
or

PROGRAMMING MULTI-CORE AND
MANY-CORE COMPUTING SYSTEMS





PROGRAMMING MULTI-CORE
AND MANY-CORE COMPUTING
SYSTEMS

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright c©year by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Title, etc
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1







CONTENTS

1 Autonomic Distribution and Adaptation 1
Lutz Schubert, Stefan Wesner, Daniel Rubio Bonilla and Tommaso Cucinotta

1.1 Introduction 1
1.2 Parallel Programming Models 2

1.2.1 Explicit Communication and Synchronisation 2
1.2.2 Implicit Communication 4
1.2.3 Automated Parallelisation 5

1.3 Concurrent Code 6
1.3.1 Concurrency Analysis and Exploitation 7
1.3.2 Mapping and Adaptation 11

1.4 Conclusions 12

vii





CHAPTER 1

AUTONOMIC DISTRIBUTION AND
ADAPTATION

Lutz Schubert1, Stefan Wesner1, Daniel Rubio Bonilla 1 and Tom-
maso Cucinotta2

1HLRS - University of Stuttgart, Stuttgart, Germany
2Real-Time Systems Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy

1.1 INTRODUCTION

It has been noted multiple times in this book how the future development trend of
processor architecture goes towards heterogeneous mixed many- multi-core systems,
such as already demonstrated by IBM’s CELL processor1 or the OMAP5 by Texas
Instruments 2. It is thereby also obvious that future software (and implicitly software
developers) has to exploit parallelism in order to improve the efficiency of execution,
or even just to enable additional features and functions. The main problem however
consists in the complexity of the according programming models and the degree of
knowledge required about program behaviour for its effective parallelisation. In order
to execute tasks and functions in parallel, their dependencies have to be identified and

1http://www.research.ibm.com/cell/
2http://www.ti.com/ww/en/omap/omap5/omap5-platform.html

title, edition. By author
Copyright c© 2011 John Wiley & Sons, Inc.

1



2 AUTONOMIC DISTRIBUTION AND ADAPTATION

work or data segmented in a fashion that improves rather than reduces the overall
execution performance.

Most programming models originate however from the purely sequential comput-
ing area and offer little support for writing parallelised applications. With the rise of
High Performance Computing (HPC) and hence heavily parallel environments, these
classical models were extended with features to offer some support for parallelism
that mostly consist of explicit or implicit means for controlling communication. As
the HPC domain has so far been a restricted usage area, compared to common day-to-
day programming and application development, developers in this domain typically
pursue(d) a very specific interest and therefore spend the time and effort on learn-
ing dedicated programming extensions, and in particular on parallelising their code
and taking additional precautions to achieve maximum performance. With the entry
of parallelism into the desktop domain, this additional effort is however no longer
justifiable and more usable models are required in order to enable "mainstream par-
allelism".

This chapter describes an approach for increasing the scalability of applications
by exploiting inherent concurrency in order to parallelize and distribute the code.
We thereby focus in specifically on concurrency in the sense of reduce dependen-
cies between logical parts of an application. Concurrency forms a crucial part in
any parallelisation approach, as the degree of dependencies across potential threads
defines the delay due to messaging and synchronisation overhead. For example, loop
unrollments show best performance improvement if they are highly concurrent and
thus vectorizable.

What is even more important, though, is the fact that concurrency can be exploited
for parallel execution of sequential (i.e. unparallelizable) code logic. In other words,
if multiple, independent sequential segments can be identified, they can be executed
in parallel to each other. Thus concurrency exploitationg directly affects the limiting
factor of Amdahl’s [?]. We will show how graph analysis methods can be employed
to assess the dependencies on code level, so as to identify concurrent segments and
to relte them to the specific charateristics of the (heterogeneous, large-scale) environ-
ment.

