
CloudNetSim - Simulation of Real-Time Cloud Computing Applications

Tommaso Cucinotta, Aram Santogidis

Bell Laboratories, Alcatel-Lucent, Dublin

In this paper, we describe CloudNetSim, a project aim-

ing to realise a simulation platform supporting our ongoing

and planned research activities in the area of resource man-

agement and scheduling for distributed QoS-sensitive and

soft real-time applications. It is based on OMNeT++, in-

tegrating in the platform a set of modules for the simula-

tion of CPU scheduling, including hierarchical scheduling

at both levels of the hypervisor and guest Operating System,

as needed when simulating cloud infrastructures. Thanks

to the modularity of OMNeT++, CloudNetSim may eas-

ily leverage many existing simulation models already avail-

able for networking, including standard network compo-

nents and protocols, such as TCP/IP. After a brief overview

of related simulation tools found in the literature, and the

discussion of their limitations, we provide a detailed de-

scription of the internals of our simulator. Then, we show

results gathered from a few representative scenarios demon-

strating how its behaviour matches with the one of simple

real applications.

1 Introduction

Cloud Computing is gaining momentum as one of the

key innovations disrupting the world of computing, consti-

tuting a page turn from the old ages of Personal Computing

to a new era of massively distributed cloud applications and

services accessed from a plethora of devices with increased

mobility support. Cloud Computing is also generating a

continuous pressure towards the research community, for

introducing innovations and novel mechanisms promising

to support better the nowadays and future computing sce-

narios. As connectivity evolves towards higher bandwidth

and lower latency, more and more soft real-time (RT) and

interactive on-line applications are becoming increasingly

used and popular [17]. These include many on-line inter-

active cloud applications, such as office suites (e.g., Google

Docs) or e-Learning platforms [7], virtual desktop, and on-

line massively parallel games.

When working at the lowest layers of the cloud infras-

tructure, and specifically at the hypervisor, Operating Sys-

tem (OS), and CPU scheduling levels, it is often difficult

if not impossible to gain access to realistic test-beds over

which to carry out research activities in the field. Often,

it is very handy and convenient to have available tools that

may assist researchers in simulating cloud deployments and

end-to-end distributed applications, with a sufficient level of

abstraction depending on the research purposes and scope.

However, simulation of distributed soft real-time appli-

cations over general-purpose computing platforms and net-

works is troublesome due to the lack of proper tools. Vari-

ous simulators exist in the areas of networked systems and

real-time systems, and recently a few simulation tools have

become available in the area of Cloud Computing. In gen-

eral, the existing tools were lacking the fundamental abil-

ity to integrate the various cross-domain simulation aspects

that affect the end-to-end performance (see Section 2).

In this paper, we introduce CloudNetSim, a project aim-

ing to provide a simulation platform to assist the exper-

imentation with resource management and scheduling in

cloud computing. At a glance, its main features comprise:

packet-level simulation of end-to-end network communica-

tions between clients and servers distributed throughout a

cloud infrastructure; simulation of computing resources in-

cluding but not limited to CPU scheduling both at the hyper-

visor and at the guest OS levels; support for virtual machine

(VM) deployment strategies; modularity and extensibility,

with the possibility to introduce additional scheduling poli-

cies, VM deployment strategies and application models as

needed. We aim to keep an abstraction level that allows for

simulation of thousands of nodes and applications, gather-

ing the necessary QoS metrics, within an affordable time.

Even though CloudNetSim targets simulation of cloud

applications, the presented work may also be used for sim-

ulating networked soft real-time and embedded systems.

2 Related Work

In this section, the simulation tools mostly related to the

presented work are briefly introduced. They fall roughly

in the categories of real-time systems simulators, network

protocols simulators and cloud computing simulators.

In the area of RT and embedded systems, many simu-

lation tools deal with simulation of CPU scheduling, in-

cluding RTSim [18], MAST [10], MAST2 [9], SimTrOS [19]



and others [1], just to mention a few. However, either they

are exclusively focused on hard RT and embedded systems

and they do not support general-purpose schedulers and re-

lated technologies, or they neglect entirely the networking

aspects. Some tools integrate simulation of CPU schedul-

ing and technologies/protocols for CAN busses or Wire-

less Sensor Networks [6], however these tools are hardly

reusable in the context of general purpose technologies.

