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Introduction 
Circular economy and industrial symbiosis are strategic pillars for European growth, 
economy, sustainability, and competitiveness, as emphasised in the Strategic Research 
Agenda of the European Steel Technology Platform (ESTEP)1, 2 and of the Clean Steel 
Partnership3. In this background, by-products are acquiring ever more importance, and 
the steelmaking industry (where about 90% in mass of the by-products are slags4) is 
investigating solutions allowing their optimal management in terms of reuse and 
recycling5-7. In electric steelmaking, slags are produced in Electric Arc Furnaces (EAF) and 
in Ladle Furnaces (LF), and sometimes their management is not optimised since their 
features (e.g. their composition) are not continuously monitored. Knowing in real-time 
the slag composition with standard analytical techniques is challenging. The procedure 
often requires long times and presents difficulties connected to harsh environment (for 
liquid slag) and high heterogeneity of slags (especially at solid state), that would require 
costly and lengthy multiple sampling to ensure representativeness. The sample 
preparation, whose complexity depends on the adopted analytical method, also affects 
measurements accuracy, and sometimes only semi-quantitative methods are used. On 
the other hand, a more precise and anticipated knowledge of slags composition provides 
opportunities from the point of view of both process optimisation and slag valorisation. 
Slag conditioning and metallurgical processes control, as well as slag handling, can be 
improved using information on slag features, by enabling implementation of suitable 
practices for slag treatment, recycling and valorisation. 
 
Therefore, besides the requirements of new sensing devices8, 9, digital tools can be used 
to estimate slags composition. Different models can be found in the literature on the 
electric steelmaking process10-13 but they are generally not focused only on the slags 
simulations and/or are too complex for real-time use in decision support systems 
finalised to the slag monitoring and management. For this reason, among the different 
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activities, during the European RFCS project “iSlag” (https://www.islag.eu/), different 
models were developed for both offline analyses (e.g. a flowsheet model considering 
the whole electric steelmaking route10, and allowing computing, among others, steel 
and slags amounts, compositions and temperature, electric energy requirments, etc.) 
and online estimate of slag compositions. For this last goal, data-driven models were 
developed in their pure or hybrid configurations, by employing techniques based on 
Artificial Intelligence and particularly on Deep Neural Networks also combined with 
phyisics-based model. This paper focuses on them. 

Materials and Methods 
The models used for online estimate of slags composition exploit a Deep MultiLayer 
Perceptron (DMLP) architecture. It was trained and fed in its pure configuration with 
input data coming from a real industrial plant (referring to about 1500 heats), after an 
ad-hoc variable selection process.  
 
The list of the inputs are the following: 

EAF slag models: amounts of most scrap qualities used in the charge mix, 
amounts of most charged and added non-metallic materials, consumed 
electricity, duration of activated electric arc, consumed oxygen and natural gas, 
tapping temperature;  
LF slag models: amounts of most additions at tapping and during the different 
secondary metallurgy steps.  

While in hybrid form (Hybrid Net – HN) a Physics Informed Neural Network (PINN) 
approach14 was followed, which is designed to incorporate knowledge of the underlying 
physical laws and constraints of a system into the standard neural networks. Therefore, 
the DMLP are fed also with results of mass-balance physics-based model obtained from 
the previously mentioned flowsheet model10. The mass-balances equations concern the 
physics/chemical-based calculation of the different slag compounds content, and have 
been ad-hoc tuned/adjusted with specific parameters derived from the flowsheet 
model. Therefore, these equations can be considered a sort of approximation and 
translation of the flowsheet model. The equations refer to the following aspects 
considered in the flowsheet model: direct transfer of a specific compound from the raw 
materials to the slags without transformation, reactions of some raw materials 
compounds to become components of the slags, partition of some compounds between 
slags and liquid steel, slag entrainment, differences in process phenomena and reactions 
depending on produced steel family (i.e. group of similar steel grades). In addition, they 
include some correction factors to counteract errors deriving from data (e.g. related to 
scraps variability, analytical methods and calibration of measurement devices). The 
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inputs of the mass-balance equations are amounts and compositions of all the input 
materials (i.e. scraps, metallic and non-metallic materials).  
 