1.2 PARALLEL PROGRAMMING MODELS

As the need for parallel applications increases, so does the demand for efficient and
yet easy to use programming models and languages that enable scalable and - in the
long run - portable behaviour over heterogeneous infrastructures. In the following,
we will provide an overview over some of the existing parallel programming models
and their strengths, respectively weaknesses with respect to these specific goals:

1.2.1 Explicit Communication and Synchronisation

The most classical approach to parallelisation consists in enabling the development
(and parallel execution) of "threads", e.g. [?]. Like processes, threads are effectively



PARALLEL PROGRAMMING MODELS 3

nothing else but independent applications that however can identify each other in order
to exchange data through dedicated communications. As the description indicates, the
classical thread- enhancements do not offer an explicit means for data synchronisation
or sharing. In other words, the developer has to identify communication points in
his program and explicitly specify the data to be transmitted - in order for one thread
to share data with a second thread, it is therefore necessary for the first thread to
explicitly select and send the respective data set to the second thread which in turn
will have to wait for reception of this data. In the case of explicitly shared data, this
means furthermore that the according dataset will have to be send back and forth in
order to maintain consistent state. Accordingly it is easy to introduce synchronisation
and hence performance issues.

It can therefore be generally noted that thread-based programming models are only
efficient given the right expertise of the developer and a use case where data needs
only be shared at clear, discreet points in time. If the according knowledge is missing,
or should the synchronisation points not be obvious enough, this approach can not
only lead to significant performance losses, but also to locking and unpredictable
behaviour. Many parallelisation methods can raise this condition, such as write before
read across iterations in a parallelised loop. What is more, the approach as such does
not support addressing the heterogeneity issue of computing systems, which not only
affect how these threads need to be compiled, but in particular leads to deviations in
the synchronisation behaviour, if e.g. the execution speed between resources deviates
from one another.

With the introduction of the Message Passing Interface3 (MPI), an attempt was
made to standardise the communication between threads (and processes) in order to
principally allow message-based data synchronisation across infrastructures. Using
MPI it is thus possible to execute different threads and / or processes in different
environments and nonetheless communicate with each other, as long as all involved
systems share information about the thread-IDs. Since MPI promotes a specification
and therefore a general strategy, rather than an explicit execution model or framework,
it could be easily integrated into existing programming models and compiler models.

MPI provides all the essential capabilities needed to deal with large scale and het-
erogeneous infrastructure. However, it’s efficiency depends almost completely on the
capabilities of the developer. Furthermore, MPI was developed for multi-processor
systems with an explicit communication framework between these units - in other
words, MPI does not cater for indirect communication or shared memory systems.
Most modern multi-core processors however build on some form of hardware based
cache coherency (ccNUMA) for which MPI is not suitable or at least generates unnec-
essary overhead. Even though future many-core systems will most likely not share
memory across all processing units, we must nonetheless assume, that at least some
cores will share memory across or at least grant remote access to this memory [?].

As opposed to real distributed systems, where each processing unit / node contains
its own full environment, machines in which multiple units share a common memory

3see http://www.mpi-forum.org/



4 AUTONOMIC DISTRIBUTION AND ADAPTATION

- either physically, or through a hardware based protocol - are comparatively easy to
program for. This is simply due to the fact that the developer does not explicitly have to
cater for sharing and distributing state related data, but instead can assume "global"
state across all threads, so that all processes can handle the data as if local. The
simplest example to parallelising work in a shared-memory environment therefore
consists in loop unrollments where the individual iterations of a loop are executed in
parallel. Notably, the loops may not have any dependencies across iterations, i.e. no
access to previous values n[i] = f(n[i-1]) as this will cause conflicts if n[i], n[i+1], ...
n[i+j] are calculated in parallel. The Open Multi-Processing 4 API (OpenMP) is the
classical programming extension to develop such shared-memory applications.

However, OpenMP does not cater for heterogeneous architectures as they actually
may arise in future multi-core systems, even if it is not necessarily to be expected that
cores of different types will not directly share cache or memory. As different cores
will have different execution performance with respect to the same tasks, even in a
straight-foward work segmentation, such as in the aforementioned loop-unrollment,
the individual processes may deviate, leading to similar locking and read-write issues
as in the thread-based case.