In the area of networking and distributed systems, many

tools provide an accurate simulation of networking tech-

nologies and packet-level simulation of networking proto-

cols [21, 11, 20]. For example, NS21 is probably one of

the most widely known open-source simulators used in re-

search about network protocols, whose development started

in 1996. It supports packet-level simulation of many Inter-

net protocols and technologies, including TCP/IP and wire-

less networks. However, the simulator derives from a quite

old code base, where functionality has been evolving over

years, split around C/C++ and Object Tcl code. This re-

sulted in the lack of modularity and clean interfaces for ex-

tending its functionality. It is not a case that, from 2004, a

new NS32 project was born with the intention of a com-

plete redesign of the internals of the simulator, and ulti-

mately dropping compatibility with NS2. Unfortunately,

this resulted in a set of features not (yet) as complete as

in NS2. A completely alternative project is the open-source

OMNeT++3, free for academic use, and commercially li-

censed as OMNEST4. OMNeT++/OMNEST is a simulation

platform with a completely modular design where generic

modules can be connected in arbitrarily complex topolo-

gies and communicate with each other, all integrated with

an Eclipse-based development environment including a vi-

sual topology editor. One of the main uses of OMNeT++ is

in connection with the INET Framework5, an open-source

communication networks simulation package including a

set of modules for simulation of Internet technologies and

protocols, including TCP/IP, IPv6, Ethernet, PPP, 802.11,

MPLS, and others.

However, all of these network simulators simply do not

include any CPU scheduling infrastructure. In a cloud en-

vironment, where multiple VMs may be multiplexed on the

same physical host, processor and core, it is important to

simulate CPU scheduling, to get a comprehensive picture

of the end-to-end response-time and performance. Espe-

cially when dealing with low-latency cloud applications de-

ployed in future scenarios with fine-grained cloud data cen-

tres, tools are needed to support a comprehensive and inte-

grated simulation of multiple resources, such as CPU, net-

1More information at: http://www.isi.edu/nsnam/ns/.
2More information is available at: http://www.nsnam.org/.
3More information is available at: http://omnetpp.org/.
4More information is available at: http://www.omnest.com.
5More information at: http://inet.omnetpp.org/index.php.

work and storage, that allow for modelling distributed ap-

plications, particularly those with QoS requirements, devel-

oped in the context of general-purpose technologies.

Recently, a few simulation tools have become avail-

able [2, 14, 4, 12] targeting the specific simulation needs

arising in the area of Cloud Computing. CloudSim [2] is

a Java-based simulation platform modelling various aspects

of cloud computing infrastructures such as high-level sim-

ulation of data centres with virtualized hosts, energy con-

sumption models and federated clouds. Versions prior to 2.0

have a very simple networking model at the flow level, with

statically configured latency and bandwidth values among

locations, while from version 2.0 a better network simula-

tion functionality was added.

CloudSim is derived from GridSim [3], thus its architec-

ture is still strongly tied to the modelling and simulation of

GRID scenarios, with a focus on load balancing within the

data centre, rather than gathering performance metrics over

end-to-end deployments of general-purpose cloud comput-

ing applications, as in our proposed CloudNetSim.

iCanCloud [14, 4] is a simulator platform for cloud com-

puting based on OMNeT++, with the capability to configure

various resource management policies for the hypervisor,

virtual machine models aiming to simulate the behaviour of

real world CPUs, data centre topologies that mimic the ar-

chitecture of state of the art cloud computing infrastructures

(e.g. Amazon EC26) and data storage emulation. Still, this

tool is lacking the essential capability to simulate the variety

of heterogeneous networks involved in the end-to-end cloud

service supply chain. However, being based on OMNeT++

as our framework, iCanCloud has interesting modules that

we might re-use, such as the storage models inherited from

SIMCAN [16, 15], a simulator of local and remote storage

systems, including NFS and parallel file systems.

GreenCloud [12] is an NS2-based C++ simulator aiming

to model the energy consumption of data center IT equip-

ment (e.g. computers, network switches and communica-

tion links), to help the design of energy efficient architec-

tures. However, GreenCloud needs merely a rough estimate

of the expected computing workload on the nodes, for its

power consumption estimates.

Overall, some of the mentioned simulators targeting

cloud computing focus specifically on aspects of the in-

frastructure related to computing within the data centre, ne-

glecting the important aspects of communications over the

Internet or the access network. Others try to enrich an accu-

rate simulation of the network by adding rough computing

models which cannot capture a similar level of detail, when

addressing QoS and responsiveness. However, considera-

tion of the whole end-to-end chain is very important for the

overall QoS delivered to remote customers/users.

