
Real-Time Virtual Machines∗

Tommaso Cucinotta, Gaetano Anastasi

Scuola Superiore Sant’Anna

Pisa, Italy

{cucinotta,anastasi}@sssup.it

Luca Abeni

DISI - University of Trento

Trento, Italy

luca.abeni@unitn.it

Abstract

This paper tackles the problem of guaranteeing appro-

priate timeliness guarantees to real-time applications run-

ning in a virtualised Operating System. Preliminary exper-

imental results are presented, highlighting how the appro-

priate use of well-established real-time scheduling strate-

gies may be effective in facing with this challenging issue.

1 Introduction and related work

Information and Communications Technologies (ICTs)

are moving towards a new generation of business models

for service provisioning, where connectivity will represent,

for users, only the basic point of access to an infinity of

on-line services. The widespread availability of high-speed

network connections puts the foundations of new paradigms

of ICT usage and software development, where more and

more of the resources needed by users are provisioned re-

motely. In the (near) future Internet, distributed comput-

ing is likely to become much more widespread than today,

not only for activities related to batch processing and stor-

age, but also for interactive and (soft) real-time applications.

Application scenarios that can benefit of remote real-time

processing include, just to cite a few examples, virtual real-

ity (that need to carry on heavyweight physics simulations

or complex rendering activities), or interactive distributed

editing of high definition video as needed in the film post-

production industry.

A promising approach for building complex distributed

applications is constituted by Service Oriented Architec-

tures (SOAs), which are software infrastructures that allow

for the composition of loosely coupled, distributed services

in a location-independent manner.

Distributed applications, and particularly SOAs, are tak-

ing advantage of the recent rediscover of resource virtuali-

sation [6], whose early works date back to 1967, with some

IBM projects. Virtualisation1 basically refers to the tech-

∗This work has been supported by the IRMOS FP7/2008/ICT/214777

European Project.
1http://en.wikipedia.org/wiki/Virtualization

nology that allows a system to host one or more emulated

other systems, called Virtual Machines (VMs), which may

also be seamlessly migrated across physical hosts. Thanks

to the encapsulated nature of VMs and their simple interface

to the outside world, it is easy to use, in the context of a dis-

tributed network, techniques that are commonly applied to

tasks, like migration, load balancing and redundancy. Soft-

ware components may transparently benefit of these capa-

bilities without any need of explicit code level support.

Virtualisation technologies are also useful in some net-

working testbeds, such as PlanetLab2, a distributed testbed

using VMs to increase scalability, resource confinement

and protection. In all the cited application fields it is of

paramount importance to control the impact of the virtu-

alised environment on the applications’ temporal behaviour:

in the SOA environment, it affects the predictability of

hosted services and thus the capability of providing service

level guarantees; in testbeds it affects reliability of perfor-

mance measurements, as the ratio between the speed of the

native hardware and the speed of the emulated environment

is usually not constant nor predictable.

Although the problem of controlling the temporal be-

haviour of VMs has been previously addressed in various

works, none of them achieved the level of determinism

needed to run real-time tasks inside a VM.

For example, Xen [2] uses a reservation-like scheduler

(based on EDF) to enforce temporal isolation between the

different VMs. However, the proposed S-EDF scheduler

lacks a solid theoretical foundation, and some problems

have been experienced with it, in particular when Xen is

used for partitioning the available resources between differ-

ent activities in GRID computing [7].

Similar problems have been investigated in PlanetLab,

where the concurrent execution of multiple VMs, with-

out an appropriate scheduling strategy, led to a non-

deterministic view of time, thus to unreliable measure-

ments, from inside a VM (called slice in this case). The

PlanetLab architecture [3] tries to address this problem by

combining a proportional share scheduler with a mecha-

2More information at the URL: http://www.planet-lab.org

http://en.wikipedia.org/wiki/Virtualization
http://www.planet-lab.org

nism that limits the maximum amount of time executed by

each VM. However, additional experiments [4] show that

the scheduler used in PlanetLab is not able to fully isolate

the temporal behaviours of the various slices, and the au-

thors propose to implement a hard reservation mechanism.

