
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2009; 39:1–31
Published online 1 April 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.883

AQuoSA—adaptive quality of
service architecture

L. Palopoli1, T. Cucinotta2,∗,†, L. Marzario2 and
G. Lipari2

1DIT, University of Trento, Italy
2ReTiS Laboratory, Scuola Superiore Sant’Anna, Via Moruzzi,
1, 56124 Pisa, Italy

SUMMARY

This paper presents an architecture for quality of service (QoS) control of time-sensitive applications
in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness
guarantees from the operating system independently from one another; otherwise, the QoS experienced by
the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the
central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation
based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a
resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS
requirements with the minimum possible impact on CPU occupation. We implemented the framework in
AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software
architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our
results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of
addressed applications. Copyright © 2008 John Wiley & Sons, Ltd.

Received 29 June 2007; Revised 28 January 2008; Accepted 1 February 2008

KEY WORDS: resource reservations; adaptive QoS control; soft real time; embedded systems; operating systems

1. INTRODUCTION

Over the past years, real-time technologies, traditionally developed for safety-critical systems,
have been applied within new application domains, including consumer electronics (e.g. cellular

∗Correspondence to: T. Cucinotta, ReTiS Laboratory, Scuola Superiore Sant’Anna, Via Moruzzi, 1, 56124 Pisa, Italy.
†E-mail: cucinotta@sssup.it

Contract/grant sponsor: FRESCOR European project; contract/grant number: FP6/2005/IST/5-034026

Copyright q 2008 John Wiley & Sons, Ltd.

2 L. PALOPOLI ET AL.

phones, PDAs), multimedia (e.g. video servers, VoIP gateways), telecommunication networks and
others. Such applications are referred to as soft real-time, because, different from traditional hard
real-time applications, violation of their timing constraints does not cause a system failure, but
rather a degradation in the provided quality of service (QoS). Such a degradation often depends
on the number and severity of constraint violations over a certain interval of time. Therefore,
one goal in executing a soft real-time application is to keep timing constraint violations under
control.
As an example, consider a video streaming application (e.g. DVD player or videoconferencing).

One typical timing constraint is the necessity to process video frames at a regular frame rate. For
example, for a rate of 25 frames per second (fps), every 40ms the application is expected to load
a frame from a source, decode it, apply some filtering and show the frame on the screen. The
application is usually designed to be robust to timing violations. For instance, the use of buffers
allows one to tolerate delays in decoding frames up to a maximum threshold, over which the
users start perceiving a certain degradation of the provided QoS (e.g. non-equally spaced frames
in time). Therefore, user satisfaction is a decreasing function of the number and severity of timing
violations.
The problem of providing QoS guarantees to time-sensitive applications has been traditionally

faced while using a dedicated device for each application. However, the flexibility of computer-
based devices can be exploited to full extent and with acceptable costs only if we allow for a
concurrent utilization of shared resources. For example, in a video-on-demand server, where many
users can concurrently access the videos, it is important to provide a guaranteed level of QoS to
each user. Even on a single-user terminal (e.g. desktop PC, PDA, mobile phone) it is important
to provide stable and guaranteed QoS to different applications. Therefore, the problem that arises
is how to design a system that schedules accesses to the shared resources so that each application
executes with a guaranteed QoS, and the resource is utilized to the maximum extent. Unfortunately,
the scheduling solutions adopted in general-purpose operating systems do not offer any kind of
temporal guarantees.
A class of real-time scheduling algorithms, referred to as resource reservations (RR), has been

proposed in the literature to provide the fundamental property of temporal protection (also called
temporal isolation) in allocating a shared resource to a set of tasks that need to concurrently use
it. Informally speaking, this means that each task is reserved a fraction of the resource utilization,
so that its ability to meet timing constraints is not influenced by the presence of other tasks in the
system (a formal introduction to RR algorithms will be made in Section 2).
However, the availability of such a scheduling mechanism is not sufficient per se to ensure a

correct temporal behaviour to the class of time-sensitive applications that we are interested in. In
fact, a fixed choice of the scheduling parameters for central processing unit (CPU) allocation can be
very difficult not only for the required knowledge of the computation time but also due to its high
fluctuations in time. A choice tuned on the expected average workload would lead to temporary
degradations of the QoS, whereas a choice tuned on the worst-case workload would lead to a
wasteful usage of resources. For this reason, the scheduling mechanism has to be complemented
by a resource manager that can operate on the scheduling parameters‡.

‡This paper does not deal with application-level adaptation, where applications may switch among various modes of
operations.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 3

1.1. State of the art

Different solutions have been proposed to schedule time-sensitive applications providing the
temporal protection property, such as the proportional share [1,2] and Pfair [3] algorithms. They
approximate the Generalized Processor Sharing concept of a fluid flow allocation, in which
each application using the resource marks a progress proportional to its weight. Similar are the
underlying principles of a family of algorithms known as RR schedulers [4–7], which we will
describe in Section 2.
As far as the problem of adaptive policies for QoS management is concerned, remarkable work

has been done in the direction of application-level adaptation [8–10]. A noteworthy solution is the
one proposed in random access memory QoS based Resource Allocation Model (Q-RAM) [11],
which allows one associate resources with the different applications and generates a vector of
recommended resource utilizations. This is, however, a static allocation approach due to the high
computational requirements. However, it has been applied in the context of on-line schedulability
tests on high-performance computers [12].
Concerning dynamic resource-level adaptation, a first proposal of this kind dates back to 1962 [13]

and it applies to time-sharing schedulers. More recently, feedback control techniques have been
applied to real-time scheduling [14–18] and multimedia systems [19]. All of these approaches
suffer from a lack of mathematical analysis of the closed-loop performance, due to the difficulties in
building up a dynamic model for the scheduler. They typically apply classical control schemes (such
as the proportional integral controller), with few theoretical arguments supporting the soundness of
their design.
An approach similar in principles to Q-RAM is the one proposed in [20], where a polynomial

(in the number of tasks multiplied by the number of resources) on-line algorithm is proposed that,
based on a discrete integral controller running at periodic sampling instants, under the assumption
of known lower and upper bounds to the derivative of the task consumption function (a QoS level to
resource requirement mapping) and its inverse, drives resource allocation towards the achievement
of fair QoS levels across all system tasks. Instead, we undertake the complementary approach to
directly synthesize an ad hoc non-linear controller based on a formal model for the system evolution
and a formal statement of the control goals, providing conditions ensuring stability of the resulting
closed-loop dynamics.
This is possible because, using RR scheduling techniques, it is possible to derive a precise

dynamic model of the system, whose closed-loop dynamics may be formally analysed. This idea,
which we call Adaptive Reservations, was pioneered in [21]. In [22] a continuous state model of an
RR scheduler is used to design a feedback controller. In this case the objective of the controller is
to regulate the progress rate of each task, which is defined associating a time stamp with an element
of computation and comparing it with the actual time in which the computation is performed. A
continuous state model for the evolution of an RR scheduler is also shown in [23]. In this case, the
authors propose the virtual scheduling error (i.e. the difference between the virtual finishing time
and the deadline) as a metric for the QoS, which is also adopted in this paper. A control scheme
based on a switching proportional integral controller is proposed in the paper and its performance is
analysed in [24]. The problem is further investigated in [25–27], where deterministic and stochastic
non-linear feedback control schemes taking advantage of the specific structure of the system model
are shown. The idea of the controller is to use a combination of a feedback scheme and of a
predictor, and it is revisited in this paper (although in a different context). Approaches bearing a

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

4 L. PALOPOLI ET AL.

resemblance to the one just reported are shown in [28,29], although in the latter paper most of the
work is on the architectural side.
As far as the architectural issues are concerned, some proposals performing the resource adapta-

tion in the middleware are [29–31]. The latter evolve around the QuO [32] middleware framework,
which is particularly noteworthy for it utilizes the capabilities of CORBA to reduce the impact of
QoS management on the application code. A CORBA-oriented approach may also be found in [33],
where traditional control theory based on linearizations, proportional control and linear systems
stability is applied to the context of controlling resource allocation for a real-time object tracking
system.
Compared with previous work in the area (partly performed by some of the authors of this

paper), we provide a set of innovative contributions. On the scheduling side, we introduce a tight
yet simple mathematical model for the evolution of the QoS experienced by the tasks, which
accounts for the allocation granularity imposed by the reservation scheduler (Section 3). This model
allows one to build a theoretically well-founded adaptive control law, split across a predictor and a
controller, acting locally on each task, where control goals are formally specified, and conditions
for their achievement are formally identified (Section 4). We realized a modular architecture, where
applications may choose the QoS controller that best suits their needs or even provide their own
controllers and/or predictors, if appropriate (Section 6). The algorithms may be compiled in the
user space for maximum flexibility, portability and debugging capabilities, or in the kernel space
for minimum overhead. A resource supervisor ensures global consistency of the system. Compared
with other middleware layers [29,31], our architecture presents a good degree of flexibility with a
limited overhead (Section 6).

2. RESOURCE RESERVATIONS

In this section we present the task model and briefly describe the scheduler that will be used as a
basis for the adaptive reservation framework.

2.1. The real-time task model

A real-time task �(i) is a stream of jobs (or task instances). Each job J (i)
j is characterized by an

arrival time r (i)
j , a computation time c(i)

j and an absolute deadline d(i)
j . When a job arrives at

time r (i)
j , the task is eligible for the allotment of temporal units of the CPU by the scheduler.

