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Abstract. A conventional LLM Unlearning setting consists of two sub-
sets -"forget" and "retain", with the objectives of removing the un-
desired knowledge from the forget set while preserving the remaining
knowledge from the retain. In privacy-focused unlearning research, a re-
tain set is often further divided into neighbor sets, containing either
directly or indirectly connected to the forget targets; and augmented
by a general-knowledge set. A common practice in existing benchmarks
is to employ only a single neighbor set, with general knowledge which
fails to reflect the real-world data complexities and relationships. LLM
Unlearning typically involves 1:1 sampling or cyclic iteration sampling.
However, the efficacy and stability of these de facto standards have not
been critically examined. In this study, we systematically evaluate these
common practices. Our findings reveal that relying on a single neigh-
bor set is suboptimal and that a standard sampling approach can ob-
scure performance trade-offs. Based on this analysis, we propose and
validate an initial set of best practices: (1) Incorporation of diverse
neighbor sets to balance forget efficacy and model utility, (2) Stan-
dard 1:1 sampling methods are inefficient and yield poor results, (3)
Our proposed Modular Entity-Level Unlearning (MELU) strat-
egy as an alternative to cyclic sampling. We demonstrate that this mod-
ular approach, combined with robust algorithms, provides a clear and
stable path towards effective unlearning. Our code can be found at
https://github.com/praveensonu/MELU.

Keywords: Best practices · Selective Sampling · Forget-Retain Sam-
pling · Batch & Sequential Unlearning · Machine Unlearning in LLMs.

1 Introduction

Large Language Models (LLMs) [32,1] are trained on vast amounts of data
scraped from the web, enabling them to process billions of learnable param-
eters. This extensive scaling enables them to address a wide array of complex
linguistic tasks, exhibiting performance that approaches human-level proficiency
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in both language understanding and generation. However, this scale introduces
a significant challenge: the models can memorize sensitive information such as
personal data, copyrighted content, harmful data and output this information
[3,9], raising concerns over their potential misuse [29].

To address this problem, LLM Unlearning [35,24] has emerged as a promising
technique, aiming to remove specific knowledge and abilities while preserving the
overall integrity and performance of the model. The conventional approach to
LLM Unlearning involves two primary goals: (1) the unlearning process should
remove the specified target knowledge and its associated abilities; (2) the un-
learning must respect the model integrity and must not affect the non-target
model abilities even if they are directly or indirectly related to the target [20]. For
instance, if the target knowledge includes information about an author Benedetto
Varchi who was born in Florence, Italy then the unlearning process should suc-
cessfully remove the Benedetto Varchi’s association to Florence, while retaining
all the other knowledge about Florence (such as its connection of a city in Italy).
To achieve these objectives, unlearning usually involves two datasets: a Forget
set, containing the knowledge that needs to be erased and a Retain set, contain-
ing the knowledge that needs to be preserved. The process generally maximizes
loss on the forget set and minimizes it on the retain set, helping to avoid issues
like Degeneration Behavior and Catastrophic Forgetting.

As LLM Unlearning transitions from a theoretical concept to a practical tool,
best practices for adopting unlearning need to be looked into. Researchers often
construct a retain set using a 1:1 ratio of forget-to-retain samples [22,25], drawing
from a single type of neighbor set and a general knowledge pool [22]. When the
retain set is larger, a cyclic sampling approach is employed to pair the forget
and retain data during the unlearning process [25,12]. While these practices
offer a straightforward path, their impact on the goal of unlearning is poorly
understood. Do these simple heuristics represent an optimal strategy, or do they
introduce hidden risks and performance ceilings?

In this work, we make a step towards establishing a set of evidence-based best
practices for LLM Unlearning. First, we look into the dataset creation practice,
by extending the Wikipedia Person Unlearning (WPU) [21] dataset by incorpo-
rating multiple neighbor sets into it. We analyze common data configurations
(such as only direct or indirect neighbors) and sampling methods (1:1 sampling,
cyclic), identify their strengths and weaknesses, and propose our strategy as an
alternative.

More precisely, our contributions are as follows:

1. A Critical Analysis of Common Data Practices: A systematic evalua-
tion of how retain set composition impacts unlearning outcomes. We demon-
strate how a diverse retain set is crucial for balancing Forget Efficacy and
Model Utility.
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2. Comparison of common sampling strategies of LLM Unlearning:
A comparative analysis of common sampling methods for LLM Unlearning.
We discover that the common practice of 1:1 sampling is ineffective.

3. Proposal of MELU as a sampling technique: We introduce Modu-
lar Entity-Level Unlearning (MELU), a simple structured sampling
strategy, that demonstrates more stable and effective Unlearning than con-
ventional cyclic sampling.