Further approaches were tested especially for LF slags. This is because more 
uncertainties derived from data (e.g. the LF slag amount is not available for each heat 
as in the case of EAF slag) and from higher complexity of this process (due to more 
additions and steps with respect to EAF) are transferred to the flowsheet model and, 
consequently, to the derived mass balance equations that are less accurate. Therefore, 
a Limited Hybrid-Net (LHN) was tested with the exploitation only mass-balances of the 
physics-based model having higher performances, related to the following LF slag 
compounds: SiO2, Al2O3 and TiO2. Furthermore, training was done with and without 
inclusion of the steel family information (models named with the suffix SF), and 
considering a higher or a reduced number of variables (suffix RV is used in this last case 
for identifying the models). Although these approaches were developed especially for 
LF slags, for the sake of scientific completeness, they were tested also for EAF slags. 
 
The inputs in the case of reduced number of variables are the following: 

EAF slag models: amounts of reduced number of scraps qualities used in the 
charge mix, amounts of reduced number of the charged and added non-metallic 
materials, and consumed natural gas;  
LF slag models: amounts of reduced number of additions at tapping and during 
the different secondary metallurgy steps. 

Results and Discussion 
This section presents and discusses the results obtained by using the proposed 
techniques. Results in terms of Mean Absolute Error (MAE) related to the best model 
approach (i.e. the one with lower MAE) for the estimate of the mass fraction of EAF and 
LF slags compounds are reported in Table 1. This includes also the MAE obtained by the 
flowsheet model (MAE FM) to show the improvements obtained via data-driven 
approaches. MAE refers to the test carried out on 30% of the global samples (randomly 
selected). It is noteworthy that the performance of each data-driven model is affected 
by the combination of all inputs. Their capability to “capture” the unknown synergy 
among inputs enables better performances compared to the flowsheet model.  
 
MAE is normally used to compare the models, but is difficult to interpret as it is on 
absolute basis. Therefore, Table 2 shows the Mean Absolute Percentage Error (MAPE) 
for both best data-driven approach and flowsheet model (MAPE FM), and the 
Percentage Variation Coefficient (PVC), which is the percentage ratio of the standard 
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deviation over the mean value, to better show the models’ accuracy. As MAE, also MAPE 
and PVC refer to the test dataset.  
 

Table 1: Test MAE of best data-driven model for the estimate of slags compounds mass 
fraction compared with flowsheet model MAE 

EAF 
Slag 

Best Model MAE 
MAE 
FM 

LF 
Slag 

Best Model MAE 
MAE 
FM 

SiO2 HN_RV_SF 1.28·10-2 2.17·10-2 SiO2 DMLP 1.89·10-2 1.94·10-2 
FeO HN_RV_SF 4.94·10-2 6.12·10-2 FeO HN_RV_SF 1.34·10-3 1.45·10-3 
Al2O3 HN_RV_SF 1.09·10-2 1.42·10-2 Al2O3 HN 1.23·10-2 1.23·10-2 
CaO HN_RV_SF 3.11·10-2 3.51·10-2 CaO DMLP_SF 2.00·10-2 2.08·10-2 
MgO HN 6.27·10-3 1.10·10-2 MgO DMLP_SF 1.56·10-2 1.63·10-2 
MnO HN 8.98·10-3 8.98·10-3 MnO DMLP_RV_SF 3.29·10-4 3.88·10-4 
Cr2O3 DMLP 4.69·10-3 9.52·10-3 Cr2O3 HN_RV_SF 8.07·10-5 1.07·10-4 

 
Table 2: Test MAPE of best data-driven model for the estimate of slags compounds mass 