This paper presents preliminary results in this challeng-

ing research area, showing that a well-known reservation-

based scheduler is capable of guaranteeing appropriate re-

sponse times to individual activities running inside a VM.

2 Virtualisation and Real-Time

The term virtualisation refers (in this paper) to the ca-

pability, for a computing machine (referred to as the host),

to emulate the behaviour of one or multiple computing ma-

chines (the guests), in such a way that any software capable

of running on the raw hardware may also seamlessly run

within the emulated machine.

In a virtualised environment, multiple activities may be

hosted on the same physical hardware in different ways.

They may run in different VMs that are multiplexed on the

same bare hardware (inter-VM scheduling), or they may co-

exist within the same VM where a OS-level scheduler mul-

tiplexes them on the same virtualised hardware (intra-VM

scheduling), and other VMs may possibly be running con-

currently on the same physical node. In all cases, appro-

priate inter-VM and intra-VM scheduling mechanisms are

needed to guarantee that the individual activities exhibit the

expected Quality of Service (QoS) levels, whenever timeli-

ness requirements are in place.

For developers and designers of time-sensitive software

components, virtualisation adds a set of new challenging

issues that need to be addressed by research.

First, new methodologies are needed to correctly account

for the impact of the virtualisation overhead on the execu-

tion time of real-time tasks, especially in presence of vir-

tualised peripherals, that turn I/O intensive activities into

CPU intensive ones (e.g., networking). The capability to

migrate VMs on different types of hardware adds complex-

ity to the problem. For example, in the context of SOAs,

it is necessary to foresee how a software component would

perform if deployed on various physical nodes, in order to

choose the optimum deployment that provides the perfor-

mance promised in the Service Level Agreement (SLA).

Common approaches based on direct measurement of the

execution time distribution on the target hardware, is not

sufficient. A hardware-independent characterisation of the

execution times, plus a hardware-specific model of the vari-

ability of execution times, may be needed.

Second, when the OS is being hosted along with other

OSes concurrently running, the time measured in a VM may

be discontinuous, or have a strange granularity. Timer de-

vices are emulated by the virtualisation engine, and their

resolution may be dramatically affected by the inter-VM

scheduler and timer virtualisation mechanism (affecting

the precision and granularity of timers and clocks). The

progress rate of a virtualised OS is also not as uniform as

expected, due to inter-VM scheduling, and this may have

high impact on the response time of virtualised software

components.

Finally, multi-processor and multi-core platforms add

a new dimension to the problem of real-time virtualised

computing. Software components written for high perfor-

mance parallel machines may not run as expected when ex-

ecuting within a virtualised environment, especially if mul-

tiple multi-core VMs are running concurrently. For ex-

ample, spin-lock synchronisation primitives (that usually

rely on the assumption that the lock owner running on a

different processor will release the lock in a short time)

may cause problems if the virtualisation layer schedules

away the VM owning the lock. Suitable mechanisms are

needed to mitigate such issues. For example, the VMWare

ESX Server3embeds mechanisms to address such issues,

but more investigations are needed to understand what so-

lutions are most suitable for meeting real-time application

requirements.

3 The proposed approach

As outlined in the previous sections, the problem of pro-

viding temporal isolation among multiple VMs running in

the same host is still open. Simple solutions based on pro-

portional share schedulers may fail to guarantee a sufficient

degree of isolation, and do not generally provide enough

control over the granularity of the CPU allocation to the

various VMs.

The approach envisaged in this paper is to use well-

established real-time scheduling techniques, and in partic-

ular resource reservations, for scheduling the VMs. Such

techniques allow for attaching a software component (a

VM, in this case) to a reservation RSV = (Q, P), mean-

ing that the component is reserved the processor for Q time

units every P . A reservation-based scheduler is said to im-

plement a hard reservation behaviour if it does not allow the

served component to execute for more than Q time units ev-

ery P . The scheduler used in this paper is a variation of the

Constant Bandwidth Server (CBS) [1] implementing hard

reservations. For the sake of simplicity, this work focuses

on uniprocessor systems4.