The task executes for c(i)
j time units, and then J (i)

j finishes at time f (i)
j . We consider pre-emptive

scheduling algorithms. In our model, job J (i)
j cannot receive execution units before f (i)

j−1, i.e. the
activation of a job is deferred until the previous jobs from the same task have been completed.
Furthermore, we restrict to periodic tasks: �(i) generates a job at integer multiples of a fixed period
T (i) and the deadline of a job is equal to the next periodic activation: ∀ j≥1, r (i)

j =(j−1)T (i) and

d(i)
j =r (i)

j+1= jT (i).

A real-time task �(i) is said to respect its deadlines if ∀ j, f (i)
j ≤d(i)

j . We focus on soft real-time
tasks that can tolerate deadline misses. Therefore, a job is allowed to be completed after its deadline,

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 5

equal to the activation of the next job. In our model, when J (i)
j finishes, if J (i)

j+1 has not yet arrived
then �(i) blocks; otherwise �(i) is ready to execute.

2.2. The constant bandwidth server

RR, originally proposed in [4], is a family of schedulers suitable for systems with hard, soft and
non-real-time tasks. These algorithms provide the temporal protection property; thus, it is possible
to give individual guarantees to each task. Our framework is based on the constant bandwidth server
(CBS) [5]. Although the applicability of the CBS is very general, we restrict for simplicity to the
case of single-threaded applications and periodic tasks.
In this case, each task �(i) is associated with a server S(i) and a reservation RSV (i)=(Q(i), P(i)),

with the meaning that, at time kP(i) from its start, the task has been scheduled for at least kQ(i)

time units. Q(i) is the reservation maximum budget and P(i) is the reservation period. A server is a
schedulable entity that maintains two internal variables, the current budget q(i) and the scheduling
deadline s(i). A server is active at time t if its task has at least one active non-completed job at that
time.
When a task �(i) becomes active due to the arrival of a new job at time t , the corresponding server

deadline is set to s(i)← t+P(i), and the current budget is replenished to Q(i). The Earliest Deadline
First (EDF) algorithm is used to schedule servers: among all active servers, the one with the earliest
scheduling deadline is selected and the corresponding task is executed. Every time unit in which
a task is executed corresponds to a decrement in the current budget of the associated server, until
either the budget is exhausted or the task has completed all pending jobs, or it is pre-empted by
another server with earlier deadline (for a complete description of the CBS algorithm, refer to [5]).
The CBS algorithm has been modified to implement both hard and soft reservations. In the former
version, whenever a server exhausts the current budget, the associated task is suspended until the
server deadline, when the current budget is recharged to Q(i). Therefore, task �(i) is guaranteed
exactly Q(i) time units every [kP(i), (k+1)P(i)] time slot, and the processor may remain idle even
in the presence of pending jobs. In the latter version, instead, the current budget is immediately
recharged and the server deadline postponed to s(i)←s(i)+P(i); thus, up to a time instant kP(i)

from its start, a task is guaranteed at least kQ(i) time units.
By using EDF, the system can theoretically reach the maximum possible utilization [34], under

the global consistency constraint that the system must never violate

∑
i

Q(i)

P(i)
≤Ulub=1 (1)

The ratio B(i)=Q(i)/P(i) is the reserved bandwidth and it can intuitively be thought of as the
fraction of the CPU time reserved for the task.
The CBS algorithm satisfies the following properties, where s(i)(t) denotes the scheduling dead-

line of server S(i) at time t :

Theorem 1 (Temporal protection [5]). If Equation (1) holds, then at any time t, for each server S(i)

active at time t, t≤s(i)(t), i.e. each server always executes its assigned budget before its current
scheduling deadline. Furthermore, if hard reservations are used, t≥s(i)(t)−P(i) also holds.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

6 L. PALOPOLI ET AL.

Corollary 1. Given a task �(i) handled by a server S(i), consider job J (i)
j with finishing time f (i)

j

and let s(i)
j be equal to the latest server deadline during the execution of J (i)

j (a.k.a. virtual finishing

time): s(i)
j =s(i)(f (i)

j). Then, in the soft reservation version, f (i)
j ≤s(i)

j , and in the hard reservation

version, s(i)
j −P(i)≤ f (i)

j ≤s(i)
j .

In the following section, we discuss how the above rules can be translated in a dynamic model
for the execution of a task scheduled by the CBS.

3. ADAPTIVE RESERVATIONS

Adaptive reservations are an extension of RR addressing the problem of how to dimension the
(Q(i), P(i)) pair in the presence of scarcely known and/or time-varying execution times. To this
regard, a static choice for (Q(i), P(i)) would lead to infeasible or inflexible solutions, whereas a
feedback-based mechanism can be used to self-tune the scheduling parameters and to dynamically
reconfigure them in the presence of changes in the workload. Such a mechanism may be defined in
terms of a measured value, used as input; an actuator, used to apply a corrective action whenever
the measured value deviates from the desired value; a dynamic model of a reservation, useful for
designing the controller. Hereinafter, we assume the use of hard reservations for the model and
control design. Most results can be reformulated in a weaker form for soft reservations, but we
omit them for the sake of brevity.
As adaptive reservations have the purpose of making the resource allocation continuously match

the instantaneous workload, an ideal goal to pursue could be formalized as schedule every task so
that ∀i, j, f (i)

j =d(i)
j . This would guarantee not only the respect of all deadlines, but also the optimum

occupation of the CPU by each task (i.e. minimum allocation sufficient to respect all deadlines).
Therefore, the scheduling error f (i)

j −d(i)
j is a reasonable choice as a measured value on which the

feedback control scheme may work. When this quantity is positive (and this is allowed to occur in a
soft real-time system), we need to increase the amount of CPU time reserved for the task. When it is
negative, then it means that the task received CPU time in excess and we may want to decrease it.
Unfortunately, using RR, it is impossible to control the exact time instant when a job finishes

within the bounds identified by Corollary 1. Instead, we are able to control the virtual finishing
time; therefore, the virtual scheduling error is defined as �(i)j =s(i)

j−1−d(i)
j−1, which may be regarded

as a quantized measure of f (i)
j−1−d(i)

j−1. For the sake of brevity, from now on the term scheduling
error will implicitly refer to the virtual scheduling error.
Concerning the choice of the actuator, we use the maximum budget Q(i)

j as an actuator variable

(keeping the reservation period P(i) constant), and we update it every time we obtain a new
measurement for the scheduling error, thus, at each job finishing time f (i)

j . In order to maintain
consistency of the CBS scheduler, the new maximum budget value can be applied only at the time
of the next recharge for the server. Therefore, if the next job is already pending for execution at
the time a job ends, the new job starts executing in the same server period as the job that has
just finished. The new job will use the residual budget in that server period first and then the new
maximum budget computed by the controller for the subsequent periods.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 7

3.1. Dynamic model of a reservation

As the discussion that follows is referred to a single task, for notational convenience we will drop
the task index in this section and wherever convenient in the rest of the paper.
A considerable advantage of the choice of the measured value and actuator as proposed above

is that it is possible to construct an accurate mathematical model of the system dynamic evolution.
This model can be leveraged in the design of a feedback function. In order to construct such a
model, we have to specify how the sk variable evolves over time (consider Figure 1, showing a task
� with a period T =10 that is assigned a reservation with period P=T/2 and an equal budget for
the two jobs Q1=Q2=2). We have to consider two cases: (1) sk−1≤dk−1 and (2) sk−1>dk−1. In
the first case (Figure 1(a)), job Jk−1 finishes before the end of its period; therefore, Jk becomes
active right after its arrival and the number of server periods necessary to finish it is �ck/Qk�.
Hence, the last server deadline for Jk is given by sk=rk+�ck/Qk�P=dk−1+2P .
In the second case (Figure 1(b)), jobs Jk−1 and Jk share a reservation period, during which the

system evolves with the previously assigned budget Qk−1. Let us introduce another state variable
xk , representing the residual budget of the shared server period usable by Jk when it is already
pending at the time Jk−1 finishes. If we also consider the possibility, for a new job starting within
a shared reservation period with the previous one, of entirely fitting within the residual available
budget, then the following discrete event model is obtained:

x0 = 0

xk+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if sk≤dk
xk−ck if sk>dk and ck < xk

Qk

⌈
ck−xk
Qk

⌉
−(ck−xk) if sk>dk and ck≥ xk

(2)

�k+1 = sk−dk=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌈
ck
Qk

⌉
P−(dk−dk−1)=

⌈
ck
Qk

⌉
P−T if �k≤0

sk−1−dk−1−(dk−dk−1)=�k−T if �k>0 and ck < xk

�k+
⌈
ck−xk
Qk

⌉
P−T if �k>0 and ck≥ xk

(3)

(a)

(b)

Figure 1. System evolution occurring when a job finishes within its deadline (a) and not (b).