fraction compared with flowsheet model test MAPE and test dataset PVC 

EAF 
Slag 

Best 
Model 

MAP
E 

MAP
E 

FM 
PVC 

LF 
Slag 

Best Model 
MAP

E 

MAP
E 

FM 
PVC 

SiO2 
HN_RV_S

F 
16.5

% 
26.7
% 

23.2
% 

SiO2 DMLP 8.7% 
11.9

% 
12.0

% 

FeO 
HN_RV_S

F 
12.7

% 
14.7
% 

16.7
% 

FeO HN_RV_SF 
48.6

% 
83.9

% 
52.5

% 

Al2O3 
HN_RV_S

F 
24.1

% 
31.7
% 

31.8
% 

Al2O3 HN 
22.1

% 
38.1

% 
33.5

% 

CaO 
HN_RV_S

F 
17.0

% 
17.2
% 

28.3
% CaO DMLP_SF 3.5% 

5.1% 4.7% 

MgO HN 8.5% 14.7
% 

13.8
% 

MgO DMLP_SF 30.3
% 

31.6
% 

49.4
% 

MnO HN 
11.6

% 
12.4
% 

17.5
% 

MnO 
DMLP_RV_S

F 
63.1
% 

84.5
% 

97.8
% 

Cr2O
3 

DMLP 
15.3

% 
18.2
% 

30.7
% 

Cr2O
3 

HN_RV_SF 
28.2

% 
83.0

% 
29.8

% 
 
Minor compounds that together constitute on average less than 5 wt% of slags (i.e. TiO2, 
P2O5, V2O5 and Na2O) are not reported in the tables as the models do not accurately 
estimate them for both the slags. Among these minor compounds, only for the following 
acceptable results were obtained: P2O5 in EAF slag (MAPE of 22.0% with DMLP_RV_SF), 
V2O5 in EAF slag (MAPE of 28.0% with HN) and TiO2 in LF slag (MAPE of 19.9% with 
DMLP_RV_SF). 
 
The example results shown in Figure 1 compare the values of the measured mass 
fractions of some slag compounds (on the X axes) to the estimates provided by the best 
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modelling approach (on the Y axes). For the reported compounds (i.e. CaO and FeO for 
EAF slags, and SiO2 and Al2O3 for LF slags), the estimates provided by the best data-
driven approach are comparable with measured values, such as shown by the fact that 
the points clouds are close to the bisector line.  
 
As shown in Table 1 and 2, data-driven approaches always provide better performances 
compared to the flowsheet model; and, generally, HN (in one of the tested 
configurations) provides best results for most EAF slag compounds, demonstrating that 
physics-based model introduces significant information to the data-driven system 
improving its performances. On the other hand, usually DMLP (in one of the tested 
configurations) provides the best results for the estimate of most compounds of LF slag. 
This demonstrates that, in this case, the mass-balance physics-based model introduces 
uncertainties in HN and decreases its accuracy. 
 
Observing the MAPEs in Table 3, the best modelling approach can characterise most 
major compounds of EAF slags with MAPE values lower or equal to 17% (Al2O3 is the 
only exception). For LF slags, the models are less performant; actually, most compounds 
that together represent in average more than 95% of LF slags (i.e. SiO2, Al2O3, CaO and 
MgO) are estimated with MAPE values lower than 23% with the only exception of MgO. 
Moreover, as expected, MAPE follows the behaviour of the dataset PVC: higher error 
values correspond to variables showing higher PVC, highlighting that the models 
performances can be considered suitable enough. 
 
In effects, model performances are affected by data quality. For instance, although 
inputs consider real mixtures of different scraps, only average composition of each scrap 
type were available, thus their variability through time and the related effects on slags 
cannot be considered. Furthermore, although outliers were removed, some intrinsic 
errors remained in the provided data, and these affected the models training. Some of 
them can be related to errors introduced by operators, while other ones are connected 
to the measurement devices calibration or the analytical method. Furthermore, in case 
of slag analyses, errors can be related to the fact that the samples are not completely 
representative of the slag due to its heterogeneity. Therefore, it is expected that better 
performances can be achieved when at least some of the above listed issues are solved. 
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Figure 1: Example of comparison of measured mass fractions with predicted values with the 

best approach of: a) CaO content in EAF slag by using HN_RV_SF; b) FeO content in EAF slag by 
using HN_RV_SF; c) SiO2 content in LF slag by using DMLP; d) Al2O3 in LF slag by using an HN 

Conclusions and Future Works 
Different data-driven modelling approaches were tested for the prediction of EAF and 
LF slags composition. Hybrid-AI approaches proved to be suitable to increase data-
driven model performances, if uncertainties deriving from unreliable data are not 
transferred to physical-based models. The proposed digital solutions can be valuable 
tools for real-time characterisation of electric steelmaking slags to improve their 
management and valorisation, as they can provide continuous and fast estimate of slag 
composition with respect to the discontinuous analyses that are currently done.  
 

b) a) 

d) c) 
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In order to improve the models’ accuracies, ongoing and future work focuses on better 
understanding the phenomena linked with the compounds that are estimated with 
higher errors (e.g. minor compounds) to provide more phenomenological-based 
information to the HN models. In addition, solutions for obtaining more reliable data on 
both inputs (e.g. scraps) and outputs (e.g. slags) are under investigations.  
 
Finally, the assessment of model robustness will be carried out with “out-of-time” 
dataset, referring to heats produced in a period well after the ones considered in the 
training set. 
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