As noted, future processors will not solely rely on shared or cache coherent mem-
ory architectures, as these approaches do not scale to the degree needed and cause
performance loss due to the maintenance overhead. Instead, the microarchitecture
will have to rely on combined models of shared memory tiles connected with other
tiles over a network-on-chip communication infrastructure - in principle very sim-
ilar to modern days’ cluster architectures that effectively integrate a large amount
of processors with multiple cores in a high-performance network environment. Ac-
cordingly, most modern day HPC developers already employ a mixture of OpenMP
and MPI programming models to realise large scale applications that scale across the
heterogeneous hierarchical infrastructure.

Obviously, this makes usage just more complicated for the average developer.
What is more, the heterogeneity of future systems is expected to increase even beyond
the point where it can still be handled with this approach.

1.2.2 Implicit Communication

Rather than having the user / developer deal directly with the specifics of the hard-
ware, most modern programming models approach the problem by abstracting the
system and having the middleware, respectively the compiler deal with the actual
architectural details: for example, the Partitioned Global Address Space5 (PGAS)
model builds on the simplicity of programming shared memory machines and there-
fore exposes capabilities of (virtually) shared memory spaces that the API converts
into message calls or actual shared memory usage, basing on the specifics of the
archtiecture. However, this requires that the according infrastructure information is
provided to the compiler - as we will discuss below, this is currently not generally pos-

4http://openmp.org/wp/
5http://www.pgas-forum.org/



PARALLEL PROGRAMMING MODELS 5

sible and compilers will instead base on generic assumptions about the infrastructure
characteristics.

Even though the PGAS approach has the big advantage of being comparatively
easy to use, in particular for more skilled developers, most actual implementations of
PGAS still suffer from performance issues. This is due to the fact that the compiler
effectively still converts the shared memory access requests into a set of message
based transactions, non-regarding the infrastructure. As noted, currently hardware
descriptions are not used for the purposes of steering compilation though. With-
out this, even the PGAS model cannot avoid running into similar problems as the
OpenMP and MPI combined approach, that is the inability to handle the large scope
of heterogeneity we are about to face in day-to-day development.

It should not be disregarded thereby that even shared memory programming is
still too complicated for many developers and in particular is not applicable to all
development and use cases. In fact, most applications do not even execute complex
algorithms that would benefit from the shared memory approach, respectively require
complete rethinking on the developer’s side. Accordingly, many manufactures pursue
a more user-centric approach which essentially tries to take over parallelisation tasks
for the developer. However, optimal parallelisation actually belongs to the class of
NP complete problems [?], so that the "automagic" parallelisation can (and should)
not be expected. On the other hand, sub-optimal parallelisation still can improve
performance of common code and thus provide an acceptable solution for the average
developer.

1.2.3 Automated Parallelisation

The main goal of modern programming models consists in simplifying usage of the
increasingly complex modern infrastructures - in particular in order to overcome the
problems of scale and heterogeneity. As it cannot be expected that developers deal
with all types of future infrastructures by themselves, the programming model has
to abstract from the hardware and still make best use of it in terms of performance
- most current approaches thereby base on some form of virtualisation technique in
order to hide the infrastructure complexity.

The general principle behind these approaches consists in identifiyng algorithmic
patterns which indicate parallelisable functions, such as loops, queries etc. Simi-
larly, some libraries offer functionalities which are implemented in a parallel fashion,
thereby replacing the sequential implementation as provided by the standard exten-
sions. The latter approach is particularly popular for mathematical libraries in HPC
environments. The main problem with both approaches however consists in poten-
tial errors introduced through parallelising an otherwise sequential invocation, e.g.
by neglecting time-dependent read-write operation on a specific memory space. To
reduce this problem, almost all models require the developer to provide additional
information or, more frequently, to explicitly invoke parallel versions of the according
functionalities, such as "Parallel.For". The parallel .NET extensions for example pro-
vide a series of parallel database queries and functions as part of the LINQ instruction
set.



6 AUTONOMIC DISTRIBUTION AND ADAPTATION

This approach essentially leaves all performance related decisions to the developer,
i.e. whether to use a parallel or sequential implementation of a specific functionality.
Unexperienced developers will for example often select a parallel loop even for simple
computational tasks, thus creating overhead for thread instantiation, distribution and
communication that reduces performances below the pure sequential execution. In
large scale systems, such a degradation of performance can easily arise due to the high
communication overhead introduced by wide distributions of code. What is more,
due to the nature of this approach, only specific parts of the code can be parallelised
in the first instance, leaving many parts of the code sequential. The performance gain
therefore strongly depends on the type of algorithms to be executed and the expertise
of the developer.