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

8 L. PALOPOLI ET AL.

The dynamic model of a reservation is described by Equations (2) and (3). However, we are
interested in controlling only the evolution of �k (our interest in xk is very limited). Therefore,
observing that xk is an exogenous, bounded (xk<Q j for some j<k) and measurable term, we can
write the following simplified model:

�k+1=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌈
c′k
Qk

⌉
P−T if �k≤0

�k+
⌈
c′k
Qk

⌉
P−T if �k>0

(4)

where the computation time c′k has been discounted of the disturbance xk :

c′k=

⎧⎪⎨
⎪⎩
ck if �k≤0
0 if �k>0 and ck < xk

ck−xk if �k>0 and ck≥ xk
Note that by replacing c′k with ck in Equation (4), the resulting model would represent the evolution
of either an upper bound of the scheduling error or the scheduling error itself obtained under the
assumption that the residual computation time xk in a reservation shared between two jobs is not
utilized.
Hereinafter, we assume that T (i)= L(i)P(i)with L(i)∈N+, i.e. the reservation period is an integer

sub-multiple of the activation period. As a result, ε(i)
k takes values in the lattice set E(i)={hP(i),h∈

N∩[−L+1,+∞[}. We assume Q(i)
k to be a real number in the range]0, P(i)] and c(i)

k to be

a positive real number, neglecting such issues as the quantization of c(i)
k to the machine clock

cycles.

3.2. Consistency of adaptive reservations

In this section we discuss when and how changes in Qk do not compromise the consistency of the
RR scheduler. For the sake of simplicity, we assume that a change in the maximum budget Qk is
effective only from the very next recharge of the server budget§ .
We define a global variable Btot(t) that keeps track of the total system bandwidth at all instants.

Suppose that, at time t , a server S(i) needs to change its budget from Q(i) to Q′(i) and its bandwidth
from B(i)=Q(i)/P(i) to B ′(i)=Q′(i)/P(i). The following cases must be considered:

• B ′(i)<B(i): the new budget is applied from the next server instance. At the time the current
server period ends s(i)(t), the total bandwidth can be decreased using the update rule:

Btot(s(i)(t))new= Btot(s(i)(t))−B(i)+B ′(i) (5)

§Actually it is possible to at least partially anticipate the change, but the resulting algorithm is more involved.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 9

• B ′(i)>B(i): we must distinguish two further cases:

◦ if Btot(t)−B(i)+B ′(i)≤Ulub, then the total bandwidth is immediately increased by using
the update rule in Equation (5), while the new budget is actually used starting from the
next server instance;
◦ if Btot(t)−B(i)+B ′(i)>Ulub, then the system is experimenting an overload condition and

the request cannot be directly accepted, because it would jeopardize the consistency condi-
tion of the CBS. It is then possible to operate with different policies, the simplest one
consisting in saturating the request to B(i)(t)=Ulub−Btot(t)+B(i) (and we fall back on
the previous case).

It is easy to show that, applying the rules described above, the properties of the CBS algorithm
continue to hold. In particular, Theorem 1 and Corollary 1 are still valid.
Another possibility for managing overload conditions is to leave the request as pending, saturating

it temporarily, then waiting for other servers to reduce their bandwidths. In this manner, whenever
Btot(t) decreases as a result of another server decreasing its request, S(i) may increase its bandwidth
to min{B ′(i),Ulub−Btot(t)+B(i)(t)}, thus increasing the maximum budget accordingly from the
subsequent recharge. This process of convergence of the current bandwidth B(i)(t) to the requested
value B ′(i) is greatly accelerated if the other servers are forced to reduce their bandwidth occupation,
for example, due to a fair rescaling of the bandwidths among all the servers. In Section 4.4 we will
describe the supervisor module, along with the exact policy it implements for managing this kind
of situation.
As a final remark, Equation (4) describes accurately the evolution of the scheduling error assuming

that the maximum budget is constant throughout a single job execution. However, as we have
just seen, in the case of overload the supervisor policy can change the bandwidth asynchronously
with respect to job boundaries. In these conditions, the model in Equation (4) is still valid if the
variable Qk does not represent a real budget but an equivalent one computed as an appropriate
average on the sequence of budgets granted to a job (further details are omitted for the sake of
brevity).

4. FEEDBACK CONTROL MECHANISM

In this section we provide the control theoretical foundations of our approach. For the sake of
brevity, we do not report the proofs of the theorems. The interested reader is referred to [35].

4.1. Design goals

The idea of a feedback-controlled system typically subsumes two different facts: (1) that the system
exhibits a desired behaviour at specified equilibrium points and (2) that the controller has the ability
to drive the trajectories of the system state towards the desired equilibrium in a specified way (e.g.
within a maximum time).
Owing to the influence of the unpredictable ck variable on the system evolution, our notion of

equilibrium is forcibly restricted to the possibility for the controller to maintain the system state
within a prefixed range εk ∈E around the origin, contrasting the action of the disturbance term.
Also, for the kind of applications we are addressing, it is reasonable to rely on a last-minute estimate

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

10 L. PALOPOLI ET AL.

of the expected variability range for the unpredictable variable ck ∈Ck=[hk,Hk] (we will clarify
this concept later). A formal definition of this concept is offered next.

Definition 1. Consider a system εk+1= f (εk,ck,Qk), where εk ∈E denotes the state variable, Qk ∈
Q denotes the command variable and ck ∈C denotes an exogenous disturbance term whose actual
variability range Ck⊆C is known only at time k and is constituted by a closed and bounded set
Ck ∈CC . A setI⊆E is said to be a robustly controlled invariant set (RCIS), if there exists a control
law g :E×CC→Q,qk=g(εk,Ck), such that, for all k0, if εk0 ∈I, then ∀k>k0 and ∀ck ∈Ck, it
holds that εk ∈I.

In our case, the f function is defined by Equation (4) and the RCIS is an interval [−e,E], with
E≥0 and (L−1)P≥e≥0, which we wish to be of minimum measure. Both extremal points of
the interval, e and E , have a practical significance. By increasing E , we allow greater delays in
the termination of each job, degrading the offered QoS level. On the other hand, increasing e we
allow a task to terminate earlier; hence, it may receive more bandwidth than the minimum it strictly
requires. As shown below, feasible choices for e and E result from the width of the uncertainty
interval Ck and from the Q set.
The equilibrium condition can be sustained if (1) the prediction of interval Ck is correct and

(2) the value decided for Qk is immediately and correctly applied. Occasional violations of these
two conditions could drive the system state outside of the RCIS. In this case the desired behaviour
for the controller is to restore the equilibrium situation. More formally:

Definition 2. Consider a system as in Definition 1 and two sets I and J with I⊆J⊆E:
(1) I is h-step-reachable from J, if there exists a control law g :E×CC→Q, qk=g(εk,Ck),

such that ∀εk ∈J\I: c j ∈C j ∀ j=k, . . . ,k+h⇒εk+h ∈I;
(2) I is reachable from J if there exists h such that I is h-step-reachable from J.

We are interested in the case in which the target set I in the reachability definition is an RCIS
for the system, whereasJ defines the maximum deviation that a task is temporarily allowed to take
from its desired condition (i.e. the maximum delay that it makes sense for a task to accumulate). If
J=E, we speak of global h-step-reachability (or of global reachability).
We are now in a condition to formally state design goals for the controller. Such goals are related

to the QoS guarantees provided to each task �(i), for which we assume the definition of two intervals
I(i) and J(i) with I(i)⊆J(i) and of a number h(i). In particular, we partition the tasks in the
system in the following three classes:

• Class A: (1) I(i) is a globally reachable RCIS, (2) I(i) is h(i)-step-reachable from J(i) and
(3) (ancillary) if the task features a piecewise constant computation time, then �(i) is reduced
to 0 in a finite number of steps.
• Class B (superclass of class A): I(i) is globally reachable.
• Class C: no guarantee is offered but the controller tries to offer the same performance as for
class A according to a best-effort policy (i.e. if there is an availability of bandwidth).

The third goal for tasks of class A is an ancillary one: it refers to a limited class of applications,
which have several operation modes and exhibit a repetitive behaviour in each mode, leading to a
practically piecewise constant ck .

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 11

Figure 2. Control scheme: to each task is attached a local feedback controller and the total
bandwidth requests are mediated by a supervisor.

4.2. Control architecture

As we take measurements upon the termination of each job, we do not assume any fixed sampling
period. In fact, our feedback scheme is based on a discrete event model. Moreover, a system-
wide notion of ‘sampling’ is entirely missing, as the sampling events are asynchronous for the
different tasks. These considerations dictate a decentralized control scheme (Figure 2), where to
each task is attached a dedicated task controller that is responsible for maintaining the task QoS
level within specified bounds with the minimum CPU utilization. Still, the total bandwidth requests
from the different task controllers are allowed to exceed the bound in Equation (1). To handle
this situation (henceforth referred to as overload), a supervisor component is used to compute the
actual bandwidth allocations that allow one to respect the QoS requirements of the various classes
of tasks.
One final requirement is that the workload due to the control components themselves needs to

be very low. This rules out such design approaches as dynamic programming or model predictive
control, which feature excellent performance at the price of unacceptable computation resources.

4.3. Task controller

A task controller comprises of two components: a feedback controller and a predictor. At the
termination of each job Jk , sensors located inside the RR scheduler provide its computation time ck
and the experienced scheduling error �k+1. The former information may be used by the predictor in
the estimation of a range Ck+1 expected to contain the next job computation time. This information,
along with the measured εk+1 value, is used by the feedback controller to fulfil the task design
goals.