As a consequence, we could not find in existing tools

6More information is available at: aws.amazon.com/ec2/.



OMNEST

INET 

Client 
Cloud

Data center 

Figure 1. High-level software architecture

features properly matching with the particular needs of re-

search on the topics of resource management and schedul-

ing for interactive, real-time and low-latency cloud and dis-

tributed applications.

3 Proposed Approach

One of the primary goals of the overall ongoing Cloud-

NetSim project is to integrate within a single simulation

platform the major factors contributing to end-to-end la-

tency of low-latency cloud applications, namely network-

ing, computing and disk access, including overheads due to

virtualization (both machine and network virtualization).

We opted to implement the computing part of the simu-

lation on top of OMNEST (see Figure 1), due to its relative

maturity, modular design and extensibility. We realized a

set of OMNEST modules in order to model computing and

CPU scheduling within physical hosts and VMs, as happen-

ing within a cloud computing data centre; these inter-mix

with the already available network communication mod-

ules, resulting in a more comprehensive emulation of the

major contributions to end-to-end response-times. At this

preliminary stage, disk access has been greatly simplified,

but we plan to consider it more thoughtfully later.

Simulating large infrastructures with such a fine-grained

level of detail for computing and networking resources may

present performance and scalability challenges. However, it

has been shown [13] that parallelisation techniques can be

effectively applied to OMNeT++ simulations in a seamless

fashion, without requiring changes in the code. These will

certainly be useful for our planned future investigations.

Overall Design. The core component for modelling com-

puting elements is CloudNode. It is built on top of the Node-

Base compound module of INET which models a network

host, and provides interface and network layer functionality.

CloudNode additionally incorporates a number of modules

that emulate the computing part of the module (see Fig-

ure 2), i.e., the CPU Scheduler, modules for applications

and for data storage emulation. Moreover, the CloudNode

Figure 2. OMNEST representation of a simple

topology.

modules can be interconnected with each other in a hierar-

chical fashion, effectively modelling VMs running within a

physical host. Figure 2 illustrates the topology of a client

connected through a router to a host running 3 VMs.

In OMNEST terminology, CloudNode is a compound

module that extends NodeBase (see Figure 3 for an

overview of its inner design). It is an aggregation of sim-

ple modules that allow for modelling various aspects of the

software stack typical of virtualized infrastructures. As de-

picted in Figure 3, CloudNode includes simulation of net-

work capabilities as inherited from NodeBase, data stor-

age and CPU scheduling. The networking capabilities have

been customised by adding SchedPPP, a module extending

the INET PPP interface which is controllable from the CPU

scheduler. This is necessary in order to “suspend” the net-

work connectivity of a VM, when it is preempted from ex-

ecution by the CPU scheduler. A similar SchedEth module

has been realised for Ethernet.

The Scheduler within a CloudNode is able to schedule an

arbitrary number of Schedulable entities over a configurable

number of available CPUs. Also, these can be connected to

a data storage model in order to model suspension on I/O.

Interestingly, a CloudNode is schedulable on its own. This

allows VMs to be modelled as CloudNode instances con-

nected to the Scheduler of the outer CloudNode represent-

ing the host they are deployed within.

Scheduler Design. Schedulable entities represent soft-

ware running in the system, including both applications or

components at the hypervisor level, and those within guest

VMs. The Schedulable interface permits the Scheduler to



Network

Layer

Transport

Layer

Wlan PPP Eth SchedPPP

NodeBase

radioIn ethgpppg spppg

Schedulable Entity

CPU Core 

Sc
he
du
le
r

Storage

Medium

Data I
/O 

sc
he
du
le
Ou
t

CloudNode

N
e
t
w
o
r
k
 
I
/
O
 

Figure 3. CloudNode design.

Figure 4. Schedulable entities FSM.

manage their execution state. All these entities extend the

BaseSchedulable class that implements the well-known Fi-

nite State Machine (FSM) in Figure 4. The logical com-

munications between the Scheduler and its managed en-

tities, necessary to realise the mentioned FSM behaviour,

is conducted through the scheduleIn/scheduleOut ports of

the Schedulable interface, by exchanging custom defined

OMNEST messages. Specifically, the Scheduler notifies

ready-to-run entities whenever a CPU is assigned or re-

voked to them, according to the scheduling algorithm in use

within the Scheduler. The entities, on their own, notify the

Scheduler whenever they need to suspend for data I/O, net-

working, or timer operations.