1.3 CONCURRENT CODE

The keyword for further parallelisation, in particular of common work tasks that do
not adhere to the typical parallel patterns above is therefore "concurrency". It also
determines whether a loop or a pattern can be effectively executed in parallel in the
first instance:

Concurrency in this specific context reflects the dependencies of a given code
segment or function on other functions or parts of the code. The higher the degree
of concurrency, i.e. the less dependencies exist, the more effective is its parallel
execution and the less likely delays occur due to synchronisation overhead. In the ideal
case, such as in embarrassingly parallel tasks, the concurrency reaches a maximum
that implies that there are virtually no dependencies between the processes.

Obviously, a high degree of concurrency does not necessarily imply that the ac-
cording segment can be executed in full parallel. A single shared variable can stall
the full execution, if the seemingly concurrent code has to wait for the first thread to
finish its calculation before the variable is free for access. At the same time, this ob-
viously depends on the read-write order of the respective segments. Accordingly, and
as discussed in more detail below, it is difficult to automatically identify concurrency
in a given code efficiently. More realistic approaches, such as the Star Superscalar
programming model [?] therefore require the developer to explicitly annotate data
dependencies across their code and functions. This information can then be exploited
by the compiler to generate a dependency graph which provides implicit information
about the execution order and potential points for parallelisation and task distribution.

Star superscalar is thereby still very coarse granular and expects specific function
calls to exhibit concurrency, rather than e.g. direct work load in a loop. It furthermore
does not assess the execution speed of individual function blocks, so that resources
may not be used to their full optimum - nontheless the model provides an easy method
to increase the overall execution performance.

Essentially, even classical parallelisation measurements base on the principle of
maximising concurrency between threasd, so as to minimise dependencies and thus
communication and synchronisation overhead. Concurrency identification can there-
fore be regarded as the key factor in (semi-)automated parallelisation and in addressing



CONCURRENT CODE 7

the requirements for future programming models. As indicated, however, concurrency
cannot be reliably identified automatically:

1.3.1 Concurrency Analysis and Exploitation

There is an extensive literature on automated parallelisation which deals with multiple
aspects of concurrency analysis in order to identify dependencies. In general, the
stronger such a dependency, the less parallelisable the according function. However
this furthermore depends on the sequence of read-write statements in the code and on
frequency of such occurences etc. As a rule of thumb, the gain achieved through the
concurrent execution must be higher than the loss introduced this way. Whilst this
may sound trivial, it has multiple implications:

The major performance loss occurs by latency introduced through any delays -
the most obvious are (1) waiting for data to become available and (2) passing it to
the respective thread, respectively returning results. Similarly, additional delay arises
through access to shared memory spaces. Less obvious however is the fact that many
implicit operations will cause additional delays - this ranges from the overhead for
creating the thread to executing system calls. In the first case, additional operations
need to be executed in order to perform a seemingly simple task - this however
involves a high degree of additional message passing. In the latter case, the major
reason for delay is not so much the communication overhead, but the fact that in all
setups limited resources exist. This includes not only exclusive devices (such as hard
drive or keyboad), but also the operating system - most modern OS architectures are
monolithic and hence centralistic in nature (see e.g. [?]). System calls will build
up with the increasing number of threads and processes being executed concurrently,
thus affecting the scalability of the operating system drastically.