4.3.1. Feedback controller

In the following, we assume that the feedback controller operates with perfect predictions (ck ∈
Ck). It operates evaluating the worst-case effects (with respect to the design goals) caused by the
uncertainty of ck . As discussed above, the reachability of the equilibrium makes the scheme resilient
to occasional errors.
Robust-controlled invariance: As εk evolves in the lattice E introduced in Section 4.1, the RCIS

sets of interest are of the form I=[−e,E]=[−êP, Ê P], with ê∈N∩[0, L], Ê ∈N (we chose

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

12 L. PALOPOLI ET AL.

T = LP). For the sake of brevity, we assume that ê+ Ê<L−1. The following result provides what
choices of ê and Ê yield an attainable RCIS, for a given predictionCk=[hk,Hk] and saturation value
for the command variable Q, and what feedback control laws enact robust-controlled invariance
of I.

Theorem 2. Consider the system in Equation (4) and assume that ck ∈Ck=[hk,Hk], and Qk ∈
Q=[0,Q]. Consider the intervalI as defined above and let �k�hk/Hk, �� infk{�k}, H�supk{Hk}.
Then, I is an RCIS if and only if

ê+�Ê>L(1−�)−1∧Q>
H

L
(6)

Furthermore, the family of controllers ensuring robust-controlled invariance of I is described as
follows:

Qk ∈
[

Hk

L+ Ê−S(εk)/P
,min

{
hk

L−1− ê−S(εk)/P
,Q

}[
(7)

where S :R→[0,+∞[is defined as S(x)�max{0, x}.
The result above does not simply lead to a feedback controller but to a family of feedback

controllers that can keep the system state in the desired equilibrium. Possible guidelines for feedback
design can be:

• choose the leftmost extremal point in Equation (7) to either save bandwidth or have the
maximum possible tolerance to small violations of the lower prediction bound of the prediction
(ck<hk);
• choose the rightmost extremal point to have themaximumpossible tolerance to small violations

of the upper prediction bound ck>Hk for the next sample;
• choose the middle point in order to gain maximum robustness with respect to violations of

both bounds;
• choose a point that, for piecewise constant inputs, realizes a perfectly null scheduling error

as soon as possible;
• choose a point that optimizes some other property of the system, such as a cost function defined

by weighting the resulting uncertainty on the next scheduling error and the used bandwidth.

Remark 1. It is straightforward to show that if the predictor succeeds with probability at least p
(Pr{ck ∈Ck}≥ p), then the control approach proposed above ensures that Pr{εk+1∈I |εk ∈I}≥ p.
In simpler words, controlled invariance of I is preserved with a probability at least equal to the
one of producing a correct prediction.

4.3.1.1. Reachability. The following result shows how to steer the system from a state belonging
to a set of the form J=[−(L−1)P,�P], with �>Ê , back into an RCIS interval of the form
I=[−(L−1)P, Ê P], with Ê ∈N. In view of Equation (4), if the system is able to preserve
invariance of I, then it is trivial to steer the system from a negative scheduling error to I in
one step. Therefore, bounding e to the maximum possible value of (L−1)P is not a loss of
generality.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 13

Theorem 3. Consider the system defined by Equation (4). Consider the intervals I and J as
defined above. Let H̃h=supk(1/h)

∑k+h−1
j=k �Hj/Q�Q and assume that limit H̃� limk→+∞(1/k)∑k−1

j=0�Hj/Q�Q exists and is finite. Then

(1) a sufficient condition for the global reachability of I is Q>H̃/L;
(2) a necessary condition for the global reachability of I is Q≥ H̃/L;
(3) ifJ is globally reachable, thenI is h-step-reachable fromJ if and only if h≥��− Ê/L−1�

and Q≥hH̃h/(hL−�+ Ê).

4.3.1.2. Control to zero. Assume that the system evolves in an RCIS using an control law compliant
with Equation (7). Concerning the third requirement for class A tasks, the following result shows
under what conditions the error may be reduced to 0 in one step, whenever the controller has a
good estimate of the next computation time (as it might happen if the input features a piecewise
constant behaviour).

Fact 1. Assume that the system evolves in an RCISI=[−e,E] using a control law compliant with
Equation (7). Let H=supk Hk and h= infk hk. Then, the set Z of ck values that, if known in
advance by the controller, allow a choice of Qk among the ones dictated by Equation (7), which
controls the scheduling error to zero in one step ∀εk ∈I, is given by

Z=
{
c̃

∣∣∣∣∣H T−E−P

T
<c̃≤h T

T −P−e ∧ c̃≤
Q

P
(T −E)

}
(8)

where the 1-step zero controller may choose Qk in the following range

qk ∈
[

c̃

T−S(εk)
,

c̃

T −S(εk)−P

[

intersected with Equation (7).

4.3.2. Predictor

According to Theorem 2 and Remark 1, the prediction interval should be as small as possible to
have an RCIS that is as small as possible. On the other hand, it is important that it be correct with a
good probability, so as to have a good probability of keeping the scheduling error within the RCIS.
Therefore, it is necessary to find a good trade-off between a tight interval and a good prediction
probability. This design activity is influenced by the knowledge on the stochastic properties of
the process {ck}, which are largely application dependent. For this reason our architecture (see
Section 5) allows the application to use a custom predictor together with the task controller. This
is extremely useful for exploiting results such as those found in [36], where it is shown that while
parsing a MPEG2 (moving picture experts group2) or MPEG4 video frame from such information
as the pixel count, byte count, macroblock counts and a few others, it is possible to build an accurate
estimate of the frame decoding time with roughly a 5% overhead, a great part of which is due to
the frame parsing operation that extracts the cited parameters, and that is however needed by the

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

14 L. PALOPOLI ET AL.

decoder for its operation. Nonetheless, the architecture provides a set of simple ‘library’ predictors
of general usefulness, displaying a fair level of performance for a wide set of applications, at a very
limited computational cost.
Considering the set of the latest n observed computation times, the prediction interval Ck is

obtained as a weighted average of these samples �k=
∑n

j=1w j ck− j plus/minus their standard
deviation �k multiplied by a constant �, which permits one to trade prediction accuracy against the
probability of wrong estimation. If the weights are all equal to 1/n, we obtain a standard moving
average of length n, henceforth denoted as MA[n]. In this case, �k and �k may be computed with
an O(1) computation time and an O(n) memory occupation.
In some cases (e.g. MPEG decoding), the application has a periodic pattern (e.g. due to the

groups of pictures, GOP), which is reflected in the autocorrelation structure of the ck process. In
this case, we experimented using more than one moving average, e.g. as many moving averages as
the periodicity of the process. If S is the period of the sequence, this algorithm features an O(1)
computation time and a memory occupation of nS. We denote this type of predictor as MMA[n, S],
meaning that it runs S moving averages of length n each.
The algorithms proposed above are very efficient and offer an acceptable accuracy (see Section 6).

In addition, we evaluated the possibility of computing the taps w j as a result of a least-square
optimization program. If the process stochastic properties do not change too much in time, it is
possible to have a first ‘training’ phase, during which the application executes with a fixed bandwidth
and a certain number of samples are collected. When the number of samples is sufficient, it is
possible to optimize the prediction filter and—henceforth—proceed with the computed taps. We
will denote this solution as OL[n,N], where n denotes the number of taps and N the length of the
training set. More sophisticated prediction schemes (e.g. adaptive ones like recursive least squares)
lead to an unsustainable overhead.

4.4. Supervisor

The main role of the supervisor is to ensure that each task receives its guaranteed amount of
bandwidth, whenever its dedicated task controller requires it, even when the system is overloaded
and the cumulative requests of bandwidth from the different controllers exceedUlub. To this regard,

Theorem 3 provides an estimation of the minimum bandwidth B
(i)
B =Q

(i)
B /P(i) required for tasks

of class B. Similarly, the minimum bandwidth B
(i)
A =Q

(i)
A /P(i) required for tasks of class A is the

maximum between the one indicated in Theorem 3 and the one indicated in Theorem 2. Note that
for the same task �(i), B

(i)
A ≥ B

(i)
B .

In order for the task controllers to attain their design goals, the supervisor has to behave as
follows:

• if task �(i) is of class A and B(i)≤ B
(i)
A , then B(i) is granted; otherwise the supervisor has to

grant at least B
(i)
A ;

• if task �(i) is of class B and B(i)≤ B
(i)
B , then B(i) is granted; otherwise the supervisor has to

grant at least B
(i)
B ;

• the difference between Ulub and the total bandwidth that has to be granted according to the
first two points is allocated to the tasks using some heuristics (see Section 5.3).

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 15

Clearly, a preliminary condition is that the relationship between the running tasks holds:

∑
j∈class A

B
(j)
A +

∑
j∈class B

B
(j)
B ≤Ulub (9)

As a final remark, the changes in the bandwidth of the tasks subsequent to the occurrence of an
overload condition have to be performed according to the rules stated in Section 3.2 to maintain
consistency of the adaptive reservation mechanism. Therefore, the configuration of the scheduler
eventually decided by the supervisor is not instantly applied. However, in our practical experience,
the feedback scheme is resilient to the small delays thus introduced.

5. SOFTWARE ARCHITECTURE

In this section we describe the software architecture we developed for providing a concrete
implementation of the techniques proposed in the previous sections. As a reference system,
we chose the GNU/Linux OS, with kernel versions up to 2.4.32 and 2.6.21. A considerable
advantage of Linux, alongside of the free availability of the source code and documentation,
is its modular structure that allows one to extend the kernel functionality by simply inserting a
module. Our software comprises a set of application libraries and dynamically loadable kernel
modules.