2 Preliminaries

2.1 Unlearning in Large Language Models

Prior works of unlearning in Large Language Models focus on classification
tasks [12], but due to the increase in adoption of generative AI in industries
and everyday life, especially chatbots and instruction-tuned LLMs, the research
focus has moved to question-and-answer (Q&A) tasks.

Given the Large Language model M with its parameters θ, the forget set
Df = {xf , yf} contains the samples that need to be forgotten by M(; θ) and the
retain set Dr = {xr, yr} those M(; θ) needs to preserve, where x, y are questions
and answers (inputs and their labels) in the LLM Unlearning task. Our goal is to
provide an updated/forgotten LLM with parameters θ∗ satisfying the objectives
mentioned previously.

Although designs vary, most fine-tuning based unlearning algorithms objec-
tives can be mathematically written as [13]

min
θ∗

L(θ∗) = min
θ∗

(−Lf (θ∗) + λLr(θ∗))

The equation provides the objectives, the first loss term - forget loss Lf (θ∗)
maximizes the loss on forget set, and the second loss term - retain loss LR(θ∗)
minimizes the loss on the retain set. λ is a hyper-parameter controlling the retain
strength.

Entity Unlearning There are two types of unlearning: Instance-Level Unlearn-
ing and Entity-Level Unlearning [5,22,21]: the former erases specific knowledge
about a forget-target, whereas the latter removes all knowledge of that entity
(e.g. a person, institution, book series etc). Formally, given entities ϵ = e1, e2..en
to forget, each ei is represented by Q&A pairs ei = {(xi1, yi1)...(xin, yin)}. The
model M(θ), is trained on dataset D, is split into forget set Df and a disjoint
retain set Dr = D \Df . In this work, we focus on Entity-level unlearning.

2.2 Datasets

Since Dr is disjoint from Df , it could contain potentially all the pretrained data
excluding the Df . This is impractical to implement, and prior works address
this challenge by assessing performance on general knowledge benchmarks such
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as MMLU [34] or creating an entirely new general knowledge dataset [17,22,21]
and creating neighbor sets, which are subsets of Dr expected to be influenced
by the unlearning process. These neighbor sets are constructed based on the
assumption that data points similar to Df or involved in unlearning are more
likely to be impacted during unlearning. From the literature, we identify three
types of neighbor sets:

Direct Neighbor set (Nd) - Direct Neighbor sets contain the entities that
are closely associated and directly connected to Df [21,14]. These include but
are not limited to place of birth, family tree, education, personal achievements,
and everything that is directly linked to the forget target. For instance, for a
forget target - ’Benedetto Varchi was born in Florence’, and information on Flo-
rence is considered as a part of its corresponding Direct Neighbor set, assuming
this is directly influenced due to the forgetting of Benedetto Varchi’s birthplace
knowledge.

Indirect Neighbor set (Nind) - First introduced in TOFU [22], an indirect
set consists of entities sharing a semantic or contextual relationship with the
forget target, without being directly linked. These connections may be based on
historical period, domain, ideology, or thematic relevance-not necessarily profes-
sion. For example, if the entity is Benedetto Varchi’s, an Italian humanist and
historian of the fifteenth century, the corresponding Indirect neighbor set con-
sists of data on Leonardo Bruni, Francesco Petrarca etc. who were also Italian
historians of the similar period. It is difficult to derive the indirect connections
without looking at the model activations and pre-trained dataset. So, for our
study, we use the already proposed approach of profession to be the indirect
connection.

Syntactic similarity (Ns) - Introduced by [4], they expand the present neigh-
bor sets to syntactic similarity neighbor set, showing that syntactic similarity is
the most influenced due to the nature of question-answering unlearning task. For
example, ’When was Benedetto Varchi born?’ can have influence on a question
with similar syntax such as ’When was Donald Trump born?’. To avoid this,
they propose an entirely new neighbor set.

2.3 LLM Unlearning Practices

We do not discuss LLM Unlearning algorithms, rather we discuss their imple-
mentations. For unlearning algorithms please refer Appendix:A.3.

Batch and Sequential Unlearning
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Batch Unlearning, commonly used refers to unlearning the model on all the
forget targets at once. While straightforward, this approach has been observed
to suffer from instability and leads to catastrophic collapse [12]. Sequential
Unlearning, proposed by [12] and further extended by [25], divides the forget set
into chunks, processing each chunk independently and simultaneously processing
the retain data, making it ideal for a realistic setting.

1:1 and Cyclic Sampling

Given the simultaneous maximization of loss on forget sample and minimiza-
tion on retain sample, a sampling method usually contains how these samples
are arranged and how many samples are used in an epoch for the unlearning
algorithm. A common sampling practice is 1:1 Sampling, i.e., in an epoch, the
number of retain samples is not higher than the number of forget samples. There
are two ways to do this: (Method - a) creating the dataset with forget and re-
tain samples of the same length – recent datasets such as the SemEVAL Task-4
competition3 follow this structure; (Method - b) randomly choosing the same
number of forget and retain samples for every epoch – initially implemented by
[22] and followed by [21,26,36,8,23] and many more by reproducing their code,
this practice has become common for baselines in LLM Unlearning.