A particularly relevant limited resource is the underlying network itself: not only
does it introduce physical limitations in term of bandwidth and latency, but more im-
portantly, it will be used by multiple processes at the same time, thus leading to further
reduction of the bandwidth and implicitly to further delays. ccNUMA architectures
particularly suffer from this reduction of bandwidth introduced by the consistency
maintenance tasks of the cache coherency protocol. In other words, concurrency
analysis must not only respect the dependencies within the code, but also across the
infrastructure and in order to achieve efficient execution, this system information must
be fed back to the mechanisms for thread distribution and instantiation:

The most general approach to identifying concurrency in a given code consists
in analysing variable usage throughout the code logic and all its invocations. If
two segments share a parameter, they become co-dependent according to the type of
actions executed on the variable (i.e. read or write actions). The main problems consist
obviously in reassigning the same variable name in different contexts, respectively
in passing the content to other variables. Similarly, we need to distinguish between
global and local usage scope, as well as between references and copied instances.

Most strategies focus less on individual variables, as their impact is comparatively
low, rather than larger data or address spaces, i.e. memory ranges. In most programs,
they are represented as arrays over which the algorithm acts. Arrays and in particular



8 AUTONOMIC DISTRIBUTION AND ADAPTATION

indexes of arrays are thus the primary interest of most concurrency analysis mecha-
nism. The principle itself is straight-forward: depending on the access pattern, and in
particular the index relationships across iterations, specific parallelisation techniques
can be employed. For example

• No dependencies:

S: A(i) = A(i) + C(i)

T: B(i) = B(i) - C(i)

• True dependency (same iteration):

S: A(i) = A(i) + C(i)

T: B(i) = B(i) - C(i) + A(i)

• True dependency (with previous iteration):

S: A(i) = A(i) + C(i)

T: B(i) = B(i) - C(i) + A(i-d)

• Antidependence (WAR):

S: A(i) = A(i) + C(i) - B(i)

T: B(i) = B(i) + C(i)

• Antidependence (WAR) (with increased index)

S: A(i) = A(i) + C(i)

T: B(i) = B(i) - C(i) + A(i+d)

Obviously this approach concentrates on concurrency in loops rather than general
occurences of concurrent segments. The principle nonetheless may also be applied
across different logical segments, given that the parameters, i.e. the array, in question
can be uniquely identified.

Figure 1.1 A dependency graph derived from code behaviour analysis. Edges on the left
denote data-flow and on the right work-flow (simplified).

This source code level analysis however neglects two crucial aspects: (1) most
code behaviour depends on the data, i.e. the concurrency may alter given a specific



CONCURRENT CODE 9

data set, and (2) the execution speed and actual memory usage of the code cannot be
assessed correctly, so that potential synchronisation issues cannot be detected, unless
the concurrent segments are essentially uniform, as is the case in loop unrollment.

What is more, the analysis is generally restricted to the source code at hand, leaving
aside aspects of implicit dependencies that arise e.g. from system calls, resource
access and similar.

In other words, the approach is comparatively restrictive in comparison to the
techniques and means applied by expert parallel developers. Accordingly, there is
no guarantee for improved execution performance following this approach, even if
resources are generally exploited better.

An alternative to source code level analysis consists in monitoring the actual execu-
tion behaviour of a program on machine code level. The Service-oriented Operating
Systems project6 (S(o)OS) promotes this approach to gain more fine-granulated data
specific information about not only the actual data-flow, but also the work-flow of
the code. The (runtime) behaviour provides additional information about the actual
connectivity between the individual segments and thus its requirements towards the
communication model, i.e. the relationship of latency versus bandwidth.

Implicitly, runtime behaviour effectively provides more information about the po-
tential code distribution than the programmer can currently encode in the source code.
This is simply due to the fact that this is not in-line with our current way of writing
programs and is implicitly not directly supported by programming models. The
foundation is however laid out by integration of remote processes (web services) and
dedicated synchronisation points in parallel processes âŁ“ this does not always reflect
the best distribution though, as the according invocations are mainly functionality-
rather than communication-driven.

By integrating a memory monitor into the kernel, the operating system can acquire
information about the memory access behaviour of the full scope of the code, i.e.
including jumps, data access and, interestingly, system calls. Like in the source code
model, the system can use this information to generate a dependency graph, not unlike
the one generated in Star Superscalar (see above). Accordingly, the information can
be used in a similar fashion by analysing this dependency graph with respect to the
concurrent segments and potential parallel execution.