5.1. Design goals and architecture overview

The design of the system was carried out pursuing the following goals:

• Portability: the link between the proposed architecture and the adoption of a specific kernel
platform is shallow. To achieve this goal, we designed a layered structure where a kernel-
dependent code is confined inside the lowermost level. Moreover, the changes made on the
kernel are minimal and the communication between the different components of the architec-
ture (which runs partly at the user level and partly at the kernel level) uses virtual devices,
which are commonplace in POSIX Operating Systems.
• Backward compatibility: existing non-real-time applications run without modifications and

are scheduled by the standard Linux scheduler in the background w.r.t. soft real-time
applications.
• Flexibility: our architecture allows one to easily introduce new control and prediction algo-

rithms, different from those shown in this paper. These algorithms can be run either in the
user space or in the kernel space.
• Efficiency: the overhead introduced by our framework, in addition to the one due to context

switches (which are a direct consequence of the new functionality), is negligible.
• Security: in order to prevent voluntary denial of service attacks based on the new mechanism,

it must be possible to define maximum CPU bandwidths on a per-user or per-group basis
(in the same manner as disk quotas).

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

16 L. PALOPOLI ET AL.

The proposed architecture is depicted in Figure 3 and is composed of the following main
components:

• the generic scheduler patch (GSP), a small patch to the kernel (less than 200 lines in 7 modified
files), which allows one to extend the Linux scheduler by intercepting scheduling events and
executing an external code in a kernel module;
• the kernel abstraction layer (KAL), a set of C macros that abstract the additional functionality

we require from the kernel, e.g. the ability to measure time and set timers, ability to associate
data with the tasks, etc.;
• the QoS Reservation component, composed of a kernel module and an application library

communicating through a Linux virtual device:

◦ the RR module implements an EDF scheduler, the RR mechanism (based on an EDF
scheduler) and the RR supervisor; a set of compile-time configuration options allows one
to use different RR primitives and to customize their exact semantics (e.g. soft or hard
reservations);
◦ the RR library provides an application programming interface (API) allowing an application

to use RR functions;

• the QoS manager component, composed of a kernel module, an application library and a set
of predictor and feedback sub-components, which may be configured to be compiled either
within the library or within the kernel module. It uses the RR module to allocate the CPU:

◦ the QoS manager module offers kernel-space implementations of the feedback control and
prediction algorithms shown in this paper;
◦ the QoS manager library provides an API allowing an application to use the QoS manage-
ment functionality; as far as the control computation is concerned, the library either imple-
ments the control loop (if the controller and predictor algorithms are in the user space)
or redirects all requests to the QoS manager kernel module (in case a kernel-space imple-
mentation is required). The latter communicates with the RR module to take measure-
ments of the scheduling error or to require bandwidth changes. Consistently with the
feedback scheme presented in the previous section, such requests are ‘filtered’ by the QoS
supervisor.

A detailed description of the different components follows.

5.2. Generic Scheduler Patch

A preliminary description of this patch can be found in [37]. The idea is not to implement the
RR by a direct modification of the Linux scheduler. Instead, the GSP intercepts scheduling-related
events invoking appropriate functions inside the RR module. In this manner, it is possible to force
Linux scheduling decisions without replacing its scheduler (which can be called, for instance, to
schedule the non-real-time activities in the background).
The patched kernel exports a set of function pointers (called hooks). The code excerpt in

Figure 4 clarifies this concept: whenever a scheduling-related event occurs, the appropriate function
is invoked through a function pointer (the hook) if set. The table of hooks may be appropriately

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 17

Figure 3. System architecture.

Figure 4. Example utilization of the hook mechanism.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

18 L. PALOPOLI ET AL.

set by a dynamically loadable module¶ . The relevant events for which hooks have been introduced
are task creation and termination, block and unblock when accessing a shared resource, stop and
continue because of receiving the SIGSTOP and SIGCONT signals. For each of these events,
there is a corresponding pointer in the hook table: fork hook, cleanup hook, block hook,
unblock hook, stop hook and continue hook.
The event handlers and the necessary data structures (e.g. scheduling queues) are contained

in a kernel module. They receive the pointer(s) to the task struct of the interested task(s)
as parameter(s). The GSP also allows one to link external data with each task, through a new
scheduling data field that extends the task struct structure. As an example, the RR
module implementing the RR uses this pointer to quickly associate each task with the server it is
currently running into.

5.3. QoS reservation component

To better understand how our scheduler works, we briefly recall here the structure of the Linux
scheduler. The standard kernel provides three scheduling policies: SCHED RR, SCHED FIFO and
SCHED OTHER. The first two policies are the ‘real-time scheduling policies’, based on fixed
priorities, whereas the third one is the default time-sharing policy. Linux processes are gener-
ally scheduled by the SCHED OTHER policy, but privileged tasks can change it by using the
sched setscheduler() system call when they need real-time performance.
The Linux scheduler works as follows:

• If a real-time task (SCHED RR or SCHED FIFO) is ready for execution, then the highest
priority one is executed. If SCHED FIFO is specified, then the task can be pre-empted only
by a higher priority task. If SCHED RR is specified, after a time quantum (typically 10ms),
the next task with the same priority (if any) is scheduled (i.e. all SCHED RR tasks with the
same priority are scheduled in round-robin).
• If no real-time task is ready for execution, SCHED OTHER tasks are executed and scheduled

according to a set of heuristics.

Furthermore, Linux implements POSIX threads as tasks that share a set of resources (e.g. the
memory tables), but the scheduler is concerned only with scheduling of single threads of execution,
referred to as tasks for historical reasons. Therefore, from now on we will use the term task to
denote either a single-threaded process or a single thread within a multi-threaded process.
The KAL affects the Linux scheduler decisions by simply manipulating the queue(s) of ready

tasks used by the standard kernel scheduler, with the help of the GSP functionality. Tasks are forced
to run at a higher priority than any other Linux task by assigning them a SCHED RR policy and a
statically configurable real-time priority. On the contrary, tasks are forbidden to run (for example,
for implementing hard reservations) by temporarily removing them from the Linux ready queue
(for kernel 2.4 we used to set their real-time priority to a value below the minimum possible value).
The described mechanism works as expected as long as there are no Linux tasks running at a

real-time priority higher than the one used by the KAL, and the soft real-time tasks themselves do

¶Owing to the full pre-emptiveness of the latest kernel releases, use of hooks in the shown code fragment and changes to
the hook table need to follow an appropriate synchronization protocol, whose details are omitted for the sake of brevity.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 19

not try to use Linux real-time scheduling facilities, in addition to the functionality provided by our
infrastructure. In the former case, the reserved tasks would undergo the interferences of the higher
priority tasks. In the latter case, their requests to the Linux scheduler would be silently ignored by
the kernel.
This approach minimizes the changes required to the kernel and it permits coexistence and

compatibility with other patches that modify the scheduler behaviour, e.g. the pre-emptability
patch [38].
We are now ready to present our QoS reservation component. The core mechanism is implemented

in a Linux kernel module: the RR module. The scheduling service is offered to applications through
a library (RR library). The communication between the RR library and the RR module is established
through a Linux virtual device.

5.3.1. RR module

This module implements various RR algorithms: CBS [5], IRIS [39] and GRUB [6]. When the
module is inserted, the appropriate hooks are set and the data structures are initialized (see Figure 4).
Linux tasks that do not need RR are still managed by the Linux scheduler. Tasks that use the RR
mechanism are scheduled by our module. The module internally implements an EDF queue with
the purpose of implementing the selected RR algorithm (CBS or one of its variants).
The module is configurable to allow a server to serve only one task or, alternatively, a group

of tasks. The second choice is particularly useful when allocating bandwidth to a multi-threaded
application as developers/designers do not need to allocate bandwidth to each thread but to the
entire application. This option, however, is not illustrated in depth in this paper, as we assume that
a server is used only for one task.
If the module is configured for allowing multiple tasks per server, one default server is dedicated

to Linux tasks that are not associated with any server. This is to avoid that reserved tasks starve
standard Linux tasks and system services.

5.3.2. QoS supervisor component

The bandwidth requests coming from the task controllers can be accepted, delayed, reshaped or
rejected by the QoS supervisor in order to enforce the global consistency relation in Equation (1).
In addition, for security reasons, we want to avoid the fact that a single user, either maliciously or
due to a software bug, can cause a system to be overloaded by requesting too much bandwidth and
forcing tasks of other users to obtain reduced bandwidth assignments. For this reason, a privileged
user (e.g. the system administrator) can define maximum bandwidths for each user and user group.
The supervisor operates both at the creation of a server and during the execution of a task. In the
first case, the application provides the required minimum guaranteed bandwidth, which undergoes
the admission control process, based on the test in Equation (9). When the system is not overloaded,
the QoS supervisor propagates (see also Section 4.2) to the scheduler the bandwidth requests
from the task controllers. In overload conditions, tasks of classes A and B receive at least their
minimum guaranteed bandwidth if they required it, B

(i)
A and B

(i)
B . The bandwidth left from this initial

assignment Ulub−∑
i∈classA B

(i)
A −

∑
i∈classB B

(i)
B is assigned using a heuristic based on priority

levels and weights. First, requests from tasks with higher priority levels are satisfied. Among

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

20 L. PALOPOLI ET AL.

the tasks in the same level, the bandwidth is shared in proportion to their weights. Moreover,
maximum per-level bandwidth limits may be specified so as to avoid complete starvation of lower
levels.
The supervisor policy, based on the different configuration options described earlier, can be

configured into the system by a privileged user by means of the RR library. The administrator can
configure the supervisor through a configuration file.