Another common sampling practice is Cyclic Sampling [25,12], in which
all the retain samples are utilized by cycling forget samples. As in figure 2,
a cyclic setting might have a retain sample unrelated to the forget sample. A
drawback of this approach is the loss calculation of forget sample with unrelated
retain sample. In this study, we introduce Modular Entity-Level Unlearning
(MELU) strategy, in which during the unlearning process, each forget target is
paired only with its respective retain samples.

3 Related Work

Current unlearning datasets include either direct (Nd) or indirect neighbor(Nind)
sets, but never both. TOFU [22] uses 200 synthetic authors as indirect neigh-
bors (Nind), plus 100 real authors and 117 facts, but omits interconnectivity [26]
and ignores direct neighbors((Nd)). RWKU [14] and WPU [21] include only a
Direct Neighbor set plus a general knowledge set. RWKU’s focus on 200 high
profile figures makes unlearning impractical because their large online footprints
means pre-trained LLMs almost certainly have absorbed vast amounts of their
data, making it difficult to unlearn; realistic unlearning requests involve individ-
uals with moderate online presence. Datasets from [4,5] attempt to include both
(Nd) and (Nind) but they rely on bi-directional relationships for (Nd), requiring
mutual links in their respective Wiki pages, creating a blind spot: e.g., "Varchi
was born in Florence", Varchi’s page links to Florence, but Florence’s page does

3 https://llmunlearningsemeval2025.github.io/
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Fig. 1: Types of Neighbor sets and their connections to the forget sample

not link back to Varchi. Although Florence is directly connected and would influ-
ence the unlearning process, the bi-directional approach would exclude this from
the retain set. Even though these benchmarks exist, LLM unlearning still lacks
a standard protocol or methodology for building forget and retain sets, even
as unlearning requests become common across applications. [30] provides a new
direction on backdrops of the unlearning benchmark datasets. Post-Unlearning,
they combine forget and retain queries and ask the model, only to find the model
either recognizes them both as forget samples (outputs IDK) or retain samples
(outputs correct answers).

In the 1:1 Sampling Method-a limits the retain set during the data con-
struction, and Method-b limits the retain set during unlearning, especially
experiments conducted on [22] benchmark use various splits, fail to leverage the
full retain set. For example, TOFU benchmark (4000 samples) has three splits
of various forget set sizes (40, 200, 400), leading various retain set sizes (3.96k,
3.8k, 3.6k). TOFU authors unlearn for 5 epochs on these splits. For the largest
split of 400 forget samples, at the maximum can attend only 2000 retain sam-
ples (if retain samples are sequentially chosen). Albeit, SemEVAL dataset uses
Method-a, the winner of the competition [25] doesn’t follow this approach, in-
stead they follow 1:n-forget:retain approach (in a cyclic sequential unlearning
process), making for each batch only for 1 forget sample and n retain samples
are present.

In this paper, we extend the WPU [21] neighbor by adding indirect neigh-
bors with syntactically similar Q&A’s, and a dedicated test set. We further look
into the sampling strategies provided by [22], 1:1 sampling, cyclic sampling in
a batch unlearning scenario. We also introduce Modular Entity-Level Un-
learning (MELU) strategy, in which each forget target is paired only with its
respective retain samples. Our work neither aims to present a benchmark dataset
nor an unlearning method, rather improve current best practices in creating LLM
Unlearning Benchmark datasets and sampling.

4 Experimental Setup

4.1 Dataset Construction

In this work, we chose the Wikipedia Person Unlearning (WPU) [21] dataset,
which consists of 100 forget targets, Direct neighbor set and general retain set.
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The dataset is divided into forget_2, forget_20 and forget_100 parts, splitting
the # of target entities to 2, 20 and 100. We chose forget_20 for the extension
of Neighbor sets to (Nind), (Ns) and addition of a test set. The choice of WPU
dataset comes from their approach in dataset construction. It was constructed
by selecting the least popular Wikipedia people based on their views, these
are the forget entities. They construct the Dr through incorporating (Nd) by
scraping the hyperlinks that are connected to the Wikipedia page of the person
(Nd) and General knowledge set by scraping the Wiki pages of popular people
on Wikipedia (General Knowledge set). Other datasets use well known figures
information, which might be difficult to unlearn, or a bi-directional approach for
(Nd), or synthetically created datasets. WPU stands as an ideal choice for our
experiments, as the entities are not well known and has limited online presence
providing a realistic unlearning situation.

