The BES described in Section 5.2.2, adapted to use only valid m with the
schedulability condition in Section 6.1.

¢ GREEDY: A greedy method selecting the lowest possible number of full sockets
that fulfils the schedulability condition in Section 6.1.

e NB_MAB: A bandit feedback MAB algorithm that does not use the response time
bounds to share information between arms.

We have not included a comparison with any DAG scheduling approach that requires
knowledge about the DAG structure.

Both MABs use k = 50, and reward functions based on the energy model described
in Section 6, and specified in Eq. (19). In NB_MAB, arms without observations in
a bag are selected with equal probability to the arm with the highest mean reward.
That is, Algorithm 14 is used in place of Algorithm 8. The best arm with observations
in the bag is added to a set with all arms without observations. An arm is selected
at random from this set. Because Algorithm 11 is never called for an arm and bag
without observations, the response time bounds are not used.

5Code used in the evaluation is available at
https://github.com/annafriebe/ResourceManagementStochasticPSTasksBandits.
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The BES in the evaluation is adapted to use only valid m according to the schedu-
lability condition Eq. (20), and aim for the lowest m that results in response times
below V(m) — Ags instead of below V(m).

The GREEDY method selects the lowest possible number of full sockets that
fulfills the schedulability condition Eq. (20).

7.2 Task Structures and Energy Model

The task structures selected for the main evaluation are listed in Table 3. Task struc-
tures 1, 3, and 5 have the same number of segments but varying degrees of parallelism
within the segments. Task structures 2, 4, and 6 have the same degree of parallelism but
with varying numbers of segments. Task structure 7 has four low parallelism segments
and two high parallelism segments as the second and fifth segments. Task structure 8
is similar to task structure 7 but with both high parallelism segments at the end.

TS  Description s U TS  Description s U

1 Lo-u 5 (5,5, 5, 5, 5) 2 Lo-s 1 (5, 10, 5, 10)

3 Mid-u 5 (10, 10, 10, 10, 10) 4 Mid-s 6 (5, 10, 5, 10, 5, 10)

5 Hi-u 5 (15, 15, 15, 15, 15) 6 Hi-s 8 (5,10, 5, 10, 5, 10, 5, 10)
7 Hi-u-in 6 (6, 16, 6, 6, 16, 6) 8 Hi-u-end 6 (6, 6, 6, 6, 16, 16)

Table 3 The task structures in the main evaluation.

The task structures in Table 3 are evaluated with the energy model from Section 6
and Eq. (19), with ng = 2 and n.s = 8, resulting in M = 16.

To evaluate the scalability of the approach, three task structures with different
thread parallelism are evaluated with three energy models with different numbers of
sockets. The task structures are listed in Table 4, and they are evaluated with three
versions of the energy model from Section 6 and Eq. (19). All energy models have
nes = 8. The first is the same as in the main evaluation, n, = 2 and M = 16, the
second has ng =4 and M = 32, and the third has n, = 8 and M = 64.

TS Description s u

LS-1 LS-10 5 (10, 10, 10, 10, 10)
LS-2 LS-20 5 (20, 20, 20, 20, 20)
LS-3 LS-40 5 (40, 40, 40, 40, 40)

Table 4 The task structures used in the
scalability evaluation.

The execution time e;;, of thread k in segment j of J; is generated from a beta
distribution, Beta(a = 2,5 = 5), scaled and translated according to a setting (5, and
a translation Sa. e;;i is sampled from i, ~ Baji - (14 By - Beta(a = 2,5 =5)). The
setting (3, is varied in the experiments to explore the effect of thread execution times
varying to different degrees between different jobs in the same task realization. Ba
is drawn from a uniform distribution with the same width (50us) for each thread,
U(Bay, Bay + 50). The starting point of the uniform distribution Ba; is calculated
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according to Eq. (21) so that the expected value of thread execution times is the same
(150us) for all B, settings. This is to separate the effects of higher work and span from
the effects of higher variance in the thread execution times within a realized sequence.
The experiments generate tasks with 5, € (0.1,0.2,0.4,0.8,1.6).
150 50

| )

Bay = {

7.3 Performing the Evaluation

A task is generated for each task structure and (3, setting. For each task, the worst
case work W and span L are calculated as W = 377 u; - (Bay +50) - (1 + 3,) and
L=s-(Ba;+50)-(1+ 3,). For each task structure, the maximum worst-case work
and span over all 3, settings are used to calculate virtual deadlines for all tasks.

The performance of the algorithms depends on the set deadline. A deadline set
tightly compared to the schedulability condition leads to short virtual deadlines. This
causes the BES to allocate more cores and affects the reward function for the MAB.
Deadlines are generated as D = (% +L+A Rs) -ds from the schedulability condi-
tion given in Section 6.1. The factor ds is randomly drawn from a uniform distribution
U(1.25,2.5). Every task is run with 20 deadline configurations, and the runs contain
2000 rounds.