The CPU is modelled in the scheduler with a few config-

urable parameters controlling its power-saving capabilities,

including the frequency at which it is running, and whether

it is in a deep-idle state. Therefore, messages from the

Scheduler to the entities also include the frequency change

information, needed to allow applications to modulate their

execution time behaviours accordingly. This allows for sim-

ulation of multi-processor and multi-core hosts with CPU

power-saving capabilities. However, an exact strategy to

switch among the available CPU frequencies (i.e., mimick-

ing the behaviour of the cpufreq governors in Linux) is

still work in progress. Also, we only modelled a single idle-

state of the CPU with a configurable wake-up latency, as at

the moment there is no interest in modelling the multitude

of idle states in modern CPUs.

We realised 3 scheduling algorithms: Fixed Prior-

ity (FP), Round-Robin, Linux Completely Fair Scheduler

(CFS). These can be hierarchically composed with each

other. This is shown through the example in Figure 5.(a),

where a typical Linux set-up is shown with 6 applica-

tions running under various scheduling policies, as detailed

in Figure 5.(b). With the proposed architecture, multi-

ple real-time tasks at the same priority under the POSIX

SCHED RR policy are represented as connected to an in-

stance of the Round-Robin Scheduler, which in turn is con-

nected to the FP Scheduler at the needed priority level.

Also, SCHED OTHER tasks are connected to a CFS Sched-

uler connected to the FP Scheduler at priority 0.

Configuration of the Scheduler(s) topology is simpli-

fied by specifying for each application the desired schedul-

ing parameters (including the nice level, in case of

SCHED OTHER entities), and the CloudNode instantiates

the required Scheduler modules and interconnections as

needed. Note that the overall Scheduler design allows for

an easy introduction of new algorithms.

Application Model. Applications are modelled in Cloud-

NetSim as Schedulable entities, executing sequentially a list

of instructions. Following the steps of RTSim [18], the

purpose of the simulation is not functional simulation, but

rather performance evaluation. Therefore, allowed instruc-

tions are for now: computing for a fixed amount of time

(scaled linearly with the CPU frequency); wait for the trans-

fer of a fixed number of blocks to/from the storage medium;

change dynamically the scheduling parameters of the appli-

cation. Also, a few instructions are being realised allowing

for modelling (the impact on performance of) communica-

tions among various parts of a distributed cloud application.

A convenience scripting syntax has been defined, so that

simple application models may easily be provided through

text-based input files to the simulation.

4 Calibration and Simulation Experiments

In this section we report results from a few experiments

we ran in order to show how the parameters of the simulated

models may be calibrated so that its outcome matches with

the behaviour measured from a real simple scenario.



CPU

FIFO Scheduler

App 0

App 1 App 2
App 3

App 4
App 5

rt-prio=3

rt-prio=10

CFS Scheduler

Round-Robin

 Scheduler

rt-prio=0

nice=0 rt-prio=0

nice=0

rt-prio=0

nice=0

SCHED_FIFO[0]

SCHED_FIFO[10]

rt-prio=10

(a)
App Priority Policy

0 3 SCHED FIFO

1 10 SCHED RR

2 10 SCHED RR

3 0 SCHED OTHER

4 0 SCHED OTHER

5 0 SCHED OTHER

(b)

Figure 5. Hierarchical scheduling of pro-
cesses based on policy

Real world Simulation

Host (idle) 0.384 +/- 0.040 ms 0.388 ms

Host (hog) 0.322 +/- 0.034 ms 0.333 ms

VM1 (idle) 0.482 +/- 0.034 ms 0.462 ms

VM1 (hog) 0.377 ms +/- 0.036 ms 0.399 ms

Table 1. Ping times statistics for the real-world

(left) and simulated (right) scenarios.

Ping Test. We consider a simple topology with a physical

host running two VMs connected through a network router

to a client that pings the physical host and the VMs (see

Figure 2). After calibration of the simulation model pa-

rameters, its results are compared with numbers obtained

by the corresponding real-world example. In the latter,

we used an Intel i5-2520M @ 2.50GHz laptop client ping-

ing a Linux machine equipped with an Intel Xeon E5-

2687W CPU whose frequency was fixed at 3.1 GHz, and in

which all cores except one have been put offline, and hyper-

threading has been disabled, to create the simple scenario

reproduced in simulation. Also, a guest KVM Linux OS

has been run on the server machine. The host and the VM

have been continuously pinged for one minute every half

second, when the host was idle, and when it was loaded.