Indirect Neighbor set (Nind) creation - For Indirect connection we follow
[22], and chose to find entities of similar profession. Finding similar profession
entities for lesser known people was challenging as it requires scraping Google
search suggestions, which were often unavailable or inconsistent. To overcome
this, we used an LLM to generate similar profession names. Specifically, we
chose LLaMA 3.3 70B model [10] for this task, since our unlearning experiments
were conducted on the LLaMA 3.1 8B Instruct model [10]. We assumed that
the models of the same family would likely share similar pre-training knowledge.
We prompted (Appendix:A.1) the model to generate six names for each forget
target, ending up with 120 indirect connections.

Once we had the Indirect connection entities, we scraped their Wikipedia
data and used LLaMA 3.3 70B model to generate the Q&A’s from it. We aimed
for at least two questions per section, and instructed the LLM to follow an
Interrogative syntactic structure. In total, we ended up with 1409 Q&A pairs.
Then, for each forget target, we randomly picked five indirect connection entities
to build the (Nind)- giving us a total of 1144 Q&A pairs (Appendix:4).

Test set (Dt) creation - We construct a test with mix of multiple neighbors for
evaluation. We use the remaining samples of (Nind) for indirect connections and
200 random samples from the general knowledge set for the test set. To create
the samples for (Nd), we prompted LLaMA 3.3 70B to provide three new basic
Q&A for every answer from forget set. If we are forgetting the link "Adrienne
Monnier -> Paris", we made three Q&A’s about Paris (Appendix:5). Finally, we
created a test set with 738 Q&A pairs.

Due to the pre-structure of the WPU dataset [21], which includes (Nd) and
general knowledge set, we were unable to create a standalone (Ns) dataset. In-
stead we generated the neighbor sets in a similar syntactic manner. To do this,
in the Q&A generation prompt A.1, we provided the model to follow interroga-
tive syntactic structure. We verified the syntactic similarity between the forget
and retain Q&A pairs with edit distance algorithm [39], achieved a mean of 40%
similarity.
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Fig. 2: MELU setting. In cyclic, each entities (e1, e2..en) forget samples are cycled
on to unrelated (e3 → e1) connections, In MELU entities (e1, e2..en) are cycled
only onto their respective target connections (e1 → e1).

4.2 Unlearning Methods

Before unlearning, we fine-tuned LLaMA 3.1 8B Instruct [10] model on all the
datasets. We experiment with three unlearning algorithms- Gradient Difference
[19] and Negative Preference Optimization [38] for Un-targeted unlearning and
Direct Preference Optimization [27] for Targeted Unlearning. An Un-targeted
unlearning does not contain a replacement sample for the forgetting sample,
whereas targeted unlearning does and typically has phrases such as "I don’t
know".

We compare seven different settings. The initial three are on common data
practices, and next four are common implementation practices. We have pool of
|Df | = 98, and |Dr| = 1801 samples. Given that all these experiments revolve
around manipulating retain set, we select retain subsets Dr according to:

Data Practices4

1. Direct-Neighbor (Nd). Restrict Dr to only samples with the (Nd).
2. Indirect-Neighbor (Nind). Restrict Dr to only samples with the (Nind).
3. Balanced. We combine (Nd) and (Nind) for our Dr. Since our (Nind) is over

sampled, we balance the dataset by selecting an equal number of samples as
the (Nd) samples for each entity.

Sampling Practices

1. 1:1 seq. i.e., We draw |Dr| = |Df | samples by selecting the top 98 Dr items,
matching one retain for each forget. This is the method a) from section 2.3.

2. 1:1 random. i.e., We draw |Dr| = |Df | samples by randomly selecting 98
Dr items for each epoch, matching one retain for each forget. This is the
method b) from section 2.3.

3. Cyclic. Rotate through the full Dr pool sequentially until we collect 1801
samples - i.e. cycle the 98 sized |Df | across all the 1801 samples.

4 Given 1:1 sampling (both Sequence and Random) will not utilize the complete Dr

during Unlearning, all the Data Practices experiments are conducted in Cyclic Im-
plementation.
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4. Modular Entity-Level Unlearning (MELU). For each entity or forget
target appearing the Df , we include only retain samples that share that
same entity. To do this, we cycle the forget samples of a forget target only
over the retain samples of the same target (figure 2). We will be left with
general knowledge set to which we randomly assign a sample from the Df .

We adopt LoRA[11] for all our experiments. For finetuning, rank = 64, α = 128,
batch size = 32 for 10 epochs. For unlearning, rank = 8, α = 16, batch size =
85 for 4 epochs. All the experiments were conducted on 2 x 40GB A100 GPUs.
Full algorithmic details are in Appendix:A.3.