In the evaluation, all methods are evaluated in parallel for the same task realization.
At the same time, the reward and energy consumption according to the energy model
are calculated for each possible assignment of m of all arriving jobs. The arm resulting
in the highest reward for a job is referred to as the clairvoyant best arm (OPT_C). At
the end of each 2000-job realization, the arm with the highest reward sum is retrieved
as the best average arm (OPT). The arm with the highest reward is the arm with the
lowest energy consumption, as ET and E+ in Eq. (19) are fixed for a single realization.

7.4 Results and Discussion

In this section, we present and discuss the results from the main evaluation in
Section 7.4.1, followed by the results from the scalability evaluation in Section 7.4.2.

7.4.1 Main Evaluation Results and Discussion

In Fig. 9, the regrets over different horizon lengths are displayed for the B_MAB,
BES, GREEDY, and NB_MAB methods. Different deadline settings ds are shown
in different colors. InFig. 10, the same data is shown but with coloring of the different
configurations of 3, that control the computation time variation between different
threads.

It is clear that the regret of the BES and GREEDY methods grow linearly
with the horizon, although the slope of the BES regret may change at points when
the interval is updated. The regrets for the MAB algorithms grow much slower once
the likely best arms are learned. There is no case where B_MAB has higher regret
than 10 or NB_MAB has higher regret than 15. It is also clear that in some cases,
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Fig. 9 Regrets for the methods over different horizon lengths for the task structures, with deadline
configurations visualized.
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Fig. 10 Regrets for the methods over different horizon lengths for the task structures, with compu-
tation time variation configuration visualized.

BES and GREEDY have very low regret. These cases correlate with particular task
structures and deadline factors, and for the BES case also low thread computation
time variation. BES has lower regret for tighter deadlines, while the opposite is true
for the MAB methods. GREEDY outperforms the other methods for task structure
5, with a large degree of parallelism. The MABs perform some initial exploration that
comes with a cost to the regret, which is more pronounced for NB_MAB. Both MABs
reliably find arms providing low regret in the long run for all tested task structures
and deadline configurations.
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Fig. 11 Energy consumption at 2000 rounds over all realizations for the different methods compared
to the best average arm (OPT) for each realization.

The average regrets at step 2000 over all tasks and configurations are 18.9 for
GREEDY, 98.9 for BES, 4.5 for NB_.MAB and 2.1 for B_.MAB. Using the
response time bounds resulted in regrets less than half of those of NB_MAB. Due
to the retrieved response time bounds, arms that cannot be optimal are not explored,
reducing the regret.

To interpret the performance in terms of energy consumption, the total energy
consumption at 2000 rounds with the energy model in Section 6 is calculated for each
realization and each of the methods and for the arm that is best on average for the
realization. The results are visualized in Fig. 11, where each black dot represents a
realization in a bin, where bins have width 1J. The red dots are the average energy
consumption over the realizations for each method, that are also shown in Table 5,
along with the ratios with the consumption using the best-average arm. B_.MAB is
within 0.5% of the optimal consumption, NB_MAB is within 1%, GREEDY within
4%, and BES within 25%. Statistical tests are performed with the sign test (binomial
test). The number of realizations where the energy consumption is higher for one
method than another is compared to the binomial distribution of 800 (the number of
realizations) tests with success probability 0.5, the expected distribution if one method
would be equally good as the other. The results show that B_.MAB has lower energy
consumption than NB_MAB, NB_MAB lower than GREEDY, and GREEDY
lower than BES, all with p-value < 1071%. The 95%-confidence interval of the binomial
test success probability is [0.994, 1] when comparing B_-MAB to NB_MAB, showing
that for a specific realization, B_LM AB almost always outperforms NB_MAB slightly
due to reduced initial exploration. The binomial test success probability is [0.633, 1]
when comparing B_.MAB to GREEDY and [0.612,1] when comparing NB_MAB
to GREEDY. There are realizations where GREEDY is optimal or close to optimal
and outperform the MAB methods. Comparing to BES, the binomial test success
probability is [0.968, 1] for BLMAB and [0.965, 1] for NB_MAB.
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| OPT | B.MAB | NB.MAB | GREEDY | BES
167.5 ‘ 172.2 ‘ 203.8

Ratio with OPT 1 1.004

Mean energy consumption [J] | 166.0 166.7
1.009 1.037 1.228

Table 5 Average energy consumption at 2000 rounds over all realizations for the different
methods compared to the best average arm (OPT) for each realization.
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Fig. 12 Examples of arm selections for a few realizations along with the clairvoyant best arm for
each job (OPT_C). The best average arm is dashed.

In Fig. 12, arm selections from one realization of each task structure are shown,
along with the clairvoyant best choice OPT_C for each job. The average best arm
OPT in the realization is shown as dashed magenta color. The GREEDY method
finds the best allocation in the realizations shown for task structures 5 and 8. The BES
method oscillates between different allocations. In the realizations for task structures
1, 3, and 6 these are near the optimal average choice. B_.MAB has a lower amount of
exploration than NB_MAB. For example the highest allocations in the realization of
task structure 1 and the lowest allocations in the realizations of all task structures are
almost never explored for B_.MAB. Exploration for B_MAB occurs at later times,
when NB_MAB no longer explores.