The proposed approach suits the needs of concurrently

running VMs, because it allows for both controlling the

“progress rate” that each VM experiences over time, and

for providing deadline guarantees for the tasks running in-

side the VM. In fact, once a VM runs within a reservation

3 See “Co-scheduling SMP VMs in VMware ESX Server, version 3” at

http://communities.vmware.com/docs/DOC-4960
4 Investigation on the opportunity to realize a partitioned SMP sched-

uler for VMs by using multiple CBS schedulers is work in progress.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 30000 40000 50000 60000 70000 80000 90000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 1. CDF of the response times on the
host machine.

(Q, P), the ratio Q/P allows for controlling the speed of

the virtual CPU, and the reservation period P allows for

controlling the granularity of the allocation so that the tem-

poral constraints can be respected.

Although this paper focuses on statically assigned reser-

vations, feedback scheduling techniques can be used to

adapt the time reserved to each VM to compensate for

time-varying workloads experienced by software compo-

nents running in the VMs.

4 Experimental results

The effectiveness of resource reservations in increasing

predictability of virtualised software components has been

tested by running KVM5 in AQuoSA [5], a framework for

the Linux kernel that embeds a hard CBS scheduling policy.

4.1 Micro Benchmarks

A first set of experiments has been run to verify that

scheduling a VM through a hard CBS allows for the

achievement of predictable scheduling inside the host sys-

tem. This goal has been achieved by running a task set

S = {τ1, τ2} composed of 2 periodic real-time tasks that

have been tuned so as to exhibit, at each activation, an ex-

ecution time as constant as possible: τ1 = (30ms, 150ms)
(using the notation (ExecutionT ime, Period)) and τ2 =
(50ms, 200ms). Then, the experimental Cumulative Dis-

tribution Functions (CDF) Ci(x) = P{ρi < x} of the re-

sponse times ρi have been measured.

Figure 1 plots the response times CDFs for the two tasks

when they are scheduled on the host machine using the

POSIX SCHED FIFO scheduling policy and priorities as-

signed according to Rate Monotonic: τ1’s worst case re-

sponse time is a little bit larger than 30ms (the difference

with respect to the ideal time of 30ms is due to a small

variation in the execution times), whereas τ2’s worst case

response time is a little bit larger than 80ms, as expected

from response time analysis.

5 More information at the URL: http://kvm.qumranet.com

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 30000 40000 50000 60000 70000 80000 90000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 2. CDF of the response times on the
guest (KVM), when the host is unloaded.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1

Figure 3. CDF of the response times on the
guest (KVM), when the host is loaded.

The response times of the two tasks are only marginally

affected when the task set S is executed inside a KVM

instance and the host system is not overloaded (see Fig-

ure 2), but when the load on the host system increases the

response times are not predictable. For example, Figure 3

plots the response times CDF for task τ1 when the two tasks

are executed in a KVM instance and the host is overloaded

by two periodic real time tasks τ3 = (50ms, 120ms) and

τ4 = (20ms, 80ms). Note that τ1 and τ2 are still executed

at real-time priorities inside the guest, but KVM is executed

as a regular Linux task inside the host, while τ3 and τ4 are

scheduled with real-time priorities in the host. As a result,

the worst case response time for τ1 is about 180ms and τ1

misses many deadlines; moreover, there is no upper bound

for the response times of task τ2.

This problem can be addressed by reserving a sufficient

amount of time to the KVM instance: Figure 4 shows the

results obtained when running S inside a KVM instance at-

tached to a (28ms, 50ms) hard reservation. Thanks to the

temporal isolation provided by the CBS, increasing the load

in the host does not affect the response times: when the host

is loaded by the same periodic real-time tasks used in Fig-

ure 3, the CDF of the response times is still identical to

Figure 4.

Finally, note that a simple hierarchical scheduling anal-

http://kvm.qumranet.com

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 4. CDF of the response times on the
guest served by a (28ms, 50ms) reservation.

ysis shows that a (27ms, 50ms) reservation should be the-

oretically able to properly serve the real-time tasks hosted

in the virtual machine. However, due to some overhead in-

troduced by the emulator, a (28ms, 50ms) reservation is

needed in practice.