Due to the nature of runtime code analysis, however, the dependency information is
much more fine granulated, leaving little room for "obvious" concurrency. Instead, the
graph has to incorporate additional information that for example the Star Superscalar
model and the source code level analysis do not consider, in particular:

• access frequency (of invocations or read / write actions)

• type of action (jump, read, write)

• access order in time

• size of the code / data accessed

6http:\\www.soos-project.eu



10 AUTONOMIC DISTRIBUTION AND ADAPTATION

With this information, we can derive a graph where the the strength of the relation-
ship and the size of the underlying code / data is encoded as weights (or distances)
of vertices and edges. The dependency information in this graph can be used to ex-
tract different segments in the form of subgraphs according to nearness (connection
strength) and combined size. In other words, according to the number of memory
accesses with fewer accesses implying a potentially good cutting point. Segmenting
the graph is thereby similar to the problem of identifying the maximum flox in a
flow network, and thus the max-flow-min-cut theorem which is often also applied
for segmentation purposes in image analysis (see e.g. [?]). The minimum cut in our
case therefore reflects the segments that share the least dependencies. This means
that the created segments can principally be distributed over multiple cores, if the
timing dependencies (i.e. synchronisation delays) between the individual functions
is respected.

Figure 1.2 Potential segmentation of the reduced graph (simplified).

Dependent segments thereby can nonehtless still be executed in parallel if the
according communication and synchronisation means are provided, as discussed
above.The maxmimum execution speedup through this form of parallelisation is
thereby directly related to the maximum degree of execution overlap that can be
achieved without affecting consistency of the program. The overlap should thereby
be ideally identical to the maximum delay created by communication.

What is more, by applying similar pattern analysis approaches as in the source
code analysis, potential points for parallelisation rather than just concurrent execu-
tion can be identified. As such, it can be for example shown that the graph of an
Antidependence loop iterates across memory in line with the index and that the cross-
dependency between S and T is depicted by a read access prior to a write access on the
same memory space, so that both S and T can execute in full parallel by overwriting
memory (for B) from S with data from T after execution, or by first executing S in
full parallel before unrolling T.

Whilst the benefits of this approach are obvious, the method nonetheless suffers
from two strongly related issues: as the code behaviour may be impacted by the
environmental conditions, ranging from dynamic sources (such as a keyboard) to
data-specific behaviour (for example reacting to specifc occurences in a data stream),
the actual dependencies may alter over time. Accordingly, the segmentation at a given
point in execution may not be static itself, but subject to changes over execution time.



CONCURRENT CODE 11

Figure 1.3 Code to infrastructure mapping principles.

1.3.2 Mapping and Adaptation

It was already mentioned in the beginning of this chapter, how the architecture of
future processors is going to change and deviate drastically from today’s more or less
homogeneous and uniform setups. Already setups such as Intel’s Many Integrated
Core7 (MIC) architecture clearly show the tendency towards non-uniform connectiv-
ity between processing units, i.e. network on chip connections between cores. Texas
Instrument and IBM on the other hand show how future processors will integrate
various processing types in a single chip.

Figure 1.4 Rearrangement of concurrent logical segments for maximum speedup.

7http://www.intel.com/technology/architecture-silicon/mic/index.htm



12 AUTONOMIC DISTRIBUTION AND ADAPTATION

Accordingly, it will become more than ever important to respect the actual hardware
specifics for parallel code distribution. In particular, this relates to the following main
criteria:

• cache size

• connectivity (bandwidth and latency)

• ISA / capabilities

These criteria specify how individual code segments should be deployed relative
to one another within a single processor, so as to reduce unnecessary overhead and
exploit the given specifics to their most. For example, many applications contain
logical parts that can be easily vectorized, or at least executed efficiently on a SIMD
(Single Instruction, Multiple Data) unit, such as stream processing tasks. If such a unit
is available in the processing infrastructure, it should therefore ideally be exploited
for the according logic. Similarly, two threads communicating frequently should be
placed next to each other in a Network on Chip structure, so as to exploit the com-
munication linkage between the two, rather than far apart with multiple concurring
threads inbetween which will lower the bandwidth and increase latency.