4.3 Assessment

Unlearning behavior is best assessed with the use of multiple metrics [22]. We
employ three distinct metrics and aggregate them to compute two scores: For-
get Efficacy and Model Utility. In line with prior works [22,36,38], we em-
ploy ROUGE-L (verbatim memorization with word-level match), Conditional
Probability (ground truth likelihood) and Cosine Similarity (Semantic Sim-
ilarity). To calculate Forget Efficacy, we calculate 1 - Arithmetic mean of these
metric on Df and for Model Utility we calculate a harmonic mean of these met-
rics on Dr.

5 Results and Discussion

Baselines We computed Forget Efficacy (on forget set) and Model Utility (on
test set) on the base model before unlearning. We use these results as baselines.
After applying the unlearning algorithms, for a fair comparison, we use Forget
Efficacy and Model Utility on Test set (MU-T), given that the |Dr| changes
based on the setting. The test set is balanced and will be used to understand the
Model Utility. The base model has a low Forget Efficacy (FE = 0.30) and high
model utility (ME-T = 0.73). A good unlearned model should have a higher FE
(up to 1) and MU-T closer to the baseline ±5. We also compute MMLU [34]
scores to understand the general Model utility, per target FE and MU-T for
granular understanding and token diversity with Distinct-N [16] to understand
the diversity of the generated outputs.

5.1 Evaluation of Unlearning Data Practices

Direct vs Indirect: Interestingly, both GD and NPO show (figure 3 and table
1) a drop in FE when moving from Direct (Nd) to Indirect (Nind) neighbor sets,
contrary to our expectations. Since, (Nd) is smaller in size (# 364 samples +
# 293 general knowledge) compared to (Nind) (#1144 + #293), we anticipated
forget set would be revised more frequently during unlearning. However, (Nd)

5 Batch size of 8 is maintained for every experiment by the aggregation of gradients
over 8 samples, even when the hardware limitations prohibit batch size of 8.
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neighbor with such a small neighbor set outperforms (Nind) in terms of FE. In
contrast, DPO follows the expected trend, showing higher FE with the larger
(Nind). However, MU-T is consistently higher for (Nind), indicates, larger
and more diverse sets preserve general model performance. On the other hand,
Balanced fails to achieve better FE and MU-T.

From the Token Diversity 9a on the forget and test sets, we find that (Nd)
is lower than the (Nind) neighbors on the test set across all the unlearning al-
gorithms. For GD, we see an exponential drop in forget set diversity in indirect
and balanced. For DPO and NPO, we see an increment in token diversity from
indirect to balanced. But both GD and DPO fail to maintain token diversity
(even in implementation settings), this is because of GD’s ’Degeneration Behav-
ior ’ and DPOs ’I don’t know ’ phrases. NPO exhibits more favorable behavior
with high token diversity. This is likely due to its bounded objective, preventing
model collapse.

Per target FE and MU-T show that GD, performs really well at forgetting
with direct connections, but fails significantly at MU-T (10 targets are below 0.20
for MU-T). We find a similar situation with balanced, where the FE is higher
and MU-T is lower. Although, indirect doesn’t achieve same level of forgetting as
direct, it always maintains > 0.85 FE on all targets and maintains MU-T up to
0.65 (0.08 shy from baseline). With preference based methods, we find a gradual
increment in MU-T from direct to indirect to balanced. A strange phenomenon
was observed that some targets such as "Ted Kooser" was harder to forget for
both DPO and NPO (except direct case for NPO). With memorization scores
(Appendix:Fig11), we find that these targets are highly memorized than others.

MMLU scores on GD are inconsistent. Although they are not exponential
drops or highs, but we find an increase in MMLU accuracy (Appendix:Fig8)
on direct and balanced dataset experiments (≈ +1.3%). This is an unusual
behavior. Where as, preference based methods show a stable accuracy. Cyclic
and MELU, provide stable MMLU scores across all the models, showing with
proper implementation unlearning can be stable.

5.2 Evaluation of Unlearning Sampling Practices

Standard 1:1 sampling (sequential and random) fails to produce meaningful
forgetting (low FE) yet preserve MU-T across all the unlearning algorithms. Al-
though, increase in number of epochs might improve the forgetting6, we already
achieve better stability (FE and MU-T) with cyclic and MELU with the same
number of epochs.