5.3.3. RR library

The RR library exports the functionality of the RR module and of the QoS supervisor module to
the user applications through an appropriate API. All functions can operate on any Linux process,
provided the application has enough privileges.
The library provides an API to:

• create a new server with either statically or dynamically assigned bandwidth;
• change and retrieve server parameters after creation;
• move a task from one server to another;
• configure the supervisor.

The communication between the RRmodule and the QoS supervisor module is performed through
a Linux virtual device and the ioctl() primitive.

5.4. QoS manager component

This component is responsible for providing a task with a set of standard control and predic-
tion techniques that may be used by the task in order to dynamically adjust its bandwidth
requirements.
The QoS manager is split into two distinct parts: a user-space library and a loadable kernel

module. The control and prediction algorithms can be located in both spaces. The application is
always linked to the QoSmanager library and interacts with it. Depending on the configured location
of the required sub-components, the library redirects all library calls to either a user-space code or
a kernel-space management code (through the proper virtual device).
In Figure 5 we report a sequence diagram that shows the sequence of functions called when a job

ends if the controller is implemented as a library function in the user space (the case of kernel-space
implementation is very similar).
When a job of a periodic task is about to suspend, it calls qmgr end cycle(), which is

redirected to the appropriate function (for kernel-space implementation, the primitive is translated
into an ioctl() invocation to the virtual device).
The main difference between the user-space and the kernel-space implementation is in the number

of times the application switches between the user and kernel spaces. For kernel-space implemen-
tation only one switch is needed. On the contrary, when the controller is implemented in the user
space we need two switches (the first one to obtain the sensor data and the second one to request
the bandwidth change). The possibility of compiling a control algorithm in the kernel space aims
at reducing at the bare minimum the overhead of our QoS management infrastructure, what is
particularly relevant in the context of embedded systems.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 21

Figure 5. Interaction among various parts of the architecture when the controller and the predictor are in the
user space. The dash and dot line separates the user-space and kernel-space components.

5.5. Task structure

The typical structure of a task making use of our architecture for the adaptive reservations is shown
in Figure 6. For the sake of flexibility, the mechanism required to ensure a periodic activation of
the task is left to the application programmer. As an aid to programmers, the QoS manager library
also offers the qmgr start periodic() utility function. This function receives as a parameter
a pointer to the function that implements a job and ensures that such a function is periodically
activated and terminated by a call to qmgr end cycle().
The user is allowed to specify his/her own user-level implementation for the control and prediction

algorithms or to choose among one of the library components. For the moment, the only available
control algorithm is the one shown in this paper. Our system supports the mechanism of trial
executions, i.e. the ability to run an application with no guarantees or with a fixed bandwidth for a
limited period of time in order to compute the QoS parameters needed by the middleware. These
parameters may be retrieved by the application at the end of the trial execution by means of a library
call.
As a final remark, if one does not need to use the adaptation mechanism, it is possible to

transparently use the RR mechanism. In this manner, legacy applications can be executed with a
fixed bandwidth without any modification. The qres-wrap command-line utility available within
the AQuoSA framework allows one to start (through an exec() call) any program within a server,
so that any spawn thread or task is automatically attached to the same server.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

22 L. PALOPOLI ET AL.

Figure 6. Sample task code.

6. EXPERIMENTAL RESULTS

In order to validate the presented approach, we used our middleware in an example application
consisting of a simple MPEG-2 decoder, which complies with the periodic task model shown
earlier. The implementation was based on the FFMPEG library [40] and it consists of a task
that periodically reads a frame from a RAM virtual disk partition, and decodes it writing the
result into the frame-buffer. The decoding task has a period of 40ms (corresponding to a standard
25fs−1).
We performed two classes of experiments. The first one is aimed at showing the effectiveness

of the feedback controller by comparing the evolution of the scheduling error attained for different
configurations. The second one is aimed at assessing the overhead introduced by our mechanisms.
The description of the hardware/software platform we used is in Table I.
Experiments have been performed on a system running the Linux 2.4.27 kernel release. Together

with the GSP, we applied two additional patches: the High-Resolution Timer (hrtimers-2.4.20-3.0;
[41]) and Linux Trace Toolkit (LTT) (TraceToolkit-0.9.5; [42]).

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 23

Table I. Hardware–Software platform.

Hardware platform
Processor AMD Athlon(tm) XP 2000
Frequency 1666MHz
RAM size 512Mb
RAM disk partition size 128Mb

Software platform
Linux distribution Fedora core 2
Compiler version gcc v. 3.3.2
Kernel reference version 2.4.27
FFMPEG library version 0.4.8

The use of the High-Resolution Timers patch is de facto necessary for our applications as the
default Linux timers resolution is too low for our purposes (10ms for kernel 2.4, may be configured
up to 1 ms for kernel 2.6). Using the High-Resolution Timers patch, it is possible to set timers and
take time measurements with a granularity in the order of 10�s.
The LTT patch is a powerful kernel-tracing system developed for the Linux kernel. LTT has

been used for measuring the overhead of the RR mechanism, but it is not strictly required in the
middleware. The overhead introduced by LTT in our experiments is negligible with respect to the
measured quantities. Indeed, the traced events are only the scheduling changes, which are few
enough to keep in check the overhead introduced by the tracer.

6.1. Performance evaluation

Before illustrating the experimental results of this section, it is useful to briefly introduce the metrics
that we adopted to measure performance and the main factors that influence it.
As discussed earlier, the design goal of a task controller is to maintain the system state in an

equilibrium condition (in which �k is contained in the [−e,E] set) and to restore the equilibrium
in case of perturbations. Hence, the first important performance metric for our system is the exper-
imental probability of �k falling into the target set [−e,E]. This metric, along with the average
number of steps required to recover the equilibrium, quantifies the robustness of our design with
respect to practical implementation issues. Moreover, a metric of interest is the average bandwidth
allocated to the task: keeping this value as close as possible to the strict necessary allows us to
maximize the use of the resource for applications having QoS guarantees (which is not doable
using a fixed bandwidth allocation enriched with some reclaiming schemes [6]). Along with the
quantitative performance metrics indicated above, a useful qualitative assessment can be made by a
visual inspection of the experimental probability mass function (PMF), which should display small
tails outside the target set [−e,E].
The main factors degrading the target performance are (1) prediction errors, (2) approximate

knowledge of the application parameters required in Theorems 3 and 2 and (3) overload situations.
For the sake of simplicity, we will not consider here the third factor. This is equivalent to assuming
that the considered task is of class A. The quality of the prediction can be evaluated considering
the measure of the interval [hk,Hk] and the probability of ck ∈[hk,Hk]. These parameters are
influenced by the stochastic properties of process ck and by the prediction algorithm.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

24 L. PALOPOLI ET AL.

(a)

(b)

Figure 7. Experimental probability mass function (a) and autocorrelation (b) of the two input traces.

To evaluate the impact of the ck process, we considered two different video streams (see
Figure 7(a)). For both we used an adaptive reservation with period P=1ms, which is 1/40th of
the task period.
The difference in the stochastic properties of the processes is due to the coding scheme. Indeed,

an MPEG-2 file consists of frames belonging to three classes: I , P , B. It is very frequent in DVD
to have a periodic structure (e.g. IBBPBBPBBPBBI. . .). This situation is referred to as closed GOP.
This is exactly the case for the first video stream in which frames of type I are repeated with
period 12. This is visible in the autocorrelation structure (see Figure 7(b)), which displays important
peaks repeated with period 12. There is also a sub-period (due to the repetition of P frames), which
determines smaller peaks every three samples. The second MPEG file has a more complex structure.
In this case, the coding scheme is piecewise periodic (i.e. frames of type I are more frequent in
certain scenes). In other words, we do not have a closed GOP. In particular, in certain segments
we identified a periodicity of 15. The autocorrelation function (which is averaged throughout the
whole trace) displays only a significant peak for the third sample (see Figure 7(b))‖.
For the first video stream, the average and the maximum computation bandwidth required through

the whole trace were, respectively, Bav1=18.33% and Bmax1=62.31%. In this number we also
accounted for occasional ‘spurious’ spikes due to the execution of long interrupt drivers. Indeed, in
order to maintain an acceptable response time for the Linux interrupts, we execute the drivers using
the bandwidth of the interrupted tasks. In terms of our control design, this can be regarded as an
unmodelled disturbance term. The specification for the task controller was to achieve an RCIS of

‖If we had a prior knowledge of the different periods used in a piecewise periodic scheme, it could be possible to use
adaptive predictors that are able to recognize the periodicity changes and adjust the algorithm accordingly. This type of
sophisticated predictors is out of the scope of this paper.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 25

(a) (b)

Figure 8. Comparison among the scheduling error PMFs achieved by various controllers
and predictors on the first (a) and second (b) video stream.