The according information for exploiting code specifics can be easily derived from
the code analysis as described above. For example the best communication layout
relates directly to the connectivity weight between code segments in the behaviour
graph. Mapping this relationship information to the network layout is obviously an
NP complete tasks, yet classical graph matching strategies can be applied to this
problem (see e.g. [?]).

More problems however are posed by the specific capabilities of a given processing
unit: in order to fully exploit (and to cope with) the heterogeneity of the infrastruc-
ture, compiler and ideally execution manager (such as the operating system) of the
respective code should be capable of identifying, interpreting and using the hard-
ware specific characteristics. In the example provided above, this would mean that
the SIMD core is retrieved and the specific criteria, respectively capabilities towards
the code are identified. It would furthermore mean that the infrastructure uses this
information to prepare the code accordingly.

As long as the processing units in question adhere to the same Instruction Set
Architecture (ISA), conversion (in the sense of potential rearrangement of code) can
be easily adhered to. It must be expected however that future models will not even
maintain compliant ISAs anymore - accordingly, a porting request of a specific code
segment to a non-compliant unit will implicitly require conversion of the underlying
ISA. Obviously, this easily achieved at source code level by providing the according
compiler directives - on machine code level, this however is nearly impossible with-
out major loss of efficiency. Implicitly, the information gained from machine code
monitoring can only be indirectly be exploited, by feeding it back to the source code
level and hence the compiler.

What is more, however, is that no current hardware description method allows
to identify capabilities in the required fashion. The most widely used description



CONCLUSIONS 13

language for hardware - the Very High Speed Integrated Circuit Hardware Descrip-
tion Language8 (VHDL) - is too detailed to allow such information extraction and is
furthermore too complicated for easy adaptation to the arising scope of new infras-
tructures. Baaij et al. therefore promote a hardware description language basing on
functional declarations that would allow more abstract queries over the structure so
as to derive capability information, such as processor type (cf. [?]).

1.4 CONCLUSIONS

The advances in heterogeneous multicore systems has taken the software industry and
the programming language community essentially unprepared. Already the advances
made on hardware level progress faster than the ones on software and programmming
level, so that by now processor architectures start to offer more capabilities than
a developer can sensibly exploit. Within this chapter we have highlighted which
specific obstacles hinder the developer from making use of such new systems and
which specific obstacles are yet to overcome in order to enable the broad scope of
developers that will have to make use of these systems in the near future.

A promising approach thereby consists in exploitation of concurrency, rather than
"automagic" parallelisation which can only lead to very suboptimal solutions. Con-
currency can be analysed on multiple code levels, thus providing information of
different granularity - however, all approaches so far still base on the programmer
providing the according dependency information. So far this information cannot even
be properly validated against the code, thus making it error prone.

What makes the exploitation of concurrency so specifically interesting in this con-
text is not only its ability to support the developer though. Even more important is the
capability that proper exploitation of concurrency can further reduce the limitations
posed by Amdahl’s law: next to the classical means of parallelisation (segmentation
of work or data), it can also affect the "unparallelisable" part of the code, i.e. which is
denoted as "sequential part" in Amdahl’s law. This is achieved by executing multiple
sequential logical parts at the same time, rather than parallelising the respective code
itself. Due to the nature of this type of parallelisation, however, the scalability is not
only restricted by the number of available processing units, but also by the number
of concurrent segments that can be identified. In other words, if only 10 concurrent
segments can be identified, the maximum theoretically possible speedup is 10 - even
if more processing units are available.

Not only the high degree of scalability will pose issues to future programming
models, but in particular the large variance of processor architectures with increasing
deviations even on the ISA level. So far, the developer must be well aware of these
differences in order to give according compiler instructions. To enable compilers
or even the execution infrastructure to automatically detect and exploit the hardware
specifics, new description languages are needed that can expose the respective unit’s
characteristics and capabilities in a fashion that can be interpreted according to the

8http://www.vhdl-online.de/



14 AUTONOMIC DISTRIBUTION AND ADAPTATION

infrastructure’s needs. Functional languages thereby show high promise, as they are
more intuitive and flexible than traditional models, and enable abstract queries from
which additional information about the specifics can be derived.