6 To test this we conducted a run of DPO with 1:1 random sampling by continuously
increasing the epochs. At epoch 100 we achieved 0.79 FE and 0.78 MU-T.
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Stability with MELU Both Cyclic and MELU perform significantly better
than standard 1:1 sampling. They maintain stable performance across all the
unlearning algorithms and maintain accuracy on MMLU and token diversity.
MELU, in particular, outperforms cyclic under DPO, boosting FE by 12% while
maintaining MU-T. In NPO, MELU provides a small improvement from cyclic.
But at the per-target performance, MELU holds a better FE and MU-T on
all the targets for preference based methods. Under DPO, MELU increases the
number of targets with FE > 0.9 (from 1 in cyclic to 3), while maintaining high
MU-T ≥ 0.8 for the majority. In case of Amy Clampitt, FE improves by ≈ 20%.
For GD, MELU setup achieves stable FE (≈ 0.9) across most entities and pro-
vides higher MU-T across targets. Even in NPO, where overall FE grows slowly,
MELU maintains MU-T while achieving reasonable FE. In cases of harder tar-
gets such as "Ann Brashares" and Ted Kooser, both cyclic and MELU perform
well and forget (> 0.50) better than 1:1 sampling (< 0.10). This improved sta-
bility of MELU can be attributed to a more consistent learning signal. In cyclic
sampling, the model is subjected to high-variance gradients due to unrelated
forget-retain pairs. MELU, by maintaining a relevancy between forget retain
with lower variance per batch, could be leading to a stable performance.

Overall MELU provides

1. High and Stable FE: approaching or exceeding 0.85 for DPO and GD,
and maintaining competitive scores in NPO.

2. Minimal degradation in MU-T: consistently close to the baseline (0.73),
even slightly exceeding it for some algorithms (e.g., NPO).
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Fig. 3: FE and MU-T comparison results. Top row provides the data practices
results and bottom row provides implementation practices results.

6 Conclusion

Our study demonstrates that the composition of the retain set is a critical, yet
often under-looked factor in LLM Unlearning. Our findings show that relying
solely on any single neighbor set is suboptimal and not the best practice. By
including a diverse range of neighbors - we can improve the balance between
forget efficacy and model utility. Furthermore, we show that the standard 1:1
sampling is an inefficient approach and when implementing unlearning, cyclic
and Modular Entity-Level Unlearning (MELU) provides more stability. Albeit,
we couldn’t answer why these setups provides more stability, a research that
could be looked into is if this caused due to the repetition of forget samples in
the unlearning process (It is well-known that during the pretraining, memoriza-
tion of a sample is correlated with its repetition in the corpus [2]). Our work
also proves some of the already proposed problems in the unlearning literature,
such as Gradient based approach’s instability [33,35], and how some targets are
harder to forget because of the frequency of their knowledge and memorization
(Appendix:11) in pre-trained or downstream task data [15]. We hope our work
inspires researchers to look into methods to construct more diverse and realistic
unlearning benchmarks and unlearning algorithm implementation techniques.

For future works, We aim to conduct a rigorous comparative analysis against
other model families, more unlearning algorithms and conduct a deeper evalua-
tion, especially with consideration of sample memorization. Additionally, we aim
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to do a comparative analysis with Sequential Unlearning and also incorporating
MELU into sequential unlearning.

7 Limitations

A key limitation of our study is the indirect neighbors and test sets generation
with sister model. This limits the generalizability of our findings and requires
expanding our experiments to other model families. Our MELU setup assumes
that forget and retain samples are sufficiently distinct to be reliably separated.
In real-world scenarios, however, such clear boundaries may not always exist,
especially when entities share overlapping attributes or contexts, albeit one can
enforce Knowledge graphs to define these clear connections[26]. Additionally, we
do not deep dive into instability and stability issues such as GD and NPO’s bet-
ter forgetting on direct neighbors and not with indirect neighbors. In contrast
DPO acts opposite, this can be further looked into especially through the lens
of explainability approaches on pre and post unlearning. Same with MELU and
cyclic settings stable performances, a rigorous work needs to be done towards ad-
dressing it. Another limitation is extension of general utility with HellaSwag [37],
ARC [6] etc. Our experiments cover only a few unlearning algorithms with batch
unlearning. While we propose MELU, we lack a direct comparative analysis to
sequential unlearning [12] setups. Finally, because WPU [21] already includes
direct and general neighbors, we could not construct a full syntactic neighbor
set, leaving it unexplored.
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A Appendix

A.1 Prompts

Q&A Generation This prompt was used to extract Q&As from the wiki pages.

LLaMA 3.3-70B

#system_prompt\\
You are an expert teacher, who can create questions and answers

from a given context.
Given the user wikipedia page context about {#

domain_person_name},

please provide as many questions and answers possible from it.

For each section, provide at least 2 questions and answers.

The question and answers should follow the Interrogative
syntactic structure,

The questions should be on their birth, family background,
education, career, achievements and other relevant topics.

The output should be in JSON format with the following keys:

\{
"name": name of the person,
"question1": question1,
"answer1": answer1,
"section" : part of the wikipedia section,
"difficulty" : difficulty of the question,
"question2": question2,
\dots

\}

Please be precise with the question and answer. Do not generate
any other text.

#prompt\\
{# content}

https://doi.org/10.1109/IAEAC.2017.8054419
https://doi.org/10.1109/IAEAC.2017.8054419
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Indirect Connection generation This prompt was used to generate six Indi-
rect connections for a target.