The obtained ping times average and standard deviation are

shown in Table 1, in both real-world and simulated cases.

The overall ping latency towards the host is the result

of summing up delay contributions due to network delay to

reach the server, CPU wake-up from idle,networking stack

execution for replying to the ping, then back to the client.

When pinging the VM, further contributions are due to the

context switch to schedule the VM and guest OS network-

ing stack execution for replying to the ping.

CFS Test. We ran another ping experiment using the CFS

as the hypervisor scheduler. We verified that, despite a 2nd

VM hogging the CPU, the pinged idle VM was responding

immediately to the ping, preempting the other one. This be-

haviour is in sync with the CFS algorithm since the pinged

VM, waking up from a blocked state, runs immediately,

since its virtual run-time is much lower than the one of the

CPU-bound VM continuously executing.

Then, to verify the behaviour of the CFS in presence of

different nice values, we considered another simple scenario

with three applications running CPU bound tasks on a host

and we compared the obtained simulated versus real figures.
We use a load.sh shell script realising a simple for

loop for the number of iterations provided as argument.
When running on an Intel i5-2520M CPU at fixed 2.50 GHz
frequency, load.sh takes 1 second to complete with an
argument of 177000. In single-core mode, we run three
tasks with the default nice value (0), however the third one
is reniced to (10) at half execution. This is obtained as:

time ./load.sh 177000 &

time ./load.sh 177000 &

time ./load.sh 88500

time nice ./load.sh 88500

The obtained results show that the first two processes
completed in less than 2.6 seconds, whilst the reniced pro-
cess completed after 1.56 + 1.49 = 3.05 seconds:

0.47u 0.02s 1.56r ./load.sh 88500

0.93u 0.03s 2.55r ./load.sh 177000

0.95u 0.03s 2.58r ./load.sh 177000

0.51u 0.00s 1.49r nice ./load.sh 88500

The same experiment has been arranged in the simulated
model, using the renice instruction explained in the previ-
ous section for changing dynamically the third process nice
level at half of its execution. This resulted in the following
output, gathered from the OMNeT++ logs:

T=3.004008 TestCloudNode.srv.tcpApp[0]

T=2.560008 TestCloudNode.srv.tcpApp[1]

T=2.554008 TestCloudNode.srv.tcpApp[2]

These results validate the correct behaviour of the CFS

Scheduler model, in the mentioned scenario.

5 Conclusions and Future Work

In this paper we presented CloudNetSim, a simulation

platform suitable for capturing the behaviour of end-to-end



time-sensitive and particularly low-latency distributed ap-

plications. The platform exploits the native OMNEST and

INET capabilities for network simulation, integrating simu-

lation of computing and storage access in virtualized envi-

ronments. We plan to use this platform for our ongoing and

planned research in the area of resource management and

scheduling for soft real-time cloud computing applications.

The presented simulation models are very important to sim-

ulate the impact on performance of sharing physical com-

puting resources within the infrastructure, as often done by

cloud providers trying to achieve high consolidation levels.

However, CloudNetSim may also be useful for simulation

of soft real-time distributed embedded systems.

The presented work may be extended along various lines

of action: the CPU scheduling models may be refined by

adding further scheduling policies, e.g., one mimicking the

Xen scheduler [5, 8]; the storage access model is very sim-

ple, but re-usable modules from other projects such as SIM-

CAN might be integrated; the performance achievable with

the integrated multi-resource simulation on large scale sys-

tems has to be checked, an area where parallelisation tech-

niques such as [13] might be useful.

References

[1] M. Ashjaei, M. Behnam, and T. Nolte. The design and im-

plementation of a simulator for switched ethernet networks.

In Proc. of the 3rd International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems,

pages 57–62, Pisa, Italy, July 2012.

[2] R. Calheiros et al. Cloudsim: a toolkit for modeling and

simulation of cloud computing environments and evaluation

of resource provisioning algorithms. Software: Practice and

Experience, 41(1):23–50, 2011.

[3] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya.

Cloudsim: A novel framework for modeling and simula-

tion of cloud computing infrastructures and services. CoRR,

abs/0903.2525, 2009.