4.2 Macro Benchmarks

After verifying the schedule predictability through a syn-

thetic workload, the proposed approach has been evaluated

by using a real application. In particular, the Apache 2 web

server has been selected as a representative of a typical SOA

workload. In this experiment, a set of 10 clients requested a

dynamic web page, generated by using a CPU-bound CGI

process which rotates an image of 2000x2000 pixels by an

angle α = 20°. Each one of the 10 clients generates 10 re-

quests, for a total of 100 requests per simulation, and each

simulation has been repeated 20 times.

The first column pair of table 1 reports statistics on the

response times of the service concerning two cases: (a) the

service is provided by the web server running on the host

machine; (b) the service is provided by the web server run-

ning inside a KVM instance. The table reports the min-

imum, maximum, and average response time per request,

plus the standard deviation of such a value. The 90% con-

fidence interval is 0.2% of the average value for the web

server running on the host, and 1.3% of the average value

for the web server running on the guest. It can be seen that

the overhead due to virtualisation is 7% for average times

and 6.4% for maximum times. As this overhead does not

affect service response times in a tangible way, it makes

sense to exploit all the benefits of virtualisation for this type

of tasks.

However, the situation changes drastically when the host

system is overloaded. In fact, the third column of table 1

shows how response times obtained in the guest (the 90%
confidence interval is 0.4% of the value) increase when the

host is put through a synthetic load that tends to saturate

CPU bandwidth. Note that, with respect to the case of

the KVM instance running in an unloaded host, service re-

Host Guest Guest Guest-rsv

(unloaded) (unloaded) (loaded) (loaded)

min 0.22 0.26 1.153 0.790

avg 1.14 1.22 11.367 2.044

max 7.91 8.42 89.880 10.832

std.dev 1.26 1.07 15.449 1.275

Table 1. Service response times (in seconds)

sponse times increase by a factor of 10. Moreover, the stan-

dard deviation value is quite large, to indicate that fluctua-

tions from average values often occur. This issue is partic-

ularly critical in SOA environments, where it is often nec-

essary to provide guarantees in service provisioning: such

fluctuations do not allow for precise estimations of service

response times, what precludes the possibility for a provider

to share the same physical node for multiple VMs that need

to exhibit precise QoS levels.

As already shown by the micro benchmarks, these prob-

lems can be addressed by reserving a proper amount of

execution time to the KVM instance. The fourth column

of table 1 reports service response times obtained by run-

ning the web server inside a KVM instance attached to a

(3ms, 5ms) hard CBS. In this case, the 90% confidence in-

terval is 0.9% of the value. The results show how the re-

sponse times scale to values much closer to that of the first

column pair of table 1, even when the host is overloaded.

This fact, due to the temporal isolation property provided

by the CBS, is particularly remarkable because it could al-

low service providers to offer services with QoS guarantees.

In the nearest future work, there is a plan to consider

a more complex set-up, with multiple VMs, each hosting

multiple time-sensitive services, and with an overall net-

work traffic generated by the VMs that needs to be appro-

priately accounted for.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In Proc. IEEE Real-Time Sys-

tems Symposium, Madrid, Spain, 1998.
[2] P. Barham, et al. R. Neugebar, I. Pratt, and A. Warfield. Xen

and the art of virtualization. In SOSP, 2003.
[3] A. Bavier, others L. Peterson, T. Roscoe, T. Spalink, and

M. Wawrzoniak. Operating system support for planetary-scale

services. In NSDI Design and Implementation (NSDI), March

2004.
[4] A. Bavier, others In VINI veritas: Realistic and controlled

network experimentation. In SIGCOMM, 2006.
[5] T. Cucinotta et al. AQuoSA – adaptive quality of service ar-

chitecture. Software – Practice and Experience, 2008.
[6] P. A. Dinda et al. Resource virtualization renaissance. Com-

puter, 38(5):28–31, May 2005.
[7] T. Freeman, I. T. Foster, et al. Division of labor: Tools for

growing and scaling grids. In ICSOC, pages 40–51, 2006.

	1 Introduction and related work
	2 Virtualisation and Real-Time
	3 The proposed approach
	4 Experimental results
	4.1 Micro Benchmarks
	4.2 Macro Benchmarks