LLaMA 3.3-70B

#prompt\\
For each name in the list, provide me 6 names that belong to the

same domain as them (for example, if they are authors please
provide authors similar as them). The output should be in a
dictionary to make it into a dataframe.

[’Benedetto Varchi’, ’Wilhelm Wattenbach’, ’Elsa Triolet’,
’Theopompus’, ’Heinrich Ritter’, ’Adrienne Monnier’, ’Ann
Brashares’, ’Hartmann von Aue’, ’Jorge Semprún’, ’Giovanni
Battista Casti’, ’Najaf Daryabandari’, ’Heinz Erhardt’,
’Rudolf Christoph Eucken’, ’Paul Gerhardt’, ’Moshe
Greenberg’, ’Amy Clampitt’, ’Ted Kooser’, ’Alfred Vogel’,
’Siegfried Lenz’, ’Philip Stanhope, 5th Earl Stanhope’]

A.2 Dataset

A detailed pipeline in creating the indirect connections and its relevant test set
samples are provided in the Figure 4. First, we use the prompt A.1 to generate
6 entities for each target. Followed by we scrape their wiki pages and generate
Q&As with the LLaMA 3.3 70B model A.1 in an Interrogative syntactic structure
manner to maintain the (Ns) neighbor dataset.

. . .

Forget Target LLaMA 3.3 70B

Generate 6
entities

Scrape wiki Generate

Interrogative QA

5 en
tite

s

Indirect retain set

Test Set

Fig. 4: Pipeline in creating Indirect connections for retain and test set
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Q: Where was Adrienne Monnier

born?

A: Paris
Llama 3.3 70B

Q1: What is the name of the iconic tower in Paris, 

built for the 1889 World's Fair? A: The Eiffel Tower

Q2: What is the name of the famous art musuem in Paris

that houses the Mona Lisa? A: The Louvre

Q3: Which river runs through the city of Paris?

 A: The Siene

Fig. 5: Generation of Test set samples for the Direct Neighbors
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A.3 Experimental setup

Model Finetuning: Before the application of unlearning, we initially finetune
the model on the all the datasets we have i.e., Df , Dr, Dt. We use the questions
as prompts and conduct a Supervised Fine-tuning on the datasets. Given Dft =
Df +Dr +Dt, and its samples (x, y), x is question and y is the answer. A pair
pi = p(xi, yi) ∈ Dft and y1, ..yT are the answer tokens, we calculate Negative-
Log-Likelihood (NLL) loss for pi

L(y | x; θ) = NLL(y | x; θ) = −
T∑

t=1

log p
(
yt | x, y<t; θ

)
(1)

Unlearning Methods:

Gradient Ascent (GA)is the most straightforward unlearning technique pro-
posed for the Un-targeted unlearning. It’s main idea is to maximize the loss as
opposed to the training objective of minimization by negating the loss. In our
work, we do not implement this. Due to its nature of negation, the maximization
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becomes unbounded leading to catastrophic collapse. The predicted loss l(y|x; θ)
on forget set can be written as:

LGA(Df ; θ) = −L(yf | xf ; θ) (2)

Gradient Difference (GD)proposed by [19] to mitigate the issues of Gradi-
ent ascent. It builds on the concept of Gradient Ascent, but not only aims to
maximize the loss on forget set Df , simultaneously minimizes the loss on the
retain set Dr. This maintains the balance of forgetting and retaining. The loss
function can be written as:

LGD(θ) = −L(Df ; θ) + L(Dr; θ) (3)

Direct Preference Optimization (DPO)is proposed by [27] and was first
used by [22], treats unlearning as a preference optimization problem by applying
the standard DPO loss. This technique uses Targeted Unlearning, making a ne-
cessity of replacement responses like "I don’t know". Alike the standard DPO ap-
proach, we use "I don’t know" responses as positive samples and forget set as neg-
ative samples to guide the model’s response. For the implementation of DPO, we
convert the forget set to a preference dataset containing winning responses and
refusal responses. Preference dataset Dp = (xi, yi,win, yi,lose), i ∈ |Df |, where
yi,win are randomly chosen from a subset of "I don’t know" phrases, and yi,lose
are the forget targets. The DPO loss can be calculated as:

LDPO,β(θ) = −EDp

[
log σ

(
β log

p(ywin | x; θ)
p(ywin | x; θref)

− β log
p(ylose | x; θ)
p(ylose | x; θref)

)]
(4)

where σ is the sigmoid function and β is the inverse temperature controlling
the preference strength. We use β = 0.1 for all our experiments. Provided, we
have a retain set, we utilize the code implementation provided by [7], can be
calculated as follows:

LDPO+retain = αLDPO,β(θ) + γ L(Dr; θ) (5)

Where α and γ are hyperparameter to control the strength of DPO loss and
NLL. For our experiments, both α and γ is always 1.