It is worth noting that there is a tradeoff between the simplicity of the GREEDY
method and the performance of the MAB algorithms. Although there is a linear regret
observed with the GREEDY method, the core assignment is done once, and then
there is no energy required to compute it in further rounds. The other algorithms per-
form some computations at each round to determine the core assignment, resulting in
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Fig. 14 Time for the partial MAB selection and update process with increasing number of threads.

energy consumption that is linear with the number of rounds. The expected reduction
in energy consumption for executing the tasks needs to outweigh the energy consumed
for the core assignment algorithms. In the evaluated task structures, the energy sav-
ings per round compared to GREEDY are in the order of mJ. With energy per
instruction in the order of pJ to nJ (Vasilakis, 2015), the energy savings are likely to
outweigh the energy costs for the core assignment algorithms.

7.4.2 Scalability evaluation results and discussion

In the scalability evaluation, the times for the partial feedback MAB selection and
update procedures are logged. The algorithms are implemented in Python without
optimization, so the exact times should not be emphasized, but trends in relation to
the number of threads and cores are shown. In Fig. 13, the logged times are shown
with increasing number of sockets and cores. Task structures are separated into facets
labeled with the thread parallelism. As shown in the analysis in Section 5.3.5, the
time for the selection increases linearly with the number of valid cores. In Fig. 14,
the logged times are shown with increasing number of threads. Energy models with
different numbers of sockets are separated into facets. The task parallelism does not
affect the time required for partial feedback MAB selection or update.

The regrets over different horizon lengths with the evaluated methods are shown
for the task structures in the scalability evaluation. In Fig. 15, regrets are shown for
the 2-socket energy model, in Fig. 16 for the 4-socket energy model, and in Fig. 17
for the 8-socket energy model. From these figures, it is clear that the lower regrets
with the partial feedback MAB approach remain, also for energy models with larger
numbers of cores.
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Regret

LS-10

Ls-20

LS-40

NEREREREENN

avn g

1.501.752.002.25

s38

AQ3349

prrrr R

avin anN

LR R B B AN A |

1000

1000 0
Horizon

Fig. 16 Regrets for the methods over different horizon lengths for the
structures with the 4-socket energy model.
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Fig. 17 Regrets for the methods over different horizon lengths for the
structures with the 8-socket energy model.
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Fig. 18 Energy consumption at 2000 rounds for each realization of the scalability evaluation task
structures with the different methods and the 2-socket energy model.
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Fig. 19 Energy consumption at 2000 rounds for each realization of the scalability evaluation task
structures with the different methods and the 4-socket energy model.

The total energy consumption at 2000 rounds with the energy model in Section 6
is calculated for each realization and shown to interpret the results in terms of energy
consumption. In Fig. 18 the results are shown for the 2-socket energy model, in Fig. 19
for the 4-socket energy model, and in Fig. 20 for the 8-socket energy model. Compar-
ing B_LMAB to GREEDY for the evaluated task structures, we observe a greater
reduction in energy consumption with an increasing number of cores. This is also the
case when comparing B_.MAB to NB_MAB. The results indicate that the increased
computation required for a larger number of cores is likely to pay off by reducing the
energy consumption.
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Fig. 20 Energy consumption at 2000 rounds for each realization of the scalability evaluation task
structures with the different methods and the 8-socket energy model.

8 Conclusion And Future Work

This paper has integrated hard real-time constraints with an MAB resource manage-
ment approach optimizing for the average case. Relying on previous work Papadopou-
los et al. (2022) to ensure that deadlines are met, an MAB approach is evaluated
for assigning a suitable number of cores to a Stochastic Parallel Synchronous Task.
A partial feedback MAB approach is proposed, utilizing response time bounds to
obtain information for unexplored arms. The MAB approach has two main advan-
tages compared to the methods evaluated in Papadopoulos et al. (2022). First, the
MAB algorithm considers all observations, compared to the most recent observation
only. Second, the reward function is decoupled from the arm selection, resulting in a
more versatile method. In the evaluation, the MAB approach is compared to the BES
from Papadopoulos et al. (2022), to a greedy method, and to a bandit feedback MAB
not using response time bounds, for eight selected task structures over different set-
tings for thread execution time variance and deadlines. Both M ABs reliably find arm
choices with low regrets in the long term for all task structures and settings, while the
BES and greedy methods have low regret for certain combinations of task structure
and deadline configuration. Using the response time bounds in a partial feedback MAB
decreases the amount of initial exploration needed compared to the bandit feedback
MAB.

The findings above show that an MAB approach is useful for resource management
with optimization for the average behavior, can be integrated in a hard real-time
context, and that the use of response time bounds for partial feedback improves the
performance.

In future work, MAB integration in other real-time use cases will be explored.
It would be interesting to investigate the case where the reward dependence on the
response, work, and arm choice is unknown, for example, a reward taken from a
power measurement. For systems with changing reward distributions, such as the tasks
switching between different DAG structures in Papadopoulos et al. (2022), CMAB or
restless bandit approaches could be explored.
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