e=0.2T and E=0. Another requirement was to recover from a maximum deviation of one period
in at most h=10 steps. We considered the applications of three types of predictors: MMA[3,12],
OL[36,60] and OL[45,180]. A trial execution of 1000 samples showed that a maximum bandwidth
of 25% was sufficient to meet the requirements.
In Figure 8(a), we compare the scheduling error experimental PMFs attained throughout the whole

execution. For the sake of completeness, we also show the PMF obtained with a fixed bandwidth
for two values: 20 and 25%. In Table II we report the quantitative evaluation of the performance
(using the metric introduced above). With a static bandwidth allocation ‘centring’ the distribution
inside the target set is not an easy task. Indeed, a bandwidth value too close to the average results
in local instabilities throughout the execution (leading to enormous average errors). Conversely, a
high bandwidth value ensures stability of the system, but the average scheduling error is negative
and high in modulus, highlighting a wasteful usage of the CPU resource.
The controller endowed with the MMA predictor is able to compensate the different computation

times for frames of different types. Therefore, the second peak of the PMF disappears and the
probability of staying in the target set is 76%. The improvement attained with the OL predictors
is evident in the picture and in the quantitative figures. The price to pay is clearly the additional
complexity. In most cases, for all predictors, a deviation from the target set is recovered in one
step. Indeed, for instance, the average number of steps required to restore the equilibrium with the
MMA[3,12] predictor was 1.034.
For the second video stream, the average and the maximum computation bandwidths required

through the whole trace were, respectively, 12.65% and 20.33%. In this case, the specification for
RCIS was e=0.2T and E=0.05T . In case of deviation from the equilibrium, we required recovery
in three steps. As far as the predictors are concerned, for this experiment we used an MA[3],
MMA[3,3] and OL[15,180]. Also for this case, a maximum bandwidth equal to 25% was estimated
to be sufficient for attaining the specification in a trial execution of 1000 samples.
The experimental PMFs are reported in Figure 8(b) and the quantitative data in Table II. Owing to

the lack of a strong correlation structure in this trace, the improvement using sophisticated predictors

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

26 L. PALOPOLI ET AL.

Table II. Empirical statistics collected during the execution of the streams. Average �� and variance �� are
expressed as a percentage of the task period.

Predictor p (%) �� (%) �� (%) �b (%) �b (%)

First video stream
Fixed bandwidth 20% 26.34 2700 5470 — —
Fixed bandwidth 25% 29.7 −24.03 12.1 — —
MMA[12,3] 76 −6.87 8.5 20.41 6.4
OL[36,60] 86.61 −8.31 7.1 20.64 6.77
OL[45,120] 89.93 −8.49 6.4 20.68 6.77

Second video stream
Fixed bandwidth 13.3% 34.16 6844 9889 — —
Fixed bandwidth 17.8% 42.60 −21.6 8.9 — —
MA[3] 92.75 −9.73 7 14.45 4.8
MMA[3,3] 93.18 −10.04 6.8 14.49 4.8
OL[15,180] 96.36 −11.15 6.3 14.67 5.03

is not as large as for the first video stream. The average number of steps required to restore the
equilibrium with the MA[3] predictor was 1.142.

6.2. Overhead evaluation

The overhead introduced by our middleware is the combination of two different effects:

• The time required to execute the code of the middleware functions (RR and control
mechanisms).
• The number of additional context switches introduced by the scheduler.

The system workload is a relevant factor for both effects. Indeed, the management of the scheduling
queues grows linearly with the number of tasks (in our implementation). Therefore, the execution
of the hooks invoking the scheduler should display a similar behaviour.
The number of context switches introduced by the mechanism, for a given application, is also

affected by the reservation period P and by the allocated bandwidth (which can be fixed or dynamic).
The influence of P is evident. As far as the bandwidth is concerned, jobs with a higher bandwidth use
a lower number of reservation periods to terminate, i.e. the number of context switches decreases.
We evaluated the overhead effects on theMPEG decoding application. The first set of experiments

was aimed at assessing the execution time of the different hooks. We measured the duration of each
hook for different workload conditions. In particular, we considered the execution of the task in
isolation, and together with 10, 20 and 30 dummy tasks. Each dummy task consisted of an infinite
loop and it was run by an RR with fixed bandwidth and with reservation period varying in a range
from 20 to 40ms. For each load condition, we ran the periodic task with a different bandwidth
allocation. In particular, we used a fixed value for the bandwidth of 1.1Bav1 (i.e. 10% greater than
the average required bandwidth) and a feedback scheduler. For the latter, we used the same settings
as above for the target set and an MA[3] predictor. The measurements were taken throughout the
execution of 8000 frames of the stream, and we recorded the mean value. The results are reported
in Table III. Clearly, to obtain the total execution time, we have to sum up the execution time of the

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 27

Table III. Measured execution time, in CPU clock cycles, of the scheduling hooks.

No load 10 Tasks 20 Tasks 30 Tasks

fork hook handler 198 194 179 175
cleanup hook handler 80 73 65 59
do fork 189920 229867 251982 271998
do exit 165154 160233 159187 160244

unblock hook handler 526 645 701 805
block hook handler 230 10719 13501 15274
sched timeout 336 420 460 520
schedule 547 1612 2386 3205

qmgr end cycle 1399 1414 1420 1426

hook to the one of the Linux standard function (see the excerpt in Figure 4), which is reported in
the table for the sake of completeness. Each number is expressed in clock cycles (on the considered
system, 1000 clock cycles correspond to about 600 ns).
The first set of results displays the implementation cost for the RR scheduler. These results

are unaffected by the server period and by the bandwidth chosen for the task (both for what
concerns its value and its allocation policy, i.e. static or adaptive). The execution time of the
scheduling functions is approximately of the same order of magnitude as that of the standard Linux
scheduler. The sched timeout() function is the handler of timer-related events: it is involved
in budget handling (expiration and replenishment) and server scheduling. For this reason it is the
main ‘responsible’ of the context switches. As shown in the table, the growth rate of the average
execution time of this function with respect to the workload is lower than the one of the standard
Linux function (schedule).
We also evaluated the computation cost for the QoS Management algorithms (feedback and

prediction), which is reported in the last row of the table (qmgr end cycle). As one would
expect, in this case no real influence of the workload can be appreciated (only a slight increase due
to cache effects introduced by other tasks in the system).
As far as the server creation and termination is concerned, the additional overhead introduced

by the fork hook handler() and cleanup hook handler() functions is negligible with
respect to the corresponding Linux functions do fork() and do exit().
In the second experiment, we evaluated the number of context switches and the total overhead

introduced by our mechanisms. The overhead was measured as the ratio of the duration of the
periodic task in different configurations using our middleware to the duration of the same task when
executed in isolation without using any RR mechanism. The measurements were taken varying the
RR period and the workload, and they are reported in Figure 9. Namely, for each workload situation,
we varied the server period (on the horizontal axis). The first row is relative to a fixed bandwidth
assignment, whereas the second row is relative to the use of feedback scheduling. The plots in the
left column show the number of context switches and the plots in the right column show the total
overhead. The dummy processes shared a total bandwidth equal to 10%. In all cases, we can see
that the shapes of the plots reporting the number of context switches and the overhead are quite
similar. This is because the function calls introducing most of the overhead are always associated

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

28 L. PALOPOLI ET AL.

(a) (b)

(c) (d)

Figure 9. Number of context switches (left column) and relative overhead (right column) on the first video
stream, with a fixed bandwidth of 1.1Bav1 (a),(b), and with a dynamic allocation using an MA[3] predictor

(c),(d). The horizontal axis represents the server period P .

with a context switch. The growth rate of both quantities is approximately linear with the number
of dummy tasks.
The changes with respect to the reservation period follow approximately a hyperbolic pattern. This

is perfectly consistent with our theoretical expectations. Indeed, if we think of a task in isolation and
consider a periodic task with average execution time C , period P served by a reservation (Q, P),
the average number of context switches in a time interval of lengthW is given by 2(W/T)�C/Q�=
2(W/T)�C/BP�, which can be approximated by a hyperbolic relation (the effect of ceiling can
be neglected for low values of P). The presence of workload dummy tasks shifts upward this plot,
but the qualitative appearance remains similar.
As a consequence, one would expect a lower overhead using greater bandwidth values, as it would

decrease the number of context switches. This is highlighted in Figure 10, where the measurements
have been taken in the absence of dummy tasks. As it is possible to see, the overheads obtained for
the adaptive reservation are intermediate between the ones obtained for low and large fixed values
of the bandwidth.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 29

Figure 10. Comparison of the total relative overhead for fixed and dynamic bandwidths (no dummy tasks).

As a final remark, the overhead introduced by our scheduling mechanism is, in our evaluation,
acceptable: even for a reservation period of 2.5ms, which is 1/16th of the task period, ourmechanism
steals no more than 3% of the execution time of the MPEG player (in the absence of dummy
tasks).