Negative Preference Optimization (NPO) - proposed by [38], is an in-
spiration of DPO, a variant that uses only the negative responses from the Df ,
disregarding the ywin making it an Un-targeted Unlearning. For the implementa-
tion, we ignore the "I don’t know" responses and provide only (xf , yf ). Followed
by, we calculate retain loss similarly as in DPO + retain with the same hyper-
parameters values (β, α, γ).

LNPO,β(θ) = − 2

β
EDp

[
log σ

(
− β log

p(ylose | x; θ)
p(ylose | x; θref)

)]
(6)
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LNPO+retain = αLNPO,β(θ) + γ L(Dr; θ) (7)

Evaluation Metrics: ROUGE (R) quantifies the world-level overlap between
the model’s output and the ground-truth answer. We compute the ROUGE-L
[18] score between the generated response g(x; θ∗) and the ground-truth answer
y, written as ROUGE−L(g(x; θ∗), y). ROUGE-L provides the longest sequence
overlap and the verbatim memory of the Unlearned Model (M ; θ∗).

Cosine Similarity (CS) measures the semantic similarity of the model’s output
against the ground-truth. We follow [36] setup, embed both with Sentence-BERT
[28], calculate the cosine similarity and truncate the values less than 0.

max
(
cos

(
g(x; θ∗), y

)
, 0

)
Probability (P) defines the average likelihood assigned to each token given
a question and its ground truth answer i.e., (x, y). Following [22], we compute
normalized conditional probability as

P(y | x) = 1
T

T∑
t=1

p
(
yt | x ◦ y<t; θ∗

)
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A.4 Results

Table 1: Experimental results.
Dataset Practices

Method FE ↑ MU-T ↑ PPL-F ↓ PPL-T↓ MMLU %

Pre-Unlearning 0.30 0.73 38.76 37105 12.42

Gradient-based (Un-Targeted)
GA 0.44 0.67 657294.87 242062.34 12.47
Direct 0.96 0.34 3.09 × 1082 3.28 × 1080 13.60
Indirect 0.89 0.65 1.27 × 1090 1.79 × 1082 8.40
Balanced 0.97 0.55 2.24 × 1085 1.79 × 1082 13.29

DPO-based (Targeted)
DPO 0.70 0.47 16643 3098 12.21
Direct 0.57 0.76 1.82 × 104 158.72 12.27
Indirect 0.71 0.77 5.84 × 107 180.30 12.61
Balanced 0.57 0.79 1.71 × 105 142.58 12.35

NPO-based (Un-Targeted)
NPO 0.30 0.73 38.76 37105 12.37
Direct 0.71 0.69 4.68 × 1022 1.002 × 1017 12.57
Indirect 0.60 0.78 3.17 × 1018 126.47 12.37
Balanced 0.61 0.74 2.6 × 1018 3153.19 12.63

Sampling Practices

Method FE ↑ MU-T ↑ PPL-F ↓ PPL-T↓ MMLU %

Gradient-based (Un-Targeted)
1:1 seq 0.36 0.74 3.7 × 104 6.11 × 104 12.46
1:1 random 0.35 0.73 22521 32751 12.31
Cyclic 0.97 0.65 1.80 × 1086 3.08 13.26
MELU 0.89 0.70 3.18 × 1090 15.98 13.42

DPO-based (Targeted)
1:1 seq 0.32 0.73 124.55 3.0 × 103 12.33
1:1 random 0.36 0.71 65.90 2539.52 12.28
Cyclic 0.70 0.80 2.57 × 107 118.54 12.36
MELU 0.82 0.79 5.8 × 1014 87.71 12.38

NPO-based (Un-Targeted)
1:1 seq 0.37 0.71 1655.97 5.33 × 105 12.43
1:1 random 0.35 0.72 14545.83 78544 12.36
Cyclic 0.63 0.78 1.60 × 1018 35.15 12.24
MELU 0.65 0.79 7.86 × 1021 54.03 12.41
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Fig. 8: General Model Utility (MMLU) across all experiments. Baseline accuracy is
12.42%.
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(c) Model Utility Test (MU-T).

Fig. 9: Token diversity and per-entity metrics.
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Fig. 10: MU-T across various data practices. We find Gradient Based method
consistently performs bad in all the Data settings, where as NPO and DPO
holds the MU-T well.

A.5 Memorization

We calculated each entities memorization with Exact Memorization (EM) score
following [31], which is often used in Unlearning research to define/compute the
success of forgetting in LLMs. Given we have multiple samples for each entity, we
compute their Average EM score. We find that few samples such as Ted Kooser,
Philip Stanhope, Ann Brashes etc are highly memorized and were harder to
forget in our experiments.
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