[4] G. Castane, A. Núñez, and J. Carretero. iCanCloud: A brief

architecture overview. In Parallel and Distributed Process-

ing with Applications (ISPA), 2012 IEEE 10th International

Symposium on, pages 853–854, 2012.

[5] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the

three cpu schedulers in xen. SIGMETRICS Perform. Eval.

Rev., 35(2):42–51, Sept. 2007.

[6] M. Chitnis et al. Impact Of The Operating System on the

QoS offered by an IEEE 802.15.4-compliant Sensor Net-

work. In Proceedings of the 7th IFAC International Con-

ference on Fieldbuses and networks in industrial and em-

bedded systems, Tolouse, France, Nov 2007.

[7] T. Cucinotta et al. Virtualised e-learning with real-time guar-

antees on the irmos platform. In Proceedings of the IEEE In-

ternational Conference on Service-Oriented Computing and

Applications (SOCA 2010), pages 1–8, Perth, Australia, De-

cember 2010.

[8] G. Dunlap. Scheduler development update. Xen Summit

Asia 2009, Shanghai, 11 2009.

[9] M. G. Harbour et al. Modeling real-time networks with

mast2. In Proc. of the 2nd International Workshop on Anal-

ysis Tools and Methodologies for Embedded and Real-time

Systems, pages 51–56, Porto, Portugal, July 2011.

[10] M. G. Harbour, J. J. G. Garcı́a, J. C. P. Gutiérrez, and

J. M. D. Moyano. Mast: Modeling and analysis suite for

real time applications. In Proceedings of the 13th Euromicro

Conference on Real-Time Systems, ECRTS ’01, pages 125–,

Washington, DC, USA, 2001. IEEE Computer Society.

[11] T. Issariyakul and E. Hossain. Introduction to Network Sim-

ulator NS2. Springer, 2009.

[12] D. Kliazovich, P. Bouvry, and S. U. Khan. A packet-level

simulator of energy- aware cloud computing data centers.

Journal of Supercomputing, 62(3):1263–1283, 2012.

[13] D. Lugones, K. Katrinis, M. Collier, and G. Theodoropou-

los. Parallel simulation models for the evaluation of fu-

ture large-scale datacenter networks. In Proc. of the 2012

IEEE/ACM 16th International Symposium on Distributed

Simulation and Real Time Applications, DS-RT ’12, pages

85–92, Washington, DC, USA, 2012.

[14] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G.

Castañé, J. Carretero, and I. M. Llorente. iCanCloud: A

flexible and scalable cloud infrastructure simulator. J. Grid

Comput., 10(1):185–209, Mar. 2012.

[15] A. Nunez et al. Design of a flexible and scalable hyper-

visor module for simulating cloud computing environments.

In Performance Evaluation of Computer Telecommunication

Systems, International Symp. on, pages 265–270, 2011.

[16] A. Nunez, J. Fernandez, J. Garcia, and J. Carretero. New

techniques for simulating high performance MPI applica-

tions on large storage networks. In Cluster Computing, 2008

IEEE International Conference on, pages 444–452, 2008.

[17] E. Oliveros, A. Mazzetti, W. Huther, and A. Menychtas. Ir-

mos deliverable d2.1.3 - final version of requirements analy-

sis report. Technical report, IRMOS Consortium, Nov 2010.

[18] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini,

and P. Ancilotti. An object-oriented tool for simulating

distributed real-time control systems. Softw. Pract. Exper.,

32(9):907–932, July 2002.

[19] J. Schneider, M. Bohn, and C. Eltges. SimTrOS: A Het-

erogenous Abstraction Level Simulator for Multicore Syn-

chronization in Real-Time Systems. In Proc. of the 2nd In-

ternational Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems, pages 39–44, Porto,

Portugal, July 2011.

[20] A. Varga and R. Hornig. An overview of the omnet++ sim-

ulation environment. In Proceedings of the 1st international

conference on Simulation tools and techniques for communi-

cations, networks and systems & workshops, Simutools ’08,

pages 60:1–60:10, Brussels, Belgium, 2008. ICST.

[21] E. Weingartner, H. vom Lehn, and K. Wehrle. A perfor-

mance comparison of recent network simulators. In Pro-

ceedings of the IEEE International Conference on Commu-

nications 2009 (ICC 2009), Dresden, Germany, 2009. IEEE.