7. CONCLUSIONS

In this paper we have shown a software infrastructure for applications that have to comply with
soft real-time constraints. Our solution is based on a combination of the RR scheduling algorithm
and of a feedback-based mechanism for dynamically adjusting the bandwidth. The adoption of the
RR algorithm allowed us to construct a precise mathematical model of the scheduler. Moreover,
we stated in a sound mathematical framework the closed-loop design goals (related to the system
stability) and stated conditions and design solution allowing us to produce an effective control
design. We offered a Linux-based architectural solution that implements these ideas and that was
designed to be (1) flexible (it allows for the management of different types of resources and for
the introduction of new control algorithms), (2) minimally invasive in terms of required kernel
modifications and (3) efficient in terms of the introduced overhead. We also provided extensive
experimental results that prove the effectiveness of the approach and its robustness to partial knowl-
edge of the design parameters (collected through trial execution on segments of the application)
and an evaluation of the introduced overhead.
This work can be extended in several directions. The first important possibility is to consider

problems of coordinated allocation of multiple resources. As an example we could consider a
pipeline of activities (decoupled by intermediate buffer) that use different types of resources (e.g.
disk, network, CPU). We conjecture that the use of an RR scheduler for different resources can
represent an enabling paradigm for this type of technique. A theoretical analysis of this problem

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

30 L. PALOPOLI ET AL.

is under way. Moreover, we are planning the extension of the middleware to support the adaptive
allocation of disk and network. Another important research issue is to coordinate scheduler-level
and application-level adaptation. In particular, one of the possible actions of the supervisor (in
response to an overload condition) could be to require the application to lower its QoS level via a
callback mechanism. To this aim, we need both a theoretical analysis of the problem and a viable
architectural solution. Finally, from a purely technological point of view, we are studying a solution
for implementing adaptive reservation with a low complexity (e.g. using quantized priority levels
and bit-mapped queues) and for using them with legacy applications (in a similar manner as we
currently do for tasks with a fixed bandwidth).

REFERENCES

1. Stoica I, Abdel-Wahab H, Jeffay K, Baruah SK, Gehrke JE, Plaxton CG. A proportional share resource allocation
algorithm for real-time, time-shared systems. Proceedings of the IEEE Real-Time Systems Symposium, Rio de Janeiro,
Brazil, December 1996.

2. Jeffay K, Goddard SM. A theory of rate-based execution. Proceedings of the IEEE Real-Time Systems Symposium,
Phoenix, AZ, December 1999.

3. Baruah SK, Cohen NK, Plaxton CG, Varvel DA. Proportionate progress: A notion of fairness in resource allocation.
Algorithmica 1996; 6:600–625.

4. Rajkumar R, Juvva K, Molano A, Oikawa S. Resource kernels: A resource-centric approach to real-time and multimedia
systems. Proceedings of the SPIE/ACM Conference on Multimedia Computing and Networking, San Jose, CA, January
1998.

5. Abeni L, Buttazzo G. Integrating multimedia applications in hard real-time systems. Proceedings of the IEEE Real-Time
Systems Symposium, Madrid, Spain, December 1998.

6. Lipari G, Baruah SK. Greedy reclaimation of unused bandwidth in constant bandwidth servers. IEEE Proceedings of
the 12th Euromicro Conference on Real-Time Systems, Stokholm, Sweden, June 2000.

7. Reed D, Fairbairns R (eds.). Nemesis, The Kernel—Overview, University of Cambridge, Computer Laboratory, Cambridge,
U.K., May 1997.

8. Tokuda H, Kitayama T. Dynamic QoS control based on real-time threads. NOSSDAV’93: Proceedings of the 4th
International Workshop on Network and Operating System Support for Digital Audio and Video, London, U.K. Springer:
Berlin, 1993; 114–123.

9. Wust CC, Steffens L, Bril RJ, Verhaegh WFJ. QoS control strategies for high-quality video processing. Proceedings of
the 16th Euromicro Conference on Real-Time Systems—ECRTS 2004, 2004; 3–12.

10. Brandt S, Nutt G. Flexible soft real-time processing in middleware. Real-Time Systems Journal, Special Issue on Flexible
Scheduling in Real-Time Systems 2002; 22(1–2):77–118.

11. Rajkumar R, Lee C, Lehoczky JP, Siewiorek DP. Practical solutions for QoS-based resource allocation. RTSS, Madrid,
Spain, 1998; 296–306.

12. Ghosh S, Hansen J, (Raj) Rajkumar R, Lehoczky J. Integrated resource management and scheduling with multi-resource
constraints. Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS04), Washington, DC,
U.S.A. IEEE Computer Society Press: Silver Spring, MD, 2004; 12–22.

13. Corbato FJ, Merwin-Dagget M, Daley RC. An experimental time-sharing system. Proceedings of the AFIPS Joint
Computer Conference, May 1962.

14. Nakajima T. Resource reservation for adaptive QoS mapping in real-time mach. Sixth International Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS), Florida, April 1998.

15. Regehr J, Stankovic JA. Augmented CPU reservations: Towards predictable execution on general-purpose operating
systems. Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS 2001), Taipei, Taiwan,
May 2001.

16. Li B, Nahrstedt K. A control theoretical model for quality of service adaptations. Proceedings of the Sixth International
Workshop on Quality of Service, Napa, CA, 1998.

17. Cervin A, Eker J, Bernhardsson B, Årzén K-E. Feedback–feedforward scheduling of control tasks. Real-Time Systems
July–September 2002; 23(1–2):25–53.

18. Lu C, Stankovic J, Tao G, Son S. Feedback control real-time scheduling: Framework, modeling and algorithms. Special
Issue of RT Systems Journal on Control-Theoretic Approaches to Real-Time Computing 2002; 23(1/2):85–126.

19. Steere D, Goel A, Gruenberg J, McNamee D, Pu C, Walpole J. A feedback-driven proportion allocator for real-rate
scheduling. Proceedings of the Third usenix-osdi. pub-usenix, New Orleans, LA, February 1999.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

AQUOSA—ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 31

20. Harada F, Ushio T, Nakamoto Y. Adaptive resource allocation control for fair QoS management. IEEE Transactions on
Computers 2007; 56(3):344–357.

21. Abeni L, Buttazzo G. Adaptive bandwidth reservation for multimedia computing. Proceedings of the IEEE Real Time
Computing Systems and Applications, Hong Kong, December 1999.

22. Goel A, Walpole J, Shor M. Real-rate scheduling. Proceedings of Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, 2004; 434–441.

23. Abeni L, Palopoli L, Lipari G, Walpole J. Analysis of a reservation-based feedback scheduler. Proceedings of the
Real-Time Systems Symposium, Austin, TX, November 2002.

24. Palopoli L, Abeni L, Lipari G. On the application of hybrid control to cpu reservations. Hybrid Systems Computation
and Control (HSCC03), Prague, April 2003.

25. Palopoli L, Cucinotta L, Bicchi A. Quality of service control in soft real-time applications. Proceedings of the IEEE
2003 Conference on Decision and Control (CDC03), Maui, Hawaii, U.S.A., December 2003.

26. Abeni L, Cucinotta T, Lipari G, Marzario L, Palopoli L. Adaptive reservations in a Linux based environment. Proceedings
of the Real-Time Application Symposium (RTAS 04), Toronto, Canada. IEEE Press: New York, 2004.

27. Abeni L, Cucinotta T, Lipari G, Marzario L, Palopoli L. QoS management through adaptive reservations. Real-Time
Systems Journal 2005; 29(2–3):131–155.

28. Abdelwahed S, Kandasamy N, Neema S. Online control for self-management in computing systems. Proceedings of the
10th IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada, May 2004.

29. Eide E, Stack T, Regehr J, Lepreau J. Dynamic cpu management for real-time, middleware-based systems. Proceedings
of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada, May 2004.

30. Zhang R, Lu C, Abdelzaher TF, Stankovic JA. Controlware: A middleware architecture for feedback control of software
performance. Proceedings of International Conference on Distributed Computing Systems, Vienna, Austria, July 2002.

31. Gill CD, Gossett JM, Corman D, Loyall JP, Schantz RE, Atighetchi M, Schmidt DC. Integrated adaptive QoS management
in middleware: A case study. Real-Time Systems 2005; 29(2–3):101–130.

32. Krishnamurthy Y, Kachroo V, Karr DA, Rodrigues C, Loyall JP, Schantz RE, Schmidt DC. Integration of QoS-enabled
distributed object computing middleware for developing next-generation distributed application. LCTES/OM, Snowbird,
Utah, 2001; 230–237.

33. Shankaran N, Koutsoukos XD, Schmidt DC, Xue Y, Lu C. Hierarchical control of multiple resources in distributed
real-time and embedded systems. ECRTS’06: Proceedings of the 18th Euromicro Conference on Real-Time Systems,
Washington, DC, U.S.A. IEEE Computer Society Press: Silver Spring, MD, 2006; 151–160.

34. Liu CL, Layland J. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM
1973; 20(1):46–61

35. Palopoli L, Cucinotta T, Lipari G, Marzario L. Adaptive management of QoS in open systems. Technical Report
DIT-07-003, Department of Information and Communication Technology, University of Trento, 2007; 3–40.

36. Roitzsch M, Pohlack M. Principles for the prediction of video decoding times applied to mpeg-1/2 and mpeg-4 part 2
video. RTSS’06: Proceedings of the 27th IEEE International Real-Time Systems Symposium, Washington, DC, U.S.A.
IEEE Computer Society Press: Silver Spring, MD, 2006; 271–280.

37. Abeni L, Lipari G. Implementing resource reservations in Linux. Real-Time Linux Workshop, Boston, MA, U.S.A.,
December 2002.

38. Preemption Patch. http://kpreempt.sourceforge.net.
39. Marzario L, Lipari G, Balbastre P, Crespo A. IRIS: A new reclaiming algorithm for server-based real-time systems.

Real-Time Application Symposium (RTAS 04), Toronto, Canada, May 2004.
40. Ffmpeg Project. http://ffmpeg.sourceforge.net [2007].
41. High Resolution Timers. http://high-res-timers.sourceforge.net [2007].
42. Linux Trace Toolkit. http://www.opersys.com/LTT [2007].

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:1–31
DOI: 10.1002/spe

